Federal Emergency Management Agency

Quinnipiac River HUC 8 LiDAR FY2010

New Haven County, Connecticut CID 09009C

Middlesex County, Connecticut CID 09007C

Technical Support Data Notebook

Terrain Project Narrative

Elevation Data Acquisition

CASE NO. 11-01-0721S
Contract no. HSFEHQ-09-D-0370
Task Order No. HSFE01-10-J-0005

Date August 31, 2011
Prepared By:

STARR
Strategic Alliance for Risk Reduction
Table of Contents

1. INTRODUCTION ... 3
2. SCOPE OF WORK .. 7
3. ISSUES ... 10
 A. SPECIAL PROBLEM REPORTS .. 10
 B. PROJECT MODIFICATIONS .. 10
4. INFORMATION FOR THE NEXT MAPPING PARTNER ... 11
 A. GROUND CONTROL SURVEY .. 12
 B. DATA ACQUISITION ... 15
 C. POST PROCESSING ... 16
 D. QUALITY CONTROL .. 18
 E. QUALITY ASSURANCE ... 20
5. REFERENCES .. 23

ATTACHMENTS:

APPENDIX A. CONTACT INFORMATION
APPENDIX B. FEMA COMPLIANCE FORMS AND METADATA
APPENDIX C. PRE-FLIGHT PLANNING REPORT
APPENDIX D. GROUND CONTROL SURVEY AND VERTICAL TESTING QC
APPENDIX E. POST FLIGHT REPORT
APPENDIX F. QUALITY ASSURANCE
APPENDIX G. DELIVERABLES
APPENDIX H. GUIDANCE

List of Tables

TABLE 1. VERTICAL ACCURACY REQUIREMENTS ... 3

List of Figures

FIGURE 1. QUINNIPIAC WATERSHED PROJECT LOCATION ... 4
FIGURE 2. QUINNIPIAC WATERSHED COMMUNITIES ... 6
FIGURE 3. QUINNIPIAC WATERSHED GROUND CONTROL SURVEY COVERAGE .. 14
FIGURE 4. QUINNIPIAC WATERSHED POINT CLOUD AND POST PROCESSING AREAS 17
FIGURE 5. QUINNIPIAC WATERSHED FVA AND CVA POINTS .. 19
FIGURE 6. QUALITY ASSURANCE WORKFLOW ... 20
FIGURE 7. TERRAIN DELIVERABLE DIRECTORY STRUCTURE .. 21
1. Introduction

Beginning in Fiscal Year 2010, FEMA initiated a five-year program for Risk Mapping, Assessment, and Planning (Risk MAP). The vision for Risk MAP is to deliver quality data that increases public awareness and leads to action that reduces risk to life and property. In order to realize the Risk MAP vision FEMA is acquiring high resolution terrain elevation and land cover elevation data to increase production efficiencies for NFIP regulatory products and support risk assessment data development. FEMA has made a commitment through Risk MAP to work closely with NDEP (National Digital Elevation Program) partners to obtain and support the collection of terrain data throughout the United States.

Terrain data, collected under the Risk MAP program, will be required to meet minimum specifications outlined in the Draft Procedure Memorandum No. 61—Standards for LiDAR and Other High Quality Digital Topography dated August 1st, 2010. FEMA also requires all deliverables for topographic data collection be submitted in accordance with Appendix M: Data Capture Standards March 2009. All relevant project materials have been reviewed to insure that these requirements are met.

The objectives for elevation data acquisition for the Quinnipiac River watershed are as follows:

1. LAS point cloud files collected for 443 square miles
2. LAS point cloud files captured using the “Highest” vertical accuracy requirements
3. LAS point cloud files collected at equivalent of a 2-foot contour accuracy
4. LAS point cloud files collected using a nominal pulse spacing of 1-meter
5. LAS classified as Bare Earth processed for 443 square miles

Table 1. Vertical Accuracy Requirements

<table>
<thead>
<tr>
<th>Contour Accuracy</th>
<th>Specification Level</th>
<th>RMSE$_z$ (cm)</th>
<th>FVA (cm)</th>
<th>CVA (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2ft</td>
<td>Highest</td>
<td>37.1</td>
<td>24.5</td>
<td>36.3</td>
</tr>
</tbody>
</table>
Figure 1. Quinnipiac Watershed Project Location
The LiDAR Acquisition area for this project covers portions of New Haven County, Middlesex County, and Hartford County, Connecticut. The following communities are either partially or completely included within this Area of Interest:

Communities in New Haven County, Connecticut:

- Town of Ansonia
- Town of Bethany
- Town of Branford
- Town of Cheshire
- Town of Derby
- Town of East Haven
- Town of Guilford
- Town of Hamden
- Town of Madison
- Town of Meriden
- Town of Milford
- Town of New Haven
- Town of North Branford
- Town of Orange
- Town of Prospect
- Town of Wallingford
- Town of Waterbury
- Town of West Haven
- Town of Wolcott
- Town of Woodbridge

Communities in Middlesex County, Connecticut:

- Town of Chester
- Town of Clinton
- Town of Deep River
- Town of Durham
- Town of Essex
- Town of Haddam
- Town of Killingworth
- Town of Middlefield
- Town of Middletown
- Town of Old Saybrook
- Town of Westbrook

Communities in Hartford County, Connecticut:

- Town of Berlin
- Town of Bristol
- Town of Farmington
- Town of New Britain
- Town of Plainville
- Town of Southington
Figure 2 Quinnipiac Watershed Communities

New Haven County, Connecticut
Middlesex County, Connecticut
Hartford County, Connecticut

Town of Woodbridge
Town of West Haven
Town of Milford
Town of Orange
Town of East Haven
Town of Branford
Town of Madison
Town of Killingworth
Town of North Branford
Town of North Haven
Town of New Haven
Town of East Haven
Town of Guilford
Town of Clinton
Town of Clinton
Town of Old Saybrook
Town of Essex
Town of Deep River
Town of Chester
Town of East Haddam
Town of Haddam
Town of Durham
Town of Middlefield
Town of Cromwell
Town of Portland
Town of Glastonbury
Town of Rocky Hill
Town of Wethersfield
Town of Newington
Town of Farmington
Town of Plainville
Town of Southington
Town of Berlin

1:275,000

FEMA Case Number 11-01-0721S
Quinnipiac Watershed, Connecticut
Terrain Project Narrative
2. Scope of Work

Statement of Priorities
PTS Elevation Data Acquisition
STARR – Contract # HSFEHQ-09-D-0370

The contractor shall acquire elevation data to support flood hazard data updates based on the minimum requirements shown on the attached ordering sheet. Elevation data shall comply with the draft FEMA Procedure Memorandum: Standards for LiDAR and Other High Quality Elevation Data.

The contractor shall respond with pricing for the minimum elevation collections and bare earth processing specified the attached ordering sheet. The contractor’s proposal shall identify any breakline creation or other post-processing that is required to use the elevation data for the flood hazard data updates based on the risk, terrain type, anticipated engineering methods and other relevant factors. The proposal must explain the reasons this additional processing is needed.

The contractor will also be responsible for performing QA of the elevation data as specified in the Standards for LiDAR and Other High Quality Elevation Data procedure memo.

The contractor shall also propose collection and processing alternatives that group the collections into larger, more cost effective collection blocks or other collection and processing alternatives that may be more advantageous for the government as an alternative option.

Scope Details:

All data collected under this task order will adhere to the FEMA Procedure Memorandum No. 61 – Standards for LiDAR and Other High Quality Digital Topography.

STARR will be responsible for all phases of LiDAR collection (including ground control, acquisition, post-processing, and accuracy assessment of the data) as described below:

STARR is responsible for the collection of ground control required to control the LiDAR data and points to support a vertical test. These points must be located only in open terrain, where there is a high probability that the sensor will have detected the ground surface without influence from surrounding vegetation.
Checkpoints must be located on flat or uniformly sloping terrain and will be at least five (5) meters away from any break line where there is a change in slope. This criterion applies for all QA points for the Fundamental Vertical Accuracy (FVA) Assessment as well.

STARR will be responsible for the collection of blind vertical QA points for the Consolidated Accuracy Check (CVA). These points must be collected randomly across the three predominant land use types using the ASPRS NSSDA land cover types. The points will be located in flat areas with no substantial elevation breaks within a 3-5 meter radius. The CVA assessment may incorporate a representative sample of the FVA assessment into the dataset to save on the total number of points collected. A CVA point should not be collected for any land class comprising less than 10% of the total project area.

At least 20 points for the FVA and 15 additional points for the CVA in vegetated classes, supplemented by five FVA points to achieve 20 in total in the CVA must be collected. This number of points will give STARR the required RMSE to generate the 95% confidence required by the FEMA guidelines. All ground control points must have digital photos and a sketch (if practical) for each point. This collateral data may help with any discrepancies without further field work.

STARR must provide proof that the vertical accuracy assessment of the LiDAR data was a blind test via an independent check report. The spreadsheet with X and Y coordinates for at least 20 FVA and 15 CVA points, the elevation of each coordinate found in the LiDAR data, the comparison with the accuracy check point, the calculated difference and the overall RMSE must be included in this report. Independent check or calibration points will be three times as accurate as the surface being checked. Therefore, in order to validate a 24.5 cm surface, STARR must collect control data to 8 cm.

LiDAR acquisition of the Quinnipiac River Watershed, consisting of 443 square miles, captured to the “Highest” vertical accuracy requirement. This collection specification is the equivalent of a 2-foot contour accuracy and must be collected with a nominal pulse spacing of 1-meters. The entire area will be post processed to bare earth.
DELIVERABLES

STARR will deliver the following:

- Ground control spreadsheet in x,y,z format, digital photograph and sketch of area (if practical) for each collected point.
- FVA Report. Assessment of initial vertical accuracy of point cloud to ensure that data has successfully completed preliminary processing. The data will be validated for positional accuracy using USGS LiDAR Guidelines and Base Specifications v13. Fundamental checkpoints will only consist of open area or bare earth areas (short grass, dirt, or rock). Listing of checkpoints will include any digital photographs and/or sketches for each point.
- CVA Report. Assessment of final vertical accuracy of LiDAR data to ensure that data has successfully completed bare earth processing. The data will be validated for positional accuracy using USGS LiDAR Guidelines and Base Specifications v13. Consolidated checkpoints will be collected over the five major ASPRS Land Classes. Listing of checkpoints will include any digital photographs and/or sketches for each point.
- Pre-Flight Operations Plan. MS Word file or PDF document that details planned flight lines, planned GPS stations, planned control, planned airport locations, calibration plans, quality procedures for flight crews, planned scanset, type of aircraft, re-flight procedures, and considerations for terrain, cover and weather in the project. This document is to be provided in accordance with the FEMA Procedure Memorandum No. 61 – Standards for LiDAR and Other High Quality Digital Topography.
- Post Flight Aerial Acquisition Report. MS Excel, MS Word, and ESRI Shapefile formats (as appropriate) that details actual GPS base station information, GPS/IMU processing summary, coverage, flight data (as flown), flight logs, ground control to be used, and results of data verification (QC) process. This document is to be provided in accordance with the FEMA Procedure Memorandum No. 61 – Standards for LiDAR and Other High Quality Digital Topography.
- LAS Point Cloud Data. The initial processing and analysis of laser data (GPS/IMU/laser ranges) to fully calibrated point clouds in a mutually agreed upon tile format. This format will be proposed by Tuck Mapping to STARR. Consideration of optimum processing and use by floodplain modeling staff will be a basis for the format. All LiDAR data will be set to ASPRS LAS Class 1 (unclassified).
- LAS Bare Earth Data. The final processing and classification of LiDAR to the required ASPRS LAS classes in a mutually agreed upon tile format and compliant with USGS LiDAR Guidelines and Base Specifications v13, except as noted in the FEMA Procedure Memorandum No. 61 – Standards for LiDAR and Other
High Quality Digital Topography.

- LAS Model Key Points (ASPRS Class 8). LAS Bare Earth Data thinned to an average density of approximately 3-meter post spacing.
- Metadata. Metadata will be delivered for LAS Bare Earth Data using FGDC standards compliant with FEMA Procedure Memorandum N. 61 – Standards for LiDAR and Other High Quality Digital Topography, Attachment 2.

All data will be referenced to the NAD83 horizontal datum. The vertical datum will be referenced to NAVD88. Geoid 09 model for the National Geodetic Survey will be used to perform conversions from ellipsoidal heights to orthometric heights. The standard coordinate reference system and units will be UTM (meters).

A Certification of Compliance is also required. The Certification shall meet FEMA TSDN (Technical Support Data Notebook) requirements as stated in FEMA Guidelines and Specifications, Appendix M.

3. Issues

A. Special Problem Reports
 None

B. Project Modifications
 None
4. Information for the Next Mapping Partner

The Quinnipiac Watershed LiDAR collection Area of Interest (AOI) consists of one large functional area that covers 443 square miles. This area only covers all of the Quinnipiac Watershed. This project included both LiDAR point cloud development and Bare Earth post processing. The Point Cloud LiDAR data for this project are 666 partially classified LAS 1.2 binary files. The 666 Bare Earth LiDAR LAS 1.2 binary files for this project have been classified using ASPRS LiDAR classifications. Bare Earth classified as class 2 is considered to be Bare Earth and points classified as class 8 are Model Key. All data for this project has been collected using the following spatial reference information:

Projection: Universal Transverse Mercator
UTM Zone: 18
Linear units: Meter
Horizontal Datum: North American Datum 1983
Vertical Datum: North American Vertical Datum of 1988
Vertical units: Meters

LAS point files are named according to the UTM Coordinates at the southwest corner of the tile, following the zz_0xxxyyy convention, where z is the UTM zone number, x and y are the UTM coordinates.

Details about the storage of this dataset can be found within Appendix G of this document.

Ground control and quality control checkpoints were collected by CompassData, Inc. Photo Science, Inc. performed LiDAR acquisition flights, automated processing and Bare Earth manual edits. Independent QC of the point cloud and bare earth surface was performed by CompassData, Inc. Quality Assurance testing was conducted by Greenhorne & O'Mara, Inc. All firms were under contract to STARR, A Joint Venture which held the FEMA Professional Technical Services contract and task order for this work. All contact information for the project team can be found in Appendix A of this document.
A. Ground Control Survey

Ground Control is collected throughout the AOI for use in the processing of LiDAR data to ensure data accurately represents the ground surface. QA/QC checkpoints, also collected throughout the AOI, are used for independent quality checks of the processed LiDAR data.

GPS based surveys were utilized to support both processing and testing of LiDAR data within FEMA designated Areas of Interest (AOIs). Geographically distinct ground points were surveyed using GPS technology throughout the AOIs to provide support for three distinct tasks.

Task 1 was to provide Vertical Ground Control to support the aerial acquisition and subsequent bare earth model processing. To accomplish this, survey-grade Trimble R-8 GPS receivers were used to collect a series of control points located on open areas, free of excessive or significant slope, and at least 5 meters away from any significant terrain break. Most if not all control points were collected at street/road intersections on bare level pavement.

Task 2 was to collect Fundamental Vertical Accuracy (FVA) checkpoints to evaluate the initial quality of the collected point cloud and to ensure that the collected data was satisfactory for further processing to meet FEMA specifications. The FVA points were collected in identical fashion to the Vertical Ground Control Points, but segregated from the point pool to ensure independent quality testing without prior knowledge of FVA locations by the aerial vendor.

Task 3 was to collect Consolidated Vertical Accuracy (CVA) checkpoints to allow vertical testing of the bare-earth processed LiDAR data in different classes of land cover, including: Open (pavement, open dirt, short grass), High Grass and Crops, Brush and Low Trees, Forest, Urban. CVA points were collected in similar fashion as Control and FVA points with emphasis on establishing point locations within the predominant land cover classes within each AOI or Functional AOI Group. In order to successfully collect the Forest land cover class, it was necessary to establish a Backsight and Initial Point with the R8 receiver, and then employ a Nikon Total Station to observe a retroreflective prism stationed under tree canopy. This was necessary due to the reduced GPS performance and degradation of signal under tree canopy. The R-8 receivers were equipped with cellular modems to receive real-time correction signals from the Keystone Precision Virtual Reference Station (VRS) network encompassing the Region 1 AOIs. Use of the VRS network allowed rapid collection times (~3 minutes/point) at 2.54 cm (1 inch) initial accuracy.
All points collected were below the 8 cm specification for testing 24.5 cm, Highest category LiDAR data. To ensure valid in-field collections, an NGS monument with suitable vertical reporting was measured using the same equipment and procedures used for Control, FVA and CVA points on a daily basis. The measurement was compared to the NGS published values to ensure that the GPS collection schema was producing valid data and as a physical proof point of quality of collection. Those monument measurements are summarized in the Accuracy report included in the data delivered to FEMA.

In order to meet FEMA budgetary requirements, AOIs were consolidated into Functional Groups: if AOIs were contiguous, they were treated as one large AOI to allow collection of 20 FVA points and 15 additional CVA points across the group of AOIs. 20 FVA points are necessary to allow testing to CE95 – 1 point out of 20 may fail vertical testing and still allow the entire dataset to meet 95% accuracy requirements. In similar fashion, 20 CVA points are necessary to test to CE95 as discussed above. 15 CVA points were collected with the intention at the outset that 5 of the collected FVAs would perform double–duty as Open-class CVA points, to total 20 CVAs.

The following software packages and utilities were used to control the GPS receiver in the field during data collection, and then ingest and export the collected GPS data for all points:

- Trimble Survey Controller
- Trimble Pathfinder Office

The following software utilities were used to translate the collected Latitude/Longitude Decimal Degree HAE GPS data for all points into Latitude/Longitude Degrees/Minutes/Seconds for checking the collected monument data against the published NGS Datasheet Lat/Long DMS values and into UTM NAD83 Northings/Eastings:

- U.S. Army Corps of Engineers CorpsCon
- National Geodetic Survey Geoid09NAVD88

MSL values were determined using the most recent NGS-approved geoid model to generate geoid separation values for each Lat/Long coordinate pair. In this fashion, Orthometric heights were determined for each Control, FVA and CVA point by subtracting the generated Geoid Separation value from the Ellipsoidal Height (HAE) for publication and use as MSL NAVD88(09).
Figure 3. Quinnipiac Watershed Ground Control Survey Coverage
B. Data Acquisition

LiDAR acquisition products include Pre- and Post-flight reports which contain information on the flight lines, equipment parameters, and other pertinent acquisition details. The LiDAR product is considered to be point cloud data and consists of 1500mx1500m tiles of LAS points which are partially classified such that the bare earth points can be calibrated to the ground surface and tested via the independent QC to ensure the ground surface is accurately represented.

Using an Optech Gemini LiDAR system, a total 101 flightlines of Highest density (Nominal pulse Spacing of 1.0m) were collected over the Quinnipiac area. A total of 443 square miles was collected. A total of 10 missions were flown between December 11, 2011 and May 27, 2011. One airborne global positioning system (GPS) base station was used to support the LiDAR data acquisition: MMK A-AI5589. Coordinates are available in the Post-Flight Aerial Acquisition Report.

Leica IPAS and Applanix software was used in the post-processing of the airborne GPS and inertial data that is critical to the positioning and orientation of the sensor during all flights. This software suite includes the IPAS from Leica and Applanix POSPac and Waypoint’s GrafNav solutions. Pairing the aircraft’s raw trajectory data with the stationary GPS base station data, the IPAS and POPSac software yields the smoothed best estimate of trajectory (SBET) that is necessary for Leica’s post processor to develop the point cloud from the LiDAR missions. The point cloud is the mathematical three dimensional collections of all returns from all laser pulses as determined from the aerial mission. At this point this data is ready for analysis, classification, and filtering to generate a bare earth surface model in which the above ground features are removed from the data set. GeoCue was used in the creation of some files needed in downstream processing, as well as in the tiling of the dataset into more manageable file sizes. The TerraScan and TerraModeler software packages are then used for the automated data classification, manual cleanup, and bare earth generation from this data. Project specific macros are created to classify the ground and to remove the side overlap between parallel flight lines.
C. Post Processing

Point Cloud data is manually reviewed and any remaining artifacts are removed using functionality provided within the TerraScan and TerraModeler software packages. Additional project specific macros are created and run within GeoCue/TerraScan to ensure correct LAS classification prior to project delivery.

All points were placed in one of the following categories: 1 Unclassified, 2 Ground, 7 Noise, and 12 Overlap Points. Model Key points were then generated from the Ground points and placed in Category 8.

Final Classified LAS tiles are created within GeoCue to confirm correct LAS versioning and header information. In-house software is then used to check LAS header information and final LAS classification prior to delivery. LAS Class 2 is used to check the independent QC points against the Triangulated LiDAR surface.
Figure 4. Quinnipiac Watershed Point Cloud and Post Processing Areas

Areas in red covered by a separate LiDAR collection

Ansonia and Derby Levee collection area
D. Quality Control

Fundamental Vertical Accuracy (FVA) checkpoints are located only in open terrain, where there is a high probability that the sensor will have detected the ground surface without influence from surrounding vegetation and/or buildings. Checkpoints are located on flat or uniformly sloping terrain and at least five (5) meters away from any break line where there is a change in slope. Checkpoints are located randomly across the acquisition area. At least 20 FVA points were collected for each test.

Consolidated Vertical Accuracy (CVA) checkpoints are collected randomly across different land use types using the ASPRS NSSDA land cover types. The points are located in flat areas with no substantial elevation breaks within a five meter radius. The CVA assessment incorporates a representative sample of the FVA assessment points into the dataset to save on the total number of points collected. CVA points were not collected for any land class comprising less that 10% of the total project area; this may have resulted in less than 4 land classes being collected in a particular area. At least 15 CVA points were collected and 5 FVA points used, for a total of at least 20 points for the CVA testing.

All checkpoints were collected by CompassData to ensure the 'independence' of the quality control check. All points were collected at three times the accuracy of the surface being checked. Thus to check a 24.5 cm surface the points were collected accurate to 8 cm.

Tests were conducted when processing by the LiDAR vendor was complete and points were called for. CompassData provided the point coordinates in an excel spreadsheet to the LiDAR vendor. The LiDAR vendor found the corresponding elevation from a surface created from the LiDAR points, filled in the spreadsheet and returned it to CompassData. CompassData compared the elevation of the LiDAR data with that of the accuracy check point, calculated the difference and reported their findings both in terms of RMSE\(_z\) and at the 95% confidence level (computed as RMSE\(_z\) x 1.9600). LiDAR datasets passing the quality control checks were delivered to STARR for quality assurance approval.
Figure 5. Quinnipiac Watershed FVA and CVA Points
E. Quality Assurance

Quality assurance for all elevation data collected for this project has been completed using *FEMA Draft PM61*, *FEMA Appendix M*, *USGS LiDAR Guidelines and Base Specifications v13*, and *FEMA Appendix A* as guidance. Products generated during this project are checked for conformance to the aforementioned guidance and specifications before submittal to FEMA.

Figure 6. Quality Assurance Workflow

![Workflow Diagram]

QA1: Preflight Planning and Reporting

Project preflight operations planning were delivered as a report. This report was reviewed for completeness based on: *Table 4.1 and checklists provided in section 4.2.1 in PM61*. The report was reviewed and is compliant with FEMA guidance and specifications. This report is included within Appendix C of this document. Appendix G contains information about the location of report data on the MIP.

QA2: Post flight Report

Post flight reporting for this project has been reviewed for both content and completeness based upon: *Table 4.2 and checklists provided in section 4.2.1 in PM61*. The report is included with Appendix E of this document. The report is complete and all content meets the guidance and specifications.
QA3: Raw Point Cloud Review

Fully calibrated raw point cloud data has been reviewed at both a macro and micro level using *Table 4.3 and checklists provided in section 4.2.1 in PM61*, and USGS LiDAR Guidelines and Base Specifications v13. 5% of the total number of project tiles was reviewed for compliance with USGS and FEMA specifications. All tiles reviewed for this project passed both the macro and micro reviews. Quality assurance results for the point cloud are contained within Appendix F of this document.

QA4: Bare Earth Review

Post-processed data has been reviewed at both a macro and micro level using *Table 4.4 and checklists provided in section 4.2.1 in PM61*, and USGS LiDAR Guidelines and Base Specifications v13. 10% of the total number of project tiles was reviewed for compliance with USGS and FEMA specifications. All tiles reviewed for this project passed both the macro and micro reviews. Quality assurance results for the bare earth are contained within Appendix F of this document.

QA5: Create Delivery Package

All deliverables have been organized in accordance with Appendix M: Data Capture Standards March 2009 Section M.4.2.8.

Figure 7. Terrain Deliverable Directory Structure

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>All_returns</td>
</tr>
<tr>
<td>Bare_Earth</td>
</tr>
<tr>
<td>Breaklines</td>
</tr>
<tr>
<td>Contours</td>
</tr>
<tr>
<td>Correspondence</td>
</tr>
<tr>
<td>DEM</td>
</tr>
<tr>
<td>General</td>
</tr>
<tr>
<td>HDEM</td>
</tr>
<tr>
<td>HTIN</td>
</tr>
<tr>
<td>SupplementalData</td>
</tr>
<tr>
<td>TIN</td>
</tr>
</tbody>
</table>
QA6: Finalization of Deliverables and TSDN
All data to be submitted for delivery has been reviewed for completeness based on the map activity statement, scope of work, and FEMA deliverable requirements. Quality assurance checklists are included in Appendix F of this document.

QA7: FEMA submission
All data for the elevation data acquisition task was delivered to FEMA on August 31, 2011. A transmittal of this submission is included in Appendix G of this document.
5. References

1. Draft Procedure Memorandum 61 included in Appendix H
2. FEMA Appendix M section M.4 included in Appendix H
3. USGS LiDAR Guidelines and Base Specifications v13 included in Appendix H
 http://www.fema.gov/library/viewRecord.do?id=2206
Appendix A: Contact Information
STARR Contacts:

Project Management and Quality Assurance

<table>
<thead>
<tr>
<th>Company</th>
<th>Greenhorne & O'Mara, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Diane Rogers</td>
</tr>
<tr>
<td>Email</td>
<td>drogers@g-and-o.com</td>
</tr>
<tr>
<td>Phone</td>
<td>301-982-2800</td>
</tr>
<tr>
<td>Mailing Address</td>
<td>5565 Centerview Drive, Suite 107 Raleigh, NC 27606</td>
</tr>
</tbody>
</table>

LiDAR ground control and QC survey

<table>
<thead>
<tr>
<th>Company</th>
<th>Compass Data, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Hayden Howard</td>
</tr>
<tr>
<td>Email</td>
<td>haydenh@compassdatainc.com</td>
</tr>
<tr>
<td>Phone</td>
<td>303-627-4058</td>
</tr>
<tr>
<td>Mailing Address</td>
<td>12353 East Easter Avenue, Suite 200 Centennial, CO 80112</td>
</tr>
</tbody>
</table>

LiDAR data acquisition and Post Processing

<table>
<thead>
<tr>
<th>Company</th>
<th>Photo Science, Inc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Paul Bishop</td>
</tr>
<tr>
<td>Email</td>
<td>bishop@photoscience.com</td>
</tr>
<tr>
<td>Phone</td>
<td>859-277-8700</td>
</tr>
<tr>
<td>Mailing Address</td>
<td>2670 Wilhite Drive Lexington, KY 40503</td>
</tr>
</tbody>
</table>
Appendix B: FEMA Compliance Forms and Metadata
<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Region 1: Quinnipiac, Connecticut – Elevation Data Acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement of Work No.:</td>
<td>FEMA TASK ORDER NUMBER: HSFEHQ-10-J-0005 WORK ORDER NUMBER: CP HQ 10 001</td>
</tr>
<tr>
<td>Interagency Agreement No.:</td>
<td>STARR PROJECT NUMBER: 400000058 STARR PARTNER TRACKING NUMBER: CP HQ 10 001</td>
</tr>
<tr>
<td>CTP Agreement No.:</td>
<td>N/A</td>
</tr>
<tr>
<td>Statement/Agreement Date:</td>
<td>10/10/10</td>
</tr>
<tr>
<td>Certification Date:</td>
<td>8/23/11</td>
</tr>
</tbody>
</table>

Tasks/Activities Covered by This Certification (Check All That Apply)

- [] Base Map
- [] Topographic Data Development
- [X] Survey: Including Ground Control Points (GCPs), Fundamental Vertical Accuracy Testing (FVA), and Consolidated Vertical Accuracy Testing (CVA).
- [] Hydrologic Analysis
- [] Hydraulic Analysis
- [] Alluvial Fan Analysis
- [] Coastal Analysis
- [] Floodplain Mapping

This is to certify that the work summarized above was completed in accordance with the statement/agreement cited above and all amendments thereto, together with all such modifications, either written or oral, as the Regional Project Officer and/or Assurance Officer or their representative have directed, as such modifications affect the statement/agreement, and that all such work has been accomplished in accordance with the provisions contained in Guidelines and Specifications for Flood Hazard Mapping Partners cited in the contract document, and in accordance with sound and accepted engineering practices within the contract provisions for respective phases of the work. This is also to certify that data files submitted for the work summarized above are complete and final. Any revisions made to the already submitted data are included in the final submittal.

Name: Philipp H. Hummel, PLS
Title: Professional Land Surveyor, Geodesist
Firm Represented: Compass Data, Inc.
Registration No.: 38155
Signature: Philipp H. Hummel

This form must be signed by a representative of the firm or agency contracted to perform the work, who must be a registered or certified professional in the area of work performed, in compliance with Federal and State regulations.
Tasks/Activities Covered by This Certification (Check All That Apply)

<table>
<thead>
<tr>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Map</td>
</tr>
<tr>
<td>X Topographic Data Development</td>
</tr>
<tr>
<td>Survey</td>
</tr>
<tr>
<td>Hydrologic Analysis</td>
</tr>
<tr>
<td>Hydraulic Analysis</td>
</tr>
<tr>
<td>Alluvial Fan Analysis</td>
</tr>
<tr>
<td>Coastal Analysis</td>
</tr>
<tr>
<td>Floodplain Mapping</td>
</tr>
</tbody>
</table>

This is to certify that the work summarized above was completed in accordance with the statement/agreement cited above and all amendments thereto, together with all such modifications, either written or oral, as the Regional Project Officer and/or Assistance Officer or their representative have directed, as such modifications affect the statement/agreement, and that all such work has been accomplished in accordance with the provisions contained in *Guidelines and Specifications for Flood Hazard Mapping Partners* cited in the contract document, and in accordance with sound and accepted engineering practices within the contract provisions for respective phases of the work. This is also to certify that data files submitted for the work summarized above are complete and final. Any revisions made to the already submitted data are included in the final submittal.

Name: Mark E. Meade, PE, PLS, CP
Title: Senior Vice President
Firm/Agency Represented: Photo Science
Registration No.: R1050
Signature:

This form must be signed by a representative of the firm or agency contracted to perform the work, who must be a registered or certified professional in the area of work performed, in compliance with Federal and State regulations.
Abstract: The Quinnipiac AOI consists of one 443 square mile area. Ground Control is collected throughout the AOI for use in the processing of LiDAR data to ensure data accurately represents the ground surface. QA/QC checkpoints, (FVA and CVA - see Ground Control process step for further information) also collected throughout the AOI, are used for independent quality checks of the processed LiDAR data. LiDAR acquisition products include Pre- and Post-flight reports which contain information on the flightlines, equipment parameters, and other pertinent acquisition details. The LiDAR product is considered to be point cloud data and consists of 1500mx1500m tiles of LAS points which are partially classified such that the bare earth points can be calibrated to the ground surface and tested via the independent QC to ensure the ground surface is accurately represented. The Bare Earth deliverables consists of tiles of fully classified LAS points. A full narrative accompanies this deliverable, as well as the independent QC report.

Purpose: Provide high resolution terrain elevation and land cover elevation data. Terrain data is used to represent the topography of a watershed and/or floodplain environment and to extract useful information for hydraulic and hydrologic models.
Theme_Keyword_Thesaurus: ISO 19115 Topic Category
Theme_Keyword: elevation

Theme:
Theme_Keyword_Thesaurus: FEMA NFIP Topic Category
Theme_Keyword: Land Surface
Theme_Keyword: Topography
Theme_Keyword: Digital Terrain Model
Theme_Keyword: Elevation Data
Theme_Keyword: LIDAR

Theme:
Theme_Keyword_Thesaurus: None
Theme_Keyword: Ground Control
Theme_Keyword: Point Cloud
Theme_Keyword: LAS Point Files
Theme_Keyword: Bare Earth

Place:
Place_Keyword_Thesaurus: None
Place_Keyword: REGION I
Place_Keyword: STATE CT
Place_Keyword: COUNTY NEW HAVEN
Place_Keyword: COUNTY-FIPS 009
Place_Keyword: COMMUNITY ANSONIA, CITY OF
Place_Keyword: FEMA-CID 090071

Place:
Place_Keyword_Thesaurus: None
Place_Keyword: REGION I
Place_Keyword: STATE CT
Place_Keyword: COUNTY NEW HAVEN
Place_Keyword: COUNTY-FIPS 009
Place_Keyword: COMMUNITY BEACON FALLS, CITY OF
Place_Keyword: FEMA-CID 090072

Place:
Place_Keyword_Thesaurus: None
Place_Keyword: REGION I
Place_Keyword: STATE CT
Place_Keyword: COUNTY NEW HAVEN
Place_Keyword: COUNTY-FIPS 009
Place_Keyword: COMMUNITY BETHANY, TOWN OF
Place_Keyword: FEMA-CID 090144

Place:
Place_Keyword_Thesaurus: None
Place_Keyword: REGION I
Place_Keyword: STATE CT
Place_Keyword: COUNTY NEW HAVEN
Place_Keyword: COUNTY-FIPS 009
Place_Keyword: COMMUNITY BRANFORD, TOWN OF
Place_Keyword: FEMA-CID 090073

Place:
Place_Keyword_Thesaurus: None
Place_Keyword: REGION I
Place_Keyword: STATE CT
Place_Keyword: COUNTY NEW HAVEN
Place_Keyword: COUNTY-FIPS 009
Place_Keyword: COMMUNITY CHESHIRE, TOWN OF
Place: COUNTY-FIPS 009
Place: COMMUNITY MIDDLEBURY, TOWN OF
Place: FEMA-CID 090080

Place: COUNTY-FIPS 009
Place: COMMUNITY MILFORD, TOWN OF
Place: FEMA-CID 090082

Place: COUNTY-FIPS 009
Place: COMMUNITY NAUGATUCK, BOROUGH OF
Place: FEMA-CID 090137

Place: COUNTY-FIPS 009
Place: COMMUNITY NEW HAVEN, CITY OF
Place: FEMA-CID 090084

Place: COUNTY-FIPS 009
Place: COMMUNITY NORTH BRANFORD, TOWN OF
Place: FEMA-CID 090085

Place: COUNTY-FIPS 009
Place: COMMUNITY NORTH HAVEN, TOWN OF
Place: FEMA-CID 090086

Place: COUNTY-FIPS 009
Place: COMMUNITY ORANGE, TOWN OF
Place: FEMA-CID 090087

Place: COUNTY-FIPS 009
Place: COMMUNITY REGION I
Place: OXFORD, TOWN OF
Place_Keyword: STATE CT
Place_Keyword: COUNTY NEW HAVEN
Place_Keyword: COUNTY-FIPS 009
Place_Keyword: COMMUNITY OXFORD, TOWN OF
Place_Keyword: FEMA-CID 090150

Place: PROSPECT, TOWN OF
Place_Keyword: STATE CT
Place_Keyword: COUNTY NEW HAVEN
Place_Keyword: COUNTY-FIPS 009
Place_Keyword: COMMUNITY PROSPECT, TOWN OF
Place_Keyword: FEMA-CID 090151

Place: SEYMOUR, TOWN OF
Place_Keyword: STATE CT
Place_Keyword: COUNTY NEW HAVEN
Place_Keyword: COUNTY-FIPS 009
Place_Keyword: COMMUNITY SEYMOUR, TOWN OF
Place_Keyword: FEMA-CID 090088

Place: SOUTHBURY, TOWN OF
Place_Keyword: STATE CT
Place_Keyword: COUNTY NEW HAVEN
Place_Keyword: COUNTY-FIPS 009
Place_Keyword: COMMUNITY SOUTHBURY, TOWN OF
Place_Keyword: FEMA-CID 090089

Place: WALLINGFORD, TOWN OF
Place_Keyword: STATE CT
Place_Keyword: COUNTY NEW HAVEN
Place_Keyword: COUNTY-FIPS 009
Place_Keyword: COMMUNITY WALLINGFORD, TOWN OF
Place_Keyword: FEMA-CID 090090

Place: WATERBURY, CITY OF
Place_Keyword: STATE CT
Place_Keyword: COUNTY NEW HAVEN
Place_Keyword: COUNTY-FIPS 009
Place_Keyword: COMMUNITY WATERBURY, CITY OF
Place_Keyword: FEMA-CID 090091

Place: WEST HAVEN, CITY OF
Place_Keyword: STATE CT
Place_Keyword: COUNTY NEW HAVEN
Place_Keyword: COUNTY-FIPS 009
Place_Keyword: COMMUNITY WEST HAVEN, CITY OF
Place_Keyword: FEMA-CID 090092
Place: Place_Keyword_Thesaurus: None
Place_Keyword: REGION I
Place_Keyword: STATE CT
Place_Keyword: COUNTY NEW HAVEN
Place_Keyword: COUNTY-FIPS 009
Place_Keyword: COMMUNITY WOODBRIDGE, TOWN OF
Place_Keyword: FEMA-CID 090153

Place:
Place_Keyword_Thesaurus: None
Place_Keyword: REGION I
Place_Keyword: STATE CT
Place_Keyword: COUNTY MIDDLESEX
Place_Keyword: COUNTY-FIPS 007
Place_Keyword: COMMUNITY CHESTER, TOWN OF
Place_Keyword: FEMA-CID 090060

Place:
Place_Keyword_Thesaurus: None
Place_Keyword: REGION I
Place_Keyword: STATE CT
Place_Keyword: COUNTY MIDDLESEX
Place_Keyword: COUNTY-FIPS 007
Place_Keyword: COMMUNITY CLINTON, TOWN OF
Place_Keyword: FEMA-CID 090061

Place:
Place_Keyword_Thesaurus: None
Place_Keyword: REGION I
Place_Keyword: STATE CT
Place_Keyword: COUNTY MIDDLESEX
Place_Keyword: COUNTY-FIPS 007
Place_Keyword: COMMUNITY CROMWELL, TOWN OF
Place_Keyword: FEMA-CID 090123

Place:
Place_Keyword_Thesaurus: None
Place_Keyword: REGION I
Place_Keyword: STATE CT
Place_Keyword: COUNTY MIDDLESEX
Place_Keyword: COUNTY-FIPS 007
Place_Keyword: COMMUNITY DEEP RIVER, TOWN OF
Place_Keyword: FEMA-CID 090062

Place:
Place_Keyword_Thesaurus: None
Place_Keyword: REGION I
Place_Keyword: STATE CT
Place_Keyword: COUNTY MIDDLESEX
Place_Keyword: COUNTY-FIPS 007
Place_Keyword: COMMUNITY DURHAM, TOWN OF
Place_Keyword: FEMA-CID 090185

Place:
Place_Keyword_Thesaurus: None
Place_Keyword: REGION I
Place_Keyword: STATE CT
Place_Keyword: COUNTY MIDDLESEX
Place_Keyword: COUNTY-FIPS 007
Place_Keyword: COMMUNITY EAST HADDAM, TOWN OF
Place_Keyword: FEMA-CID 090063
Place:
 Place_Keyword_Thesaurus: None
 Place_Keyword: REGION I
 Place_Keyword: STATE CT
 Place_Keyword: COUNTY MIDDLESEX
 Place_Keyword: COUNTY-FIPS 007
 Place_Keyword: COMMUNITY EAST HAMPTON, TOWN OF
 Place_Keyword: FEMA-CID 090064
Place:
 Place_Keyword_Thesaurus: None
 Place_Keyword: REGION I
 Place_Keyword: STATE CT
 Place_Keyword: COUNTY MIDDLESEX
 Place_Keyword: COUNTY-FIPS 007
 Place_Keyword: COMMUNITY ESSEX, TOWN OF
 Place_Keyword: FEMA-CID 090065
Place:
 Place_Keyword_Thesaurus: None
 Place_Keyword: REGION I
 Place_Keyword: STATE CT
 Place_Keyword: COUNTY MIDDLESEX
 Place_Keyword: COUNTY-FIPS 007
 Place_Keyword: COMMUNITY FENWICK, BOROUGH OF
 Place_Keyword: FEMA-CID 090187
Place:
 Place_Keyword_Thesaurus: None
 Place_Keyword: REGION I
 Place_Keyword: STATE CT
 Place_Keyword: COUNTY MIDDLESEX
 Place_Keyword: COUNTY-FIPS 007
 Place_Keyword: COMMUNITY HADDAM, TOWN OF
 Place_Keyword: FEMA-CID 090066
Place:
 Place_Keyword_Thesaurus: None
 Place_Keyword: REGION I
 Place_Keyword: STATE CT
 Place_Keyword: COUNTY MIDDLESEX
 Place_Keyword: COUNTY-FIPS 007
 Place_Keyword: COMMUNITY KILLINGWORTH, TOWN OF
 Place_Keyword: FEMA-CID 090174
Place:
 Place_Keyword_Thesaurus: None
 Place_Keyword: REGION I
 Place_Keyword: STATE CT
 Place_Keyword: COUNTY MIDDLESEX
 Place_Keyword: COUNTY-FIPS 007
 Place_Keyword: COMMUNITY MIDDLEFIELD, TOWN OF
 Place_Keyword: FEMA-CID 090067
Place:
 Place_Keyword_Thesaurus: None
 Place_Keyword: REGION I
 Place_Keyword: STATE CT
 Place_Keyword: COUNTY MIDDLESEX
Access_Constraints: None
Use_Constraints: Acknowledgement of FEMA would be appreciated in products derived from these data. This digital data is produced for the purposes of updating/creating a DFIRM database.

Data_Set_Credit: Ground control and quality control checkpoints were collected by CompassData, Inc. LiDAR was acquired and processed by Photo Science, Inc. Quality Control testing was performed by CompassData, Inc. Quality Assurance testing was conducted by Greenborne & O'Mara, Inc. All firms were under contract to STARR, A Joint Venture which held the FEMA contract and task order for this work.

Data_Quality_Information:
Logical_Consistency_Report: Survey data have been confirmed to be in proper units, coordinate systems and format. The terrain data have been confirmed as complete LAS format data files. Header files are in proper LAS format with content as specified by FEMA Procedural Memo No. 61.
Completeness_Report: Survey data have been checked for completeness, points have been collected in correct vegetation units, and distributed throughout the AOI. The terrain data have been checked for completeness
against AOI polygons. No gaps as defined by FEMA Procedural Memo No. 61 are known to exist within the dataset.

Positional Accuracy:

Vertical Positional Accuracy:

Vertical Positional Accuracy Report: Deliverables were tested by for both vertical and horizontal accuracy. The vertical unit of the data file is in meters with 2-decimal point precision.

Quantitative Vertical Positional Accuracy Assessment:

Vertical Positional Accuracy Value: 0.331

Vertical Positional Accuracy Explanation: Consolidated Vertical Accuracy (CVA) equal to the 95th percentile confidence level (RMSE[z] x 1.9600) calculated in open terrain. Reported in meters.

Lineage:

Source Information:

Source Citation:

Citation Information:

Originator: STARR
Publication Date: 2011
Title: Ground Control Quinnipiac
Type of Source Media: DIGITAL
Source Time Period of Content:

Time Period Information:

Single Date/Time:

Calendar Date: 20110128
Source Currentness Reference: ground condition
Source Citation Abbreviation: Other1
Source Contribution: Control points for tying LiDAR data to the ground surface.

Source Information:

Source Citation:

Citation Information:

Originator: STARR
Publication Date: 2011
Title: FVA_CVA Quinnipiac
Type of Source Media: DIGITAL
Source Time Period of Content:

Time Period Information:

Single Date/Time:

Calendar Date: 20110128
Source Currentness Reference: ground condition
Source Citation Abbreviation: Other2
Source Contribution: Quality Assurance points to confirm LiDAR data meets vertical accuracy requirements.

Source Information:

Source Citation:

Citation Information:

Originator: STARR
Publication Date: 2011
Title: Quinnipiac Collection Area
Type of Source Media: DIGITAL
Source Time Period of Content:

Time Period Information:
Source Information:
Source Citation:
Citation Information:
Originator: STARR
Publication Date: 2011
Title: All_Returns
Type of Source Media: DIGITAL
Source Time Period of Content:
Time Period Information:
Single Date/Time:
Calendar Date: 20110823
Source Currentness Reference: ground condition
Source Citation Abbreviation: Other4
Source Contribution: Point Cloud (All Returns) LAS point files named according to Quinnipiac Tile Index.
Source Information:
Source Citation:
Citation Information:
Originator: STARR
Publication Date: 2011
Title: Quinnipiac_PreFlightReport
Type of Source Media: DIGITAL
Source Time Period of Content:
Time Period Information:
Single Date/Time:
Calendar Date: 20110823
Source Currentness Reference: ground condition
Source Citation Abbreviation: Other5
Source Contribution: Document contains the operations plans for the LiDAR acquisition.
Source Information:
Source Citation:
Citation Information:
Originator: STARR
Publication Date: 2011
Title: Quinnipiac_PostFlightReport
Type of Source Media: DIGITAL
Source Time Period of Content:
Time Period Information:
Single Date/Time:
Calendar Date: 20110823
Source Currentness Reference: ground condition
Source Citation Abbreviation: Other6
Source Contribution: Document contains the acquisition and calibration report for the LiDAR acquisition.
Source Information:
Source Citation:
Citation Information:
Source: Shapefile of tile index used to populate and reference the LAS tiled data.
Source Citation:
Citation Information:
Originator: STARR
Publication Date: 2011
Title: Region 1 Quinnipiac Testing Results FVA CVA
Type of Source Media: DIGITAL
Source Time Period of Content:
Time Period Information:
Single Date/Time:
Calendar Date: 20110823
Source Currentness Reference: ground condition
Source Abbreviation: Other8
Source Contribution: Document contains QC test results for both FVA and CVA blind check point tests against open area and bare earth surfaces generated from All Returns and Bare Earth (respectively) LAS points.
Source Information:
Source Citation:
Citation Information:
Originator: STARR
Publication Date: 2011
Title: R1_Quinnipiac_Terrain_TSDN
Type of Source Media: DIGITAL
Source Time Period of Content:
Time Period Information:
Single Date/Time:
Calendar Date: 20110823
Source Currentness Reference: ground condition
Source Abbreviation: Other9
Source Contribution: Contains complete narrative on the acquisition and processing of the LiDAR dataset, includes area diagrams, reports and metadata.
Source Information:
Source Citation:
Citation Information:
Originator: STARR
Publication Date: 2011
Title: Bare_Earth
Type of Source Media: DIGITAL
Source Time Period of Content:
Time Period Information:
Single Date/Time:
Calendar_Date: 20110823
Source_Currentness_Reference: ground condition
Source_Citation_Abbreviation: Other10
Source_Contribution: Bare Earth LAS point files named according to the Quinnipiac_Tile_Index.

Process Step:

Process_Description: GPS based surveys were utilized to support both processing and testing of LiDAR data within FEMA designated Areas of Interest (AOIs). Geographically distinct ground points were surveyed using GPS technology throughout the AOIs to provide support for three distinct tasks.

Task 1 was to provide Vertical Ground Control to support the aerial acquisition and subsequent bare earth model processing. To accomplish this, survey-grade Trimble R-8 GPS receivers were used to collect a series of control points located on open areas, free of excessive or significant slope, and at least 5 meters away from any significant terrain break. Most if not all control points were collected at street/road intersections on bare level pavement.

Task 2 was to collect Fundamental Vertical Accuracy (FVA) checkpoints to evaluate the initial quality of the collected point cloud and to ensure that the collected data was satisfactory for further processing to meet FEMA specifications. The FVA points were collected in identical fashion to the Vertical Ground Control Points, but segregated from the point pool to ensure independent quality testing without prior knowledge of FVA locations by the aerial vendor.

Task 3 was to collect Consolidated Vertical Accuracy (CVA) checkpoints to allow vertical testing of the bare-earth processed LiDAR data in different classes of land cover, including: Open (pavement, open dirt, short grass), High Grass and Crops, Brush and Low Trees, Forest, Urban. CVA points were collected in similar fashion as Control and FVA points with emphasis on establishing point locations within the predominant land cover classes within each AOI or Functional AOI Group. In order to successfully collect the Forest land cover class, it was necessary to establish a Backsight and Initial Point with the R8 receiver, and then employ a Nikon Total Station to observe a retroreflective prism stationed under tree canopy. This was necessary due to the reduced GPS performance and degradation of signal under tree canopy.

The R-8 receivers were equipped with cellular modems to receive real-time correction signals from the Keystone Precision Virtual Reference Station (VRS) network encompassing the Region 1 AOIs. Use of the VRS network allowed rapid collection times (~3 minutes/point) at 2.54 cm (1 inch) initial accuracy.

All points collected were below the 8cm specification for testing 24cm, Highest category LiDAR data. To ensure valid in-field collections, an NGS monument with suitable vertical reporting was measured using the same equipment and procedures used for Control, FVA and CVA points on a daily basis. The measurement was compared to the NGS published values to ensure that the GPS collection schema was producing valid data and as a physical proof point of quality of collection. Those monument measurements are summarized in the Accuracy report included in the data delivered to FEMA.

In order to meet FEMA budgetary requirements, AOIs were consolidated into Functional Groups: if AOIs were contiguous, they were treated as one large AOI to allow collection of 20 FVA points and 15 additional CVA
points across the group of AOIs. 20 FVA points are necessary to allow testing to CE95 – 1 point out of 20 may fail vertical testing and still allow the entire dataset to meet 95% accuracy requirements. In similar fashion, 20 CVA points are necessary to test to CE95 as discussed above. 15 CVA points were collected per AOI or per Functional Group with the intention that 5 of the collected FVAs would perform double-duty as Open-class CVA points, to total 20 CVAs per AOI or Functional Group. The Functional Groups are as follows:
Narragansett/Charles/Blackstone (northeast), Nashua, Blackstone (north and west), Quinnipiac, Quincy/Suffolk (while included as part of the FEMA Charles AOI, was physically separated from the Charles AOI polygon and treated as an independent functional area).
The following software packages and utilities were used to control the GPS receiver in the field during data collection, and then ingest and export the collected GPS data for all points: Trimble Survey Controller, Trimble Pathfinder Office.
The following software utilities were used to translate the collected Latitude/Longitude Decimal Degree HAE GPS data for all points into Latitude/Longitude Degrees/Minutes/Seconds for checking the collected monument data against the published NGS Datasheet Lat/Long DMS values and into UTM NAD83 Northings/Eastings: U.S. Army Corps of Engineers CorpsCon, National Geodetic Survey Geoid09NAVD88. MSL values were determined using the most recent NGS-approved geoid model to generate geoid separation values for each Lat/Long coordinate pair. In this fashion, Orthometric heights were determined for each Control, FVA and CVA point by subtracting the generated Geoid Separation value from the Ellipsoidal Height (HAE) for publication and use as MSL NAVD88(09).
Process_Date: 2011
Process_Step:
Process_Description: Using a Leica ALS60 LiDAR system, 101 flight lines of highest density (Nominal Pulse Spacing of 1.0m) were collected over the Quinnipiac area which encompasses 443 square miles. A total of 10 missions were flown on Dec 11, 2010, Dec 16, 2010, Dec 17, 2010, Dec 18, 2010, March 29, 2011, March 30, 2011, May 6, 2011, May 8, 2011, May 10, 2011, and May 27, 2011. One airborne global positioning system (GPS) base station was used to support the LiDAR data acquisition: MMK-A. Additional information can be found in the Post-Flight Aerial Acquisition Report.
Process_Date: 2011
Process_Step:
Process_Description: Leica proprietary software was used in the post-processing of the airborne GPS and inertial data that is critical to the positioning and orientation of the sensor during all flights. Pairing the aircraft’s raw trajectory data with the stationary GPS base station data, this software yields Leica’s IPAS TC (“Inertial Positioning & Attitude Sensor – Tightly Coupled”) smoothed best estimate of trajectory (an “SBET”, in Leica’s .sol file format) that is necessary for Leica’s ALSPP post processing software to develop the resulting geo-referenced point cloud from the LiDAR missions. The point cloud is the mathematical three dimensional composite of all returns from all laser pulses as determined from the aerial mission. At this point this data is ready for analysis,
classification, and filtering to generate a bare earth surface model in which the above-ground features are removed from the data set. The point cloud was created using Leica’s Post Processor software. GeoCue was used in the creation of some of the files needed in downstream processing, as well as in the tiling of the dataset into more manageable file sizes. The TerraScan and TerraModeler software packages are then used for the automated data classification, manual cleanup, and bare earth generation from this data. Project specific macros were used to classify the ground and to remove the side overlap between parallel flight lines. All data was manually reviewed and any remaining artifacts removed using functionality provided by TerraScan and TerraModeler. QT Modeler was used as a final check of the bare earth dataset. GeoCue was then used to create the deliverable industry-standard LAS files for both the All Point Cloud Data and the Bare Earth. In-house software was then used to perform final statistical analysis of the classes in the LAS files.

Process_Date: 2011
Process_Step:
 Process_Description: Point Cloud data is manually reviewed and any remaining artifacts are removed using functionality provided within the TerraScan and TerraModeler software packages. Additional project specific macros are created and run within GeoCue/TerraScan to ensure correct LAS classification prior to project delivery.
 Final Classified LAS tiles are created within GeoCue to confirm correct LAS versioning and header information.
 In-house software is then used to check LAS header information and final LAS classification prior to delivery.
 LAS Class 2 is used to check the independent QC points against the Triangulated LiDAR surface.

Process_Date: 2011

Spatial_Reference_Information:
Horizontal_Coordinate_System_Definition:
 Planar:
 Grid_Coordinate_System:
 Grid_Coordinate_System_Name: Universal Transverse Mercator
 Universal_Transverse_Mercator:
 UTM_Zone_Number: 18
 Transverse_Mercator:
 Scale_Factor_at_Central_Meridian: 0.999600
 Longitude_of_Central_Meridian: -75.000000
 Latitude_of_Projection_Origin: 0.000000
 False_Easting: 500000.000000
 False_Northing: 0.000000
 Planar_Coordinate_Information:
 Planar_Coordinate_Encoding_Method: coordinate pair
 Coordinate_Representation:
 Abscissa_Resolution: 0.000010
 Ordinate_Resolution: 0.000010
 Planar_Distance_Units: meters
 Geodetic_Model:
 Horizontal_Datum_Name: North American Datum 1983
 Ellipsoid_Name: Geodetic Reference System 80
Semi-major Axis: 6378137.00
Denominator of Flattening Ratio: 298.257222
Vertical Coordinate System Definition:
 Altitude System Definition:
 Altitude Datum Name: North American Vertical Datum of 1988
 Altitude Resolution: 0.01
 Altitude Distance Units: meters
 Altitude Encoding Method: Attribute Values

Entity and Attribute Information:
Detailed Description:
 Entity Type:
 Entity Type Label: Terrain\2142894\SupplementalData\GroundControl
 Quinnipiac
 Entity Type Definition: Ground Control Survey for LiDAR collection
 Detailed Description:
 Entity Type:
 Entity Type Label: Terrain\2142894\SupplementalData\FVA_CVA
 Quinnipiac
 Entity Type Definition: Survey for Horizontal and Vertical LiDAR QC
 Detailed Description:
 Entity Type:
 Entity Type Label: Terrain\2142895\SupplementalData\Quinnipiac_Collection_Area
 Entity Type Definition: Area Spatial File
 Detailed Description:
 Entity Type:
 Entity Type Label: Terrain\2142895\All_Returns
 Entity Type Definition: LAS 1.2 files
 Detailed Description:
 Entity Type:
 Entity Type Label: Terrain\2142895\Quinnipiac_PreFlight_Report
 Entity Type Definition: Digital Document
 Entity Type Definition Source: FEMA Guidelines and Specifications for Flood Hazard Mapping Partners, Appendix M: Data Capture Standards and

Detailed_Description:
Entity_Type:
 Entity_Type_Label: Terrain
 Entity_Type_Definition: Digital Document

Detailed_Description:
Entity_Type:
 Entity_Type_Label: Terrain
 Entity_Type_Definition: Area Spatial File

Detailed_Description:
Entity_Type:
 Entity_Type_Label: Terrain
 Entity_Type_Definition: Digital Document
 Entity_Type_Definition_Source: Appendix M of FEMA Guidelines and Specifications for FEMA Flood Hazard Mapping Partners contains a

Overview_Description:
 Entity_and_Attribute_Overview: The Terrain data package is made up of several data themes containing primarily spatial information. These data supplement the Elevation datasets by providing additional information to aid flood risk evaluation and flood hazard area delineations.

Entity_and_Attribute_Detail_Citation: Appendix M of FEMA Guidelines and Specifications for FEMA Flood Hazard Mapping Partners contains a
detailed description of the data themes and references to other relevant information.

Distribution Information:
 Distributor:
 Contact Information:
 Contact Organization Primary:
 Contact Organization: Federal Emergency Management Agency

Engineering Library
 Contact Address:
 Address Type: mailing address
 Address: Marie Sparrow, Zimmerman Associates, Inc.
 Address: 847 South Pickett Street
 City: Alexandria
 State or Province: Virginia
 Postal Code: 22304
 Country: USA
 Contact Voice Telephone: 1-877-336-2627
 Contact Electronic Mail Address: miphelp@mapmodteam.com

Distribution Liability: No warranty expressed or implied is made by FEMA regarding the utility of the data on any other system nor shall the act of distribution constitute any such warranty.

Standard Order Process:
 Digital Form:
 Digital Transfer Information:
 Format Name: FEMA-DCS-Terrain
 Digital Transfer Option:
 Online Option:
 Computer Contact Information:
 Network Address:
 Network Resource Name: http://hazards.fema.gov
 Fees: Contact Distributor

Metadata Reference Information:
 Metadata Date: 20110823
 Metadata Contact:
 Contact Information:
 Contact Person Primary:
 Contact Person: FEMA Representative
 Contact Organization: Federal Emergency Management Agency
 Contact Address:
 Address Type: mailing address
 Address: 500 C Street, S.W.
 City: Washington
 State or Province: District of Columbia
 Postal Code: 20472
 Country: USA
 Contact Voice Telephone: 1-877-336-2627
 Contact Electronic Mail Address: miphelp@mapmodteam.com
 Metadata Standard Name: FGDC Content Standards for Digital Geospatial Metadata
 Metadata Extensions:
Online Linkage: http://hazards.fema.gov
Online Linkage: http://www.epsg.org
Profile_Name: FEMA NFIP Metadata Content and Format Standard
Appendix C: Pre Flight Planning Report
Quinnipiac

Pre-Flight Operations Plan

November 2010
Photo Science has completed preliminary flight planning for Quinnipiac project area. Quinnipiac is scheduled to be acquired this fall when the leaves are off and delivered to FEMA in late spring of 2011. The Quinnipiac area is 443 square miles and initial planning details are depicted in Figure 1 on the following page. This Figure details that STARR expects to collect 93 flight lines covering 1136 flight line miles. This area warranted a “Highest” vertical accuracy requirement and will be collected with a nominal pulse spacing of 1-meter. Key components of this flight planning include:

- Generating a plan that takes all specifications into account, and the required Laser settings to meet those specs, review of terrain and water issues, along with potential base station locations at airports with sufficient services available to support the crews.
- Orientation of flight lines parallel to major terrain features and variation in flight line spacing due to terrain variation (steeper slopes generally require tighter line spacing between adjacent parallel lines to ensure point density and side overlap are maintained)
- Check Airspace issues, and access issues for Base Stations.
- Safety considerations, both for flights, and Laser collection.

 Acquisition (443 sq. miles @ 1-meter nominal post spacing to meet 24.5 cm FVA, LAS point cloud delivery with metadata, pre-operations flight plan, and post flight aerial acquisition report).

Planned GPS Stations

Normally existing high accuracy monuments at airports are utilized if possible. Typically a Primary Airport Control Monument (or Secondary) is available; otherwise any other high accuracy monument can be used. We typically prefer these on the airport grounds as they can be monitored for security by airport staff. If no monument is available or an existing monument is damaged, we will set a monument with re-bar and use OPUS to control the monument. These are then used for initial field processing of the data.

Planned Control

Twenty-one (21) ground control points will be surveyed to control the LiDAR data and to support a vertical test. Each of these two functions shall remain independent of each other and also be collected by an independent subcontractor (CompassData). Independent check or calibration points will be three times as accurate as the surface being checked. Therefore, in order to validate a 24.5 cm LiDAR surface (consistent with 2 foot contours), STARR will collect elevation control data accurate to 8 cm. This “three times” model for collecting ground control and QA points will be used throughout the task order.

Vertical accuracy checkpoints will be located by another independent STARR contractor (CompassData) to check Photo Science’s work in open terrain, where there is a high probability that the sensor will have detected the ground surface without influence from surrounding vegetation. Checkpoints will be located on flat or uniformly sloping terrain and will be at least five (5) meters away from any break line where there is a change in slope. This criterion applies for all QA points for the Fundamental Vertical Accuracy (FVA) Assessment as well.
Blind vertical QA points for the Consolidated Accuracy Check (CVA) will also be collected by CompassData to check Photo Science’s work randomly across different land use types using the ASPRS NSSDA land cover types. The points will be located in flat areas with no substantial elevation breaks within a 3-5 meter radius. We expect to normally pick one area and get 3-5 different land use classes from a single setup. We expect to normally use GPS to position an occupation and backsight point and then use a total station to get the other classes from that setup. The CVA assessment will incorporate a representative sample of the FVA assessment into the dataset to save on the total number of points collected. Figure 1 below has a location map of the flight lines and ground control points.

Figure 1-Quinnipiac Flight Lines, Ground Control, and Airport Locations
Planned Airport Locations

Photo Science will be utilizing two airports for Quinnipiac for mobilization and demobilization. As indicated in Figure 1 the two airports will be MMK - Meriden Markham and HVN Tweed New Haven. All base stations used during flights are based at these Airports.

Calibration Plans

Periodic detailed boresighting of the LiDAR sensor is performed at a boresight facility established in Lexington, Kentucky for both our LiDAR and imagery platforms. Over 95 high-accuracy control points are located within this facility. The area also has numerous pitched roofs that are necessary in boresighting LiDAR instruments. Local boresights are also carried out at individual project sites. Typically these are established at local airports and consist of opposing and cross flights conducted at multiple flight elevations. The boresight data is processed by our Lead LiDAR Specialist with the results for all boresight parameters applied to the project acquisition. Figure 2 below outlines some of the basic principles that Photo Sciences conducts for LiDAR boresighting.

Calibration – all of our sensors are calibrated by flying lines at multiple altitudes and at varying directions over features on land, typically at the airport where the acquisition is staged. These lines are used to remove angular errors between the IMU and scanning mirror and to determine the precise positioning of the sensor in relationship with the phase center of the GPS antenna mounted on the fuselage of the aircraft.

Calibration of the Elevation Surface – the raw LiDAR surface is compared against ground points that are established for the calibration of the elevation surface. System biases are identified and removed during this calibration. An early statistical analysis takes place that provides an indication of the precision of the acquired data. Additionally, each lift requires a cross flight over the lines collected during that flight. This also acts as a daily calibration and is used if any anomalies are discovered with processed data.

Quality Control Procedures for Flight Crew

Acquisition Crews

An experienced and knowledgeable acquisition crew is also critical to a successful LiDAR project. We will bring two capable crews to the project site with three more in reserve should any unexpected health issues or similar complications arise.
General Flight Mission Procedures

On a lift by lift basis the flight crew will check cloud conditions, atmospheric conditions (fog or probability of fog) and winds and turbulence. If any of those factors would make acquisition difficult they will wait a few hours and review again.

LiDAR crews can fly at night or during the day. Night flights can be smoother in some cases, but extra care must be used as it is easy to lose orientation with the ground if in very rural areas or over large expanses of water. Additionally, if there are fog probabilities then flights will not take place as fog will block the laser. It must be clear below the aircraft at all times.

The initial item is to set the base station properly over the monument, verify it is secure and running. Prior to setting the crew will have ascertained that it has storage space on the hard drives and full battery life. They will also verify that it is running with proper collection parameters. PDOP is also reviewed as collection will not take place during times of high PDOP.

The LiDAR system (controller hard drives and Laser) is connected to the flight management system and once the project plan is loaded the parameters for collection will load as well. The sensor operator will verify that everything loaded correctly before flight.

Once the LiDAR has been started the crew will taxi to the run up area and wait for the IMU, GPS and the rest of the system level out. They will collect data in a stationary position for about 5-10 minutes until the POS (position and orientation system) provides good level characteristics (Green Lights!).

After this they crew will take off and start collection data, avoiding hard steep turns (banks typically <20 degrees). Collection requires that speeds be maintained, sometimes quite slow depending on the accuracy requirements. Additionally altitudes must be watched closely.

During flights the sensor operator must monitor the laser to sure that temperatures are consistent and within guidelines, that pulsing is taking place correctly and returns are consistent and within guidelines while watching atmospheric conditions, speeds and monitoring the pilot.
Planned ScanSet (Laser Collection Parameters)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>15cm RMSE</th>
<th>1m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flying Height</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>Aircraft Ground Speed (knots)</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Pulse Rate (KHz)</td>
<td>143.7</td>
<td></td>
</tr>
<tr>
<td>Scan Rate (Hz)</td>
<td>48.3</td>
<td></td>
</tr>
<tr>
<td>Full Field of View (degrees)</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Multi-Pulse</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Full Swath Width (meters)</td>
<td>844/961</td>
<td></td>
</tr>
<tr>
<td>Swath Overlap (percentage)</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>Max. Point Spacing Across Track (meters)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Max. Point Spacing Along Track (meters)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Across Track/Along Track Ratio</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Average Point Density (M2)</td>
<td>3.10</td>
<td></td>
</tr>
<tr>
<td>Average Point Area (M2)</td>
<td>.32</td>
<td></td>
</tr>
<tr>
<td>Average Point Spacing (Meters)</td>
<td>.57</td>
<td></td>
</tr>
<tr>
<td>Nadir Point Density (pts/m2)</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>Illuminated Foot Print Diameter (meters)</td>
<td>.35</td>
<td></td>
</tr>
</tbody>
</table>

Acquisition (443 sq. miles @ 1-meter nominal post spacing to meet 24.5 cm FVA, LAS point cloud delivery with metadata, pre-operations flight plan, and post flight aerial acquisition report)

Type of Aircraft

All of our LiDAR sensors are currently flown in specially modified single-engine Cessna 206 platforms. This platform provides a very stable platform for LiDAR data acquisition, with the ability to easily achieve altitudes and speeds that are most common for LiDAR collection. Achieving an accurate, dense posting of LiDAR returns on the ground is most often associated with altitudes of 2,000 to 7,000 feet above the average terrain height at speeds ranging from 90 to 140 knots. These ranges are ideal for this single-engine platform.

Our platforms also have significant fuel capacity, which allows us considerable time over target for performing data collection. It is also a safe platform, which is important when flying over rugged terrain. The added bonus is this is a very economical platform to fly in terms of operational and maintenance costs. Moreover, that translates to competitive rates for LiDAR data acquisition.

<table>
<thead>
<tr>
<th>Aircraft Name</th>
<th>Engine Configuration</th>
<th>ABGPS</th>
<th>Flight Management System</th>
<th>Ceiling Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cessna U-206G</td>
<td>Single</td>
<td>Yes</td>
<td>Yes</td>
<td>16,700</td>
</tr>
<tr>
<td>Cessna U-206G</td>
<td>Single</td>
<td>Yes</td>
<td>Yes</td>
<td>16,700</td>
</tr>
<tr>
<td>Cessna U-206H</td>
<td>Single</td>
<td>Yes</td>
<td>Yes</td>
<td>15,700</td>
</tr>
<tr>
<td>Cessna U-206H</td>
<td>Single</td>
<td>Yes</td>
<td>Yes</td>
<td>15,700</td>
</tr>
</tbody>
</table>
Procedure for Tracking, Executing, and Checking Re-flights

All daily flights are tracked with specific logs for each area. These include general logs indicating the lines, date flown etc. as well as very specific mission logs concerning the lift, weather conditions, times, speeds and other criteria critical to the performance of the laser. The daily flight logs are faxed to the office on a daily basis and entered into an access database for tracking purposes. This helps determine where next to move crews and overall project status.

After flight each day, the GPS ground base station data is processed and verified and is then is run against the LiDAR POS data in both a forward and reverse sense. The two solutions are then compared against one another for all GPS epochs and the individual differences for the northing, easting, and elevation components are plotted for easy comparison. This data is then run against the LiDAR returns and a point cloud generated. Any anomalies in the data are quickly analyzed, and if required, re-flights take place for the portions of the flight missions that require remediation.

Once the data is checked it is archived, backed up and a set sent to the office via overnight delivery, while the backup copy remains with the crew.

The flight crews do not leave the area of collection until all data has been verified and shipped.

Considerations for Terrain, Cover, and Weather

Terrain is not an issue for flight planning on this project. The area is very flat. Cover has been considered and collection is scheduled for the Fall of 2010 during leaf-off conditions. Traditional LiDAR weather conditions will be observed for this area.
Appendix D: Ground Control Survey and Vertical Testing
Quality Control
FEMA Region 1 – MA, NH, CT
Ground Control Project Report for Photo Science Inc.

November 22, 2010

Project Information

<table>
<thead>
<tr>
<th>CDI Project Number:</th>
<th>FSG1508</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic Location:</td>
<td>New England; MA, NH, CT</td>
</tr>
<tr>
<td>Number of GCPs Requested:</td>
<td>86</td>
</tr>
<tr>
<td>Number of GCPs Collected:</td>
<td>86</td>
</tr>
</tbody>
</table>

Project Specifications

<table>
<thead>
<tr>
<th>Precision (Horizontal/Vertical):</th>
<th>CDI Precision-1 ≤ 8cm H/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinate System:</td>
<td>UTM</td>
</tr>
<tr>
<td>Datum:</td>
<td>NAD83</td>
</tr>
<tr>
<td>Zone:</td>
<td>18 & 19</td>
</tr>
<tr>
<td>Altitude Reference:</td>
<td>HAE (WGS84) and NAVD88 (09)</td>
</tr>
<tr>
<td>Units:</td>
<td>Meters</td>
</tr>
</tbody>
</table>

RTK GPS

All Ground Control Points for this project were collected within the boundaries of the Keystone Precision Instruments New England Virtual Reference Station System, which provides continuous real-time broadcast correction signals within a network of 170 base stations encompassing New England and the northern Mid-Atlantic region.

All Control Points were observed for 180 epochs to determine a coordinate location ≤ 8cm in both Horizontal and Vertical to support subsequent LiDAR post-processing and bare earth deliverables generation.

All data collected were well within the confines of the Keystone VRS system with multiple base locations providing position and correction data for each point collected.
Summary

The purpose of this project was to locate and survey photo-identifiable ground control points (GCPs) in multiple areas of interest as defined by FEMA-supplied shape and kml files. The GCP coordinates are to be used to control the vertical aspect of all newly-flown LiDAR data during post-processing and subsequent deliverables creation. CompassData visited the project area, found suitable GCPs, and determined accurate coordinates for each GCP according to the customer’s specifications.

Equipment

CompassData used a Trimble R8 to perform the Control survey. This device is accurate to within 1 cm on a position-by-position basis per Trimble specifications. Operating within the VRS network provided accurate coordinate values at or around 5 cm H/V within 3-5 minutes observation times. CompassData has consistently demonstrated this level of accuracy on many GCP collection jobs across North and South America and Africa. Specifications for the Trimble R8 are available upon request.

Survey Methodology

CompassData has met the required precision for this project by using a high-quality GPS receiver with differential corrections provided by a VRS network surrounding the project area. The GPS antenna sat atop a bubble-leveled, fixed-height range pole that was placed over the center of the desired GCP. At least 180 positions (captured at a rate of one per second) were geometrically averaged to calculate a single coordinate for each GCP. All required field documentation was filled out and the points were identified on web-based imagery and diagrammed on the CompassData-supplied sketch sheets. Digital pictures of each GCP location were collected in the field.

Quality Control Procedures

CompassData collects GCPs with an unobstructed view of the sky to ensure proper GPS operation. CompassData works to avoid potential sources of multipath error such as trees, buildings, and fences that may adversely affect the GPS accuracy.
Additional quality control comes from the fact that at least 180 GPS positions are collected for each GCP. While operating within a VRS, valid solutions are reached within seconds; however, we continue to collect additional data to ensure meeting collection specifications. To ensure project integrity, a GCP will be reobserved or moved to a more suitable location if it does not meet project specifications.

In addition to the aforementioned procedures, CompassData “surveys” existing geodetic control monuments to see if our coordinates match the published coordinates to the required accuracy. These monuments are usually established by the National Geodetic Survey (NGS) in the United States. If it is found that our coordinates are outside the acceptable accuracy, the reason for the difference will be found or the GCPs will be reobserved under different GPS constellation constraints. There are certain geodetic considerations that must be taken into account that affect whether a GPS-derived coordinate will line up with a survey monument, especially when these monuments reference local coordinate systems or the systems of another country. Sometimes the published coordinates for a monument are not accurate, although this is very infrequent.

CompassData visited multiple survey monuments during the course of this project. The results of those monument measurements are summarized in the Accuracy Report.

Deliverables

Deliverables for this project include:

- Coordinates (in spreadsheet format)
- Image Chips
- Sketch Sheets
- Digital Pictures
- QA/QC Data

Project Notes
All collected points were retrieved from the Trimble Survey Controller in Decimal Degrees, NAD83, HAE Meters.

CorpsCon was used to generate files in the following format:

- Degrees Minutes Decimal Seconds, NAD83 HAE (QC purposes)
- UTM Meters, NAD83 HAE

Geoid09 was then used to generate the geoid separation at every Lat/Long location. NAVD88(09) orthometric heights were then generated in spreadsheet form using the formula HAE - Geoid = Orthometric Height. Those values were then included into the final delivery coordinate CSV files and have been tested against NGS monuments collected during the course of this survey and are showing millimeter-level agreement.

The Horizontal and Vertical accuracies reported in the Final Coordinates file were obtained from the Survey Report generated by Trimble Survey Controller. The report contains all points collected during each daily survey deployment, including CVAs, FVAs and Ground Control. Copies of these reports can be provided upon request once the CVA and FVA data has been redacted.

Contact Information

Hayden Howard Phone: (303) 627-4058 E-mail: haydenh@compassdatainc.com
<table>
<thead>
<tr>
<th>GCP</th>
<th>Date</th>
<th>Vert_Prec</th>
<th>Horz_Prec</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Easting</th>
<th>Northing</th>
<th>HAE GEOID09</th>
<th>NAVD88</th>
</tr>
</thead>
<tbody>
<tr>
<td>QNP01</td>
<td>10/20/2010</td>
<td>0.0128</td>
<td>0.0101</td>
<td>41.24795703</td>
<td>-73.02402157</td>
<td>665562.815</td>
<td>458165.935</td>
<td>-22.71831367</td>
<td>-29.781</td>
</tr>
<tr>
<td>QNP02</td>
<td>11/18/2010</td>
<td>0.01</td>
<td>0.007</td>
<td>41.27937285</td>
<td>-72.83063764</td>
<td>41.27937285</td>
<td>-9.477</td>
<td>-29.945</td>
<td>20.468</td>
</tr>
<tr>
<td>QNP03</td>
<td>10/20/2010</td>
<td>0.0085</td>
<td>0.0061</td>
<td>41.29735703</td>
<td>-72.70443931</td>
<td>-20.08514117</td>
<td>-30.01</td>
<td>9.924858826</td>
<td></td>
</tr>
<tr>
<td>QNP04</td>
<td>10/20/2010</td>
<td>0.0091</td>
<td>0.0052</td>
<td>41.28870908</td>
<td>-72.60176728</td>
<td>700820.061</td>
<td>457358.146</td>
<td>-14.01016016</td>
<td>-30.162</td>
</tr>
<tr>
<td>QNP05</td>
<td>10/20/2010</td>
<td>0.0104</td>
<td>0.0067</td>
<td>41.29574022</td>
<td>-72.48802483</td>
<td>710322.657</td>
<td>457463.608</td>
<td>-14.11805958</td>
<td>-30.276</td>
</tr>
<tr>
<td>QNP06</td>
<td>10/20/2010</td>
<td>0.0137</td>
<td>0.0088</td>
<td>41.30086694</td>
<td>-72.39620218</td>
<td>717994.379</td>
<td>457542.751</td>
<td>-25.34386615</td>
<td>-30.384</td>
</tr>
<tr>
<td>QNP07</td>
<td>10/20/2010</td>
<td>0.0113</td>
<td>0.0076</td>
<td>41.36563856</td>
<td>-72.55507753</td>
<td>704489.181</td>
<td>458223.1965</td>
<td>76.37541353</td>
<td>-30.001</td>
</tr>
<tr>
<td>QNP08</td>
<td>10/20/2010</td>
<td>0.0088</td>
<td>0.0061</td>
<td>41.41269822</td>
<td>-72.56005536</td>
<td>703924.77</td>
<td>458744.231</td>
<td>127.6127013</td>
<td>157.4974013</td>
</tr>
<tr>
<td>QNP09</td>
<td>10/20/2010</td>
<td>0.0085</td>
<td>0.004</td>
<td>41.37601342</td>
<td>-72.64334823</td>
<td>697074.493</td>
<td>458317.9297</td>
<td>81.19583522</td>
<td>-29.847</td>
</tr>
<tr>
<td>QNP10</td>
<td>10/20/2010</td>
<td>0.0067</td>
<td>0.0046</td>
<td>41.38128103</td>
<td>-72.74118726</td>
<td>688876.922</td>
<td>458354.189</td>
<td>65.66228159</td>
<td>29.733</td>
</tr>
<tr>
<td>QNP11</td>
<td>10/19/2010</td>
<td>0.007</td>
<td>0.0049</td>
<td>41.39586772</td>
<td>-72.83643591</td>
<td>680872.037</td>
<td>458494.964</td>
<td>-10.35864882</td>
<td>29.624</td>
</tr>
<tr>
<td>QNP12</td>
<td>10/19/2010</td>
<td>0.0079</td>
<td>0.0052</td>
<td>41.49041583</td>
<td>-72.76019667</td>
<td>686904.24</td>
<td>459575.557</td>
<td>92.56002126</td>
<td>29.504</td>
</tr>
<tr>
<td>QNP13</td>
<td>10/19/2010</td>
<td>0.0073</td>
<td>0.0055</td>
<td>41.54741136</td>
<td>-72.85090749</td>
<td>679243.465</td>
<td>460175.917</td>
<td>72.69220292</td>
<td>29.312</td>
</tr>
<tr>
<td>QNP14</td>
<td>10/19/2010</td>
<td>0.0076</td>
<td>0.0046</td>
<td>41.67563136</td>
<td>-72.84501896</td>
<td>679378.873</td>
<td>461600.517</td>
<td>38.07477814</td>
<td>29.172</td>
</tr>
<tr>
<td>QNP15</td>
<td>10/19/2010</td>
<td>0.0076</td>
<td>0.0052</td>
<td>41.6171515</td>
<td>-72.91857687</td>
<td>673412.468</td>
<td>460936.871</td>
<td>38.71638343</td>
<td>29.13</td>
</tr>
<tr>
<td>QNP16</td>
<td>10/19/2010</td>
<td>0.0091</td>
<td>0.0061</td>
<td>41.50301008</td>
<td>-72.97643668</td>
<td>668888.723</td>
<td>459657.148</td>
<td>223.4039139</td>
<td>29.195</td>
</tr>
<tr>
<td>QNP17</td>
<td>10/19/2010</td>
<td>0.0073</td>
<td>0.0046</td>
<td>41.47652672</td>
<td>-72.86774888</td>
<td>678032.953</td>
<td>459352.85</td>
<td>65.17521021</td>
<td>29.381</td>
</tr>
<tr>
<td>QNP18</td>
<td>10/20/2010</td>
<td>0.0091</td>
<td>0.0061</td>
<td>41.42413336</td>
<td>-72.97544085</td>
<td>669176.825</td>
<td>458789.164</td>
<td>158.8851866</td>
<td>29.322</td>
</tr>
<tr>
<td>QNP19</td>
<td>10/20/2010</td>
<td>0.0098</td>
<td>0.0064</td>
<td>41.36043386</td>
<td>-73.00019628</td>
<td>667171.188</td>
<td>458086.962</td>
<td>93.20254095</td>
<td>29.472</td>
</tr>
<tr>
<td>QNP20</td>
<td>10/20/2010</td>
<td>0.0119</td>
<td>0.0073</td>
<td>41.33518813</td>
<td>-72.94980821</td>
<td>671552.55</td>
<td>457799.831</td>
<td>-11.46477025</td>
<td>29.624</td>
</tr>
<tr>
<td>QNP21</td>
<td>10/20/2010</td>
<td>0.0125</td>
<td>0.007</td>
<td>41.41488244</td>
<td>-72.91039565</td>
<td>674637.243</td>
<td>458692.174</td>
<td>98.22595985</td>
<td>29.449</td>
</tr>
</tbody>
</table>

Survey Control

<table>
<thead>
<tr>
<th>GCP</th>
<th>Date</th>
<th>Vert_Prec</th>
<th>Horz_Prec</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Easting</th>
<th>Northing</th>
<th>HAE GEOID09</th>
<th>NAVD88</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGS_A15590</td>
<td>10/18/2010</td>
<td>0.0067</td>
<td>0.0049</td>
<td>41.51051804</td>
<td>-72.83083879</td>
<td>681020.240</td>
<td>4597703.530</td>
<td>0.77114555</td>
<td>-29.386</td>
</tr>
<tr>
<td>NGS_LX6301</td>
<td>10/20/2010</td>
<td>0.0073</td>
<td>0.0043</td>
<td>41.44670608</td>
<td>-72.67332528</td>
<td>694356.550</td>
<td>459486.551</td>
<td>4590960.47</td>
<td>29.667</td>
</tr>
<tr>
<td>NGS_DE7815</td>
<td>10/20/2010</td>
<td>0.0173</td>
<td>0.0094</td>
<td>41.51127305</td>
<td>-72.82884545</td>
<td>681184.500</td>
<td>460259.759</td>
<td>4597791.53</td>
<td>29.388</td>
</tr>
</tbody>
</table>

Metadata

UTM 18 North, NAD83, NAVD88

All units in meters where applicable.

HAE - GEOID09 = NAVD88
GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Quinnipiac</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCP Number</td>
<td>QNP101</td>
</tr>
<tr>
<td>CDI Project Number</td>
<td>1508</td>
</tr>
<tr>
<td>Date</td>
<td>10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:
- Point taken in parking lot, east of the AMF Milford Lanes building
- off of Boston Post Rd.
- New Haven County, Connecticut

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By:</td>
<td>Checked By:</td>
</tr>
<tr>
<td>Nate Yannacone</td>
<td></td>
</tr>
</tbody>
</table>
CompassData

GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP102</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>11/18/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:
Point taken in Southern portion of parking lot, South of building, North of entry drive and East of Commercial Pkwy, Town of Branford, New Haven County, Ct

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By:</td>
<td>Bryan Frazier</td>
</tr>
<tr>
<td>Checked By:</td>
<td></td>
</tr>
</tbody>
</table>

CompassData, Inc., 12353 E. Easter Ave., Suite 200, Centennial, CO 80112
CDI:GC-01/04
CompassData

GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name: Quinnipiac</th>
<th>GCP Number: QNP103</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number: 1508</td>
<td>Date: 10/20/2010</td>
</tr>
</tbody>
</table>

![LiDAR Image]

GPS Antenna Height: 2m

Comments:

Point taken in the south eastern portion of the parking lot off of Boston Post Rd and Interstate Highway 95.

New Haven County, Connecticut

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By: Bryan Frazier</td>
<td>Checked By:</td>
</tr>
</tbody>
</table>

CompassData, Inc., 12353 E. Easter Ave., Suite 200, Centennial, CO 80112 CDIGCP-01/04
Project Name: Quinnipiac
GCP Number: QNP104
CDI Project Number: 1508
Date: 10/20/2010

GPS Antenna Height: 2m

Comments:

Point taken in parking lot off of State Highway 79 and Interstate Highway 95.
New Haven County, Connecticut

Disk (Roll) / Frame Number:
Sketch 1 of 1

Collected By: Bryan Frazier
Checked By:
<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP105</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

Point taken in parking lot of Orthopedic Doctors Office
Middlesex County, Connecticut

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By:</td>
<td>Bryan Frazier</td>
</tr>
</tbody>
</table>
GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Quinnipiac</th>
<th>GCP Number</th>
<th>QNP106</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number</td>
<td>1508</td>
<td>Date</td>
<td>10/20/2010</td>
</tr>
<tr>
<td>GPS Antenna Height</td>
<td>2m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:
Point taken at intersection of Ingham Hill Rd and Mill Rock Rd W. Middlesex County, Connecticut

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number</th>
<th>Sketch</th>
<th>1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By</td>
<td>Bryan Frazier</td>
<td>Checked By</td>
</tr>
</tbody>
</table>
GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Quinnipiac</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCP Number</td>
<td>QNP107</td>
</tr>
<tr>
<td>CDI Project Number</td>
<td>1508</td>
</tr>
<tr>
<td>Date</td>
<td>10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:
- Point taken in center of culdesac.
- Middlesex County, Connecticut

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number</th>
<th>Sketch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 of 1</td>
</tr>
</tbody>
</table>

Collected By: Bryan Frazier

Checked By:
CompassData

GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP108</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:
- Point taken on road.
- Middlesex County, Connecticut

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch</th>
<th>of</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By:</td>
<td>Bryan Frazier</td>
<td>Checked By:</td>
<td></td>
</tr>
</tbody>
</table>

CompassData, Inc., 12353 E. Easter Ave., Suite 200, Centennial, CO 80112 CDIGCP-01/04
GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP109</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

Point taken on Eagle Meadow Rd in center of culdesac. Middlesex County, Connecticut

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By:</td>
<td>Bryan Frazier</td>
</tr>
<tr>
<td>Checked By:</td>
<td></td>
</tr>
</tbody>
</table>
CompassData

GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP110</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

Point taken on road at curve.
New Haven County, Connecticut.

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch of</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Collected By:</th>
<th>Bryan Frazier</th>
<th>Checked By:</th>
</tr>
</thead>
</table>

CompassData, Inc., 12353 E. Easter Ave., Suite 200, Centennial, CO 80112 CDIGCP-01/04
CompassData

GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP111</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/19/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:
- Point taken in field near where grass meets the baseball infield dirt line.
- New Haven County, Connecticut

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By:</td>
<td>Bryan Frazier</td>
</tr>
<tr>
<td>Checked By:</td>
<td></td>
</tr>
</tbody>
</table>
GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP112</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/19/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

Point taken at intersection of Technology Dr.
New Haven County, Connecticut.

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By:</td>
<td>Bryan Frazier</td>
</tr>
<tr>
<td>Checked By:</td>
<td></td>
</tr>
</tbody>
</table>
CompassData

GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP113</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

Point was taken in cul-de-sac at the northern end of Richmond Ct. Hartford County, Connecticut

Disk (Roll) / Frame Number: Sketch 1 of 1

Collected By: Bryan Frazier
Checked By:
GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP114</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/19/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:
Point taken at NW corner of shopping center parking lot.
Hartford County, Connecticut.

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By:</td>
<td>Bryan Frazier</td>
</tr>
<tr>
<td>Checked By:</td>
<td></td>
</tr>
</tbody>
</table>

CompassData, Inc., 12353 E. Easter Ave., Suite 200, Centennial, CO 80112 CDIGCP-01/04
GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCP Number:</td>
<td>QNP115</td>
</tr>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
</tr>
<tr>
<td>Date:</td>
<td>10/19/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

Point taken at center of culdesac of Acre Way. Hartford County, Connecticut.

Disk (Roll) / Frame Number:

Sketch 1 of 1

Collected By: Bryan Frazier

Checked By:

CompassData, Inc., 12353 E. Easter Ave., Suite 200, Centennial, CO 80112 CDIGCP-01/04
CompassData

GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP116</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/19/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

- Point taken at SW corner of the parking lot of Long River Middle School.
- New Haven County, Connecticut.

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
</table>

Collected By: Bryan Frazier

Checked By:

CompassData, Inc., 12353 E. Easter Ave., Suite 200, Centennial, CO 80112 CDIGCP-01/04
GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP117</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/19/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:
Point taken on road at intersection. New Haven County, Connecticut.

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By:</td>
<td>Bryan Frazier</td>
</tr>
<tr>
<td>Checked By:</td>
<td></td>
</tr>
</tbody>
</table>
CompassData

GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP118</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

Point taken on Hilltop Rd.
New Haven County, Connecticut.

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By:</td>
<td>Bryan Frazier</td>
</tr>
<tr>
<td>Checked By:</td>
<td></td>
</tr>
</tbody>
</table>

CompassData, Inc., 12353 E. Easter Ave., Suite 200, Centennial, CO 80112 CDIGCP-01/04
Project Name: Quinnipiac
GCP Number: QNP119
CDI Project Number: 1508
Date: 10/20/2010

GPS Antenna Height: 2m

Comments:
Point taken in culdesac of Cornfield Ln.
New Haven County, Connecticut.

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By: Bryan Frazier</td>
<td>Checked By:</td>
</tr>
</tbody>
</table>

CompassData, Inc., 12353 E. Easter Ave., Suite 200, Centennial, CO 80112
CDIGCP-01/04
CompassData

GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name: Quinnipiac</th>
<th>GCP Number: QNP120</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number: 1508</td>
<td>Date: 10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By: Bryan Frazier</td>
<td>Checked By:</td>
</tr>
</tbody>
</table>
GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Quinnipiac</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCP Number</td>
<td>QNP121</td>
</tr>
<tr>
<td>CDI Project Number</td>
<td>1508</td>
</tr>
<tr>
<td>Date</td>
<td>10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

Point taken in parking lot
New Haven County, Connecticut.

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By</td>
<td>Bryan Frazier</td>
</tr>
<tr>
<td>Checked By</td>
<td></td>
</tr>
</tbody>
</table>
Accuracy Report

$\Delta H = 0.004m$

$\Delta V = 0.020m$
Accuracy Report

$\Delta H = 0.023m$

$\Delta V = 0.027m$
Accuracy Report

$\Delta H = 0.061\text{m}$

$\Delta V = 0.003\text{m}$
FEMA Region 1 – MA, NH, CT
F VA and CVA Project Report for FEMA
Inc. Narragansett, Charles, Concord, Blackstone, Nashua
& Quinnipiac

Project Information

CDI Project Number: FSG1508
Geographic Location: New England; MA, NH, CT
Number of FVA/CVAs Requested: 210
Number of GCPs Collected: 210

Project Specifications

Precision (Horizontal/Vertical): CDI Precision-1 ≤ 8cm H/V
Coordinate System: UTM
Datum: NAD83
Zone: 18 & 19
Altitude Reference: HAE (WGS84) and NAVD88 (09)
Units: Meters

RTK GPS

All FVA and CVA Quality Assurance Points for this project were collected within the boundaries of the Keystone Precision Instruments New England Virtual Reference Station System, which provides continuous real-time broadcast correction signals within a network of 170 base stations encompassing New England and the northern Mid-Atlantic region.

All QA Points were observed for 180 epochs to determine a coordinate location ≤ 8cm in both Horizontal and Vertical to support subsequent LiDAR post-processing and bare earth deliverables generation.
All data collected were well within the confines of the Keystone VRS system with multiple base locations providing position and correction data for each point collected.
Summary

The purpose of this project was to locate and survey photo-identifiable QA test points (FVA/CVAs) in multiple areas of interest as defined by FEMA-supplied shape and kml files. The QA coordinates are to be used to test the vertical aspect of all newly-flown LiDAR data during post-processing and subsequent deliverables creation. CompassData visited the project area, found suitable FVA and CVA locations, and determined accurate coordinates for each point according to the customer’s specifications.

Equipment

CompassData used a Trimble R8 to perform the Control survey. This device is accurate to within 1 cm on a position-by-position basis per Trimble specifications. Operating within the VRS network provided accurate coordinate values at or around 5 cm H/V within 3-5 minutes observation times. CompassData has consistently demonstrated this level of accuracy on many GCP collection jobs across North and South America and Africa. Specifications for the Trimble R8 are available upon request.

Survey Methodology

CompassData has met the required precision for this project by using a high-quality GPS receiver with differential corrections provided by a VRS network surrounding the project area. The GPS antenna sat atop a bubble-leveled, fixed-height range pole that was placed over the center of the desired QA point. At least 180 positions (captured at a rate of one per second) were geometrically averaged to calculate a single coordinate for each FVA/CVA point. All required field documentation was filled out and the points were identified on web-based imagery and diagrammed on the CompassData-supplied sketch sheets (FVA points only). Digital pictures of each GCP location were collected in the field.

Quality Control Procedures

CompassData collects QA points with an unobstructed view of the sky to ensure proper GPS operation. CompassData works to avoid potential sources of multipath error such as trees, buildings, and fences that may adversely affect the GPS accuracy.
Additional quality control comes from the fact that at least 180 GPS positions are collected for each point. While operating within a VRS, valid solutions are reached within seconds; however, we continue to collect additional data to ensure meeting collection specifications. To ensure project integrity, an FVA or CVA will be reobserved or moved to a more suitable location if it does not meet project specifications.

In addition to the aforementioned procedures, CompassData “surveys” existing geodetic control monuments to see if our coordinates match the published coordinates to the required accuracy. These monuments are usually established by the National Geodetic Survey (NGS) in the United States. If it is found that our coordinates are outside the acceptable accuracy, the reason for the difference will be found or the GCPs will be reobserved under different GPS constellation constraints. There are certain geodetic considerations that must be taken into account that affect whether a GPS-derived coordinate will line up with a survey monument, especially when these monuments reference local coordinate systems or the systems of another country. Sometimes the published coordinates for a monument are not accurate, although this is very infrequent.

CompassData visited multiple survey monuments during the course of this project. The results of those monument measurements are summarized in the Accuracy Report.

Deliverables

Deliverables for this project include:

- Coordinates (in spreadsheet format)
- Image Chips
- Sketch Sheets (FVA points only)
- Digital Pictures
- QA/QC Data

Project Notes
All collected points were retrieved from the Trimble Survey Controller in Decimal Degrees, NAD83, HAE Meters.

CorpsCon was used to generate files in the following format:
- Degrees Minutes Decimal Seconds, NAD83 HAE (QC purposes)
- UTM Meters, NAD83 HAE

Geoid09 was then used to generate the geoid separation at every Lat/Long location. NAVD88(09) orthometric heights were then generated in spreadsheet form using the formula HAE - Geoid = Orthometric Height. Those values were then included into the final delivery coordinate CSV files and have been tested against NGS monuments collected during the course of this survey and are showing millimeter-level agreement.

The Horizontal and Vertical accuracies reported in the Final Coordinates file were obtained from the Survey Report generated by Trimble Survey Controller. The report contains all points collected during each daily survey deployment, including CVAs, FVAs and NGS Monuments.

Contact Information

Hayden Howard Phone: (303) 627-4058 E-mail: haydenh@compassdatainc.com

December 29, 2010
Quinnipiac, Connecticut
CVAs/FVAs
QNP301
QNP302
QNP303
QNP304
QNP305
QNP306
QNP307
QNP308
QNP309
QNP310
QNP311
QNP312
QNP313
QNP314
QNP315
QNP316
QNP317
QNP318
QNP319
QNP320
QNP701
QNP701_BK
QNP701_TP
QNP702
QNP702_BK
QNP702_TP
QNP703
QNP703_BK
QNP703_BK1
QNP703_TP
QNP704
QNP704_BK
QNP704_TP
QNP705
QNP705_BK
QNP705_BK1
QNP705_TP

Date
Vert_Prec Horz_Prec
10/19/2010
0.0073
0.0049
10/19/2010
0.0067
0.0055
10/20/2010
0.0082
0.0058
10/18/2010
0.004
0.003
10/19/2010
0.0159
0.0116
10/19/2010
0.0082
0.0052
10/19/2010
0.0082
0.0052
10/20/2010
0.0137
0.0076
10/20/2010
0.0107
0.0073
10/20/2010
0.0131
0.0076
10/19/2010
0.0082
0.0052
10/20/2010
0.0229
0.0095
10/20/2010
0.0116
0.0073
10/20/2010
0.0213
0.0125
10/20/2010
0.0101
0.0064
10/20/2010
0.0125
0.0058
10/20/2010
0.0073
0.0055
10/20/2010
0.0088
0.0064
10/20/2010
0.0122
0.0073
10/20/2010
0.0137
0.0101
12/3/2010
12/3/2010
0.006
0.004
12/3/2010
0.007
0.005
12/3/2010
12/3/2010
0.008
0.005
12/3/2010
0.008
0.005
12/3/2010
12/3/2010
0.006
0.004
12/3/2010
0.008
0.005
12/3/2010
0.006
0.004
12/3/2010
12/3/2010
0.009
0.007
12/3/2010
0.009
0.006
12/3/2010
12/3/2010
0.009
0.006
12/3/2010
0.022
0.014
12/3/2010
0.012
0.008

Latitude
41.64021025
41.58638121
41.53720673
41.53891968
41.49891356
41.47241018
41.43311569
41.40670732
41.37645944
41.44282797
41.38965375
41.35159651
41.32076407
41.31446301
41.35477221
41.32604918
41.33139586
41.31311831
41.27994458
41.22881531
41.68286267
41.68308787
41.68305056
41.64390933
41.64346579
41.64355853
41.55677916
41.55636698
41.5564587
41.55653857
41.48992085
41.49000336
41.48979515
41.41443838
41.41029765
41.41460895
41.40998891

Longitude
-72.87330348
-72.90189407
-72.93983468
-72.79857424
-72.92169578
-72.81999966
-72.74616556
-72.65068956
-72.55875277
-72.95530428
-72.79567602
-72.65248406
-72.5069946
-72.40279913
-72.99072792
-72.83256933
-72.70774966
-72.58857786
-72.98602716
-73.0683004
-72.82060407
-72.82031538
-72.82065151
-72.94430395
-72.94438428
-72.94406384
-72.76387215
-72.76405352
-72.76410895
-72.76389197
-72.95257097
-72.95275502
-72.95268892
-72.74179253
-72.76150098
-72.74163607
-72.76175764

Easting
677121.439
674885.56
671853.19
683632.576
673468.638
682031.548
688310.808
696368.087
704147.912
670810.535
684296.746
696383.899
708654.373
717396.82
668077.964
681388.62
691819.579
701849.258
668664.089
661899.851
681390.945
681414.341
681386.468
671198.079
671192.563
671219.005
686476.085
686462.144
686457.258
686475.124
670915.108
670899.526
670905.592
688730.308
687094.95
688742.891
687074.383

Northing
4612015.144
4605980.129
4600444.123
4600925.052
4596228.743
4593495.217
4589290.458
4586570.533
4583424.734
4589934.796
4584358.412
4580447.581
4577364.169
4576920.528
4580089.002
4577218.763
4578080.999
4576322.18
4571790.425
4565957.323
4616860.564
4616886.177
4616881.326
4612282.378
4612232.972
4612243.906
4602982.373
4602936.217
4602946.281
4602955.618
4595168.793
4595177.59
4595154.604
4587226.268
4586723.749
4587245.548
4586688.916

GEOID09
HAE
Separation NAVD88
24.34899695
-29.173 53.52199695
30.53340138
-29.191 59.72440138
76.57444833
-29.195 105.7694483
9.346405988
-29.39 38.73640599
24.71201448
-29.259 53.97101448
-12.94274842
-29.465 16.52225158
99.23698348
-29.618 128.8549835
85.04851496
-29.764 114.812515
85.62855053
-29.969 115.5975505
130.1084087
-29.301 159.4094087
18.81838983
-29.678 48.49638983
48.63124256
-29.905 78.53624256
3.804826048
-30.183 33.98782605
-0.206350015
-30.338 30.13164999
46.12913433
-29.501 75.63013433
-11.13345198
-29.809 18.67554802
-5.316941888
-29.9 24.58305811
-23.26390676
-30.103 6.83909324
20.63134387
-29.735 50.36634387
-4.522936292
-29.794 25.27106371
76.15693097
-29.191 105.347931
76.218
-29.191
105.409
77.26
-29.191
106.451
244.9763645
-29.072 274.0483645
244.04
-29.072
273.112
244.517
-29.073
273.59
65.83732507
-29.415 95.25232507
66.1
-29.416
95.516
66.368
-29.416
95.784
65.603
-29.416
95.019
161.1468907
-29.227 190.3738907
161.616
-29.227
190.843
161.323
-29.227
190.55
61.94569054
-29.66 91.60569054
48.793
-29.654
78.447
63.301
-29.66
92.961
48.058
-29.655
77.713


<table>
<thead>
<tr>
<th>Survey Control</th>
<th>Metadata</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGSA5590 10/18/2010 0.0067 0.0049 41.51051804 -72.83083879 681020.24 4597703.53 0.77114555 -29.386 30.15714555</td>
<td>UTM 18 North, NAD83, NAVD88 All units in meters where applicable. HAE - GEOID09 = NAVD88</td>
</tr>
<tr>
<td>NGS_LX6301 10/20/2010 0.0073 0.0043 41.44670608 -72.57332528 694356.55 4590960.47 165.2683786 -29.667 194.9353786</td>
<td></td>
</tr>
</tbody>
</table>
GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP301</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/19/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:
Point taken in parking lot S of building and E of Queen St.
Hartford County, CT

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
</table>

Collected By: Bryan Frazier

Checked By:
<table>
<thead>
<tr>
<th>Project Name: Quinnipiac</th>
<th>GCP Number: QNP302</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number: 1508</td>
<td>Date: 10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:
Point taken in SW part of cemetery NW of Marion Ave.
Hartford County, CT

Disk (Roll) / Frame Number:
Sketch 1 of 1

Collected By: Bryan Frazier
Checked By:
GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP303</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

Point taken in NE part of baseball field.
New Haven County, CT

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By:</td>
<td>Bryan Frazier</td>
</tr>
<tr>
<td>Checked By:</td>
<td></td>
</tr>
</tbody>
</table>
Project Name: Quinnipiac
GCP Number: QNP304
CDI Project Number: 1508
Date: 10/18/2010

GPS Antenna Height: 2m

Comments:
Point taken in field NW of Pratt St, SE of State St, SW of Mill St.
New Haven County, CT

Disk (Roll) / Frame Number:
Sketch 1 of 1
Collected By: Bryan Frazier
Checked By:
GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP305</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/19/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:
Point taken in field E of Doolittle School and parking lot, W of Oak Ave. and S of Cornwall Ave. New Haven County, CT

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By:</td>
<td>Bryan Frazier</td>
</tr>
<tr>
<td>Checked By:</td>
<td></td>
</tr>
</tbody>
</table>

CompassData, Inc., 12353 E. Easter Ave., Suite 200, Centennial, CO 80112 CDIGCP-01/04
<table>
<thead>
<tr>
<th>Project Name: Quinnipiac</th>
<th>GCP Number: QNP306</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number: 1508</td>
<td>Date: 10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:
Point taken in E corner field, NE of N. Plains Hwy. and NW of N. Plains Industrial Rd.
New Haven County, CT

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By: Bryan Frazier</td>
<td>Checked By:</td>
</tr>
</tbody>
</table>

CompassData, Inc., 12353 E. Easter Ave., Suite 200, Centennial, CO 80112 CDIGCP-01/04
Project Name: Quinnipiac
GCP Number: QNP307

CDI Project Number: 1508
Date: 10/19/2010

GPS Antenna Height: 2m

Comments:
Point taken at intersection of Whirlwind Hill Rd and a private business drive.
New Haven County, CT

Disk (Roll) / Frame Number:
Sketch 1 of 1

Collected By: Bryan Frazier
Checked By:
CompassData

GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCP Number:</td>
<td>QNP308</td>
</tr>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
</tr>
<tr>
<td>Date:</td>
<td>10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

Point taken at N end of culdesac of new road that branches off of Suffolk Dr.
New Haven County, CT

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By:</td>
<td>Bryan Frazier</td>
</tr>
<tr>
<td>Checked By:</td>
<td></td>
</tr>
</tbody>
</table>
GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP309</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

Point taken at intersection of Pleasant Trail and Swan lake Trail.
Middlesex County, CT

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By:</td>
<td>Bryan Frazier</td>
</tr>
<tr>
<td>Project Name:</td>
<td>Quinnipiac</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>GCP Number:</td>
<td>QNP310</td>
</tr>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
</tr>
<tr>
<td>Date:</td>
<td>10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:
Point taken at the culdesac of Deer Pond Trail.
New Haven County, CT

Disk (Roll) / Frame Number:
Sketch 1 of 1

Collected By: Bryan Frazier

Checked By:
CompassData

GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name</th>
<th>GCP Number</th>
<th>CDI Project Number</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinnipiac</td>
<td>QNP311</td>
<td>1508</td>
<td>10/19/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

Point taken in athletic field S of Stanley T. Williams School.
New Haven County, CT

Disk (Roll) / Frame Number: Sketch 1 of 1

Collected By: Bryan Frazier

Checked By:

CompassData, Inc., 12353 E. Easter Ave., Suite 200, Centennial, CO 80112 CDIGCP-01/04
CompassData

GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP312</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

Point taken on curve of Hickory Ln road.
New Haven County, CT

Disk (Roll) / Frame Number:

Sketch 1 of 1

Collected By: Bryan Frazier

Checked By:
GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP313</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:
Point taken in center of culdesac of Lindera Ln.
Middlesex County, CT

Disk (Roll) / Frame Number:

<table>
<thead>
<tr>
<th>Sketch</th>
<th>of</th>
<th>1</th>
</tr>
</thead>
</table>

Collected By: Bryan Frazier

Checked By:

CompassData, Inc., 12353 E. Easter Ave., Suite 200, Centennial, CO 80112 CDIGCP-01/04
CompassData

GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP314</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

Point taken in center of culdesac of Wild Apple Ln.
Middlesex County, CT

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By:</td>
<td>Bryan Frazier</td>
</tr>
<tr>
<td>Checked By:</td>
<td></td>
</tr>
</tbody>
</table>

CompassData, Inc., 12353 E. Easter Ave., Suite 200, Centennial, CO 80112 CDIGCP-01/04
GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP315</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

Point taken in S part of parking lot, S of building and N of Center Rd and W of Amity Rd.
New Haven County, CT

Disk (Roll) / Frame Number:

<table>
<thead>
<tr>
<th>Sketch</th>
<th>1</th>
<th>of</th>
<th>1</th>
</tr>
</thead>
</table>

Collected By: Bryan Frazier

Checked By:
<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP316</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:
Point taken in culdesac off of Foxon Rd.
New Haven County, CT

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch ___ of ___</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By:</td>
<td>Bryan Frazier</td>
</tr>
<tr>
<td>Checked By:</td>
<td></td>
</tr>
</tbody>
</table>

CompassData, Inc., 12353 E. Easter Ave., Suite 200, Centennial, CO 80112 CDIGCP-01/04
CompassData

GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name: Quinnipiac</th>
<th>GCP Number: QNP317</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number: 1508</td>
<td>Date: 10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

Point taken in baseball field just S of the dirt diamond.
New Haven County, CT

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By: Bryan Frazier</td>
<td>Checked By:</td>
</tr>
</tbody>
</table>

CompassData, Inc., 12353 E. Easter Ave., Suite 200, Centennial, CO 80112 CDIGCP-01/04
GCP Station Diagram for LiDAR

<table>
<thead>
<tr>
<th>Project Name: Quinnipiac</th>
<th>GCP Number: QNP318</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number: 1508</td>
<td>Date: 10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

Point taken in culdesac of Creamery Ln.
New Haven County, CT

Disk (Roll) / Frame Number: Sketch 1 of 1

Collected By: Bryan Frazier

Checked By:

CompassData, Inc., 12353 E. Easter Ave., Suite 200, Centennial, CO 80112 CDGCP-01/04
<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Quinnipiac</th>
<th>GCP Number:</th>
<th>QNP319</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Project Number:</td>
<td>1508</td>
<td>Date:</td>
<td>10/20/2010</td>
</tr>
</tbody>
</table>

GPS Antenna Height: 2m

Comments:

Point taken in E part of parking lot, SW of Dogburn Rd and NW of Boston Post Rd.
New Haven County, CT

Disk (Roll) / Frame Number:

Sketch 1 of 1

Collected By: Bryan Frazier

Checked By:
Project Name: Quinnipiac
GCP Number: QNP31920
CDI Project Number: 1508
Date: 10/20/2010

GPS Antenna Height: 2m

Comments:
Point taken in SE part of parking lot, SW of High St. and NW of Boston Post Rd.
New Haven County, CT

<table>
<thead>
<tr>
<th>Disk (Roll) / Frame Number:</th>
<th>Sketch 1 of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected By: Bryan Frazier</td>
<td>Checked By:</td>
</tr>
</tbody>
</table>

CompassData, Inc., 12353 E. Easter Ave., Suite 200, Centennial, CO 80112 CDIGCP-01/04
Accuracy Report

$\Delta H = 0.004 \text{m}$

$\Delta V = 0.020 \text{m}$
Accuracy Report

$\Delta H = 0.023m$
$\Delta V = 0.027m$
Accuracy Report

\[\Delta H = 0.061 \text{m} \]
\[\Delta V = 0.003 \text{m} \]
Region 1: Test results for Quinnipiac, CT

Summary
In FEMA-Region 1 the Quinnipiac area encompasses about 443 square miles. A LiDAR data acquisition was ordered for a 2’ equivalent contour accuracy, which equals the highest specification level. The area was flown and post-processed by Photo Science. CompassData performed the quality control of the collected and processed LiDAR data with a fundamental vertical accuracy (FVA) and a consolidated vertical accuracy (CVA) assessment, respectively. The planning, data collection, data processing, and data testing were successfully accomplished by the STARR members.

Index
- Final Test Results
- FVA Test
- CVA Test
- Distribution of Testing Points
- FVA Test Details
- CVA Test Details

Final Test Results

The vertical accuracy requirements based on flood risk and terrain slope are met with 22.4 cm and 33.1 cm for both FVA and CVA testing. The mandatory requirements for the highest specification for vertical accuracy, 95% confidence level are for FVA < 24.5 cm and CVA < 36.3 cm.

FVA Test
Tested 22.4 cm fundamental vertical accuracy at 95% confidence level in open terrain using RMSE(2) x 1.9600. The Root Mean Square Error for the elevation differences between GPS control points and LiDAR points is 11.4 cm calculated with 20 FVA points.

CVA Test
Tested 33.1 cm consolidated vertical accuracy at 95th percentile in: open terrain, forest terrain, and urban terrain. The Root Mean Square Error for the elevation differences between GPS control points and LiDAR points is 16.6 cm calculated with 20 supplemental vertical accuracy points (SVA).
Distribution of Testing Points

Region 1, Quinnipiac, CT

Legend:

- □ FVA points in open terrain on hard surface
- □ FVA points in open terrain used as well in CVA test
- ○ SVA points in open terrain
- ● SVA points in urban terrain
- ○ SVA points in forest terrain

According to the area to be tested the 20 FVA points are evenly distributed. Additional 15 SVA points are distributed in respect to the available major land classes.
FVA Test Details

<table>
<thead>
<tr>
<th>FVA</th>
<th>Date</th>
<th>Northing</th>
<th>Easting</th>
<th>MSL (GPS)</th>
<th>MSL (LiDAR)</th>
<th>Δ Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>QNP301</td>
<td>10/19/2010</td>
<td>4612015.14</td>
<td>677121.44</td>
<td>53.86</td>
<td>53.71</td>
<td>0.15</td>
</tr>
<tr>
<td>QNP302</td>
<td>10/19/2011</td>
<td>4605980.13</td>
<td>674885.56</td>
<td>59.9</td>
<td>59.86</td>
<td>0.04</td>
</tr>
<tr>
<td>QNP303</td>
<td>10/20/2010</td>
<td>4600444.12</td>
<td>671853.19</td>
<td>105.69</td>
<td>105.67</td>
<td>0.02</td>
</tr>
<tr>
<td>QNP304</td>
<td>10/20/2010</td>
<td>4600925.05</td>
<td>683632.58</td>
<td>38.72</td>
<td>38.85</td>
<td>-0.13</td>
</tr>
<tr>
<td>QNP305</td>
<td>10/20/2010</td>
<td>4596228.74</td>
<td>673468.64</td>
<td>54.22</td>
<td>54.23</td>
<td>-0.01</td>
</tr>
<tr>
<td>QNP306</td>
<td>10/20/2010</td>
<td>4593491.13</td>
<td>682011.25</td>
<td>16.39</td>
<td>16.52</td>
<td>-0.13</td>
</tr>
<tr>
<td>QNP307</td>
<td>10/19/2011</td>
<td>4589290.46</td>
<td>688310.81</td>
<td>128.96</td>
<td>128.94</td>
<td>0.02</td>
</tr>
<tr>
<td>QNP308</td>
<td>10/20/2010</td>
<td>4586570.53</td>
<td>696368.09</td>
<td>114.69</td>
<td>114.67</td>
<td>0.02</td>
</tr>
<tr>
<td>QNP309</td>
<td>10/20/2010</td>
<td>4583424.74</td>
<td>704147.91</td>
<td>115.57</td>
<td>115.55</td>
<td>0.02</td>
</tr>
<tr>
<td>QNP310</td>
<td>10/20/2010</td>
<td>4589934.80</td>
<td>670810.54</td>
<td>159.37</td>
<td>159.52</td>
<td>-0.15</td>
</tr>
<tr>
<td>QNP311</td>
<td>10/19/2011</td>
<td>4584358.41</td>
<td>684296.75</td>
<td>48.56</td>
<td>48.54</td>
<td>0.02</td>
</tr>
<tr>
<td>QNP312</td>
<td>10/20/2010</td>
<td>4580447.58</td>
<td>696383.90</td>
<td>78.45</td>
<td>78.43</td>
<td>0.02</td>
</tr>
<tr>
<td>QNP313</td>
<td>10/20/2010</td>
<td>4577364.17</td>
<td>708654.37</td>
<td>34.09</td>
<td>34.07</td>
<td>0.02</td>
</tr>
<tr>
<td>QNP314</td>
<td>10/20/2010</td>
<td>4576920.53</td>
<td>717396.82</td>
<td>30.18</td>
<td>30.16</td>
<td>0.02</td>
</tr>
<tr>
<td>QNP315</td>
<td>10/20/2010</td>
<td>4580089.00</td>
<td>668077.96</td>
<td>75.62</td>
<td>75.82</td>
<td>-0.20</td>
</tr>
<tr>
<td>QNP316</td>
<td>10/20/2010</td>
<td>4577218.76</td>
<td>681388.62</td>
<td>18.63</td>
<td>18.61</td>
<td>0.02</td>
</tr>
<tr>
<td>QNP317</td>
<td>10/20/2010</td>
<td>4578081.00</td>
<td>691819.58</td>
<td>24.6</td>
<td>24.58</td>
<td>0.02</td>
</tr>
<tr>
<td>QNP318</td>
<td>10/20/2010</td>
<td>4576322.18</td>
<td>701849.26</td>
<td>6.86</td>
<td>6.84</td>
<td>0.02</td>
</tr>
<tr>
<td>QNP319</td>
<td>10/20/2010</td>
<td>4571790.43</td>
<td>668664.09</td>
<td>50.16</td>
<td>50.53</td>
<td>-0.37</td>
</tr>
<tr>
<td>QNP320</td>
<td>10/20/2010</td>
<td>4565957.32</td>
<td>661899.85</td>
<td>24.79</td>
<td>24.77</td>
<td>0.02</td>
</tr>
</tbody>
</table>

ΔZ Summary

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔZ Mean</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>ΔZ Min</td>
<td>-0.37</td>
<td></td>
</tr>
<tr>
<td>ΔZ Max</td>
<td>0.15</td>
<td>* 1.96</td>
</tr>
<tr>
<td>RMSE:</td>
<td>0.114</td>
<td>0.224</td>
</tr>
</tbody>
</table>

Metadata

UTM 18 North, NAD83, NAVD88

All units in meters where applicable.

HAE - GEOID09 = NAVD88

Note:

19 of the 20 FVA points (open terrain) passed. 95% of the points are within the 24.5 cm confidence level. Point QNP319 fails with -37.0 cm. The FVA test is passed.
CVA Test Details

<table>
<thead>
<tr>
<th>CVA</th>
<th>Date</th>
<th>Northing</th>
<th>Easting</th>
<th>MSL (GPS)</th>
<th>MSL (LiDAR)</th>
<th>Δ Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>QNP301</td>
<td>10/20/2010</td>
<td>4612015.14</td>
<td>677121.44</td>
<td>53.86</td>
<td>53.71</td>
<td>-0.15</td>
</tr>
<tr>
<td>QNP305</td>
<td>10/20/2010</td>
<td>4596228.74</td>
<td>673468.64</td>
<td>54.22</td>
<td>54.23</td>
<td>0.01</td>
</tr>
<tr>
<td>QNP310</td>
<td>10/20/2010</td>
<td>4589934.80</td>
<td>670810.54</td>
<td>159.37</td>
<td>159.52</td>
<td>0.15</td>
</tr>
<tr>
<td>QNP315</td>
<td>10/20/2010</td>
<td>4580089.00</td>
<td>668077.96</td>
<td>75.62</td>
<td>75.82</td>
<td>0.20</td>
</tr>
<tr>
<td>QNP320</td>
<td>10/20/2010</td>
<td>4565957.32</td>
<td>661899.85</td>
<td>24.79</td>
<td>24.77</td>
<td>-0.02</td>
</tr>
<tr>
<td>QNP701</td>
<td>10/20/2010</td>
<td>4616860.56</td>
<td>681390.95</td>
<td>105.35</td>
<td>105.60</td>
<td>0.25</td>
</tr>
<tr>
<td>QNP702</td>
<td>10/20/2010</td>
<td>4612282.38</td>
<td>671198.08</td>
<td>274.05</td>
<td>274.16</td>
<td>0.11</td>
</tr>
<tr>
<td>QNP703</td>
<td>10/20/2010</td>
<td>4602982.37</td>
<td>686476.09</td>
<td>95.25</td>
<td>95.28</td>
<td>0.03</td>
</tr>
<tr>
<td>QNP704</td>
<td>10/20/2010</td>
<td>4595168.79</td>
<td>670915.11</td>
<td>190.37</td>
<td>190.51</td>
<td>0.14</td>
</tr>
<tr>
<td>QNP705</td>
<td>10/20/2010</td>
<td>4587226.27</td>
<td>688730.31</td>
<td>91.61</td>
<td>91.89</td>
<td>0.28</td>
</tr>
<tr>
<td>QNP706</td>
<td>10/20/2010</td>
<td>4584378.17</td>
<td>703748.41</td>
<td>146.30</td>
<td>146.36</td>
<td>0.06</td>
</tr>
<tr>
<td>QNP707</td>
<td>10/20/2010</td>
<td>4568648.09</td>
<td>663237.68</td>
<td>27.04</td>
<td>26.71</td>
<td>-0.33</td>
</tr>
<tr>
<td>QNP708</td>
<td>10/20/2010</td>
<td>4583160.09</td>
<td>672701.92</td>
<td>29.01</td>
<td>29.34</td>
<td>0.33</td>
</tr>
<tr>
<td>QNP709</td>
<td>10/20/2010</td>
<td>4576768.91</td>
<td>687318.77</td>
<td>34.79</td>
<td>34.87</td>
<td>0.08</td>
</tr>
<tr>
<td>QNP710</td>
<td>10/20/2010</td>
<td>4577783.66</td>
<td>709801.59</td>
<td>68.73</td>
<td>68.85</td>
<td>0.12</td>
</tr>
<tr>
<td>QNP801</td>
<td>10/20/2010</td>
<td>4614457.23</td>
<td>677950.88</td>
<td>55.70</td>
<td>55.80</td>
<td>0.10</td>
</tr>
<tr>
<td>QNP802</td>
<td>10/20/2010</td>
<td>4598548.56</td>
<td>680945.83</td>
<td>30.91</td>
<td>30.91</td>
<td>0.00</td>
</tr>
<tr>
<td>QNP803</td>
<td>10/20/2010</td>
<td>4577785.05</td>
<td>669317.21</td>
<td>21.90</td>
<td>22.05</td>
<td>0.15</td>
</tr>
<tr>
<td>QNP804</td>
<td>10/20/2010</td>
<td>4574214.20</td>
<td>686412.39</td>
<td>7.52</td>
<td>7.60</td>
<td>0.08</td>
</tr>
<tr>
<td>QNP805</td>
<td>10/20/2010</td>
<td>4574344.13</td>
<td>715721.83</td>
<td>8.29</td>
<td>8.34</td>
<td>0.05</td>
</tr>
</tbody>
</table>

ΔZ Mean	0.11	RMSE:	0.166
ΔZ Min	-0.33	* 1.96	0.324
ΔZ Max	0.33	95 Percentile	0.331

Land Class Types:
O = Open, F = Forest, U = Urban

UTM Zone 18 North, NAD83, NAVD88
MSL = NAVD88/Geoid09
All units in meters

Note:
All 20 of the SVA points (open, forest, and urban terrain) passed. 100% of the points are within the 36.3 cm confidence level. The CVA test is passed.
Quinnipiac

Post-Flight Aerial Acquisition Report

August 2011
Post-Flight Aerial Acquisition and Calibration Report

1.0 Vendor Contact Information:

GMR Aerial Surveys, Inc. DBA Photo Science
2670 Wilhite Drive
Lexington, KY 40503
(859) 277-8700

Contact: Kurt Allen, PLS
Telephone: 301-262-9400
Email: kallen@photoscience.com

The purpose of this project is to provide professional surveying and mapping services for the creation of a high-resolution digital elevation model developed from LIDAR data for the Quinnipiac area of interest (AOI). The project area is shown in the graphic below in Figure 1.1

All flights for the project were accomplished with customized single-engine Cessna 206 Aircraft utilizing a Leica sensor. These aircraft provide an ideal, stable aerial base for LiDAR acquisition. This platform has relatively fast cruise speeds that are beneficial for project mobilization / demobilization while maintaining relatively slow stall speeds which can prove ideal for collection of a high-density, consistent data posting.

Photo Science utilized Leica sensors on this project. The systems are capable of collecting data at a maximum frequency of 150 kHz, which affords elevation data collection of up to 150,000 points per second. The system utilizes a Multi-pulse in the Air option (MPIA). This sensor are also equipped with the ability to measure up to 4 returns per outgoing pulse from the laser and these come in the form of 1st, 2nd, 3rd, and last returns. The intensity of the first three returns is also captured during the aerial acquisition.

The project covered 443 square miles and required 1 block or area to cover (block or area is determined by the Base Station Control locations, typically airports with ground control monuments available providing coverage within 18 miles of the base as possible). There were 101 flight lines totaling 1358 flight line miles.
Figure 1.1: Quinnipiac Coverage Area
Detailed project planning was performed for this project. This planning was based on project specific requirements and the characteristics of the project site. The basis of this planning included the required accuracies, type of development, amount and type of vegetation within the project area, the required data posting, and potential altitude restrictions for flights in the general area. A brief summary of the aerial acquisition parameters for this project are shown in the LiDAR System Specification (Table 2.1) below:

Terrain and Aircraft
Flying Height AGL; 1524 m / 5000 ft
Recommended Ground Speed (GS); 95 kts

Scanner
Field of View (FOV); 34.0 degrees
Maximum Scan Rate; 40.99Hz
Scan Rate Setting used (SR); 41.0 Hz

Laser
Maximum Laser Pulse Rate; 145300Hz
Laser Pulse Rate used; 145300 Hz
Multi Pulse in Air Mode; Enabled
Gain Values (Up/Down); 12; 3
Range Intensity mode; 5
Nominal Maximum Slant Range; 1619.78m
Recommended Range Gate MIN Setting; 1223.63m
Recommended Range Gate MAX Setting; 1632.00m
Equivalent Attenuator Used; 0.59OD
Recommended Laser Current; 37%

Coverage
Full Swath Width; 931.87m
Coverage Rate; 138.52km^2/h
Maximum Line Spacing (No DTM); 787.30m
Minimum Sidelap (No DTM, lower); 15.51%
Minimum Sidelap (upper); 13.30%
Point Spacing and Density
Maximum Point Spacing Across Track; 0.97 m
Maximum Point Spacing Along Track; 1.05 m
Across Track/Along Track Ratio; 0.68
Average Point Density; 3.00 pts / m²
Average Point Area; 0.31 m²
Average Point Spacing; 0.56 m
Nadir Point Density; 2.06 pts / m²

Reflectivity and SNR
Illuminated Footprint Diameter; 0.35 m, 1/e²
Terrain Reflectivity; 0.10
Estimated SNR for diffuse targets Nadir; 14.42 - 13.58
Line/Rail Cross Section; 10.00 mm
Line/Rail Reflectivity; 0.30
Estimated SNR for wire targets Nadir; 1.52 - 0.00
Average SNR; 14.00; 14.00;

Accuracy
Estimated Across Track Accuracy; 0.19 - 0.21 m
Estimated Along Track Accuracy; 0.19 - 0.20 m
Estimated Height Accuracy; 0.13 m

LiDAR System Specification (Table 2.1)
Base Station Information

A base station was utilized at one (1) location during all phases of flight. Typically existing monuments are utilized when available, but on occasion we will set a monument steel pin and utilizes OPUS to determine the exact location.

For this project the following Base Station, outlined in the Table and Map(s) below, was utilized:

“MMK A”– is the designated Primary Airport Control Station

Table 2.2: Base Station Locations

<table>
<thead>
<tr>
<th>PID</th>
<th>DESIGNATION</th>
<th>STATE/COUNTY</th>
<th>USGS QUAD</th>
<th>USGS MONUMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI5589</td>
<td>MMK A</td>
<td>CT/NEW HAVEN</td>
<td>MERIDEN (92)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PID</th>
<th>PACS</th>
<th>NAD (2007)</th>
<th>NAVD 88</th>
<th>EPOCH DATE</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>LAPLACE CORR</th>
<th>ELLIP HEIGHT</th>
<th>GEOID HEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI5589</td>
<td>This is a Primary Airport Control Station</td>
<td>41 30 46.96279(N)</td>
<td>30.84 (meters)</td>
<td>2002.00</td>
<td>1,411,820.840 (meters)</td>
<td>-4,569,905.115 (meters)</td>
<td>4,205,258.247 (meters)</td>
<td>-3.22 (seconds)</td>
<td>1.469 (meters)</td>
<td>-29.38 (meters)</td>
</tr>
<tr>
<td>AI5589</td>
<td></td>
<td>ADJUSTED</td>
<td></td>
<td>GPS OBS</td>
<td>COMP</td>
<td>COMP</td>
<td>COMP</td>
<td>DEFLEC09</td>
<td>ADJUSTED</td>
<td>GEOID09</td>
</tr>
<tr>
<td>AI5589</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PID</th>
<th>Type</th>
<th>Designation</th>
<th>North</th>
<th>East</th>
<th>Ellip</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI5589</td>
<td></td>
<td>NETWORK AI5589 MMK A</td>
<td>0.29</td>
<td>0.24</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Figure 2.1: Base Station Locations

Time Period
Missions were flown between 12/11/2010 and 5/27/2011 totaled ten (10) sorties (or lifts) by two (2) different aircraft. All flights were accomplished by Leica Sensors.

<table>
<thead>
<tr>
<th>Sensor Number</th>
<th>Project Number</th>
<th>Flight Line Number</th>
<th>Area ID</th>
<th>Date Flown</th>
<th>System Used</th>
<th>Aircraft</th>
<th>Flight Line Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>7556-005</td>
<td>6</td>
<td>Quinnipiac</td>
<td>5/27/2011</td>
<td>Leica</td>
<td>N6461Z</td>
<td>30.5</td>
</tr>
</tbody>
</table>

Table 2.3: Airborne LiDAR Acquisition Flight Summary
3.0 Processing Summary

Leica IPAS and Applanix software was used in the post-processing of the airborne GPS and inertial data that is critical to the positioning of the sensor during all flights. This software suite includes the IPAS from Leica and Applanix POSPac and Waypoint’s GrafNav solutions. Both IPAS and POSPac provides the smoothed best estimate of trajectory (SBET) that is necessary for Leica’s post processor to develop the point cloud from the LiDAR missions. The point cloud is the mathematical three dimensional collection of all returns from all laser pulses as determined from the aerial mission. At this point this data is ready for analysis, classification, and filtering to generate a bare earth surface model in which the above ground features are removed from the data set.

GeoCue was used in the creation of some of the files needed in downstream processing, as well as in the tiling of the dataset into more manageable file sizes. The TerraScan and TerraModeler software
packages are then used for the automated data classification, manual cleanup, and bare earth generation from this data. Project specific macros were used to classify the ground and to remove the side overlap between parallel flight lines. All data was manually reviewed and any remaining artifacts removed using functionality provided by TerraScan and TerraModeler. QT Modeler was used as a final check of the bare earth dataset. GeoCue was then used to create the deliverable LAS 1.2 files for both the All Point Cloud Data and the Bare Earth. In-house software was then used to perform final statistical analysis of the classes in the LAS files.

Flight Log Overview:

- Post Spacing (Minimum): 0.56 m
- AGL (Above Ground Level) average flying height: 5000 ft
- MSL (Mean Sea Level) average flying height: 5266 ft
- Average Ground Speed: 95 kts
- Field of View (full): 34 deg
- Pulse Rate: 145,300
- Scan Rate: 41.0 Hz
- Side Lap (Average): 30%

During initial processing (GPS/IMU) certain statistics and tables are generated within the Processing software (either POSPAC or IPAS for Leica), a representative sample are included here and the remaining are located in *Appendix B - Original Flight Logs*:

![Figure 3.1 – 101211a-sn59 Combined Separation](image-url)
Figure 3.2 – 101211a-sn59 Map Run of Flight lines

Figure 3.3 – 101211a-sn59 Number of Satellites
A number of points are provided (or surveyed as part of the project) in order to provide a ground calibration and to help assure the accuracy of the data model. Initially any bias identified between the LiDAR surface and the provided control points are analyzed to average out the difference. The bias is then removed from LiDAR surface to provide a final ground surface. The two sets of data are then compared again and the results indicated below (Meters, UTM18):
Table 4.1: Overall Vertical Accuracy Statistics

QA/QC Analysis
A total of 20 points were established in the field for check points assessing the accuracy of the LiDAR surface and met specification.
List of Deliverables:
- PreFlight Planning Report
- PostFlight Aerial Acquisition and Calibration Report
- LAS v1.2 unclassified point cloud files in tile format.
- LAS v1.2 classified point cloud files in tile format.
- Project metadata in Microsoft Word format.
- The project data was delivered on (Hard Drive/DVD’s).
Flight Line Coverage

<table>
<thead>
<tr>
<th>FL_Label</th>
<th>FL_NUM</th>
<th>Date_Flown</th>
<th>State</th>
<th>Proj_Name</th>
<th>Area_ID</th>
<th>Mile_label</th>
<th>FL_Miles</th>
<th>Alt_Label</th>
<th>Alt_MSL</th>
<th>Base_Sta</th>
<th>System</th>
<th>Number</th>
<th>AirCraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight Line 1</td>
<td>1</td>
<td>10-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>12.7</td>
<td>Alt</td>
<td>5710</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 2</td>
<td>2</td>
<td>10-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>12.7</td>
<td>Alt</td>
<td>5590</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 3</td>
<td>3</td>
<td>10-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>13.8</td>
<td>Alt</td>
<td>5470</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 4</td>
<td>4</td>
<td>10-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>31.9</td>
<td>Alt</td>
<td>5360</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 5</td>
<td>5</td>
<td>08-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>32.6</td>
<td>Alt</td>
<td>5320</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 6</td>
<td>6</td>
<td>08-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>33.0</td>
<td>Alt</td>
<td>5280</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 7</td>
<td>7</td>
<td>06-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>33.4</td>
<td>Alt</td>
<td>5250</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 8</td>
<td>8</td>
<td>06-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>34.6</td>
<td>Alt</td>
<td>5220</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 9</td>
<td>9</td>
<td>06-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>34.4</td>
<td>Alt</td>
<td>5200</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 10</td>
<td>10</td>
<td>06-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>34.1</td>
<td>Alt</td>
<td>5190</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 11</td>
<td>11</td>
<td>10-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>6.7</td>
<td>Alt</td>
<td>5830</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 12</td>
<td>12</td>
<td>10-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>4.5</td>
<td>Alt</td>
<td>5890</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 13</td>
<td>13</td>
<td>06-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>33.4</td>
<td>Alt</td>
<td>5190</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 14</td>
<td>14</td>
<td>06-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>33.5</td>
<td>Alt</td>
<td>5190</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 15</td>
<td>15</td>
<td>06-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>28.7</td>
<td>Alt</td>
<td>5230</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 16</td>
<td>16</td>
<td>10-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>3.9</td>
<td>Alt</td>
<td>5920</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 17</td>
<td>17</td>
<td>10-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>3.0</td>
<td>Alt</td>
<td>5900</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 18</td>
<td>18</td>
<td>10-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>3.0</td>
<td>Alt</td>
<td>5820</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 19</td>
<td>19</td>
<td>10-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>18.2</td>
<td>Alt</td>
<td>5330</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 20</td>
<td>20</td>
<td>10-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>17.2</td>
<td>Alt</td>
<td>5280</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 21</td>
<td>21</td>
<td>27-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>13.0</td>
<td>Alt</td>
<td>5190</td>
<td>MMK A</td>
<td>Leica</td>
<td>19</td>
<td>N6461Z</td>
<td></td>
</tr>
<tr>
<td>Flight Line 22</td>
<td>22</td>
<td>27-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>4.7</td>
<td>Alt</td>
<td>5390</td>
<td>MMK A</td>
<td>Leica</td>
<td>19</td>
<td>N6461Z</td>
<td></td>
</tr>
<tr>
<td>Flight Line 23</td>
<td>23</td>
<td>27-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>3.8</td>
<td>Alt</td>
<td>5460</td>
<td>MMK A</td>
<td>Leica</td>
<td>19</td>
<td>N6461Z</td>
<td></td>
</tr>
<tr>
<td>Flight Line 24</td>
<td>24</td>
<td>27-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>3.8</td>
<td>Alt</td>
<td>5450</td>
<td>MMK A</td>
<td>Leica</td>
<td>19</td>
<td>N6461Z</td>
<td></td>
</tr>
<tr>
<td>Flight Line 25</td>
<td>25</td>
<td>08-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>6.4</td>
<td>Alt</td>
<td>5110</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 26</td>
<td>26</td>
<td>08-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>3.0</td>
<td>Alt</td>
<td>5140</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 27</td>
<td>27</td>
<td>27-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>3.0</td>
<td>Alt</td>
<td>5630</td>
<td>MMK A</td>
<td>Leica</td>
<td>19</td>
<td>N6461Z</td>
<td></td>
</tr>
<tr>
<td>Flight Line 28</td>
<td>28</td>
<td>27-May-11</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>2.2</td>
<td>Alt</td>
<td>5590</td>
<td>MMK A</td>
<td>Leica</td>
<td>19</td>
<td>N6461Z</td>
<td></td>
</tr>
<tr>
<td>Flight Line 29</td>
<td>29</td>
<td>18-Dec-10</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>5.1</td>
<td>Alt</td>
<td>5140</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 30</td>
<td>30</td>
<td>18-Dec-10</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>4.5</td>
<td>Alt</td>
<td>5140</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 31</td>
<td>31</td>
<td>18-Dec-10</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>3.4</td>
<td>Alt</td>
<td>5250</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 32</td>
<td>32</td>
<td>18-Dec-10</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>4.8</td>
<td>Alt</td>
<td>5240</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 33</td>
<td>33</td>
<td>18-Dec-10</td>
<td>Connecticut</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>1.6</td>
<td>Alt</td>
<td>5130</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line</td>
<td>Date</td>
<td>Location</td>
<td>Flight Number</td>
<td>Category</td>
<td>Distance</td>
<td>Altitude</td>
<td>Aircraft</td>
<td>Registration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight Line 34</td>
<td>06-May-11</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>3.9</td>
<td>Alt</td>
<td>5040</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 35</td>
<td>30-Mar-11</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>24.2</td>
<td>Alt</td>
<td>5210</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 36</td>
<td>30-Mar-11</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>23.7</td>
<td>Alt</td>
<td>5240</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 37</td>
<td>30-Mar-11</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>22.0</td>
<td>Alt</td>
<td>5260</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 38</td>
<td>30-Mar-11</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>19.4</td>
<td>Alt</td>
<td>5210</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 39</td>
<td>30-Mar-11</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>19.5</td>
<td>Alt</td>
<td>5160</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 40</td>
<td>30-Mar-11</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>2.8</td>
<td>Alt</td>
<td>5320</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 41</td>
<td>30-Mar-11</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>2.8</td>
<td>Alt</td>
<td>5300</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 42</td>
<td>30-Mar-11</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>20.2</td>
<td>Alt</td>
<td>5110</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 43</td>
<td>30-Mar-11</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>22.5</td>
<td>Alt</td>
<td>5080</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 44</td>
<td>30-Mar-11</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>22.5</td>
<td>Alt</td>
<td>5080</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 45</td>
<td>29-Mar-11</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>21.6</td>
<td>Alt</td>
<td>5100</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 46</td>
<td>29-Mar-11</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>21.7</td>
<td>Alt</td>
<td>5140</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 47</td>
<td>29-Mar-11</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>22.6</td>
<td>Alt</td>
<td>5180</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 48</td>
<td>29-Mar-11</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>22.3</td>
<td>Alt</td>
<td>5200</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 49</td>
<td>29-Mar-11</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>22.3</td>
<td>Alt</td>
<td>5220</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 50</td>
<td>29-Mar-11</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>21.3</td>
<td>Alt</td>
<td>5220</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 51</td>
<td>17-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>21.9</td>
<td>Alt</td>
<td>5240</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 52</td>
<td>17-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>21.1</td>
<td>Alt</td>
<td>5260</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 53</td>
<td>17-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>18.8</td>
<td>Alt</td>
<td>5300</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 54</td>
<td>17-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>16.0</td>
<td>Alt</td>
<td>5310</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 55</td>
<td>17-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>14.6</td>
<td>Alt</td>
<td>5300</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 56</td>
<td>17-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>14.9</td>
<td>Alt</td>
<td>5290</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 57</td>
<td>17-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>12.8</td>
<td>Alt</td>
<td>5240</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 58</td>
<td>17-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>12.4</td>
<td>Alt</td>
<td>5240</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 59</td>
<td>17-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>12.0</td>
<td>Alt</td>
<td>5230</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 60</td>
<td>17-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>11.5</td>
<td>Alt</td>
<td>5240</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 61</td>
<td>17-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>11.3</td>
<td>Alt</td>
<td>5220</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 62</td>
<td>18-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>10.9</td>
<td>Alt</td>
<td>5210</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 63</td>
<td>17-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>10.9</td>
<td>Alt</td>
<td>5180</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 64</td>
<td>30-Mar-11</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>2.0</td>
<td>Alt</td>
<td>5010</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 65</td>
<td>17-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>10.9</td>
<td>Alt</td>
<td>5180</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 66</td>
<td>16-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>13.8</td>
<td>Alt</td>
<td>5260</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 67</td>
<td>16-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>15.2</td>
<td>Alt</td>
<td>5270</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 68</td>
<td>16-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>15.2</td>
<td>Alt</td>
<td>5240</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line 69</td>
<td>16-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>FL_miles</td>
<td>15.1</td>
<td>Alt</td>
<td>5230</td>
<td>MMK A</td>
<td>Leica</td>
<td>59</td>
<td>N7320G</td>
<td></td>
</tr>
<tr>
<td>Flight Line</td>
<td>Date</td>
<td>Location</td>
<td>Flight Number</td>
<td>FL Type</td>
<td>FL Miles</td>
<td>Altitude</td>
<td>MMK</td>
<td>Leica</td>
<td>Reg No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>-----</td>
<td>-------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>16-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>13.3</td>
<td>5250</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>16-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>12.6</td>
<td>5270</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>16-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>12.4</td>
<td>5270</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>16-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>12.3</td>
<td>5290</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>16-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>11.7</td>
<td>5320</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>16-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>11.7</td>
<td>5300</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>16-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>11.7</td>
<td>5280</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>16-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>11.0</td>
<td>5280</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>16-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>11.7</td>
<td>5280</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>16-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>12.0</td>
<td>5270</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>12.1</td>
<td>5250</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>11.8</td>
<td>5260</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>11.5</td>
<td>5260</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>10.4</td>
<td>5270</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>10.4</td>
<td>5240</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>9.8</td>
<td>5230</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>8.7</td>
<td>5230</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>7.9</td>
<td>5220</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>7.0</td>
<td>5190</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>6.5</td>
<td>5150</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>8.1</td>
<td>5060</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>7.3</td>
<td>5040</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>8.1</td>
<td>5070</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>8.1</td>
<td>5080</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>7.9</td>
<td>5100</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>7.6</td>
<td>5130</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>7.3</td>
<td>5150</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>7.4</td>
<td>5160</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>7.3</td>
<td>5170</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>5.0</td>
<td>5200</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>11-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>5.3</td>
<td>5110</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>16-Dec-10</td>
<td>Connecticut</td>
<td>7556-005</td>
<td>MMK_Quinnipiac</td>
<td>0.6</td>
<td>5020</td>
<td>MMK A</td>
<td>Leica</td>
<td>N7320G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight</td>
<td>FL #</td>
<td>Air (AMSL)</td>
<td>Heading</td>
<td>Speed</td>
<td>Range</td>
<td>GPS</td>
<td>Files</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1503</td>
<td>10</td>
<td>00</td>
<td>110</td>
<td>000</td>
<td>100</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1522</td>
<td>10</td>
<td>00</td>
<td>110</td>
<td>000</td>
<td>100</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1535</td>
<td>20</td>
<td>00</td>
<td>110</td>
<td>000</td>
<td>100</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1555</td>
<td>20</td>
<td>00</td>
<td>110</td>
<td>000</td>
<td>100</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1620</td>
<td>30</td>
<td>00</td>
<td>110</td>
<td>000</td>
<td>100</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- LASER ON Time: 09:45
- Start: 00:00
- STOP: 11:35
- END: 14:07

Data Information:
- Range: 000 - 200
- Format: 110-100-500
- Tirm: 100
- Index: 100
- Area: 000

Projects Scanning Requirements:
- Location: 100
- Index: 100
- Date: 11/14/07
- Time: 10:20

Navigation File:
- File Name: Project Number
- File: MINK0010
- Type: Text
- Date: 10/20/07

FOV (Degrees):
- Above Area: 000
- Range Area: 100
- Scan Time: 14:30
- Laser Counter: 39
- Spans: 000

GPS Baseline Locations:
- Site A
- Site B
- Site C

Additional Information:
- Laser On Time & Off Time: 09:45 - 13:45
- Site: Field
- Observation: Yes
- Mode: MINK

Remarks:
- Notes: For north and south.
<table>
<thead>
<tr>
<th>File #</th>
<th>FL #</th>
<th>A/L (MS)</th>
<th>Heading</th>
<th>Speed</th>
<th>Range, Ranges, Cables</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FL #</th>
<th>A/L (MS)</th>
<th>Heading</th>
<th>Speed</th>
<th>Range, Ranges, Cables</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- File: LIDAR MISSION RECORD SHEET
- FL #: 131
- A/L (MS): 147
- Heading: 190
- Speed: 00
- Range, Ranges, Cables: ±

Data Information:

- Range (m): ±
- Azimuth (°): ±
- Elevation (°): ±
- Scan Rate (Hz): ±
- Laser Current (%): ±
- FOV (deg): ±
- Scan Rate (Hz): ±
- Laser Current (%): ±
- FOV (deg): ±

Navigation File:

- GPS-15, GGA
- Date: 12/01/2011
- Time: 10:45:20
- Datum: WGS 84
- Epoch: 12/31/2011

Project Information:

- Project Number: 12345
- Field Name: Field Name
- Date: 12/01/2011
- Time: 10:45:20

Legend:

- Green: Safe
- Red: Caution
- Yellow: Danger

Other Details:

- Field Work
- Field Notes
- Field Controls
- Field Layout
- Field Survey
- Field Planning
- Field Setup
- Field Safety
<table>
<thead>
<tr>
<th>Time</th>
<th>HD</th>
<th>FL</th>
<th>AI (AMS)</th>
<th>Heading</th>
<th>Speed</th>
<th>Rain Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:10</td>
<td>128</td>
<td>35</td>
<td>11:10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>129</td>
<td>36</td>
<td>11:20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:10</td>
<td>128</td>
<td>35</td>
<td>11:20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:20</td>
<td>129</td>
<td>36</td>
<td>11:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>129</td>
<td>36</td>
<td>11:40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:40</td>
<td>129</td>
<td>36</td>
<td>11:50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:50</td>
<td>129</td>
<td>36</td>
<td>12:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>129</td>
<td>36</td>
<td>12:10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:10</td>
<td>129</td>
<td>36</td>
<td>12:20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:20</td>
<td>129</td>
<td>36</td>
<td>12:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>129</td>
<td>36</td>
<td>12:40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:40</td>
<td>129</td>
<td>36</td>
<td>12:50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:50</td>
<td>129</td>
<td>36</td>
<td>13:00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES
- No significant notes are mentioned.

FILE
- FL #: 11832
- AI #: 11832
- Header: 11832
- Speed: 11832
- Rain Check: 11832

Navigation
- Projects: X-axis: 11832
- Y-axis: 11832
- Z-axis: 11832

Object Area
- No specific object area notes are mentioned.

Ground Control Points
- No specific ground control points are mentioned.

Time Information
- No specific time information is provided.

Project Information
- No specific project information is provided.

Data Information
- No specific data information is provided.
<table>
<thead>
<tr>
<th>Comments</th>
<th>Field</th>
<th>S/N</th>
<th>Flight File</th>
<th>Flight Files</th>
<th>Flight Station</th>
<th>Altitude Station</th>
<th>Miles</th>
<th>Flight Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight Logs</td>
<td>Conn Area: MINK Qumnipiaq Project NO 7556-005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>Field</td>
<td>S/N</td>
<td>Flow Down</td>
<td>Flight Files</td>
<td>Flight Base</td>
<td>Station</td>
<td>Altitude</td>
<td>Flight Miles</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-----</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Acetate</td>
<td>Flight Time</td>
<td>FLIGHT</td>
<td>BASE</td>
<td>ALTIMETRE</td>
<td>MILES</td>
<td>FLIGHT</td>
<td>Comments</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>-------------</td>
<td>--------</td>
<td>------</td>
<td>-----------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>12/18/2010</td>
<td>69</td>
<td>5/20/21</td>
<td>3:50</td>
<td>MMK A</td>
<td>5300</td>
<td>2.8</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>12/18/2010</td>
<td>69</td>
<td>11/10/21</td>
<td>3:50</td>
<td>MMK A</td>
<td>5320</td>
<td>2.8</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>12/18/2010</td>
<td>69</td>
<td>11/10/21</td>
<td>3:50</td>
<td>MMK A</td>
<td>5160</td>
<td>1.95</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>12/18/2010</td>
<td>69</td>
<td>11/10/21</td>
<td>3:50</td>
<td>MMK A</td>
<td>5210</td>
<td>1.95</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>12/18/2010</td>
<td>69</td>
<td>11/10/21</td>
<td>3:50</td>
<td>MMK A</td>
<td>5260</td>
<td>2.20</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>12/18/2010</td>
<td>69</td>
<td>11/10/21</td>
<td>3:50</td>
<td>MMK A</td>
<td>5360</td>
<td>2.20</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>12/18/2010</td>
<td>69</td>
<td>11/10/21</td>
<td>3:50</td>
<td>MMK A</td>
<td>5240</td>
<td>2.3</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>12/18/2010</td>
<td>69</td>
<td>11/10/21</td>
<td>3:50</td>
<td>MMK A</td>
<td>5210</td>
<td>2.42</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>12/18/2010</td>
<td>69</td>
<td>11/10/21</td>
<td>3:50</td>
<td>MMK A</td>
<td>5190</td>
<td>3.9</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>12/18/2010</td>
<td>69</td>
<td>11/10/21</td>
<td>3:50</td>
<td>MMK A</td>
<td>5130</td>
<td>1.6</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>12/18/2010</td>
<td>69</td>
<td>11/10/21</td>
<td>3:50</td>
<td>MMK A</td>
<td>5240</td>
<td>3.2</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>12/18/2010</td>
<td>69</td>
<td>11/10/21</td>
<td>3:50</td>
<td>MMK A</td>
<td>5250</td>
<td>3.4</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>12/18/2010</td>
<td>69</td>
<td>11/10/21</td>
<td>3:50</td>
<td>MMK A</td>
<td>5140</td>
<td>4.5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>12/18/2010</td>
<td>69</td>
<td>11/10/21</td>
<td>3:50</td>
<td>MMK A</td>
<td>5140</td>
<td>5.1</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>12/18/2010</td>
<td>69</td>
<td>11/10/21</td>
<td>3:50</td>
<td>MMK A</td>
<td>5590</td>
<td>2.2</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>FLIGHT LINE</td>
<td>FL MILES</td>
<td>ALTITUDE</td>
<td>BASE STATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>14.6</td>
<td>5300</td>
<td>MMKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>18.8</td>
<td>5300</td>
<td>MMKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>21.1</td>
<td>5200</td>
<td>MMKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>21.9</td>
<td>5240</td>
<td>MMKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>21.3</td>
<td>5220</td>
<td>MMKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>22.3</td>
<td>5200</td>
<td>MMKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>22.8</td>
<td>5130</td>
<td>MMKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>21.7</td>
<td>5110</td>
<td>MMKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>21.6</td>
<td>5110</td>
<td>MMKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>22.5</td>
<td>5080</td>
<td>MMKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>22.5</td>
<td>5080</td>
<td>MMKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>22.5</td>
<td>5080</td>
<td>MMKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>22.5</td>
<td>5080</td>
<td>MMKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>22.5</td>
<td>5080</td>
<td>MMKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>FLOWN</th>
<th>SW</th>
<th>QC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/20/11</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

ACCOMT Serial Number: N-13296

Date: 12/17/2010

Pilot: Frank Davis
<table>
<thead>
<tr>
<th>Date</th>
<th>S/N</th>
<th>Field</th>
<th>S/N</th>
<th>Flow Date</th>
<th>Flight Files</th>
<th>Flight Base Station</th>
<th>Flight Altitude</th>
<th>Miles</th>
<th>Flight Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/16/2010</td>
<td>58</td>
<td>Mark Quinn</td>
<td>Mark Quinn</td>
<td>5230</td>
<td>15.1</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/16/2010</td>
<td>58</td>
<td>Mark Quinn</td>
<td>Mark Quinn</td>
<td>5240</td>
<td>15.2</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/16/2010</td>
<td>58</td>
<td>Mark Quinn</td>
<td>Mark Quinn</td>
<td>5270</td>
<td>15.2</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/16/2010</td>
<td>58</td>
<td>Mark Quinn</td>
<td>Mark Quinn</td>
<td>5620</td>
<td>13.8</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/17/2010</td>
<td>58</td>
<td>Mark Quinn</td>
<td>Mark Quinn</td>
<td>5180</td>
<td>10.9</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/18/2010</td>
<td>58</td>
<td>Mark Quinn</td>
<td>Mark Quinn</td>
<td>5010</td>
<td>2.0</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/19/2010</td>
<td>57</td>
<td>Mark Quinn</td>
<td>Mark Quinn</td>
<td>5180</td>
<td>10.9</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/17/2010</td>
<td>58</td>
<td>Mark Quinn</td>
<td>Mark Quinn</td>
<td>5210</td>
<td>10.9</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/17/2010</td>
<td>58</td>
<td>Mark Quinn</td>
<td>Mark Quinn</td>
<td>5220</td>
<td>11.3</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/17/2010</td>
<td>58</td>
<td>Mark Quinn</td>
<td>Mark Quinn</td>
<td>5240</td>
<td>11.5</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/17/2010</td>
<td>58</td>
<td>Mark Quinn</td>
<td>Mark Quinn</td>
<td>5230</td>
<td>12.0</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/17/2010</td>
<td>58</td>
<td>Mark Quinn</td>
<td>Mark Quinn</td>
<td>5240</td>
<td>12.4</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/17/2010</td>
<td>57</td>
<td>Mark Quinn</td>
<td>Mark Quinn</td>
<td>5230</td>
<td>12.8</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/17/2010</td>
<td>56</td>
<td>Mark Quinn</td>
<td>Mark Quinn</td>
<td>5290</td>
<td>14.9</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Could not progress to section 12th
<table>
<thead>
<tr>
<th>Comments</th>
<th>FIELD S/N</th>
<th>DATE FLIGHT</th>
<th>FIGHT FILES</th>
<th>STATION FLIGHT</th>
<th>ALTITUDE FL</th>
<th>MILES FL</th>
<th>LINE FL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>Field</td>
<td>S/N</td>
<td>Flow Date</td>
<td>Flow Flow</td>
<td>Flight Flies</td>
<td>Station</td>
<td>Altitude</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-----</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>69</td>
<td>11/12</td>
<td>5700</td>
<td>0.4</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>69</td>
<td>11/12</td>
<td>5160</td>
<td>0.3</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>69</td>
<td>11/12</td>
<td>5130</td>
<td>0.6</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>69</td>
<td>11/12</td>
<td>5100</td>
<td>0.9</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>69</td>
<td>11/12</td>
<td>5080</td>
<td>0.1</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>69</td>
<td>11/12</td>
<td>5070</td>
<td>0.1</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>69</td>
<td>11/12</td>
<td>5040</td>
<td>0.3</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>69</td>
<td>11/12</td>
<td>5060</td>
<td>0.1</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>69</td>
<td>11/12</td>
<td>5150</td>
<td>0.5</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>69</td>
<td>11/12</td>
<td>5190</td>
<td>0.7</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>69</td>
<td>11/12</td>
<td>5220</td>
<td>0.9</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>69</td>
<td>11/12</td>
<td>5230</td>
<td>0.7</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>69</td>
<td>11/12</td>
<td>5230</td>
<td>0.8</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>69</td>
<td>11/12</td>
<td>5240</td>
<td>0.4</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>网民</td>
<td>MMK (MMK)</td>
<td>WQIK (WQIK)</td>
<td>QNINQ</td>
<td>12/11</td>
<td>69</td>
<td>12/20</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-----------</td>
<td>-------------</td>
<td>-------</td>
<td>-------</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.3</td>
<td></td>
</tr>
</tbody>
</table>

Comments

- Field
- S/N
- GC
- Date
- Flown
- Flight Files
- Station
- Base
- Altitude
- Miles
- Flight Line
Station Occupation Report
For Airborne GPS

Project: FEMA Quinnipiac MMK

Location: KMMK
Completed by: D. Holt

Project Number: 7550-005
Date: 5/10/2011

Receiver: 5700
Receiver Type: Trimble
Antenna Type: Zephyr Geodetic (PN4+249-00)
Station ID: AI5589 (MMK A)

Start -- H.I. (m): 2.053
End -- H.I. (m): 2.053
H.I. (ft):
Start Time: 11:17Z
End Time: 14:12Z
Time Zone: EDT
Operator: D. Holt

Comments: Use for 110510a-5n59
Station Occupation Report
For Airborne GPS

Project:
FEMA Quimigae MMK

Location:
KMMK
Completed by:
D. Holt

Receiver:
5700
Receiver Type:
Trimble
Antenna Type:
Zephyr GeoXonic (PN41249.00)
Station ID:
AT5589 (MMK-A)

Start -- H.I. (m):
2.053
End -- H.I. (m):
2.053
H.I. (ft):

Start Time:
12:45
End Time:
14:53
Time Zone:
EDT
Operator:
D. Holt

Comments
USE FOR 110508A SNS9
Station Occupation Report
For Airborne GPS

Project: FEMA Quinnipiac MMK

Location: KMMK
Completed by: D. Holt

Project Number: 7556-005
Date: 5/6/2011

Receiver: 5700
Receiver Type: Trimble
Antenna Type: Zephyr Geodetic (P/N 41249-00)
Station ID: A15589 (MMKA)

Start - H.I. (m): 2.053
End - H.I. (m): 2.053
H.I. (ft):

Start Time: 15:30Z
End Time: 19:26Z
Time Zone: EDT
Operator: D. Holt

Comments:
Use for 110506a-5954
Station Occupation Report
For Airborne GPS

Project: MMK Quinquies

Location: Meriden, CT
Completed by: D. Holt

Project Number: 7550-005
Date: 3/30/2011

Receiver: SR9500
Receiver Type: Leica
Antenna Type: AT30Z
Station ID: AT558 (Mmk A)

Start -- H.I. (m): 2.00
End -- H.I. (m): 2.00

H.I. (ft):
Start Time: 3:00Z
End Time: 16:59Z
Time Zone: EDT
Operator: D. Holt

Comments: USE FOR 110330A-SN59
Station Occupation Report
For Airborne GPS

Project: MMK Quinpiak

Location: Meriden, CT
Completed by: D. Holt

Project Number: 7556-005
Date: 3/29/2011

Receiver: SR9500
Receiver Type: Leica
Antenna Type: AT302
Station ID: A15589 (MMK A)
Start -- H.I. (m): 2.00
End -- H.I. (m): 2.00
H.I. (ft):
Start Time: 13:29z
End Time: 16:09z
Time Zone: EDT
Operator: D. Holt

Comments
Use for 110329a-sn59
| **Station Occupation Report**
| **For Airborne GPS**
|
| **Project:** | FEMA CT-MA (Qusaipae)
| **Location:** | KMMK
| **Completed by:** | D. Hult
| **Project Number:** | 7550-005
| **Date:** | 12/18/2010
| **Receiver:** | SR 9500
| **Receiver Type:** | Leica
| **Antenna Type:** | AT 302
| **Station ID:** | KMMK A
| **Start -- H.I. (m):** | 2.060
| **End -- H.I. (m):** | 2.060
| **H.I. (ft):** |
| **Start Time:** | 16:17Z
| **End Time:** | 18:31Z
| **Time Zone:** | EST
| **Operator:** | D. Hult
| **Comments:** | Use for 101218a-sn59

Note: The bottom section contains handwritten comments.
Station Occupation Report
For Airborne GPS

<table>
<thead>
<tr>
<th>Project:</th>
<th>FEMA CT-MA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Quinipiac - KNNMK</td>
</tr>
<tr>
<td>Completed by:</td>
<td>D. Holt</td>
</tr>
<tr>
<td>Project Number:</td>
<td>7550-005</td>
</tr>
<tr>
<td>Date:</td>
<td>12/17/2010</td>
</tr>
</tbody>
</table>

Receiver:	SR9500
Receiver Type:	Leica
Antenna Type:	AT302
Station ID:	AJ558A
Start - H.I. (m):	2.06
End - H.I. (m):	2.06
H.I. (ft):	
Start Time:	13:15Z
End Time:	19:43Z
Time Zone:	EST
Operator:	D. Holt

Comments

Use for 101217a-S159
Station Occupation Report
For Airborne GPS

Project: FEMA CT-MA

Location: KMMK
Completed by: D. Holt

Receiver: SR 9500
Receiver Type: Leica
Antenna Type: AT 30Z
Station ID: MMK A
Start -- H.I. (m): 2.00
End -- H.I. (m): 2.00
H.I. (ft): 16.018
Start Time: 16:01Z
End Time: 20:46Z
Time Zone: EST
Operator: D. Holt

Comments: USE FOR 10/21 06:59-5A59
Station Occupation Report
For Airborne GPS

Project: FEMA LiDAR CT-MA (Quinnipac)

Location: Kmmk
Completed by: D. Holt

Project Number: 7550-005
Date: 12/11/2010

Receiver: Leica
Receiver Type: SR 9500
Antenna Type: AT 302
Station ID: AISS589
Start - H.I. (m): 2.06
End - H.I. (m): 2.04
H.I. (ft): 14'48"
Start Time: 19:29z
End Time: 19:29z
Time Zone: EST
Operator: D. Holt

Comments: Use for 101211a-sm59
LASER Calibration USING SURFACE PROFILES

Introduction

Laser bore site calibration is the process whereby the angular misalignment between the IMU and the laser is determined. The components determined are roll, pitch and heading. These are rotations around the X, Y and Z-axis respectively.

In addition the above there are mechanical values that need to be resolved. These include pitch at the edge of the swath, and torsion. There may be a change in pitch from nadir to the edge of the swath, depending upon the alignment of the rotating mirror with respect to the mirror shaft. Torsion defines the elasticity of the shaft of the rotating mirror and is apparent under acceleration when the mirror oscillates.

The bore site calibration process to determine these values is undertaken in a relative mode only as there is no comparison with ground data. Subsequently, it should adhere to the basic survey principle of working from the whole to the part, i.e. daily operation of the equipment should always be at a lower flying height and smaller Field Of View (FOV) than used in calibration, so that the residuals of calibration are reduced rather than multiplied. It is critical to undertake the bore site process in such a way that any errors will be exaggerated so that any remaining residuals can be minimized.

The final value to be determined to ensure data conforms to ground truth is the range correction. Data may be higher or lower than ground truth, which is supplied from ground survey. In this instance a constant amount is added to the laser range to achieve the correct ground height.

Roll. Roll is a rotation around the X-axis and is evident as an error in position across track and an error in height with data on one edge high and on the other edge low. Roll is resolved by flying a single flight line over a flat surface in opposite directions. Any error will be exaggerated by having as wide a swath width as possible. This requires a maximum flying height and the maximum FOV.

Pitch. Pitch is a rotation around the Y-axis and is evident as an error in position along track. Using laser point data only, a pitch error cannot be determined over a flat surface. Pitch error is only evident when viewed over a sloping surface. The surface being viewed must be a large regular shape and chosen so as to eliminate any errors introduced when interpolating between individual laser points. The sloped surface being viewed must be at least 6 times larger than the maximum point spacing.

Pitch error is checked in the nadir position and also at the edge of the swath. Nadir pitch is resolved by flying a single flight line in opposite directions with a small along track spacing. Any error will be exaggerated by having a maximum flying height. The viewing surface should fall in the nadir position.
Pitch at the edge of the swath is resolved by flying a single flight line in opposite directions with a swath width as wide as possible. This requires a maximum flying height and the maximum FOV. The viewing surface should fall on the edge of the swath.

Heading. Heading is a rotation around the Z-axis and is evident as an error in position with data on one edge of the swath moved forward and on the other edge of the swath moved back. Using laser point data only, a heading error cannot be determined over a flat surface. Heading error is only evident when viewed over a sloping surface. The surface being viewed must be a large regular shape and chosen so as to eliminate any errors introduced when interpolating between individual laser points. The sloped surface being viewed must be at least 6 times larger than the maximum point spacing.

Heading is resolved by flying two slightly overlapping flight lines in the same direction. Any error will be exaggerated by having as wide a swath width as possible. This requires a maximum flying height and the maximum FOV. The viewing surface should fall in the overlap area.

Torsion. Determination of torsion should not be undertaken until Roll has been resolved. Torsion is apparent at times when the mirror shaft is under maximum acceleration. This occurs at the edge of the swath when the mirror changes direction. There is no torsion effect in the middle of the swath as the mirror has maximum velocity but no acceleration.

Range. The intensity of the laser return can bias the range correction required for each laser point. The measured intensity of any laser point can vary due to the reflectivity of the surface and also as a function of range to the ground. Surfaces with higher reflectivity produce a shorter time interval and shorter range for the laser shot and are therefore higher than ground survey. Surfaces with lower reflectivity produce a longer time interval and longer range for the laser shot and is therefore lower than ground survey.

Flight Plans

Roll, Pitch, Heading and Torsion. Bore site flights should be completed within 5km of the airfield and GPS base station. A suggested flight plan configuration to determine Roll, Pitch (both nadir and swath edge), Heading and Torsion includes one long flight line and three crossing lines of approximately equal length. All lines are flown in opposite directions several times at different altitudes. A sample is as follows is as follows:
Flight line 2-6 is designed to determine nadir pitch and should be centered over the target building and oriented perpendicular to the ridge of the building. Flight lines 1-7 and 3-5 should be 40% of the swath width either side of flight line 2-6. Flight lines 1 and 3 or 5 and 7 are used to determine heading. Flight lines 1 and 7 or 3 and 5 are used to determine pitch at the edge of the swath. Flight lines 1 and 7, 2 and 6 or 3 and 5 are used to determine roll. Flight line 4 plus either 1, 2, 3, 5, 6 or 7 is used to determine torsion.

Flight parameters to determine Roll, Pitch (both nadir and swath edge), Heading and Torsion are as follows:

<table>
<thead>
<tr>
<th>Flight Line</th>
<th>FOV</th>
<th>SR</th>
<th>Mode</th>
<th>Pulse</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>25</td>
<td>1</td>
<td>25000</td>
<td>2000m or 6000ft parallel to flight line 2</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>12.5</td>
<td>1</td>
<td>25000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>70</td>
<td>25</td>
<td>1</td>
<td>25000</td>
<td>2000m or 6000ft parallel to flight line 2</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>12.5</td>
<td>1</td>
<td>25000</td>
<td>Perpendicular to flight line 2</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>25</td>
<td>1</td>
<td>25000</td>
<td>Opposite direction to flight line 3</td>
</tr>
<tr>
<td>6</td>
<td>70</td>
<td>12.5</td>
<td>1</td>
<td>25000</td>
<td>Opposite direction to flight line 2</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>25</td>
<td>1</td>
<td>25000</td>
<td>Opposite direction to flight line 1</td>
</tr>
</tbody>
</table>

Range

A minimum of three-ground truth survey points should be established which are situated in open level areas and have surrounding surfaces, which are dark, medium and light.
respectively. Data is collected over these control points at different flying heights and with different laser attenuator settings. Flights should be completed within 5km of the airfield and GPS base station. A suggested flight plan configuration to determine Range is as follows:

<table>
<thead>
<tr>
<th>Flight Line</th>
<th>FOV</th>
<th>SR</th>
<th>Mode</th>
<th>Pulse</th>
<th>Attenuator</th>
<th>Flying Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>40</td>
<td>1</td>
<td>55000</td>
<td>1</td>
<td>500m/1600ft</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>40</td>
<td>1</td>
<td>55000</td>
<td>1</td>
<td>637m/2100ft</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>40</td>
<td>1</td>
<td>55000</td>
<td>0.5</td>
<td>637m/2100ft</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>40</td>
<td>1</td>
<td>55000</td>
<td>0.5</td>
<td>880m/2900ft</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>40</td>
<td>1</td>
<td>55000</td>
<td>0.5</td>
<td>1123m/3700ft</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>40</td>
<td>1</td>
<td>55000</td>
<td>0</td>
<td>1123m/3700ft</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>35</td>
<td>1</td>
<td>45000</td>
<td>0</td>
<td>1717m/5600ft</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>30</td>
<td>1</td>
<td>38000</td>
<td>0</td>
<td>2312m/7600ft</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>25</td>
<td>1</td>
<td>33000</td>
<td>0</td>
<td>2906m/9500ft</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>29000</td>
<td>0</td>
<td>3500m/11500ft</td>
</tr>
</tbody>
</table>

Adjusting Bore site Values

Roll. Roll is determined by taking a profile across track. If there is no roll error the surfaces will coincide. If there is a roll error the surfaces will cross. Measurements are taken at the separation at each edge of the swath. Take the average separation and divide by the swath width. This is the amount (in radians) of adjustment required for the initial roll value. To move data clockwise (right side of swath down) add roll. To move data counter-clockwise (right side of swath up) subtract roll. Always reprocess and verify data once any adjustment has been made.

Nadir Pitch. Nadir Pitch is determined by taking a profile along track through the target building. If there is no pitch error the surfaces will coincide. If there is pitch error the surfaces will be offset in position. Measure the separation between the two surfaces (sloped roof of building), divide by two and divide by the aircraft flying height above ground. This is the amount (in radians) of adjustment required for the initial pitch value. To move data forward add pitch. To move data back subtract pitch. Always reprocess and verify data once any adjustment has been made.
Edge Pitch. The pitch at the edge of the swath will be different to the nadir pitch if the rotating mirror is not mounted exactly perpendicular to the mirror shaft. It is calculated the same as nadir pitch.

Heading. Heading is determined by taking a profile along track through the target building. If there is no heading error the surfaces will coincide. If there is heading error the surfaces will be offset in position. Measure the separation between the two surfaces (sloped roof of building) and divide by the swath width. This is the amount (in radians) of adjustment required for the initial heading value. To move data clockwise, i.e. left side of swath forward, add heading. To move data counter-clockwise, i.e. left side of swath back, subtract heading. Always reprocess and verify data once any adjustment has been made.

Torsion. Determination of torsion should not be undertaken until Roll has been resolved. Torsion is determined by taking a profile along track through the center of flight line 4. No torsion is apparent in this location and this data is used as truth. If there is no torsion error the perpendicular flight line surface will coincide. If there is torsion error the perpendicular flight line surface will coincide in the center but be displaced at the edge of the swath. To move the edges of the surface up, add torsion. To move the edges of the surface down, subtract torsion. The amount of adjustment cannot be measured by a linear method and is determined by an iterative estimated adjustment method. Always reprocess and verify data once any adjustment has been made.

Range. Initial processing should be completed with a range correction set at 0.0. A table should then be recorded for the laser point nearest each control point showing the height error and intensity for all control points on each flight line. From this table the range correction at intensity 0.0 is to be calculated. This is added to the post processor as the range correction. A final intensity range correction table should be then be calculated showing increments in range correction with respect to increments in intensity. Data should be reprocessed and verified once the range correction and intensity range correction table have been determined.

Settings. Once adjustments have been made, the settings are saved in the Post Processor and the registry file is updated.

Photo Science Calibration Site
Photo Science has “built” a calibration site at Capitol City Airport in Frankfort, KY (KFFT). This site has several large buildings, which are used in the process, and we have numerous control points that we have established throughout the area used for testing the data. The flight lines, shown in image below, are similar to those outlined above. The flights start at the highest elevation of 12,200 feet MSL and drop progressively, with the lowest being 2,400 feet MSL. The steps above, along with the data from flyovers for this site are integrated into our calibration routine.
The calibration is undertaken anytime there are hardware changes to the system, reason to believe that the current calibration may have changed, or approximately every three months.

Additionally, when we are working on a project where we will be on-site for two to three days we perform a “mini” calibration consisting of three flight lines, similar to the above laid out over a local airport, at two altitudes. This is performed for the data to be available in case we have a problem with the current calibration.

For each project we establish, with GPS surveys, several points for ground truthing. These are generally points in a flat area, where we get an average elevation to test the vertical accuracy. Each of the points is selected with different types of reflective surfaces for comparisons as well. These points are compared against a Digital Elevation Model generated from the LiDAR data and this serves as our accuracy assessment.
avR49 - avR100

Sum Intensity 30...Intensity 225
4.534747

TPR Range offset 0.023
Appendix F: Quality Assurance
<table>
<thead>
<tr>
<th>Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Name:</td>
</tr>
<tr>
<td>Project Description:</td>
</tr>
<tr>
<td>State:</td>
</tr>
<tr>
<td>HUC-8:</td>
</tr>
<tr>
<td>Provider Name:</td>
</tr>
<tr>
<td>Collection Area:</td>
</tr>
<tr>
<td>Specification Level:</td>
</tr>
<tr>
<td>Contour Accuracy:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Point Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPS</td>
</tr>
<tr>
<td>Date Delivered:</td>
</tr>
<tr>
<td>Date QC:</td>
</tr>
<tr>
<td>Media:</td>
</tr>
<tr>
<td>Contents of Media:</td>
</tr>
<tr>
<td>Tiles Reviewed</td>
</tr>
<tr>
<td>QC tiles with NPS > Spec Level</td>
</tr>
<tr>
<td>Voids or Gaps</td>
</tr>
<tr>
<td>Reviewed By:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bare Earth</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPS</td>
</tr>
<tr>
<td>Date Delivered:</td>
</tr>
<tr>
<td>Date QC:</td>
</tr>
<tr>
<td>Media:</td>
</tr>
<tr>
<td>Contents of Media:</td>
</tr>
<tr>
<td>Tiles Reviewed</td>
</tr>
<tr>
<td>QC tiles with NPS > Spec Level</td>
</tr>
<tr>
<td>Voids or Gaps</td>
</tr>
<tr>
<td>Artifact QA</td>
</tr>
<tr>
<td>Reviewed By:</td>
</tr>
<tr>
<td>Pre-Flight Report</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Planned flight lines (sufficient coverage, spacing, length)</td>
</tr>
<tr>
<td>if attachment list attachment name</td>
</tr>
<tr>
<td>Planned GPS stations</td>
</tr>
<tr>
<td>Planned Control (sufficient to control and boresight)</td>
</tr>
<tr>
<td>Planned airport locations</td>
</tr>
<tr>
<td>Calibration plans</td>
</tr>
<tr>
<td>Quality procedures for flight crew</td>
</tr>
<tr>
<td>Planned scanset (planned for proper scan angle, sidelap, design pulse)</td>
</tr>
<tr>
<td>Type of aircraft</td>
</tr>
<tr>
<td>Aircraft utilizes ABGPS</td>
</tr>
<tr>
<td>Re-flight procedure (tracking, documenting, processing)</td>
</tr>
<tr>
<td>project design supports accuracy requirements of project</td>
</tr>
<tr>
<td>Project design accounts for land cover and terrain types</td>
</tr>
<tr>
<td>Non-Classified Point Cloud</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Macro Review</td>
</tr>
<tr>
<td>LAS Point Cloud Files</td>
</tr>
<tr>
<td>Projection</td>
</tr>
<tr>
<td>Datum</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td>Area covered 100m buffer</td>
</tr>
<tr>
<td>Data Voids</td>
</tr>
<tr>
<td>Correct Header</td>
</tr>
<tr>
<td>Correct NPS</td>
</tr>
<tr>
<td>Returns Contain</td>
</tr>
<tr>
<td>GPS time stamp</td>
</tr>
<tr>
<td>GPS second in microsec</td>
</tr>
<tr>
<td>Easting</td>
</tr>
<tr>
<td>Northing</td>
</tr>
<tr>
<td>Elevation</td>
</tr>
<tr>
<td>Intensity</td>
</tr>
<tr>
<td>Return #</td>
</tr>
<tr>
<td>Classification</td>
</tr>
<tr>
<td>Classification is correct</td>
</tr>
<tr>
<td>Cloud file structure conforms to layout</td>
</tr>
<tr>
<td>Cloud file naming conforms to project</td>
</tr>
<tr>
<td>Tiles checked for gaps and voids</td>
</tr>
<tr>
<td>Micro Review</td>
</tr>
<tr>
<td>Total Number of Tiles:</td>
</tr>
<tr>
<td>Number of tiles to be reviewed:</td>
</tr>
<tr>
<td>Excessive Noise</td>
</tr>
<tr>
<td>Elevation Steps</td>
</tr>
<tr>
<td>LP360 Scan and profile</td>
</tr>
<tr>
<td>Post Flight Report</td>
</tr>
<tr>
<td>--------------------</td>
</tr>
<tr>
<td>GPS Base Station INFO</td>
</tr>
<tr>
<td>GPS base station - names</td>
</tr>
<tr>
<td>GPS base station - lat/longs</td>
</tr>
<tr>
<td>GPS base station - heights</td>
</tr>
<tr>
<td>GPS base station - Maximum PDOP</td>
</tr>
<tr>
<td>GPS base station - map</td>
</tr>
<tr>
<td>GPS base station - spatial data</td>
</tr>
<tr>
<td>GPS/IMU</td>
</tr>
<tr>
<td>GPS quality - Max horizontal variance (cm.)</td>
</tr>
<tr>
<td>GPS quality - Max vertical variance (cm.)</td>
</tr>
<tr>
<td>GPS quality - Notes on GPS quality</td>
</tr>
<tr>
<td>GPS quality - GPS separation plot</td>
</tr>
<tr>
<td>GPS quality - GPS altitude plot</td>
</tr>
<tr>
<td>GPS quality - PDOP plot</td>
</tr>
<tr>
<td>GPS quality - Plot of GPS distance from base stations</td>
</tr>
<tr>
<td>Coverage</td>
</tr>
<tr>
<td>Coverage - Verification of AOI coverage</td>
</tr>
<tr>
<td>Coverage - Spatial data</td>
</tr>
<tr>
<td>Flights</td>
</tr>
<tr>
<td>Flights - Calibration lines</td>
</tr>
<tr>
<td>Flights - As-flown trajectories</td>
</tr>
<tr>
<td>Flights - Spatial data</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Control - Ground control and base station layout</td>
</tr>
<tr>
<td>Control - Spatial data</td>
</tr>
<tr>
<td>Data verification/QC</td>
</tr>
<tr>
<td>Data verification process documented</td>
</tr>
<tr>
<td>Flight logs</td>
</tr>
<tr>
<td>Incorporated as appendix</td>
</tr>
<tr>
<td>Job # / name</td>
</tr>
<tr>
<td>Lift #</td>
</tr>
<tr>
<td>Block or AOI designator</td>
</tr>
<tr>
<td>Date</td>
</tr>
<tr>
<td>Aircraft tail number, type</td>
</tr>
<tr>
<td>Pilot name</td>
</tr>
<tr>
<td>Operator name</td>
</tr>
<tr>
<td>Airport of operations</td>
</tr>
<tr>
<td>GPS base station names</td>
</tr>
<tr>
<td>Flight lines</td>
</tr>
<tr>
<td>Flight line</td>
</tr>
<tr>
<td>Line #</td>
</tr>
<tr>
<td>Direction</td>
</tr>
<tr>
<td>Start/stop</td>
</tr>
<tr>
<td>FEMA LiDAR Checksheet</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>Altitude</td>
</tr>
<tr>
<td>Scan angle/rate</td>
</tr>
<tr>
<td>Speed</td>
</tr>
<tr>
<td>Conditions</td>
</tr>
<tr>
<td>Comments</td>
</tr>
</tbody>
</table>

Settings

AGC switch setting	N/A
Laser pulse rate	Pass
Mirror rate	N/A
Field of view	Pass
Comments	Pass
Classified Point Cloud

Macro Review

<table>
<thead>
<tr>
<th>LAS Bare Earth</th>
<th>Pass/Fail</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projection</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Datum</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Units</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Area covered 100m buffer</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Data Voids</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Correct Header</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Correct NPS</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Returns Contain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS time stamp</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>GPS second in microsec</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Easting</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Northing</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Elevation</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Intensity</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Return #</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Classification</td>
<td>Pass</td>
<td>Some spots over water classified as ground</td>
</tr>
<tr>
<td>Classification is correct</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Cloud file structure conforms to layout</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Cloud file naming conforms to project</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Tiles checked for gaps and voids</td>
<td>Pass</td>
<td></td>
</tr>
</tbody>
</table>

Micro Review

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Tiles:</td>
<td>666</td>
</tr>
<tr>
<td>Number of tiles to be reviewed:</td>
<td>66</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive Noise</td>
<td>Pass</td>
</tr>
<tr>
<td>Elevation Steps</td>
<td>Pass</td>
</tr>
<tr>
<td>2% Artifacts</td>
<td>Pass</td>
</tr>
<tr>
<td>LP360 Scan and profile</td>
<td>Pass</td>
</tr>
</tbody>
</table>
Appendix G: Deliverables
Quinnipiac River USGS HYDROLOGIC UNIT CODE 11000004

Ground Control
J:\FEMA\R01\CONNECTICUT_09\MIDDLESEX_09007\MIDDLESEX_007C\11-01-0721S\SubmissionUpload\Terrain\2142894
J:\FEMA\R01\CONNECTICUT_09\NEW_HAVEN_09009\NEW_HAVEN_009C\11-01-0721S\SubmissionUpload\Terrain\2142894

Acquisition
J:\FEMA\R01\CONNECTICUT_09\MIDDLESEX_09007\MIDDLESEX_007C\11-01-0721S\SubmissionUpload\Terrain\2142895
J:\FEMA\R01\CONNECTICUT_09\NEW_HAVEN_09009\NEW_HAVEN_009C\11-01-0721S\SubmissionUpload\Terrain\2142895

Post Processing
J:\FEMA\R01\CONNECTICUT_09\MIDDLESEX_09007\MIDDLESEX_007C\11-01-0721S\SubmissionUpload\Terrain\2142896
J:\FEMA\R01\CONNECTICUT_09\NEW_HAVEN_09009\NEW_HAVEN_009C\11-01-0721S\SubmissionUpload\Terrain\2142896
- 04_Final_GeoFiles
 - Quinnipiac_CVAs_FVAs_NAD83.dbf
 - Quinnipiac_CVAs_FVAs_NAD83.kmz
 - Quinnipiac_CVAs_FVAs_NAD83.prj
 - Quinnipiac_CVAs_FVAs_NAD83.sbn
 - Quinnipiac_CVAs_FVAs_NAD83.sbx
 - Quinnipiac_CVAs_FVAs_NAD83.shp
 - Quinnipiac_CVAs_FVAs_NAD83.shx

- 05_Final_Station_Diagrams
 - QNP301.gif
 - QNP302.gif
 - QNP303.gif
 - QNP304.gif
 - QNP305.gif
 - QNP306.gif
 - QNP307.gif
<table>
<thead>
<tr>
<th></th>
<th>18_06744588.las</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18_06744590.las</td>
</tr>
<tr>
<td></td>
<td>18_06744592.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06744593.las</td>
</tr>
<tr>
<td></td>
<td>18_06744594.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06744596.las</td>
</tr>
<tr>
<td></td>
<td>18_06744598.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06744599.las</td>
</tr>
<tr>
<td></td>
<td>18_06744600.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06744602.las</td>
</tr>
<tr>
<td></td>
<td>18_06744604.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06744605.las</td>
</tr>
<tr>
<td></td>
<td>18_06744606.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06744608.las</td>
</tr>
<tr>
<td></td>
<td>18_06744610.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06744611.las</td>
</tr>
<tr>
<td></td>
<td>18_06744612.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06744614.las</td>
</tr>
<tr>
<td></td>
<td>18_06754570.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06754572.las</td>
</tr>
<tr>
<td></td>
<td>18_06754574.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06754575.las</td>
</tr>
<tr>
<td></td>
<td>18_06754576.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06754578.las</td>
</tr>
<tr>
<td></td>
<td>18_06754580.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06754581.las</td>
</tr>
<tr>
<td></td>
<td>18_06754582.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06754584.las</td>
</tr>
<tr>
<td></td>
<td>18_06754586.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06754587.las</td>
</tr>
<tr>
<td></td>
<td>18_06754588.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06754590.las</td>
</tr>
<tr>
<td></td>
<td>18_06754592.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06754593.las</td>
</tr>
<tr>
<td></td>
<td>18_06754594.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06754596.las</td>
</tr>
<tr>
<td></td>
<td>18_06754598.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06754599.las</td>
</tr>
<tr>
<td></td>
<td>18_06754600.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06754602.las</td>
</tr>
<tr>
<td></td>
<td>18_06754604.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06754605.las</td>
</tr>
<tr>
<td></td>
<td>18_06754606.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06754608.las</td>
</tr>
<tr>
<td></td>
<td>18_06754610.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06754611.las</td>
</tr>
<tr>
<td></td>
<td>18_06754612.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06754614.las</td>
</tr>
<tr>
<td></td>
<td>18_06764570.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06764572.las</td>
</tr>
<tr>
<td></td>
<td>18_06764574.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06764575.las</td>
</tr>
<tr>
<td></td>
<td>18_06764576.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06764578.las</td>
</tr>
<tr>
<td></td>
<td>18_06764580.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06764581.las</td>
</tr>
<tr>
<td></td>
<td>18_06764582.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06764584.las</td>
</tr>
<tr>
<td></td>
<td>18_06764586.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06764587.las</td>
</tr>
<tr>
<td></td>
<td>18_06764588.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06764589.las</td>
</tr>
<tr>
<td></td>
<td>18_06764590.las</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>18_06764592.las</td>
</tr>
</tbody>
</table>

Page 10
Quinnipiac_11000004_Directory_Contents.txt
18_06824594.las
18_06824596.las
18_06824598.las
18_06824599.las
18_06824600.las
18_06824602.las
18_06824604.las
18_06824605.las
18_06824607.las
18_06824617.las
18_06844570.las
18_06844572.las
18_06844574.las
18_06844575.las
18_06844576.las
18_06844578.las
18_06844580.las
18_06844581.las
18_06844582.las
18_06844584.las
18_06844586.las
18_06844587.las
18_06844588.las
18_06844590.las
18_06844592.las
18_06844593.las
18_06844594.las
18_06844596.las
18_06844598.las
18_06844599.las
18_06844600.las
18_06844602.las
18_06844604.las
18_06844605.las
18_06844570.las
18_06844572.las
18_06844574.las
18_06844575.las
18_06844576.las
18_06844578.las
18_06844580.las
18_06844581.las
18_06844582.las
18_06844584.las
18_06844586.las
18_06844587.las
18_06844588.las
18_06844590.las
18_06844592.las
18_06844593.las
18_06844594.las
18_06844596.las
18_06844598.las
18_06844599.las
18_06844600.las
18_06844602.las
18_06844604.las
18_06844605.las
18_06864570.las
18_06864572.las
18_06864574.las
18_06864575.las
18_06864576.las
18_06864578.las
18_06864580.las
18_06864581.las
18_06864582.las
18_06864584.las
18_06864586.las
18_06864587.las
18_06864588.las
18_06864590.las
18_06864592.las
18_06864593.las
18_06864594.las
18_06864596.las
18_06864598.las
18_06864599.las
18_06864600.las
18_06864602.las
18_06864604.las
18_06864605.las
18_06874570.las
18_06874572.las
18_06874574.las
18_06874575.las
18_06874576.las
<p>| 18_06874578.las | 18_06874580.las | 18_06874581.las |
| 18_06874582.las | 18_06874584.las | 18_06874586.las |
| 18_06874587.las | 18_06874588.las | 18_06874590.las |
| 18_06874592.las | 18_06874593.las | 18_06874594.las |
| 18_06874596.las | 18_06874598.las | 18_06874599.las |
| 18_06874600.las | 18_06874602.las | 18_06874604.las |
| 18_06874605.las | 18_06884570.las | 18_06884572.las |
| 18_06884574.las | 18_06884575.las | 18_06884576.las |
| 18_06884578.las | 18_06884580.las | 18_06884581.las |
| 18_06884582.las | 18_06884584.las | 18_06884586.las |
| 18_06884587.las | 18_06884588.las | 18_06884590.las |
| 18_06884592.las | 18_06884593.las | 18_06884594.las |
| 18_06884596.las | 18_06884599.las | 18_06884600.las |
| 18_06904570.las | 18_06904572.las | 18_06904574.las |
| 18_06904575.las | 18_06904576.las | 18_06904578.las |
| 18_06904580.las | 18_06904581.las | 18_06904582.las |
| 18_06904584.las | 18_06904586.las | 18_06904587.las |
| 18_06924570.las | 18_06924572.las | 18_06924574.las |
| 18_06924575.las | 18_06924576.las | 18_06924578.las |
| 18_06924580.las | 18_06924581.las | 18_06924582.las |
| 18_06924584.las | 18_06924586.las | 18_06924587.las |
| 18_06934574.las |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>18_06934575.las</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18_06934576.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06934578.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06934580.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06934581.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06934582.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06934584.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06934586.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06934587.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944570.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944574.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944575.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944576.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944578.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944580.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944581.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944582.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944584.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944586.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944587.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944588.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944590.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944592.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944574.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944575.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944576.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944578.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944580.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944581.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944582.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944584.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944586.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944587.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944588.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944590.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944592.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944593.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944574.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944575.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944576.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944578.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944580.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944581.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944582.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944584.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944586.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944587.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944588.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944590.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944592.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944593.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944572.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944574.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944575.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944576.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944578.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944580.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944581.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944582.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944584.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944586.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944587.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944588.las</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18_06944589.las</td>
</tr>
</tbody>
</table>
Quinnipiac_11000004_Directory_Contents.txt
18_06994590.las
18_06994592.las
18_07004570.las
18_07004572.las
18_07004574.las
18_07004575.las
18_07004576.las
18_07004578.las
18_07004580.las
18_07004581.las
18_07004582.las
18_07004584.las
18_07004586.las
18_07004587.las
18_07004588.las
18_07004590.las
18_07024572.las
18_07024574.las
18_07024575.las
18_07024576.las
18_07024578.las
18_07024580.las
18_07024581.las
18_07024582.las
18_07024584.las
18_07024586.las
18_07024587.las
18_07024588.las
18_07024590.las
18_07044572.las
18_07044574.las
18_07044575.las
18_07044576.las
18_07044578.las
18_07044580.las
18_07044581.las
18_07044582.las
18_07044584.las
18_07044586.las
18_07044587.las
18_07044588.las
18_07044590.las
18_07054574.las
18_07054575.las
18_07054576.las
18_07054578.las
18_07054580.las
18_07054581.las
18_07054582.las
18_07054584.las
18_07054586.las
18_07054587.las
18_07054588.las
18_07054590.las
18_07064572.las
18_07064574.las
18_07064575.las
18_07064576.las
18_07064578.las
18_07064580.las
18_07064581.las
18_07064582.las
18_07064584.las
18_07064586.las
18_07064587.las
18_07084572.las
18_07084574.las
Quinnipiac_11000004_Directory_Contents.txt

18_07044575.las
18_07044576.las
18_07044578.las
18_07044580.las
18_07104574.las
18_07104575.las
18_07104578.las
18_07114574.las
18_07114575.las
18_07114576.las
18_07114578.las
18_07124574.las
18_07124575.las
18_07124576.las
18_07124578.las
18_07144572.las
18_07144574.las
18_07144575.las
18_07144576.las
18_07164574.las
18_07164575.las
18_07164576.las
18_07164578.las
18_07174574.las
18_07174575.las
18_07174576.las
18_07174578.las
18_07184575.las
18_07184578.las

<table>
<thead>
<tr>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>09007C_Middlesex_County_CT_Metadata</td>
</tr>
<tr>
<td>09007C_Quinnipiac_Acquisition_Metadata.txt</td>
</tr>
<tr>
<td>09007C_Terrain_metadata.xml</td>
</tr>
<tr>
<td>09009C_New_Haven_County_CT_Metadata</td>
</tr>
<tr>
<td>09009C_Quinnipiac_Acquisition_Metadata.txt</td>
</tr>
<tr>
<td>09009C_Terrain_metadata.xml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supplemental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinnipiac_PointCloud_HeaderAnalysis.xls</td>
</tr>
<tr>
<td>Quinnipiac_PreFlightReport_STARR.pdf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quinnipiac_Collection_Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinnipiac_Collection_Area.dbf</td>
</tr>
<tr>
<td>Quinnipiac_Collection_Area.prj</td>
</tr>
<tr>
<td>Quinnipiac_Collection_Area.sbn</td>
</tr>
<tr>
<td>Quinnipiac_Collection_Area.sbx</td>
</tr>
<tr>
<td>Quinnipiac_Collection_Area.shp</td>
</tr>
<tr>
<td>Quinnipiac_Collection_Area.shp.xml</td>
</tr>
<tr>
<td>Quinnipiac_Collection_Area.shx</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quinnipiac_Tile_Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinnipiac_Tile_Layout.dbf</td>
</tr>
<tr>
<td>Quinnipiac_Tile_Layout.prj</td>
</tr>
<tr>
<td>Quinnipiac_Tile_Layout.shp</td>
</tr>
<tr>
<td>Quinnipiac_Tile_Layout.shx</td>
</tr>
</tbody>
</table>

---2142896 - Processing
---11000004
+++ Bare_Earth
Quinnipiac_11000004_Directory_Contents.txt
18_0664581.las
18_0664582.las
18_0664584.las
18_0664586.las
18_0664587.las
18_0664588.las
18_0664566.las
18_0664568.las
18_0664569.las
18_0664570.las
18_0664572.las
18_0664574.las
18_0664575.las
18_0664576.las
18_0664578.las
18_0664580.las
18_0664581.las
18_0664582.las
18_0664584.las
18_0664586.las
18_0664587.las
18_0664588.las
18_0664594.las
18_0664596.las
18_0664598.las
18_0664599.las
18_0664656.las
18_0664568.las
18_0664569.las
18_0664570.las
18_0664572.las
18_0664574.las
18_0664575.las
18_0664576.las
18_0664578.las
18_0664580.las
18_0664581.las
18_0664582.las
18_0664584.las
18_0664586.las
18_0664587.las
18_0664588.las
18_0664590.las
18_0664592.las
18_0664593.las
18_0664594.las
18_0664596.las
18_0664598.las
18_0664599.las
18_0664600.las
18_0664602.las
18_0664604.las
18_0664605.las
18_0664606.las
18_0664608.las
18_0664610.las
18_0664611.las
18_06704569.las
18_06704570.las
18_06704572.las
18_06704574.las
18_06704575.las
18_06704576.las
Quinnipiac_11000004_Directory_Contents.txt

110527a-sn019-Solution Status.bmp

---Extract
 bgpsconv_110527a-sn019.log
 extract_110527a-sn019.log
 imudt_110527a-sn019.log
 mgpsconv_110527a-sn019.log

---Proc
 cmbproc_110527a-sn019.log
 fwdproc_110527a-sn019.log
 idx_110527a-sn019.txt
 revproc_110527a-sn019.log

---Appendix C-Control
 Quinnipiac Base Monument report long.pdf

 Quinnipiac Ground_Control

 Final_Control_Report.txt
 Initial_Control_Report.txt
 Quinnipiac.ctl
 Quinnipiac.ctl.bak
 transform_points.mac

 ----01_Final_Statistics
 ----02_Final_Image_Chips
 QNP101_c.jpg
 QNP102_c.jpg
 QNP103_c.jpg
 QNP104_c.jpg
 QNP105_c.jpg
 QNP106_c.jpg
 QNP107_c.jpg
 QNP108_c.jpg
 QNP109_c.jpg
 QNP110_c.jpg
 QNP111_c.jpg
 QNP112_c.jpg
 QNP113_c.jpg
 QNP114_c.jpg
 QNP115_c.jpg
 QNP116_c.jpg
 QNP117_c.jpg
 QNP118_c.jpg
 QNP119_c.jpg
 QNP120_c.jpg
 QNP121_c.jpg

 ----03_Final_Pictures
 QNP101_E.jpg
 QNP101_N.jpg
 QNP101_S.jpg
 QNP101_W.jpg
 QNP102_e.jpg
 QNP102_n.jpg
 QNP102_s.jpg
 QNP102_w.jpg
 QNP103_e.jpg
 QNP103_n.jpg
 QNP103_s.jpg
 QNP103_w.jpg
 QNP103_e.jpg
 QNP103_n.jpg
 QNP103_s.jpg
 QNP103_w.jpg
 QNP104_e.jpg
 QNP104_n.jpg
 QNP104_s.jpg
 QNP104_w.jpg

Page 31
Quinnipiac_11000004_Directory_Contents.txt

QNP104_n.jpg
QNP104_s.jpg
QNP104_w.jpg
QNP105_e.jpg
QNP105_n.jpg
QNP105_s.jpg
QNP105_w.jpg
QNP106_e.jpg
QNP106_n.jpg
QNP106_s.jpg
QNP106_w.jpg
QNP107_e.jpg
QNP107_n.jpg
QNP107_s.jpg
QNP107_w.jpg
QNP108_e.jpg
QNP108_n.jpg
QNP108_s.jpg
QNP108_w.jpg
QNP109_e.jpg
QNP109_n.jpg
QNP109_s.jpg
QNP109_w.jpg
QNP110_e.jpg
QNP110_n.jpg
QNP110_s.jpg
QNP110_w.jpg
QNP111_e.jpg
QNP111_n.jpg
QNP111_s.jpg
QNP111_w.jpg
QNP112_E (2).jpg
QNP112_e.jpg
QNP112_N (2).jpg
QNP112_n.jpg
QNP112_S (2).jpg
QNP112_s.jpg
QNP112_W (2).jpg
QNP112_w.jpg
QNP113_E.jpg
QNP113_N.jpg
QNP113_S.jpg
QNP113_W.jpg
QNP116_E.jpg
QNP116_N.jpg
QNP116_S.jpg
QNP116_W.jpg
QNP117_E.jpg
QNP117_N.jpg
QNP117_S.jpg
QNP117_W.jpg
QNP118_E.jpg
QNP118_N.jpg
QNP118_S.jpg
QNP118_W.jpg
QNP119_E.jpg
QNP119_N.jpg
QNP119_S.jpg
QNP119_W.jpg
QNP120_E.jpg
QNP120_N.jpg
QNP120_S.jpg
QNP120_W.jpg

Page 32
Quinnipiac_11000004_Directory_Contents.txt

- 04_Final_GeoFiles
 - Quinnipiac_GCPs_NAD83.csv
 - Quinnipiac_GCPs_NAD83.dbf
 - Quinnipiac_GCPs_NAD83.kmz
 - Quinnipiac_GCPs_NAD83.prj
 - Quinnipiac_GCPs_NAD83.sbn
 - Quinnipiac_GCPs_NAD83.sbx
 - Quinnipiac_GCPs_NAD83.shp
 - Quinnipiac_GCPs_NAD83.shx
 - schema.ini

- 05_Final_Station_Diagrams
 - QNP101.gif
 - QNP102.gif
 - QNP103.gif
 - QNP104.gif
 - QNP105.gif
 - QNP106.gif
 - QNP107.gif
 - QNP108.gif
 - QNP109.gif
 - QNP110.gif
 - QNP111.gif
 - QNP112.gif
 - QNP113.gif
 - QNP114.gif
 - QNP115.gif
 - QNP116.gif
 - QNP117.gif
 - QNP118.gif
 - QNP119.gif
 - QNP120.gif
 - QNP121.gif

- 06_Final_Report
 - Final_Report FEMA Region 1.pdf

- 07_Final_Coordinates
 - Quinnipiac_GCPs_NAD83.xls

- Appendices
 - Appendix D-Coverage
 - QUINNIPIAC_Flight_lines Excel file.xls
 - QUINNIPIAC_Flight_lines.dbf
 - QUINNIPIAC_Flight_lines.prj
 - QUINNIPIAC_Flight_lines.shp
 - QUINNIPIAC_Flight_lines.shx

 - Appendix E-Calibration
 - ALS_SN19_091601.xml
 - LASER Calibration USING SURFACE PROFILES.doc
 - SN019IBRC_Table091601.txt
 - SN019_Rivit_091601.xls
 - sn059_081122_MH.reg
 - SN059_IBRC.txt
 - tproffset_sn19_011609.txt

- Quinnipiac Testing Results
Quinnipiac_11000004_Directory_Contents.txt
Quinnipac_FVA_Passed.xlsx
Quinnipiac_CVA_passed.xlsx
Region 1 Quinnipiac Testing Results FVA CVA.pdf
From: trackingupdates@fedex.com
Sent: Wednesday, August 31, 2011 4:24 PM
To: HUFFINES, James
Subject: FedEx Shipment Notification

This tracking update has been requested by:
Company Name:
GREENHORNE & O'MARA
Name:
Kelly Aldrich
E-mail:
kaldrich@g-and-o.com

Kelly Aldrich of GREENHORNE & O'MARA sent Marie Sparrow of FEMA Engr Library &
Zimmerman Assoc 1 FedEx Standard Overnight package(s).
This shipment is scheduled to be sent on 09/01/2011.
Reference information includes:
Reference:
110558.009.QA12.EXP
Special handling/Services:
Deliver Weekday

Status:
Shipment information sent to FedEx

Tracking number:
797471443168

To track the latest status of your shipment, click on the tracking number above, or visit us at fedex.com.
To learn more about FedEx Express, please visit our website at fedex.com.
This tracking update has been sent to you by FedEx on the behalf of the Requestor noted above. FedEx does not validate the authenticity of the requestor and does not validate, guarantee or warrant the authenticity of the request, the requestor's message, or the accuracy of this tracking update. For tracking results and fedex.com's terms of use, go to fedex.com.
Thank you for your business.
This tracking update has been requested by:
Company Name: GREENHORNE & O'MARA
Name: Kelly Aldrich
E-mail: kaldrich@g-and-o.com

Kelly Aldrich of GREENHORNE & O'MARA sent Dan Walters, Geo Liason ME,MA,RI of USGSNSDI Partnership Office 1 FedEx Standard Overnight package(s). This shipment is scheduled to be sent on 09/01/2011.
Reference information includes:
Reference: 110558.009.QA12.EXP
Special handling/Services: Deliver Weekday
Status: Shipment information sent to FedEx
Tracking number: 797471473528

To track the latest status of your shipment, click on the tracking number above, or visit us at fedex.com. To learn more about FedEx Express, please visit our website at fedex.com. This tracking update has been sent to you by FedEx on the behalf of the Requestor noted above. FedEx does not validate the authenticity of the requestor and does not validate, guarantee or warrant the authenticity of the request, the requestor's message, or the accuracy of this tracking update. For tracking results and fedex.com's terms of use, go to fedex.com.
Thank you for your business.
Date: August 31, 2011

Contract #
HSFEHQ-090D-0370

Task Order #
HSFEHQ -10-J-0005

Subject:
STARR Elevation Data (LiDAR)

Transmittal:

To: Marie Sparrow
FEMA Engineering Library
%Zimmerman Associates, Inc
847 South Pickett Street
Alexandria, VA 22304

From: James Huffines
Greenhorne & O'Mara, Inc
5565 Centerview Drive
Ste 107
Raleigh, NC 27606

Transmitted:

☐ For Your Use ☐ For Your Review ☑ For Storage
☐ For Your Approval/Signature ☐ As Requested
☐ For Your Information

The following:

<table>
<thead>
<tr>
<th>COPIES</th>
<th>DATE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/31/11</td>
<td>Hard Drive Containing:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concord HUC8, Nashua HUC8, and Quinnipiac HUC8 terrain data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See readme.txt included on hard drive for directory structure information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Includes: Ground Control data, QC Checkpoint (FVA/CVA) cata, PreFlight Report, PostFlight Report, Tile Index shapefile, Collection Area shapefile, Point Cloud (All Returns) LAS files, QC Testing Results, QA Review spreadsheet, Compliance Certificates for Survey, Point Cloud (Bare Earth LAS files and LiDAR, Metadata for Survey and Point Cloud Data, and TSDN</td>
</tr>
</tbody>
</table>

Remarks:
If you have any questions or require additional information please feel free to contact me at 919-532-2332. Please sign this transmittal upon receipt and mail to address shown above or fax to 919-851-8393.

Printed Name and Date: JAMES LEE HUFFINES 8/31/2011

Signature: [Signature]

5565 Centerview Drive Raleigh, NC 27606 Telephone: (919) 851-1919 Fax: (319) 851-8393
Date: August 31, 2011

Contract #: HSFEHQ-090D-0370

Task Order #: HSFEHQ-10-J-0005

Subject: STARR Elevation Data (LiDAR)

Transmittal:

To: Dan Walters
 Geospatial Liaison for ME, MA & RI
 USGS NSDI Partnership Office
 196 Whitten Road
 Augusta, Maine 04330

From: James Huffines
 Greenhorne & O'Mara, Inc
 5565 Centerview Drive
 Ste 107
 Raleigh, NC 27606

Transmitted:

☒ For Your Use
☐ For Your Approval/Signature
☐ For Your Review
☐ As Requested
☒ For Storage

The following:

<table>
<thead>
<tr>
<th>COPIES</th>
<th>DATE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/31/11</td>
<td>Hard Drive Containing: Concord HUC8, Nashua HUC8, and Quinnipiac HUC8 terrain data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See readme.txt included on hard drive for directory structure information.</td>
</tr>
</tbody>
</table>

Includes: Ground Control data, QC Checkpoint (FVA/CVA) data, PreFlight Report, PostFlight Report, Tile Index shapefile, Collection Area shapefile, Point Cloud (All Returns) LAS files, QC Testing Results, QA Review spreadsheet, Compliance Certificates for Survey, Point Cloud (Bare Earth LAS files and LiDAR, Metacata for Survey and Point Cloud Data, and TSDN

Remarks:

If you have any questions or require additional information please feel free to contact me at 919-532-2332. Please sign this transmittal upon receipt and mail to address shown above or fax to 919-851-8393.

Printed Name and Date: James Lee Huffines 8/31/2011

Signature: [Signature]

5565 Centerview Drive Raleigh, NC 27606 Telephone: (919) 851-1919 Fax: (919) 851-8393
Appendix H: Guidance Documents
DATE

MEMORANDUM FOR: Mitigation Division Directors Regions I-X, CTPs, Mapping Partners

FROM: Doug Bellomo, Director Risk Analysis Division

SUBJECT: Procedure Memorandum No. XX—Standards for Lidar and Other High Quality Digital Topography

EFFECTIVE DATES: August 1, 2010

Background: Beginning in Fiscal Year (FY) 2010, Federal Emergency Management Agency (FEMA) initiated a five-year program for Risk Mapping, Assessment, and Planning (Risk MAP). FEMA’s vision for the Risk MAP program is to deliver quality data that increases public awareness and leads to mitigation actions that reduce risk to life and property. To achieve this vision, FEMA will transform its traditional flood identification and mapping efforts into a more integrated process of accurately identifying, assessing, communicating, planning for, and mitigating flood risks.

Under Risk MAP, FEMA seeks to:

• Deliver new data and products that expand risk awareness and promote mitigation planning that leads to risk reduction actions.
• Increase production efficiencies for Flood Insurance Rate Maps (FIRMs) and Flood Insurance Studies (FISs).

Issue: To implement FEMA’s Risk MAP vision and provide the high quality topographic data necessary to meet Risk MAP’s goals, FEMA Regions and Mapping Partners need upgraded guidance concerning the accuracy, and processing of high quality topographic data including Light Detection and Ranging (lidar) data. To that end, this Procedure Memorandum will supersede Appendix A: Guidance for Aerial Mapping and Surveying of the Guidelines and Specifications for Flood Hazard Mapping Partners (Guidelines) in key areas (defined in the Procedure Memorandum Attachments), and must be implemented beginning with all topographic data collected by FEMA beginning in FY 2010.
Actions Taken: When procuring topographic data under the Risk MAP Program the Mapping Partner assigned to obtain topographic data or perform independent QA of topographic data must meet the specifications detailed in this Procedure Memorandum’s attachments. The attachments align FEMA’s high quality topographic specifications, found in Appendix A of the Guidelines, with the United States Geological Survey (USGS) *Lidar Guidelines and Base Specifications* v13 so that data procured and used by the Federal government is consistent across agencies and is updated to industry standards. Further, adherence to these specifications will support the Risk MAP Program by closing gaps in existing flood hazard data; supporting risk assessments; and better communicating risks to community officials and the public.

Existing elevation data, not acquired by FEMA, but planned for use on a new flood hazard analysis must comply with the accuracy, density and the final product metadata requirements detailed in the attachments and, but is not required to comply with the other specifications included and referenced below.

Consistent with FEMA’s overall approach to flood hazard identification, this Procedure Memorandum aligns FEMA topographic data specifications to level of risk, and accounts for different slopes in the terrain that can affect the accuracy of base flood elevations and the delineation of mapped floodplains. These specifications represent the minimum requirements. Where funding partners are involved or where the engineering requirements dictate, projects may use higher specification levels or include additional processing. Quality assurance requirements for high quality topographic data are also provided.

Attachments:
Attachment 1 – Definitions
Attachment 2 – Alignment of FEMA Appendix A to USGS *Lidar Guidelines and Base Specification* v13
Attachment 3 – Topographic Breakline and Hydro-Enforcement Specifications
Attachment 4 – Topographic Data Quality Review Process

Distribution List:
Attachment 1 – Definitions

Digital Elevation Data – Includes all of the following terms: mass points, point clouds, breaklines, contours, TINs, DEMs, DTMs or DSMs.

• Breakline – A linear feature demarking a change in the smoothness or continuity of a surface such as abrupt elevation changes or a stream line. The two most common forms of breaklines are as follows:
 • A soft breakline ensures that known elevations, or z-values, along a linear feature are maintained (e.g., elevations along a pipeline, road centerline or drainage ditch), and ensures the boundary of natural and man-made features on the Earth’s surface are appropriately represented in the digital terrain data by use of linear features and polygon edges. They are generally synonymous with 3-D breaklines because they are depicted with series of x/y/z coordinates.
 • A hard breakline defines interruptions in surface smoothness, e.g., to define streams, shorelines, dams, ridges, building footprints, and other locations with abrupt surface changes. Although some hard breaklines are three dimensional (3-D) breaklines, they are often depicted as two dimensional (2-D) breaklines because features such as shorelines and building footprints are normally depicted with a series of horizontal coordinates only which are often digitized from digital orthophotographs that include no elevation data.

• Contours – Lines of equal elevation on a surface. An imaginary line on the ground, all points of which are at the same elevation above or below a specified vertical datum.

• Digital Elevation Model (DEM) – An elevation model created for use in computer software where bare-earth elevation values have regularly spaced intervals in latitude and longitude (x and y). The Δx and Δy values are normally measured in feet or meters to even units; however, the National Elevation Dataset (NED) defines the spacing interval in terms of arc-seconds of latitude and longitude, e.g., 1/3rd arc-second.

• Digital Surface Model (DSM) – An elevation model created for use in computer software that is similar to DEMs or DTMs except that DSMs depict the elevations of the top surfaces of buildings, towers, trees, and other features elevated above the bare earth.

• Digital Terrain Model (DTM) – An elevation model created for use in computer software of bare-earth mass points and breaklines. DTMs are technically superior to a gridded DEM for many applications because distinctive terrain features are more clearly defined and precisely located, and contours generated from DTMs more closely approximate the real shape of the terrain.

• Mass Points – Irregularly spaced points, each with latitude and longitude location coordinates and elevation values typically used to form a TIN.

• Metadata – Project descriptive information about the elevation dataset.

• Point Cloud – Often referred to as the “raw point cloud”, this is the first data product of a lidar instrument. In its crudest form, a lidar raw point cloud is a collection of range measurements and sensor orientation parameters. After initial processing, the range and orientation of each laser value is converted to a position in a three dimensional frame of reference and this spatially coherent cloud of points is the base for further processing and analysis. The raw point cloud typically includes first, last, and intermediate returns for each laser pulse. In addition to spatial information, lidar intensity returns provide texture or color information. The combination of three dimensional spatial information and spectral information contained
in the lidar dataset allows great flexibility for data manipulation and extraction. As used in this procedure memorandum, two additional lidar data processing terms are defined as follows:

- **Lidar Preliminary Processing** – The initial processing and analysis of laser data (GPS/IMU/laser ranges) to fully “calibrated point clouds” in some specified tile format. All lidar data will be set to ASPRS LAS Class 1 (unclassified) and must include testing for Fundamental Vertical Accuracy (FVA). The tile format can change later, if necessary.

- **Lidar Post-Processing** – The final processing and classification of lidar data to the required ASPRS LAS classes, per project specifications. This must include testing for Consolidated Vertical Accuracy (CVA). At this point, the datasets are referred to as the “classified point cloud.”

- **Triangulated Irregular Network (TIN)** – A set of adjacent, non-overlapping triangles computed from irregularly-spaced points with latitude, longitude, and elevation values. The TIN data structure is based on irregularly-spaced point, line, and polygon data interpreted as mass points and breaklines and stores the topological relationship between triangles and their adjacent neighbors. The TIN model may be preferable to a DEM when it is critical to preserve the precise location of narrow or small features, such as levees, ditch or stream centerlines, isolated peaks or pits in the data model.

- **Z-Values** – The elevations of the 3-D surface above the vertical datum at designated x/y locations.

Geospatial Accuracy Standard – A common accuracy testing and reporting methodology that facilitates sharing and interoperability of geospatial data. Published in 1998, the National Standard for Spatial Data Accuracy (NSSDA) is the Federal Geographic Data Committee (FGDC) standard relevant to digital elevation data when assuming that errors follow a normal error distribution. However, after it was learned that lidar datasets do not necessarily follow a normal distribution in vegetated terrain, the National Digital Elevation Program (NDEP) published its “Guidelines for Digital Elevation Data” and the American Society for Photogrammetry and Remote Sensing (ASPRS) published the “ASPRS Guidelines: Vertical Accuracy Reporting for Lidar Data,” both of which were published in 2004 and use newer terms defined below as Fundamental Vertical Accuracy (FVA), Supplemental Vertical Accuracy (SVA) and Consolidated Vertical Accuracy (CVA). All of these standards, designed for digital elevation data, replace the National Map Accuracy Standard (NMAS) that is applicable only to graphic maps defined by map scale and contour interval.

Accuracy – The closeness of an estimated value (e.g., measured or computed) to a standard or accepted (true) value of a particular quantity. Note: With the exception of GPS Continuously Operating Reference Stations (CORS), assumed to be known with zero errors relative to established datums, the true locations of 3-D spatial coordinates or other points are not known, but only estimated. Therefore, the accuracy of other coordinate information is unknown and can only be estimated. Other accuracy definitions are as follows.

- **Absolute Accuracy** – A measure that accounts for all systematic and random errors in a data set. Absolute accuracy is stated with respect to a defined datum or reference system.

- **Accuracy**, – The NSSDA reporting standard in the horizontal component that equals the radius of a circle of uncertainty, such that the true or theoretical horizontal location of the
point falls within that circle 95-percent of the time. Accuracy\(_x\) = 1.7308 \times \text{RMSE}_x. Horizontal accuracy is defined as the positional accuracy of a dataset with respect to a horizontal datum.

- **Accuracy\(_z\)** — The NSSDA reporting standard in the vertical component that equals the linear uncertainty value, such that the true or theoretical vertical location of the point falls within that linear uncertainty value 95-percent of the time. Accuracy\(_z\) = 1.9600 \times \text{RMSE}_z. Vertical accuracy is defined as the positional accuracy of a dataset with respect to a vertical datum.

- **Consolidated Vertical Accuracy (CVA)** — The result of a test of the accuracy of vertical checkpoints (z-values) consolidated for two or more of the major land cover categories, representing both open terrain and other land cover categories. Computed by using the 95\(^{th}\) percentile, CVA is always accompanied by Fundamental Vertical Accuracy (FVA).

- **Fundamental Vertical Accuracy (FVA)** — The value by which vertical accuracy can be equitably assessed and compared among datasets. The FVA is determined with vertical checkpoints located only in open terrain, where there is a very high probability that the sensor will have detected the ground surface. FVA is calculated at the 95\(^{th}\) confidence level in open terrain only, using \(\text{RMSE}_z \times 1.9600\).

- **Local Accuracy** — A value that represents the uncertainty in the coordinates of a control point relative to the coordinates of other directly-connected, adjacent control points at the 95-percent confidence level. The reported local accuracy is an approximate average of the individual local accuracy values between this control point and other observed control points used to establish the coordinates of the control point.

- **Network Accuracy** — A value that represents the uncertainty in the coordinates of a control point with respect to the geodetic datum at the 95-percent confidence level. For National Spatial Reference System (NSRS) network accuracy classification in the U.S., the datum is considered to be best expressed by the geodetic values at the CORS supported by the National Geodetic Survey (NGS). By this definition, the local and network accuracy values at CORS sites are considered to be infinitesimal, i.e., to approach zero.

- **Percentile** — Any of the values in a dataset of errors dividing the distribution of the individual errors in the dataset into one hundred groups of equal frequency. Any of those groups can specify a specific percentile, e.g., the 95\(^{th}\) percentile as defined below.

- **Precision** — A statistical measure of the tendency of a set of random numbers to cluster about a number determined by the dataset. Precision relates to the quality of the method by which the measurements were made and is distinguished from accuracy which relates to the quality of the result. The term “precision” not only applies to the fidelity with which required operations are performed, but, by custom, has been applied to methods and instruments employed in obtaining results of a high order of precision. Precision is exemplified by the number of decimal places to which a computation is carried and a result stated.

- **Positional Accuracy** — The accuracy of the position of features, including horizontal and/or vertical positions.

- **Relative Accuracy** — A measure that accounts for random errors in a data set. Relative accuracy may also be referred to as point-to-point accuracy. The general measure of relative accuracy is an evaluation of the random errors (systematic errors and blunders removed) in determining the positional orientation (e.g., distance, azimuth) of one point or feature with respect to another.

- **Root Mean Square Error (RMSE)** — The square root of the average of the set of squared differences between dataset coordinate values and coordinate values from an independent
source of higher accuracy for identical points. The vertical RMSE (RMSE\(_z\)), for example, is calculated as the square root of \(\sum(Z_n - Z'_n)^2/N\), where:

- \(Z_n\) is the set of \(N\) \(z\)-values (elevations) being evaluated, normally interpolated (for TINs and DEMs) from dataset elevations of points surrounding the \(x/y\) coordinates of checkpoints
- \(Z'_n\) is the corresponding set of checkpoint elevations for the points being evaluated
- \(N\) is the number of checkpoints
- \(n\) is the identification number of each of the checkpoints from 1 through \(N\).

Supplemental Vertical Accuracy (SVA) – The result of a test of the accuracy of \(z\)-values over areas with ground cover categories or combination of categories other than open terrain. Computed by using the 95\(^{th}\) percentile, SVA is always accompanied by Fundamental Vertical Accuracy (FVA). SVA values are computed individually for different land cover categories. Each land cover type representing 10% or more of the total project area is typically tested and reported as an SVA. SVA specifications are normally target values that may be exceeded so long as overall CVA requirements are satisfied.

95\(^{th}\) Confidence Level – Accuracy reported at the 95% confidence level means that 95% of the positions in the dataset will have an error with respect to true ground position that is equal to or smaller than the reported accuracy value. The reported accuracy value reflects all uncertainties, including those introduced by geodetic control coordinates, compilation, and final computation of ground coordinate values in the product. Where errors follow a normal error distribution, Accuracy\(_z\) defines vertical accuracy at the 95% confidence level (computed as RMSE\(_z\) \(\times 1.9600\)), and Accuracy\(_r\) defines horizontal (radial) accuracy at the 95% confidence level (computed as RMSE\(_r\) \(\times 1.7308\)).

95\(^{th}\) Percentile – Accuracy reported at the 95\(^{th}\) percentile indicates that 95% of the errors will be of equal or lesser value and 5% of the errors will be of larger value. This term is used when errors may not follow a normal error distribution, e.g., in forested areas where the classification of bare-earth elevations may have a positive bias. Vertical accuracy at the 95% confidence level and 95\(^{th}\) percentile may be compared to evaluate the degree to which actual errors approach a normal error distribution.

Resolution – In the context of elevation data, resolution is synonymous with the horizontal density of elevation data points for which two similar terms are used:

Nominal Pulse Spacing (NPS) – The estimated average spacing of irregularly-spaced lidar points in both the along-track and cross-track directions resulting from: the laser pulse repetition frequency (e.g., 100,000 pulses of laser energy emitted in one second from a 100 kHz sensor); scan rate (sometimes viewed as the number of zigzags per second for this common scanning pattern); field-of-view; and flight airspeed. Lidar system developers currently provide “design NPS” as part of the design pulse density, although the American Society for Photogrammetry and Remote Sensing (ASPRS) is currently developing standard procedures to compute the “empirical NPS” which should be approximately the same as the “design NPS” when accepting statistically insignificant loss of returns and disregarding void areas, from water for example. The NPS assessment is made against single swath first return data located within the geometrically usable center portion (typically ~90%) of each swath. Average along-track and cross-track pulse spacing should be comparable. When point density is increased by relying on overlap or double-coverage it should be documented in
metadata and not by changing the project’s reported NPS. The NPS should be equal to or less than the Digital Elevation Model (DEM) post spacing when gridded DEMs are required as part of project specifications. This same definition for NPS could similarly apply to irregularly-spaced mass points from photogrammetry or Interferometric Synthetic Aperture Radar (IFSAR) data. NPS pertains to lidar only and is not intended to pertain to photogrammetry or IFSAR.

DEM Post Spacing – Sometimes confused with Nominal Pulse Spacing, the DEM Post Spacing is defined as the constant sampling interval in x- and y-directions of a DEM lattice or grid. This is also called the horizontal resolution of a gridded DEM or the DEM grid spacing. It is standard industry practice to have:

- 1-meter DEM post spacing for elevation data with 1-foot equivalent contour accuracy;
- 2-meter DEM post spacing for elevation data with 2-foot equivalent contour accuracy;
- 5-meter DEM post spacing for elevation data with 5-foot equivalent contour accuracy.
Attachment 2 – Alignment of FEMA Appendix A to USGS Lidar Specification v13

FEMA is aligning Appendix A of the Guidelines and Specifications for Flood Hazard Mapping Partners (Guidelines) to the USGS Lidar Guidelines and Base Specification v13 to modernize the FEMA specifications to current industry practice, leverage the expertise of the USGS Geography discipline, maintain Federal standards across agencies, and support the use of elevation products acquired as part of Risk MAP by other agencies for other purposes thus maximizing the Government’s investment.

Overall, new elevation data purchased by FEMA must comply with the USGS Lidar Guidelines and Base Specification v13, except where specifically noted in this Procedure Memorandum.

Because FEMA’s needs for elevation are specific to floodplain mapping, FEMA has some unique requirements that differ from the USGS specifications. To supplement the existing USGS specifications, FEMA-specific items such as cross section surveys, bridges, and other features in Appendix A of the Guidelines remain valid except where superseded by more current information provided in this attachment. Table 1 summarizes the sections in Appendix A that are fully superseded, partially superseded or not superseded by this Procedure Memorandum.

Table 2.1 Currency of Major Sections within FEMA’s Appendix A: Guidance for Aerial Mapping and Surveying

<table>
<thead>
<tr>
<th>Section</th>
<th>Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>Introduction</td>
<td>Is not superseded and remains valid.</td>
</tr>
<tr>
<td>A.2</td>
<td>Industry Geospatial Standards</td>
<td>Remains valid but is appended by additional standards which use newer standards from the National Digital Elevation Program (NDEP) and American Society for Photogrammetry and Remote Sensing (ASPRS) to test elevation data for Fundamental Vertical Accuracy (FVA), Supplemental Vertical Accuracy (SVA), and Consolidated Vertical Accuracy (CVA).</td>
</tr>
<tr>
<td>A.3</td>
<td>Accuracy Guidelines</td>
<td>Partly superseded, especially Table 2, below, that specifies variable vertical accuracy standards and nominal pulse spacing (NPS), depending on the risk level and terrain slope within the floodplain being mapped.</td>
</tr>
<tr>
<td>A.4</td>
<td>Data Requirements</td>
<td>Major portions are superseded. Subsection A.4.2.3 pertaining to breaklines, subsection A.4.3 pertaining to elevation data vertical accuracy, and subsection A.4.5 pertaining to mapping area, are superseded. Subsection A.4.11 pertaining to other digital topographic data requirements, including Table A-3, Digital Topographic Data Requirements Checklist, is now superseded by other FEMA procurement guidelines. Subsection A.4.9 on data formats is partially superseded by the addition of lidar LAS formatted datasets. Subsections pertaining to cross sections (A.4.6) and hydraulic structures (A.4.7) remain valid.</td>
</tr>
<tr>
<td>A.5</td>
<td>Ground Control</td>
<td>Is not superseded and remains valid.</td>
</tr>
<tr>
<td>A.6</td>
<td>Ground Surveys</td>
<td>Is not superseded and remains valid.</td>
</tr>
</tbody>
</table>
Table 2.2. Vertical Accuracy Requirements based on Flood Risk and Terrain Slope within the Floodplain being mapped

<table>
<thead>
<tr>
<th>Level of Flood Risk</th>
<th>Typical Slopes</th>
<th>Specification Level</th>
<th>Vertical Accuracy, 95% Confidence Level FVA/CVA</th>
<th>Lidar Nominal Pulse Spacing (NPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (Deciles 1,2,3)</td>
<td>Flattest</td>
<td>Highest</td>
<td>24.5 cm/36.3 cm</td>
<td>≤1 meter</td>
</tr>
<tr>
<td>High (Deciles 1,2,3)</td>
<td>Rolling or Hilly</td>
<td>High</td>
<td>49.0 cm/72.6 cm</td>
<td>≤2 meters</td>
</tr>
<tr>
<td>High (Deciles 2,3,4,5)</td>
<td>Hilly</td>
<td>Medium</td>
<td>98.0 cm/145 cm</td>
<td>≤3.5 meters</td>
</tr>
<tr>
<td>Medium (Deciles 3,4,5,6,7)</td>
<td>Flattest</td>
<td>High</td>
<td>49.0 cm/72.6 cm</td>
<td>≤2 meters</td>
</tr>
<tr>
<td>Medium (Deciles 3,4,5,6,7)</td>
<td>Rolling</td>
<td>Medium</td>
<td>98.0 cm/145 cm</td>
<td>≤3.5 meters</td>
</tr>
</tbody>
</table>

2.1 Elevation Specifications Based on Risk Levels

FEMA maintains a national dataset that estimates flood risk. The basic data is calculated at the Census Block Group level, and is also aggregated to the sub-watershed, watershed and county levels. These data assign a risk value and a risk rank to each area. The areas are grouped into 10 classes with an equal number of members based on risk rank. These 10 classes are called risk deciles.

The table below provides the minimum elevation standards for new engineering analyses produced by FEMA. The highest and high specifications are suitable for either basic or enhanced engineering analyses. The medium and low specifications are suitable for basic engineering analyses. Where more than 20% of the project area covered by the new elevation will have enhanced engineering analyses, the next higher elevation specification level may be appropriate. When the scope of the enhanced engineering analyses is not sufficient to justify increasing the overall project specification level, the bulk elevation data collection may be enhanced by field survey in areas of enhanced engineering analyses if necessary.
Medium (Deciles 4, 5, 6, 7) | Hilly | Low | 147 cm/218 cm | ≤5 meters
Low (Deciles 7, 8, 9, 10) | All | Low | 147 cm/218 cm | ≤5 meters

Whereas contour lines are for visual interpretation and are unnecessary for FEMA’s automated H&H analyses, the term “equivalent contour accuracy” is used to show the accuracy of contour lines that could be produced from a DEM if needed for manual analysis; this is also for the benefit of those who do not understand NSSDA terminology that defines vertical accuracy at the 95% confidence level. Table 3 explains “equivalent contour accuracy” for various standard contour intervals, referenced also in terms of vertical root mean square error (RMSEz), National Standard for Spatial Data Accuracy (NSSDA) Accuracyz, SVA and CVA.

<table>
<thead>
<tr>
<th>Equivalent Contour Accuracy</th>
<th>FEMA Specification Level</th>
<th>RMSEz</th>
<th>NSSDA Accuracy, 95% confidence level</th>
<th>SVA (target)</th>
<th>CVA (mandatory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ft</td>
<td></td>
<td>0.30 ft or 9.25 cm</td>
<td>0.60 ft or 18.2 cm</td>
<td>0.60 ft or 18.2 cm</td>
<td>0.60 ft or 18.2 cm</td>
</tr>
<tr>
<td>2 ft Highest</td>
<td></td>
<td>0.61 ft or 18.5 cm</td>
<td>1.19 ft or 36.3 cm</td>
<td>1.19 ft or 36.3 cm</td>
<td>1.19 ft or 36.3 cm</td>
</tr>
<tr>
<td>4 ft High</td>
<td></td>
<td>1.22 ft or 37.1 cm</td>
<td>2.38 ft or 72.6 cm</td>
<td>2.38 ft or 72.6 cm</td>
<td>2.38 ft or 72.6 cm</td>
</tr>
<tr>
<td>5 ft</td>
<td></td>
<td>1.52 ft or 46.3 cm</td>
<td>2.98 ft or 90.8 cm</td>
<td>2.98 ft or 90.8 cm</td>
<td>2.98 ft or 90.8 cm</td>
</tr>
<tr>
<td>8 ft Medium</td>
<td></td>
<td>2.43 ft or 73.9 cm</td>
<td>4.77 ft or 1.45 m</td>
<td>4.77 ft or 1.45 m</td>
<td>4.77 ft or 1.45 m</td>
</tr>
<tr>
<td>10 ft</td>
<td></td>
<td>3.04 ft or 92.7 cm</td>
<td>5.96 ft or 1.82 m</td>
<td>5.96 ft or 1.82 m</td>
<td>5.96 ft or 1.82 m</td>
</tr>
<tr>
<td>12 ft Low</td>
<td></td>
<td>3.65 ft or 1.11 m</td>
<td>7.15 ft or 2.18 m</td>
<td>7.15 ft or 2.18 m</td>
<td>7.15 ft or 2.18 m</td>
</tr>
</tbody>
</table>

FEMA’s requirements for elevation data are specific to flood risk analysis. As a result, FEMA’s requirements diverge from the USGS specification which is intended to serve a different purpose. Two of the key differences with the FEMA specifications are the requirements for vertical accuracy and nominal pulse spacing. The FEMA requirements in these areas are only similar to the USGS requirements in the highest specification level, but otherwise differ for the lower accuracy levels.

All data collected must go through lidar preliminary processing and the unclassified point cloud must be tested as specified in the USGS specification. Where the Mapping Activity Statement (MAS) requires bare earth post-processing of the floodplain area of interest (AOI), the elevation data must be tested and comply with both the FVA and CVA requirements. Where no bare earth post-processing is specified, only the FVA requirements apply for lidar preliminary processing.

Many other organizations require higher-accuracy lidar data for diverse applications and combine their resources to solve multiple needs with lidar. FEMA prefers to acquire elevation data through partnerships so that the resulting data will meet a broader variety of end user needs and be more consistent with the overall USGS specification. These partnership elevation collection activities will frequently utilize specifications that exceed the minimums described above in Table 2. Before committing funds to a new elevation mapping project, FEMA Regional staff should first determine whether funds could be spent more effectively by cooperating with...
other agencies to more cost-effectively acquire elevation data. FEMA is a member of the National Digital Elevation Program (NDEP) which was formed, in part, to avoid duplication of effort among state and federal government agencies acquiring digital elevation data. USGS maintains state geospatial liaisons that are a good source of information regarding the status of existing and/or planned mapping activities in their states.

2.2 Light Detection and Ranging (lidar)

Lidar is capable of delivering 1-foot equivalent contour accuracy with sub-meter NPS used to produce DEMs with 1-meter DEM gridded post spacing. Therefore, lidar could satisfy FEMA’s requirements for elevation data in high risk, moderate risk, and low risk areas. Lidar is often the best technology for mapping the elevations of the bare earth terrain in dense vegetation.

If this technology is selected for high risk areas, lidar will be collected in accordance with the USGS Lidar Guidelines and Base Specification, v13, for the National Geospatial Program except as noted. FEMA does not require the data to be hydro-flattened, as specified in v13. Also, FEMA does not require all data to be processed to the bare earth terrain, but instead limits the area to be processed to areas in the vicinity of floodplains that will require hydraulic modeling. See FEMA’s Procurement Guidelines for specifics on this topic.

The following USGS specifications are most relevant to FEMA and are consistent with FEMA requirements:

- Fundamental Vertical Accuracy (FVA) pertains only to open, non-vegetated terrain. The FVA is specified at a higher level of accuracy than other land cover categories. The FVA is a mandatory specification that must be satisfied in order to be usable by FEMA for flood risk mapping within the specified level of flood risk.
- Supplemental Vertical Accuracy (SVA) pertains to other major land cover categories representative of the floodplain being mapped. SVA values are target values, where one SVA category can test higher and another lower than the target SVA value so long as the overall CVA is satisfied for the consolidated equivalent contour accuracy.
- Consolidated Vertical Accuracy (CVA) pertains to all land cover categories combined. Compliance with the CVA specification is mandatory in order for an elevation dataset to qualify for satisfaction of a specified equivalent contour accuracy.
- For the highest specification level equivalent to 2 foot contour accuracy, the relative accuracy should be ≤ 7 cm RMSEz within individual swaths; ≤ 10 cm RMSEz within swath overlap (between adjacent swaths). These relative accuracy specifications double to 14 and 20 cm, respectively, for risk areas that utilize the high elevation specification with 4 foot equivalent contour accuracy. This specification is not applicable to lower risk areas.
- Consistent with USGS Lidar Guidelines and Base Specification, v13, a regular grid, with cell size equal to the design NPS*2 will be laid over the first return data within the geometrically usable center portion of each swath. At least 90% of the cells in the grid shall contain at least one lidar point.
- All data collected will be delivered consistent with the USGS Raw Point Cloud deliverable requirements.
Where lidar post-processing is performed, the deliverables must also include the classified point cloud deliverable. The data will be delivered in full compliance with LAS classes 1 (processed, but unclassified), 2 (bare-earth ground), 7 (noise), 9 (water), 10 (ignored), and 11 (withheld). All points not identified as “withheld” are to be classified. “Overlap” classification (Class 12) shall not be used.

The horizontal datum shall be referenced to the latest adjustment of the North American Datum of 1983 (NAD83 [NSRS2007]).

The vertical datum shall be referenced to the North American Vertical Datum of 1988 (NAVD88) whenever available. Areas outside of the continental U.S. where NAVD88 is not available should be referenced to a reproducible local datum that can be used to support floodplain management.

The most recent approved Geoid model from the National Geodetic Survey (NGS) shall be used to perform conversions from ellipsoidal heights to orthometric heights.

The standard coordinate reference system and units shall be Universal Transverse Mercator (UTM), meters. Considerations for other standard coordinate systems such as State Plane can be made for projects which are contributed to by mapping partners.

The single non-overlapped tiling scheme shall be established and agreed upon by the data producer and FEMA prior to collection, consistent with the USGS Lidar Guidelines and Base Specifications, v13.

Specifications for breaklines and hydro-enforcement are addressed in Attachment B.

Specifications for lidar accuracy testing by land cover categories within the floodplain being mapped are addressed in Attachment C.

Lidar dataset deliverables shall include the following:
1. Metadata should comply with the requirements in the USGS Lidar Guidelines and Base Specification, v13. In addition, the finished elevation product for hydraulic modeling should be documented by a FGDC-compliant metadata file that complies with the FEMA Elevation Metadata Profile. Project documentation must also include a Pre-flight Operations Plan and Post-flight Aerial Survey and Calibration Report as described in Attachment 4.
2. Raw point cloud data shall comply with the requirements in the USGS Lidar Guidelines and Base Specification, v13.
3. Classified point cloud data shall comply with requirements in the USGS Lidar Guidelines and Base Specification, v13.
4. Optional breaklines, when produced, shall be delivered in compliance with guidance in Attachment 3.
5. Optional digital bare earth elevation data product(s) (e.g., DEM, DTM, contours) in file formats specified in the Statement of Work.

2.3 Photogrammetry

Photogrammetry is also capable of delivering 1-foot equivalent contour accuracy and a DEM with 1-meter post spacing. Therefore, photogrammetry could also satisfy FEMA’s requirements for elevation data in high risk, moderate risk, and low risk areas. Except for the new requirement to delineate areas of low confidence, existing guidance published in section A.7,
Photogrammetric Surveys, in Appendix A of FEMA’s Guidelines, remain current for new aerial image acquisition with either film or digital cameras.

The USGS annually contracts for leaf-off orthoimagery of selected areas under the National Geospatial Program, typically producing digital orthophotographs with pixel resolution of 30 cm (~1 foot) or 15 cm (~6 inches), as do many states and local governments; and the USDA contracts for leaf-on orthoimagery of major areas of the U.S. annually under the National Agricultural Imagery Program (NAIP) with pixel resolution of 1 meter. Although intended for production of digital orthophotos, those same images could be reused for production of digital elevation data because the aerotriangulation (AT) solution for production of orthophotos can be reused for establishing stereo models from which DEMs can be produced by photogrammetric auto-correlation and/or manual compilation. Elevation accuracies typically achievable by reuse of digital imagery and AT metrics are as follows:

• Typically acquired at an elevation of approximately 4,800 feet above mean terrain, imagery and AT solutions used to produce digital orthophotos with 6-inch pixel resolution should be acceptable for elevation data with 2.5-foot equivalent contour accuracy.
• Typically acquired at an elevation of approximately 9,600 feet above mean terrain, imagery and AT solutions used to produce digital orthophotos with 1-foot pixel resolution should be acceptable for elevation data with 5-foot equivalent contour accuracy.
• Typically acquired at an elevation of approximately 30,000 feet above mean terrain, imagery and AT solutions used to produce digital orthophotos with 1-meter pixel resolution should be acceptable for elevation data with 15-foot equivalent contour accuracy.

Photogrammetric dataset deliverables shall include the following:

1. Metadata shall include:
 o Collection Report detailing mission planning and flight logs, flying heights, camera parameters, forward overlap and sidelap.
 o Survey Report detailing the collection of control and reference points used for calibration and QA/QC.
 o Aerial triangulation (AT) report detailing compliance with relevant accuracy statistics.
 o Processing Report detailing photogrammetric processed used to manually compile elevation data or to semi-automatically compile elevation data with automated image correlation or other techniques.
 o QA/QC reports.
 o Geo-referenced extents of each delivered dataset.

2. Digital bare earth elevation data product (DEM, DTM, mass points, breaklines, contours) specified in the Statement of Work.

3. Optional breaklines, when produced, shall be delivered in compliance with guidance in Attachment 3.

2.4 Ground Surveys

All ground surveys must be performed in accordance with procedures in Section A.5, Ground Control, and Section A.6, Ground Surveys, in Appendix A of FEMA’s Guidelines. Cross-
section surveys and hydraulic structure surveys shall also be performed in accordance with
sections A.4.6 and A.4.7, respectively, of Appendix A.

2.5 Low Confidence Areas

Regardless of technology used, FEMA requires that low confidence areas be delineated by the
data provider to indicate areas where the vertical data may not meet the data accuracy
requirements due to heavy vegetation even though the specified nominal pulse spacing was met
or exceeded in those areas. The metadata must explain steps taken to minimize the areas
delineated as low confidence areas. Accuracy test points are normally retained within such areas
and are not discarded. The data provider must take reasonable steps to minimize areas delineated
as low confidence areas, taking into consideration the density of the vegetation in the floodplain
being mapped and other factors.

These low confidence areas must be delivered as polygons in accordance with a database
schema. The database schema for polygons defining low confidence areas is as follows.

Feature Dataset: TOPOGRAPHIC
Feature Class: CONFIDENCE
Feature Type: Polygon
Contains M Values: No
Contains Z Values: No
Annotation Subclass: None
XY Resolution: Accept Default Setting
Z Resolution: Accept Default Setting
XY Tolerance: 0.003
Z Tolerance: N/A

2.5.1 Description
This polygon feature class will depict areas where the ground is obscured by dense vegetation,
meaning that the resultant bare-earth digital terrain model (DTM) may not meet the required
accuracy specifications in these obscured areas. Low confidence areas can pertain to lidar,
photogrammetry or IFSAR.

2.5.2 Table Definition

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
<th>Allow Null Values</th>
<th>Default Value</th>
<th>Domain</th>
<th>Precision</th>
<th>Scale</th>
<th>Length</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTID</td>
<td>Object ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Assigned by Software</td>
</tr>
<tr>
<td>SHAPE</td>
<td>Geometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Assigned by Software</td>
</tr>
<tr>
<td>DATESTAMP_DT</td>
<td>Date</td>
<td>Yes</td>
<td></td>
<td>0</td>
<td>0</td>
<td>8</td>
<td></td>
<td>Assigned by Contractor</td>
</tr>
<tr>
<td>SHAPE_LENGTH</td>
<td>Double</td>
<td>Yes</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>Calculated by Contractor</td>
</tr>
<tr>
<td>SHAPE_AREA</td>
<td>Double</td>
<td>Yes</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>Calculated by</td>
</tr>
</tbody>
</table>
2.5.3 Feature Definition

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Definition</th>
<th>Capture Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low Confidence Area</td>
<td>“Low confidence areas” are defined by the data provider to indicate areas where the vertical data may not meet the data accuracy requirements due to heavy vegetation even though the nominal pulse spacing was met or exceeded in those areas.</td>
<td>Capture as closed polygon. Compiler does not need t z-values of vertices; feature class will be 2-D only.</td>
</tr>
</tbody>
</table>
Attachment 3 – Topographic Breakline and Hydro-Enforcement Specifications

FEMA has no minimum breakline requirements; breaklines are optional and depend upon the procedures used to perform hydrologic and hydraulic modeling. The FEMA Project Manager should specify the breaklines requirements if desired based on the planned approach for hydraulic analysis or the mapping partner may propose breakline requirements based on the anticipated hydraulic modeling approach.

When optional breaklines are produced, the following breakline topology rules must be followed for the applicable feature classes. The topology must be validated by each contractor prior to delivery to FEMA.

<table>
<thead>
<tr>
<th>Name: BREAKLINES_Topology</th>
<th>Cluster Tolerance: 0.003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature Class</td>
<td>Maximum Generated Error Count: Undefined</td>
</tr>
<tr>
<td></td>
<td>State: Analyzed without errors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature Class</th>
<th>Weight</th>
<th>XY Rank</th>
<th>Z Rank</th>
<th>Event Notification</th>
</tr>
</thead>
<tbody>
<tr>
<td>COASTALSHORELINE</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>HYDROGRAPHICFEATURE</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>PONDS_AND_LAKES</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>HYDRAULICSTRUCTURE</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>ISLAND</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>No</td>
</tr>
</tbody>
</table>

Topology Rules

<table>
<thead>
<tr>
<th>Name</th>
<th>Rule Type</th>
<th>Trigger Event</th>
<th>Origin (FeatureClass::Subtype)</th>
<th>Destination (FeatureClass::Subtype)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Must not intersect</td>
<td>The rule is a line-no intersection rule</td>
<td>No</td>
<td>HYDRAULICSTRUCTURE::All</td>
<td>HYDRAULICSTRUCTURE::All</td>
</tr>
<tr>
<td>Must not intersect</td>
<td>The rule is a line-no intersection rule</td>
<td>No</td>
<td>HYDROGRAPHICFEATURE::All</td>
<td>HYDROGRAPHICFEATURE::All</td>
</tr>
<tr>
<td>Must not intersect</td>
<td>The rule is a line-no intersection rule</td>
<td>No</td>
<td>COASTALSHORELINE::All</td>
<td>COASTALSHORELINE::All</td>
</tr>
<tr>
<td>Must not intersect</td>
<td>The rule is a line-no self intersect rule</td>
<td>No</td>
<td>PONDS_AND_LAKES::All</td>
<td>PONDS_AND_LAKES::All</td>
</tr>
<tr>
<td>Must not overlap</td>
<td>The rule is a line-no overlap line rule</td>
<td>No</td>
<td>HYDROGRAPHICFEATURE::All</td>
<td>COASTALSHORELINE::All</td>
</tr>
<tr>
<td>Must not self-intersect</td>
<td>The rule is a line-no self intersect rule</td>
<td>No</td>
<td>HYDRAULICSTRUCTURE::All</td>
<td>HYDRAULICSTRUCTURE::All</td>
</tr>
<tr>
<td>Must not self-intersect</td>
<td>The rule is a line-no self intersect rule</td>
<td>No</td>
<td>HYDROGRAPHICFEATURE::All</td>
<td>HYDROGRAPHICFEATURE::All</td>
</tr>
<tr>
<td>Must not self-intersect</td>
<td>The rule is a line-no self intersect rule</td>
<td>No</td>
<td>COASTALSHORELINE::All</td>
<td>COASTALSHORELINE::All</td>
</tr>
<tr>
<td>Name</td>
<td>Rule Type</td>
<td>Trigger Event</td>
<td>Origin (FeatureClass::Subtype)</td>
<td>Destination (FeatureClass::Subtype)</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>---------------</td>
<td>--------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Must not self-intersect</td>
<td>The rule is a line-no-self intersect rule</td>
<td>No</td>
<td>PONDS_AND_LAKES::All</td>
<td>PONDS_AND_LAKES::All</td>
</tr>
<tr>
<td>Must not self-intersect</td>
<td>The rule is a line-no-self intersect rule</td>
<td>No</td>
<td>ISLAND::All</td>
<td>ISLAND::All</td>
</tr>
</tbody>
</table>
Attachment 4 – Topographic Data Quality Review and Reporting Process

To complement the topographic data specifications in this procedure memorandum, this attachment describes data quality review processes and reporting obligations to be performed on new topographic data procured by FEMA as part of a flood hazard study or Risk MAP project. The mapping partner responsible for producing the elevation data is responsible for the quality of the product. In addition, FEMA may assign another mapping partner to perform Independent QA/QC of Topographic Data.

Existing topographic data leveraged by FEMA should be certified to meet or tested for the vertical accuracy requirements specified in this procedure memo. In addition, the quality reviews described here are best practices that may be applied to existing topographic data. However, some of the documentation needed to perform some of these reviews may not be readily available for existing data.

4.1 Quality Reviews and Reporting Performed by Data Provider

The mapping partner responsible for producing new elevation data must submit copies of QA reports as specified in USGS Lidar Guidelines and Base Specification version 13. Unless the responsibility for checkpoint surveys and vertical accuracy testing is specifically assigned to a different mapping partner performing Independent QA/QC, the mapping partner responsible for producing the elevation data must test the unclassified point cloud data for Fundamental Vertical Accuracy (FVA) and, when lidar post-processing is performed must also test the bare earth product for Supplemental Vertical Accuracy (SVA) and Consolidated Vertical Accuracy (CVA).

4.1.1 Ground Survey of Quality Review Checkpoints

Quality review checkpoint surveys shall be performed in accordance with procedures in Section A.6.4, Checkpoint Surveys and A.6.5 Survey Records, in Appendix A of FEMA’s Guidelines.

Checkpoints surveyed for accuracy reporting shall not be used by the data provider in the calibration or adjustment of the topographic data.

4.1.2 Assessment of Initial Vertical Accuracy

Assessment of the fully calibrated, raw point cloud initial vertical accuracy is required to ensure data has successfully completed preliminary processing. The absolute and relative accuracy of the data, relative to known control, shall be verified prior to classification and subsequent product development, by calculating FVA, measured in open, non-vegetated terrain. The spatial distribution of checkpoints for FVA testing should be based on the entire project collection area, distributed to avoid clustering, and support vertical accuracy reporting that is representative of the whole project.

If the project area exceeds 2,000 square miles it must be divided into smaller blocks of 2,000 square miles or less and tested as individual areas. In addition, the division of large project areas should apply the following rules if applicable:
• Divide areas by vendor used
• Divide areas by sensor type (manufacturer)
• Divide areas by flight dates if significant temporal difference is present
• Other logical project divisions based factors that might have a systematic relationships to data quality.

Reporting of positional accuracy shall be in accordance with ASPRS/NDEP standards as well as the USGS Lidar Guidelines and Base Specification, v13, Section II.13 and shall use the following statement:

Tested ____ (meters) fundamental vertical accuracy at 95% confidence level

Reporting on the assessment of the point cloud initial vertical accuracy shall include the following at a minimum:

• A description of the process used to test the points
• A graphic depicting the spatial distribution of the ground survey checkpoints
• Descriptive statistics and RMSEz in FVA calculations

4.1.3 Assessment of Bare Earth Vertical Accuracy

When bare earth post-processing is included in the project, assessment of the vertical accuracy for the delivered bare earth elevation product is required to ensure data has successfully completed post processing. Reporting of positional accuracy shall be in accordance with ASPRS/NDEP standards for FVA and CVA. Testing should be performed on the bare earth deliverable as specified in the mapping activity statement, along with the following guidance:

• If an assessment of initial vertical accuracy (FVA) was conducted prior to the processing of the data (section 4.1.2), the FVA checkpoints can again be used in the CVA computations if located within the area to be processed
• The SVA for up to three significant land cover categories, in terms of percentage of the project area covered, shall be tested in addition to the open/bare ground areas already tested for FVA Land cover categories making up 10% or more of the project area should be included in the SVA testing
• For smaller projects less than 1,000 square miles, fewer check points for SVA testing is acceptable. The number of checkpoints shall be reduced to control the QA cost to about 10% of the acquisition and processing cost. The checkpoints should be distributed evenly across the SVA land cover types.
• Processing areas greater than 2,000 square miles must be divided into smaller blocks of 2,000 square miles or less and tested as individual areas. In addition,
the division of large processing areas should apply the following rules if applicable:

- Divide areas by vendor used
- Divide areas by sensor type (manufacturer)
- Divide areas by flight dates if significant temporal difference is present
- Other logical project divisions based factors that might have a systematic relationships to data quality.

1. Each block of 2,000 square miles or less shall be tested for FVA, SVA, and CVA

Checkpoints used for testing SVA of the bare earth elevation product must be located in the areas where bare earth post-processing was performed, distributed to avoid clustering, and support vertical accuracy reporting that is representative of the post processed areas. The SVA results will then be combined with the FVA results to compute CVA for the entire project area.

Reporting on the assessment of the vertical accuracy of the post-processed, delivered elevation data shall include the following at a minimum:

- *A description of the process used to test the points*
- A graphic depicting the spatial distribution of the ground survey checkpoints
- An analysis of checkpoints that have errors exceeding the 95th percentile in SVA and CVA calculations
- Descriptive statistics and RMSE\textsubscript{z} in FVA calculations

4.1.4 Aerial Data Acquisition and Calibration

The mapping partner responsible for producing new elevation data must also submit a pre-flight Operations Plan and a post-flight Aerial Acquisition and Calibration Report will be provided to FEMA and/or their representatives by the data acquisition provider and uploaded to the MIP by the data provider. This information will aid future quality review efforts. The required reporting includes the following, outlined in Tables 4.1 and 4.2.

Table 4.1. Pre-flight Operations Plan

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight Operations</td>
<td>• Planned flight lines</td>
<td>MS Word or</td>
</tr>
<tr>
<td>Plan</td>
<td>PDF</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>• Planned GPS stations</td>
<td>• Planned control</td>
<td></td>
</tr>
<tr>
<td>• Planned control</td>
<td>• Planned airport locations</td>
<td></td>
</tr>
<tr>
<td>• Calibration plans</td>
<td>• Quality procedures for flight crew (project-related for pilot and operator)</td>
<td></td>
</tr>
<tr>
<td>• Planned scenset (sensor settings and altitude)</td>
<td>• Type of aircraft</td>
<td></td>
</tr>
<tr>
<td>• Procedure for tracking, executing, and checking reflights</td>
<td>• Considerations for terrain, cover, and weather in project</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2. Post-flight Aerial Acquisition and Calibration Report

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS Base station info</td>
<td>• Base station name
• Latitude/Longitude (ddd-mm-ss.sss)
• Base height (Ellipsoidal meters)
• Maximum Position Dilution of Precision PDOP
• Map of locations</td>
<td>Excel, TXT, MS Word, or PDF for data; ESRI shape file for map of locations (data and info may be in attribute table)</td>
</tr>
<tr>
<td>GPS/IMU processing summary</td>
<td>• Max Horizontal GPS Variance (cm)
• Max Vertical GPS Variance (cm)
• Notes on GPS quality (High, Good, etc.)
• GPS separation plot
• GPS altitude plot
• PDOP plot
• Plot of GPS distance from base station/s</td>
<td>MS Word or PDF with screenshots</td>
</tr>
<tr>
<td>Coverage</td>
<td>• Verification of project coverage</td>
<td>ESRI shape files reflecting the actual coverage area and not the applicable tiles.</td>
</tr>
<tr>
<td>Flights</td>
<td>• As-flown trajectories
Calibration lines</td>
<td>ESRI shape files</td>
</tr>
</tbody>
</table>
Flight Logs

- Incorporated as appendix
- Should include:
 - Job # / name
 - Lift #
 - Block or AOI designator
 - Date
 - Aircraft tail number, type
 - Flight line, line #, direction, start/stop, altitude, scan angle/rate, speed, conditions, comments
 - Pilot name
 - Operator name
 - AGC switch setting
 - Laser pulse rate
 - Mirror rate
 - Field of view
 - Airport of operations
 - GPS base station names or numbers
 - Comments

Control

- Ground control and base station layouts

Data Verification/QC

- Description of data verification/QC process
- Results of verification and QC steps

4.2 Quality Reviews and Reporting Performed by Independent QA/QC

When a mapping partner is assigned to perform *Independent QA of Topographic Data* macro and micro reviews of the submitted reports and data shall be performed. Macro reviews are automated processes or are checks required to establish overall data quality and shall be applied to the entire project area. Micro reviews are typically manual in nature and shall be used to check no less than 3 project tiles or 5% of the total number of project tiles, whichever is the greater amount.

Tables 4.3 and 4.4 outline macro and micro reviews to be conducted on the raw point cloud and for data that is post-processed. Some reviews are duplicated between the raw point cloud and post-processing phases due to the potential for errors to be introduced into the data during post-processing.

Table 4.3. Review of fully calibrated raw point cloud

<table>
<thead>
<tr>
<th>Macro Reviews</th>
<th>Reviewed for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-flight Operations Plan</td>
<td>• Compliance with section 4.1.4 and checklists in 4.2.1</td>
</tr>
<tr>
<td></td>
<td>• Compliance with the specifications outlined in the Mapping Activity Statement</td>
</tr>
<tr>
<td>Post-flight Aerial Acquisition and Calibration Report</td>
<td>• Compliance with section 4.1.4 and checklists in 4.2.1</td>
</tr>
<tr>
<td></td>
<td>• Compliance with the specifications outlined in the Mapping Activity Statement</td>
</tr>
<tr>
<td>Macro Reviews</td>
<td>Reviewed for</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Product</td>
<td>LAS Point Cloud Files</td>
</tr>
<tr>
<td></td>
<td>• Project area coverage – buffered by a minimum of 100 meters</td>
</tr>
<tr>
<td></td>
<td>• Data voids</td>
</tr>
<tr>
<td></td>
<td>• Inclusion of GPS time stamp</td>
</tr>
<tr>
<td></td>
<td>• Correct projection, datum and units</td>
</tr>
<tr>
<td></td>
<td>• Multiple Discrete Returns (at least 3 returns per pulse)</td>
</tr>
<tr>
<td></td>
<td>• Correct header information</td>
</tr>
<tr>
<td></td>
<td>• Other LAS attributes required by Mapping Activity Statement such as intensity values</td>
</tr>
<tr>
<td></td>
<td>• Correct nominal pulse spacing as required by specific risk and/or level of study and buy-up options.</td>
</tr>
<tr>
<td>Metadata</td>
<td>• Compliance with the FEMA Terrain Metadata Profile</td>
</tr>
<tr>
<td>Micro Reviews</td>
<td>Product</td>
</tr>
<tr>
<td>Reviewed for</td>
<td>LAS Point Cloud Files</td>
</tr>
<tr>
<td></td>
<td>• Excessive noise</td>
</tr>
<tr>
<td></td>
<td>• Elevation steps</td>
</tr>
<tr>
<td></td>
<td>• Other anomalies present in the point cloud</td>
</tr>
</tbody>
</table>

Table 4.4. Review of post-processed data

<table>
<thead>
<tr>
<th>Macro Reviews</th>
<th>Reviewed for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>LAS Point Cloud Files</td>
</tr>
<tr>
<td></td>
<td>• Compliance with checklists in section 4.2.1</td>
</tr>
<tr>
<td></td>
<td>• Project area coverage – buffered by a minimum of 100 meters</td>
</tr>
<tr>
<td></td>
<td>• Data voids</td>
</tr>
<tr>
<td></td>
<td>• Inclusion of GPS time stamp</td>
</tr>
<tr>
<td></td>
<td>• Correct projection, datum and units</td>
</tr>
<tr>
<td></td>
<td>• Multiple Discrete Returns (at least 3 returns per pulse)</td>
</tr>
<tr>
<td></td>
<td>• Correct header information</td>
</tr>
<tr>
<td></td>
<td>• Other LAS attributes required by Mapping Activity Statement such as intensity values</td>
</tr>
<tr>
<td></td>
<td>• Correct nominal pulse spacing as required by specific risk and/or level of study and buy-up options.</td>
</tr>
<tr>
<td></td>
<td>• Easting, northing and elevation reported to nearest 0.01m or 0.01 ft</td>
</tr>
<tr>
<td></td>
<td>• Correct file-naming convention</td>
</tr>
<tr>
<td>Metadata</td>
<td>• Compliance with the FEMA Terrain Metadata Profile</td>
</tr>
</tbody>
</table>
Macro Reviews

<table>
<thead>
<tr>
<th>Product</th>
<th>Reviewed for</th>
</tr>
</thead>
</table>

Micro Reviews

<table>
<thead>
<tr>
<th>Product</th>
<th>Reviewed for</th>
</tr>
</thead>
</table>

- LAS Point Cloud Files
 - Excessive noise
 - Elevation steps
 - Other anomalies present in the point cloud
 - Correct classification and cleanliness: no more than 2% of the project area classified to bare ground shall contain artifacts such as buildings, trees, overpasses or other above-ground features in the ground point classification (Class 2). In addition, no more than 2% of the project area shall contain incorrect classifications of points. *(USGS Lidar Guidelines and Base Specification, v13, Section IV.14.)*
 - []

- Optional - Breaklines
 - Correct topology
 - Horizontal placement
 - Completeness
 - Continuity
 - See Attachment 3 for breakline topology rules to be checked against

If the mapping partner responsible *Independent QA of Topographic Data* is tasked to perform assessment of vertical accuracy of the elevation data as described above in sections 4.1.2 and 4.1.3:

- Assessment of FVA only for pre-processed data to be stored and FVA, SVA, and CVA for post-processed data
- Review of data provider vertical accuracy assessment reports

4.2.1 Recommended Checklists

The following checklists are recommended for use during Independent QA/QC review to facilitate the process.

Pre-flight review checklist

<table>
<thead>
<tr>
<th>Checklist</th>
<th>Pass / Fail</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned lines – sufficient coverage, spacing, and length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned GPS stations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned ground control – sufficient to control and boresight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration plans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor quality procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lidar sensor scan set – planned for proper scan angle, sidelap, design pulse.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft utilizes ABGPS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sensor supports project design pulse density
Type of aircraft – supports project design parameters
Reflight procedure – tracking, documenting, processing
Project design supports accuracy requirements of project
Project design accounts for land cover and terrain types

Post-flight review checklists

Checklist for QA of Flight Logs

<table>
<thead>
<tr>
<th>Checklist</th>
<th>Included Yes/No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight logs – job #/name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight logs – block or AOI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight logs – date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight logs – aircraft tail #</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight logs – lines - #</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight logs – lines - direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight logs – lines – start/stop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight logs – lines – altitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight logs – lines – scan angle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight logs – lines – speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight logs – conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight logs – comments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight logs - pilot name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight logs - operator name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight logs - AGC switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight logs – GPS base stations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Checklist for Aerial Acquisition Report

<table>
<thead>
<tr>
<th>Checklist</th>
<th>Included? Yes/No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS base station – names</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS base station – lat/longs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS base station – heights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS base station – map</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS quality – separation plot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS quality – PDOP plot</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GPS quality - horizontal Acc.
GPS quality - vertical Acc.
Sensor calibration process
Verification of AOI coverage
As-flown trajectories
Ground control layout
Data verification process documented

Final terrain product review checklists

<table>
<thead>
<tr>
<th>Checklist</th>
<th>Pass/Fail</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical datum correct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal datum correct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projection correct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical units correct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal units correct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Each return contains – GPS week, GPS second, easting, northing, elevation, intensity, return # and classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No duplicate entries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS second reported to nearest microsecond</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easting, northing, and elevation reported to nearest 0.01 m or 0.01 ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloud file structure conforms to project tile layout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naming conforms project requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deliverable tiles checked for significant gaps not covered by aerial acquisition checks and/or caused by data post-processing/filtering</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M.4 Terrain Submittal Standards

M.4.1 Overview

This section describes the format and type of terrain data required to be submitted to FEMA for FISs. All data must be submitted in digital format. The Mapping Partner performing “Develop Topographic Data” is required to submit the data in this section.

The Mapping Partner should refer to Appendix A of these Guidelines for guidance on terrain data production. This section is not intended to detail the specifications and procedures for coastal hydrographic surveys. The reader is referred to the following additional sources for details on coastal surveys:

- National Oceanic and Atmospheric Administration (NOAA) NOS Hydrographic Survey Specifications and Deliverables (April 2007);
- NOAA Office of Coast Survey Hydrographic Surveys Division Field Procedures Manual (March 2007);
- U.S. Army Corps of Engineers (USACE) National Coastal Mapping Program Joint LiDAR Bathymetry Technical Center for Expertise;

The submitting Mapping Partner must retain copies of all Project-related data for a period of 3 years. The submitting Mapping Partner will need these data for responding to the following:

- Questions from FEMA or the receiving Mapping Partner during the review of the final draft materials;
- Comments and appeals submitted to FEMA during the 90-day appeal period following the issuance of preliminary maps; and
- Other concerns and issues that may develop during the processing of the new or revised FIS report and FIRM.

M.4.2 Requirements

M.4.2.1 Data Files

The minimum data required for the terrain data submission are the source terrain and topographic maps from the terrain data used in the study. These data can be contained in a single file or in tiled files. When tiled files are submitted, they must be accompanied by a tiling index file. If any processing has been performed, the original and final files must be submitted as well. For instance, if terrain data were blended from three different sources to create the final terrain data, the original of the three sources and the final terrain file that results from the blending process must be submitted. This information is required to be a georeferenced, digital submittal. The following information must be submitted when it is used to perform a study:
Guidelines and Specifications

- LiDAR data (bare earth and all returns);
- Tiling index for data files;
- Breaklines and Mass Points;
- Contours;
- Bathymetry;
- Digital Elevation Models (DEMs);
- Hydro-corrected DEMs;
- Triangulated Irregular Networks (TINs);
- Hydro-corrected TINs;
- USGS topographic data;
- All other terrain data; and
- LiDAR data generated as part of the project must be submitted as two separate files: one for bare earth only, and one for all returns if bare earth processing was performed as part of this project. For existing LiDAR data not processed as part of the project, the bare earth data must be submitted, and the submittal of the all returns data (if available) is optional.

A project narrative describing the SOW, direction from FEMA, issues, information for next Mapping Partner, etc. (see DCS User Guide for additional details).

M.4.2.2 General Correspondence

A file that compiles general correspondence must be submitted by the Mapping Partner assigned to “Develop Topographic Data.” General correspondence is the written correspondence generated or received by the Mapping Partner to fulfill the requirements of developing topographic data. Correspondence includes any documentation generated during this task such as letters; transmittals; memoranda; general status reports and queries; SPRs; technical issues that need to be documented; and direction given by FEMA. Contractual documents, such as a signed SOW or MAS, are not to be submitted as a part of this appendix.

M.4.2.3 Certification of Work

FEMA-funded (including CTP-funded projects if they are a part of FEMA’s flood mapping program) terrain data development must be certified using the Certification of Compliance Form provided in Figure M-11 in section M.10. Submittal of this certification at “Develop Topographic Data” workflow step is required if this is the only task performed by the Mapping Partner. Mapping Partners that are contracted to perform multiple mapping tasks can submit one certification form to certify all the work performed. A PDF file of this form with the original signature, data, and seal affixed to the form must be submitted digitally in the general directory identified in section M.4.2.8. This form must be signed by a registered or certified professional from the firm contracted to perform the work, or by the responsible official of a government agency. A digital version of this form is available at www.fema.gov.
Appendix M: Data Capture Standards

M.4.2.4 Acceptable File Formats

Terrain data used to perform the study must be submitted in a georeferenced, digital format as listed below. These data can be contained in a single file or in a tiled set of files. Any tiled data must have an accompanying index spatial file.

- Contours, Masspoints, and breaklines – Personal geodatabase, DXF, or shapefile
- DEMs – ESRI grid, GeoTIFF, or ASCII grid
- LiDAR – LAS file, ASCII x, y, z file
- Terrain – ESRI ArcGIS
- Word – project narrative
- PDF – correspondence and certification

PDF files must be created using the source file (e.g., Word file), if the source file is created by the Mapping Partner, rather than raster scans of hard copy text documents. PDF files created must allow copying of text and pasting to another document. In addition, ESRI shapefiles must include .PRJ files.

M.4.2.5 Metadata

A metadata file in XML format that complies with the NFIP Terrain Metadata Profiles (provided in Section M.14) must be included with the submittal. The profiles follow the FGDC Content Standard for metadata and define additional domains and business rules for some elements that are mandatory for FEMA, based on the specific submittal type. For each spatial data source in the metadata file, the Mapping Partner must assign a Source Citation Abbreviation.

If metadata is available from an agency or organization that provided data for use in the study, it should be included in the metadata submittal in addition to the NFIP Terrain Metadata Profiles. Reference the data providers’ original metadata record in the Lineage section of the NFIP metadata profile. If there is a Web-accessible metadata record for the original data set, the URL to the metadata may be provided in the optional Source Citation - Online Linkage element. Otherwise, the Source Contribution [free text] element may include information on how to access the metadata record for the data sets obtained.

M.4.2.6 Transfer Media

Mapping Partners must submit files via the internet by uploading to the MIP (http://www.hazards.fema.gov) or by mailing the files to FEMA on one or more of the following electronic media:

- CD-ROM;
- DVD; or
- External Hard Drive (for very large data submissions with a return label for shipment back to the partner).
Guidelines and Specifications

In special situations or as technology changes, other media may be acceptable if coordinated with FEMA.

When data is mailed to FEMA, all submitted digital media must be labeled with at least the following information:

- Mapping Partner’s name;
- Community name and State for which the FIS was prepared;
- Terrain Data;
- Date of submission (formatted mm/dd/yyyy); and
- Disk [sequential number] of [number of disks]. The media must be numbered sequentially, starting at Disk 1. [Number of disks] represents the total number of disks in the submission.

M.4.2.7 Transfer Methodology

Terrain artifacts can be uploaded to the MIP by following the guidelines for Data Submission and Validation located on the MIP (https://hazards.fema.gov) under “User Guidance” in the “Guides & Documentation” tab of “MIP User Care”.

M.4.2.8 Directory Structure and Folder Naming Conventions

The files presented in section M.4.2 Requirements must be submitted to the MIP or mailed to FEMA within the following directory structure. Data files must be organized under an applicable 8-digit Hydrologic Unit Code (HUC-8). The following folders can be created either on a local work space (i.e., a personal computer) or within the work space for the community on the MIP. If the following folders are generated locally, these newly created folders and their contents must be uploaded to the MIP. Terrain files are arranged into appropriate directories based on data type.

- \HUC-8\General
 - Project narrative
 - Certification
- \HUC-8\Correspondence
 - Letters; transmittals; memoranda; general status reports and queries; SPRs; technical issues; direction by FEMA; and internal communications, routing slips, and notes.
- \HUC-8\All_Returns
 - LIDAR data – All Returns
 - LIDAR Tile Index spatial file (if used)
- \HUC-8\Bare_Earth
 - LIDAR data – Bare Earth Points
 - LIDAR Tile Index spatial file (if used)
- \HUC-8\Breaklines
 - 3D breakline spatial files
 - 3D breakline Tile Index spatial file (if used)
Appendix M: Data Capture Standards

- 2D breakline spatial files
- 2D breakline Tile Index spatial file (if used)
- Mass Points

- \HUC-8\Contours
 - Contour spatial files
 - Contour Tile Index spatial file (if used)
 - Bathymetric files
 - Bathymetric Tile Index spatial file (if used)

- \HUC-8\DEM
 - Uncorrected DEM files
 - Tile Index spatial file (if used)

- \HUC-8\HDEM
 - Hydrologically correct DEM files
 - Tile Index spatial file (if used)

- \HUC-8\TIN
 - Uncorrected TIN files
 - Terrain (ESRI ArcGIS format)
 - Tile index spatial file (if used)

- \HUC-8\HTIN
 - Hydrologically corrected TIN files
 - Terrain (ESRI ArcGIS format)
 - Tile Index spatial file (if used)

- \HUC-8\Supplemental Data
 - As-built drawings
 - GIS representation of structures
U.S. Geological Survey
National Geospatial Program
Lidar Guidelines and Base Specification

Version 13 – ILMF 2010

The U.S. Geological Survey National Geospatial Program (NGP) has cooperated in the collection of numerous lidar datasets across the nation for a wide array of applications. These collections have used a variety of specifications and required a diverse set of products, resulting in many incompatible datasets and making cross-project analysis extremely difficult. The need for a single base specification, defining minimum collection parameters and a consistent set of deliverables, is apparent.

Beginning in late 2009, an increase in the rate of lidar data collection due to American Reinvestment and Recovery Act (ARRA) funding for The National Map makes it imperative that a single data specification be implemented to ensure consistency and improve data utility. Although the development of this specification was prompted by the ARRA stimulus funding, the specification is intended to remain durable beyond ARRA funded NGP projects.

The primary intent of this specification is to create consistency across all NGP funded lidar collections, in particular those undertaken in support of the National Elevation Dataset (NED). Unlike most other “lidar specs” which focus on the derived bare-earth DEM product, this specification places unprecedented emphasis on the handling of the source lidar point cloud data. This is to assure that the complete source dataset collected remains intact and viable to support the wide variety of non-DEM science and mapping applications that benefit from lidar technology. In the absence of other comprehensive specifications or standards, it is hoped that this specification will, to the highest degree practical, be adopted by other USGS programs and disciplines, and by other Federal agencies.

Adherence to these minimum specifications ensures that bare-earth Digital Elevation Models (DEMs) derived from lidar data is suitable for ingestion into the NED (National Elevation Dataset) at the 1/9 arc-second resolution, and can be resampled for use in the 1/3 and 1 arc-second NED resolutions. It also ensures that the point cloud source data are handled in a consistent manner by all data providers and delivered to the USGS in clearly defined formats. This allows straightforward ingest into CLICK (Center for Lidar Information, Coordination, and Knowledge) and simplifies subsequent use of the source data by the broader scientific community, particularly with regard to cross-collection analysis.

It must be stressed that this is a base specification, defining minimum parameters. It is expected that local conditions in any given project area, specialized applications for the data, or the preferences of cooperators, may mandate more stringent requirements. The
USGS encourages the collection of more detailed, accurate, or value-added data. A list of common upgrades to the minimum requirements defined here is provided in Appendix 1.

In addition, it is recognized that the USGS NGP also employs lidar technology for specialized scientific research and other projects whose requirements are incompatible with the provisions of this Specification. In such cases, and with properly documented justification supporting the need for the variance, waivers of any part or all of this Specification may be granted.

It is conceivable that in some cases, based on specific topography, land cover, intended application, or other factors, the USGS-NGP may require specifications more rigorous than those defined in this document. It is expected that this would be highly uncommon.

Lidar is still a relatively new technology; adolescent but not fully matured. Advancements and improvements in instrumentation, software, processes, applications, and understanding are constantly being made. It would not be possible to develop a set of guidelines and specifications that address all of these advances. The current document is based on our understanding of and experience with the industry and technology at the present time. Furthermore, we acknowledge that there is a lack of commonly accepted “best practices” for numerous processes and technical assessments (i.e., measurement of NPS, point clustering, classification accuracy, etc.). The USGS encourages the development of such best practices through the appropriate industry and professional governance organizations, and we eagerly await the opportunity to include them in future revisions to this and other similar documents.

It is not the intention of the USGS to stifle the development of the lidar industry, nor to discourage innovation within the technology. Technical alternatives to any part of this document may be submitted with any proposal and will be given due professional consideration.
I. COLLECTION

1. Multiple Discrete Return, capable of at least 3 returns per pulse

 Note: Full waveform collection is both acceptable and welcomed; however, waveform data is regarded as supplemental information. The requirement for deriving and delivering multiple discrete returns remains in force in all cases.

2. Intensity values for each return.

3. Nominal Pulse Spacing (NPS) of 1-2 meters, dependent on the local terrain and landcover conditions. Assessment to be made against single swath, first return data located within the geometrically usable center portion (typically ~90%) of each swath. Average along-track and cross-track point spacings should be comparable.

4. Collections designed to achieve the NPS through swath overlap or multiple passes are generally discouraged. Such collections may be permitted with prior approval.

5. Data Voids [areas => (4*NPS)2, measured using 1st-returns only] within a single swath are not acceptable, except:
 - where caused by water bodies
 - where caused by areas of low near infra-red (NIR) reflectivity such as asphalt or composition roofing.
 - where appropriately filled-in by another swath

6. The spatial distribution of geometrically usable points is expected to be uniform and free from clustering. In order to ensure uniform densities throughout the data set:
 - A regular grid, with cell size equal to the design NPS*2 will be laid over the data.
 - At least 90% of the cells in the grid shall contain at least 1 lidar point.
 - Assessment to be made against single swath, first return data located within the geometrically usable center portion (typically ~90%) of each swath.
 - Acceptable data voids identified previously in this specification are excluded.

 Note: This requirement may be relaxed in areas of significant relief where it is impractical to maintain a consistent NPS.

7. Scan Angle: Total FOV should not exceed 40° (+/-20° from nadir) USGS quality assurance on collections performed using scan angles wider than 34° will be particularly rigorous in the edge-of-swath areas. Horizontal and vertical accuracy shall remain within the requirements as specified below.

 Note: This requirement is primarily applicable to oscillating mirror lidar systems. Other instrument technologies may be exempt from this requirement.
8. Vertical Accuracy of the lidar data will be assessed and reported in accordance with the guidelines developed by the NDEP and subsequently adopted by the ASPRS. The complete guidelines may be found in Section 1.5 of the Guidelines document. See:

Vertical accuracy requirements using the NDEP/ASPRS methodology are:

- FVA <= 24.5cm ACCz, 95% (12.5cm RMSEz)
- CVA <= 36.3cm, 95th Percentile
- SVA <= 36.3cm, 95th Percentile

- Accuracy for the lidar point cloud data is to be reported independently from accuracies of derivative products (i.e., DEMs). Point cloud data accuracy is to be tested against a TIN constructed from bare-earth lidar points.
- Each landcover type representing 10% or more of the total project area must be tested and reported as an SVA.
- For SVAs, the value is provided as a target. It is understood that in areas of dense vegetation, swamps, or extremely difficult terrain, this value may be exceeded. Overall CVA requirements must be met in spite of "busts" in individual SVAs.

Note: These requirements may be relaxed in cases:

- where there exists a demonstrable and substantial increase in cost to obtain this accuracy.
- where an alternate specification is needed to conform to previously contracted phases of a single larger overall collection effort, i.e., multi-year statewide collections, etc.
- where the USGS agrees that it is reasonable and in the best interest of all stakeholders to use an alternate specification.

9. Relative accuracy <=7cm RMSEZ within individual swaths; <=10cm RMSEz within swath overlap (between adjacent swaths).

10. Flightline overlap 10% or greater, as required to ensure there are no data gaps between the usable portions of the swaths. Collections in high relief terrain are expected to require greater overlap. Any data with gaps between the geometrically usable portions of the swaths will be rejected.

11. Collection Area: Defined Project Area, buffered by a minimum of 100 meters.

12. Collection Conditions:

- Atmospheric: Cloud and fog-free between the aircraft and ground
- Ground:
 - Snow free. Very light, undrifted snow may be acceptable in special cases, with prior approval.
o No unusual flooding or inundation, except in cases where the goal of the collection is to map the inundation.

- Vegetation: Leaf-off is preferred, however:
 o As numerous factors will affect vegetative condition at the time of any collection, the USGS NGP only requires that penetration to the ground must be adequate to produce an accurate and reliable bare-earth surface suitable for incorporation into the 1/9 (3-meter) NED.
 o Collections for specific scientific research projects may be exempted from this requirement, with prior approval.

II. DATA PROCESSING and HANDLING

1. All processing should be carried out with the understanding that all point deliverables are required to be in fully compliant LAS format, v1.2 or v1.3. Data producers are encouraged to review the LAS specification in detail.

2. If full waveform data is collected, delivery of the waveform packets is required. LAS v1.3 deliverables with waveform data are to use external “auxiliary” files with the extension “.wdp” for the storage of waveform packet data. See the LAS v1.3 Specification for additional information.

3. GPS times are to be recorded as Adjusted GPS Time, at a precision sufficient to allow unique timestamps for each pulse. Adjusted GPS Time is defined to be Standard (or satellite) GPS time minus 1*10⁹. See the LAS Specification for more detail.

4. Horizontal datum shall be referenced to the North American Datum of 1983/HARN adjustment. Vertical datum shall be referenced to the North American Vertical Datum of 1988 (NAVD 88). The most recent NGS-approved Geoid model shall be used to perform conversions from ellipsoidal heights to orthometric heights.

5. The USGS preferred Coordinate Reference System for the Conterminous United States (CONUS) is: UTM, NAD83, Meters. Each discrete project is to be processed using the predominant UTM zone for the overall collection area.

State Plane Coordinate Reference Systems that have been accepted by the European Petroleum Survey Group (EPSG) and that are recognized by ESRI GIS software may be used by prior agreement with the USGS.

Alternative projected coordinate systems for collections in Alaska, Hawaii, and other areas Outside the Conterminous United States (OCONUS) must be approved by the USGS prior to collection.

6. All references to the Unit of Measure “Feet” or “Foot” must specify either “International” or “U.S. Survey”

7. Long swaths (those which result in a LAS file larger than 2GB) should be split into segments no greater than 2GB each. Each segment will henceforth be
regarded as a unique swath and shall be assigned a unique File Source ID. Other
swath segmentation approaches may be acceptable, with prior approval. Renaming schemes for split swaths are at the discretion of the data producer. The Processing Report shall include detailed information on swath segmentation sufficient to allow reconstruction of the original swaths if needed.

8. Each swath shall be assigned a unique File Source ID. The Point Source ID field for each point within each LAS swath file shall be set equal to the File Source ID prior to any processing of the data. See the LAS Specification.

9. Point Families (multiple return “children” of a single “parent” pulse) shall be maintained intact through all processing prior to tiling. Multiple returns from a given pulse shall be stored in sequential (collected) order.

10. All collected swaths are to be delivered as part of the “Raw Data Deliverable”. This includes calibration swaths and cross-ties. All collected points are to be delivered. No points are to be deleted from the swath LAS files. This in no way requires or implies that calibration swath data are to be included in product generation. Excepted from this are extraneous data outside of the buffered project area (aircraft turns, transit between the collection area and airport, transit between fill-in areas, etc.). These points may be permanently removed.

11. Outliers, blunders, noise points, geometrically unreliable points near the extreme edge of the swath, and other points deemed unusable are to be identified using the “Withheld” flag, as defined in the LAS specification.
 - This applies primarily to points which are identified during pre-processing or through automated post-processing routines.
 - If processing software is not capable of populating the “Withheld” bit, these points may be identified using Class=11.
 - “Noise points” subsequently identified during manual Classification and Quality Assurance/Quality Control (QA/QC) may be assigned the standard LAS classification value for “Noise” (Class=7), regardless of whether the noise is “low” or “high” relative to the ground surface.

12. The ASPRS/LAS “Overlap” classification (Class=12) shall not be used. ALL points not identified as “Withheld” are to be classified.
 - If overlap points are required to be differentiated by the data producer or cooperating partner, they must be identified using a method that does not interfere with their classification, such as:
 - Overlap points are tagged using Bit:0 of the User Data byte, as defined in the LAS specification. (SET=Overlap).
 - Overlap points are classified using the Standard Class values + 16.
 - Other techniques as agreed upon in advance
 - The technique utilized must be clearly described in the project metadata files.
Note: A standard bit setting for identification of overlap points has been planned for a future version of LAS.

13. Positional Accuracy Validation: The absolute and relative accuracy of the data, both horizontal and vertical, and relative to known control, shall be verified prior to classification and subsequent product development. This validation is obviously limited to the Fundamental Vertical Accuracy, measured in clear, open areas. A detailed report of this validation is a required deliverable.

14. Classification Accuracy: It is expected that due diligence in the classification process will produce data that meets the following test:

 Within any 1km x 1km area, no more than 2% of non-withheld points will possess a demonstrably erroneous classification value.

 This includes points in Classes 0 and 1 that should correctly be included in a different Class as required by the contract.

 Note: This requirement may be relaxed to accommodate collections in areas where the USGS agrees classification to be particularly difficult.

15. Classification Consistency: Point classification is to be consistent across the entire project. Noticeable variations in the character, texture, or quality of the classification between tiles, swaths, lifts, or other non-natural divisions will be cause for rejection of the entire deliverable.

16. Tiles:

 Note: This section assumes a projected coordinate reference system.

 - A single non-overlapped tiling scheme will be established and agreed upon by the data producer and the USGS prior to collection. This scheme will be used for all tiled deliverables.
 - Tile size must be an integer multiple of the cell size of raster deliverables.
 - Tiles must be sized using the same units as the coordinate system of the data.
 - Tiled deliverables shall conform to the tiling scheme, without added overlap.
 - Tiled deliverables shall edge-match seamlessly and without gaps in both the horizontal and vertical.
III. HYDRO-FLATTENING REQUIREMENTS

Note: Please refer to Appendix 2 for reference information on hydro-flattening.

Hydro-flattening pertains only to the creation of derived DEMs. No manipulation of or changes to originally computed lidar point elevations are to be made. Breaklines may be used to help classify the point data.

1. Inland Ponds and Lakes:
 - ~2-acre or greater surface area (~350’ diameter for a round pond) at the time of collection.
 - Flat and level water bodies (single elevation for every bank vertex defining a given water body).
 - The entire water surface edge must be at or below the immediately surrounding terrain.
 - Long impoundments such as reservoirs, inlets, and fjords, whose water surface elevations drop when moving downstream, should be treated as rivers.

2. Inland Streams and Rivers:
 - 100’ nominal width: This should not unnecessarily break a stream or river into multiple segments. At times it may squeeze slightly below 100’ for short segments. Data producers should use their best professional judgment.
 - Flat and level bank-to-bank (perpendicular to the apparent flow centerline); gradient to follow the immediately surrounding terrain.
 - The entire water surface edge must be at or below the immediately surrounding terrain.
 - Streams channels should break at road crossings (culvert locations). These road fills should not be removed from DEM. However, streams and rivers should not break at elevated bridges. Bridges should be removed from DEM. When the identification of a feature as a bridge or culvert cannot be made reliably, the feature should be regarded as a culvert.

3. Non-Tidal Boundary Waters:
 - Represented only as an edge or edges within the project area; collection does not include the opposing shore.
 - The entire water surface edge must be at or below the immediately surrounding terrain.
 - The elevation along the edge or edges should behave consistently throughout the project. May be a single elevation (i.e., lake) or gradient (i.e., river), as appropriate.
4. Tidal Waters:

- Water bodies such as oceans, seas, gulfs, bays, inlets, salt marshes, very large lakes, etc. Includes any water body that is affected by tidal variations.

- Tidal variations over the course of a collection or between different collections, will result in discontinuities along shorelines. This is considered normal and these “anomalies” should be retained. The final DEM should represent as much ground as the collected data permits.

- Variations in water surface elevation resulting in tidal variations during a collection should NOT be removed or adjusted, as this would require either the removal of valid, measured ground points or the introduction of unmeasured ground into the DEM. The USGS NGP priority is on the ground surface, and accepts there may be occasional, unavoidable irregularities in water surface.

- Scientific research projects in coastal areas often have very specific requirements with regard to how tidal land-water boundaries are to be handled. For such projects, the requirements of the research will take precedence.

Cooperating partners may require collection and integration of single-line streams within their lidar projects. While the USGS does not require these breaklines be collected or integrated, it does require that if used and incorporated into the DEMs, the following guidelines are met:

1. All vertices along single-line stream breaklines are at or below the immediately surrounding terrain.

2. Single-line stream breaklines are not to be used to introduce cuts into the DEM at road crossings (culverts), dams, or other such features. This is hydro-enforcement and as discussed in Section VI, creates a non-traditional DEM that is not suitable for integration into the NED.

3. All breaklines used to modify the surface are to be delivered to the USGS with the DEMs.

The USGS does not require any particular process or methodology be used for breakline collection, extraction, or integration. However, the following general guidelines must be adhered to:

1. Bare-earth lidar points that are in close proximity breaklines should be excluded from the DEM generation process. This is analogous to the removal of masspoints for the same reason in a traditional photogrammetrically compiled DTM.

The proximity threshold for reclassification as “Ignored Ground” is at the discretion of the data producer, but in general should be approximately equal to the NPS.
2. These points are to be retained in the delivered lidar point dataset and shall be reclassified as “Ignored Ground” (class value = 10) so that they may be subsequently identified.

3. Delivered data must be sufficient for the USGS to effectively recreate the delivered DEMs using the lidar points and breaklines without significant further editing.

IV. DELIVERABLES

The USGS shall have unrestricted rights to all delivered data and reports, which will be placed in the public domain. This specification places no restrictions on the data provider's rights to resell data or derivative products as they see fit.

1. Metadata

 Note: “Metadata” refers to all descriptive information about the project. This includes textual reports, graphics, supporting shapefiles, and FGDC-compliant metadata files.

 - Collection Report detailing mission planning and flight logs.
 - Survey Report detailing the collection of control and reference points used for calibration and QA/QC.
 - Processing Report detailing calibration, classification, and product generation procedures including methodology used for breakline collection and hydro-flattening (see Sections III and Appendix 1 for more information on hydro-flattening).
 - QA/QC Reports (detailing the analysis, accuracy assessment and validation of:
 - The point data (absolute, within swath, and between swath)
 - The bare-earth surface (absolute)
 - Other optional deliverables as appropriate
 - Control and Calibration points: All control and reference points used to calibrate, control, process, and validate the lidar point data or any derivative products are to be delivered.
 - Geo-referenced, digital spatial representation of the precise extents of each delivered dataset. This should reflect the extents of the actual lidar source or derived product data, exclusive of Triangular Irregular Network (TIN) artifacts or raster NODATA areas. A union of tile boundaries or minimum bounding rectangle is not acceptable. ESRI Polygon shapefile or geodatabase is preferred.
 - Product metadata (FGDC compliant, XML format metadata). One file for each:
- Project
- Lift
- Tiled deliverable product group (classified point data, bare-earth DEMs, breaklines, etc.). Metadata files for individual tiles are not required.
 - FGDC compliant metadata must pass the USGS metadata parser (“mp”) with no errors or warnings.

2. Raw Point Cloud
 - All returns, all collected points, fully calibrated and adjusted to ground, by swath.
 - Fully compliant LAS v1.2 or v1.3, Point Record Format 1, 3, 4, or 5
 - LAS v1.3 deliverables with waveform data are to use external “auxiliary” files with the extension “.wdp” for the storage of waveform packet data. See the LAS v1.3 Specification for additional information.
 - Georeference information included in all LAS file headers
 - GPS times are to be recorded as Adjusted GPS Time, at a precision sufficient to allow unique timestamps for each pulse.
 - Intensity values (native radiometric resolution)
 - 1 file per swath, 1 swath per file, file size not to exceed 2GB, as described in Section II, Paragraph 7.

3. Classified Point Cloud

 Note: Delivery of a classified point cloud is a standard requirement for USGS NGP lidar projects. Specific scientific research projects may be exempted from this requirement.

 - Fully compliant LAS v1.2 or v1.3, Point Record Format 1, 3, 4, or 5
 - LAS v1.3 deliverables with waveform data are to use external “auxiliary” files with the extension “.wdp” for the storage of waveform packet data. See the LAS v1.3 Specification for additional information.
 - Georeference information included in LAS header
 - GPS times are to be recorded as Adjusted GPS Time, at a precision sufficient to allow unique timestamps for each pulse.
 - Intensity values (native radiometric resolution)
 - Tiled delivery, without overlap (tiling scheme TBD)
Classification Scheme (minimum):

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Processed, but unclassified</td>
</tr>
<tr>
<td>2</td>
<td>Bare-earth ground</td>
</tr>
<tr>
<td>7</td>
<td>Noise (low or high, manually identified, if needed)</td>
</tr>
<tr>
<td>9</td>
<td>Water</td>
</tr>
<tr>
<td>10</td>
<td>Ignored Ground (Breakline Proximity)</td>
</tr>
<tr>
<td>11</td>
<td>Withheld (if the “Withheld” bit is not implemented in processing software)</td>
</tr>
</tbody>
</table>

Note: Class 7, Noise, is included as an adjunct to the “Withheld” bit. All “noise points” are to be identified using one of these to methods.

Note: Class 10, Ignored Ground, is for points previously classified as bare-earth but whose proximity to a subsequently added breakline requires that it be excluded during Digital Elevation Model (DEM) generation.

4. Bare Earth Surface (Raster DEM)

Note: Delivery of a bare-earth DEM is a standard requirement for USGS NGP lidar projects. Specific scientific research projects may be exempted from this requirement.

- Cell Size no greater than 3 meters or 10 feet, and no less than the design Nominal Pulse Spacing (NPS).
- Delivery in an industry-standard, GIS-compatible, 32-bit floating point raster format (ERDAS .IMG preferred)
- Georeference information shall be included in each raster file
- Tiled delivery, without overlap
- DEM tiles will show no edge artifacts or mismatch. A quilted appearance in the overall project DEM surface, whether caused by differences in processing quality or character between tiles, swaths, lifts, or other non-natural divisions, will be cause for rejection of the entire DEM deliverable.
- Void areas (i.e., areas outside the project boundary but within the tiling scheme) shall be coded using a unique “NODATA” value. This value shall be identified in the appropriate location within the file header.
- Vertical Accuracy of the bare earth surface will be assessed and reported in accordance with the guidelines developed by the NDEP and subsequently adopted by the ASPRS. The complete guidelines may be found in Section 1.5 of the Guidelines document. See:

Vertical accuracy requirements using the NDEP/ASPRS methodology are:

- FVA ≤ 24.5 cm ACCz, 95% (12.5 cm RMSEz)
- CVA ≤ 36.3 cm, 95th Percentile
- SVA ≤ 36.3 cm, 95th Percentile

All QA/QC analysis materials and results are to be delivered to the USGS.

- Depressions (sinks), natural or man-made, are **not** to be filled (as in hydro-conditioning and hydro-enforcement).

- Water Bodies (ponds and lakes), wide streams and rivers (“double-line”), and other non-tidal water bodies as defined in Section III are to be hydro-flattened within the DEM. Hydro-flattening shall be applied to all water impoundments, natural or man-made, that are larger than ~2 acre in area (equivalent to a round pond ~350’ in diameter), to all streams that are nominally wider than 100’, and to all non-tidal boundary waters bordering the project area regardless of size. The methodology used for hydro-flattening is at the discretion of the data producer.

 Note: Please refer to the Sections III and VI for detailed discussions of hydro-flattening.

5. **Breaklines**

 Note: Delivery of the breaklines used in hydro-flattening is a standard requirement for USGS NGP lidar projects. Specific scientific research projects may be exempted from this requirement. If hydro-flattening is achieved through other means, this section may not apply.

- All breaklines developed for use in hydro-flattening shall be delivered as an ESRI feature class (PolylineZ or PolygonZ format, as appropriate to the type of feature represented and the methodology used by the data producer). Shapefile or geodatabase is preferred.

- Each feature class or shapefile will include properly formatted and accurate georeference information in the standard location. All shapefiles must include the companion .prj file.

- Breaklines must use the same coordinate reference system (horizontal and vertical) and units as the lidar point delivery.

- Breakline delivery may be as a continuous layer or in tiles, at the discretion of the data producer. Tiled deliveries must edge-match seamlessly in both the horizontal and vertical.
APPENDIX 1
COMMON DATA UPGRADES

1. Independent 3rd-Party QA/QC by another AE Contractor (encouraged)
2. Higher Nominal Pulse Spacing (point density)
3. Increased Vertical Accuracy
4. Full Waveform collection and delivery
5. Additional Environmental Constraints
 - Tidal coordination, flood stages, crop/plant growth cycles, etc.
 - Shorelines corrected for tidal variations within a collection
6. Top-of Canopy (First-Return) Raster Surface (tiled). Raster representing the highest return within each cell is preferred.
7. Intensity Images (8-bit gray scale, tiled)
8. Detailed Classification (additional classes):

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Low vegetation</td>
</tr>
<tr>
<td>4</td>
<td>Medium vegetation (use for single vegetation class)</td>
</tr>
<tr>
<td>5</td>
<td>High vegetation</td>
</tr>
<tr>
<td>6</td>
<td>Buildings, bridges, other man-made structures</td>
</tr>
<tr>
<td>n</td>
<td>additional Class(es) as agreed upon in advance</td>
</tr>
</tbody>
</table>
9. Hydro-Enforced and/or Hydro-Conditioned DEMs
10. Breaklines (PolylineZ and PolygonZ) for single-line hydrographic features (narrow streams not collected as double-line, culverts, etc.), including appropriate integration into delivered DEMs
11. Breaklines (PolylineZ and PolygonZ) for other features (TBD), including appropriate integration into delivered DEMs
12. Extracted Buildings (PolygonZ): Footprints with maximum elevation and/or height above ground as an attribute.
13. Other products as defined by requirements and agreed upon in advance of funding commitment.
APPENDIX 2
HYDRO-FLATTENING REFERENCE

The subject of modifications to lidar-based DEMs is somewhat new, and although authoritative references are available, there remains significant variation in the understanding of the topic across the industry. The following material was developed to provide a definitive reference on the subject only as it relates to the creation of DEMs intended to be integrated into the USGS NED. The information presented here is not meant to supplant other reference materials and it should not be considered authoritative beyond its intended scope.

The term “hydro-flattening” is also new, coined for this document and to convey our specific needs. It is not, at this time, a known or accepted term across the industry. It is our hope that its use and acceptance will expand beyond the USGS with the assistance of other industry leaders.

Hydro-flattening of DEMs is predominantly accomplished through the use of breaklines, and this method is considered standard. Although other techniques may exist to achieve similar results, this section assumes the use of breaklines. The USGS does not require the use of any specific technique.

The Digital Elevation Model Technologies and Applications: The DEM Users Manual, 2nd Edition (Maune et al., 2007) provides the following definitions related to the adjustment of DEM surfaces for hydrologic analyses:

1. **Hydrologically-Conditioned (Hydro-Conditioned)** – Processing of a DEM or TIN so that the flow of water is continuous across the entire terrain surface, including the removal of all spurious sinks or pits. The only sinks that are retained are the real ones on the landscape. Whereas “hydrologically-enforced” is relevant to drainage features that are generally mapped, “hydrologically-conditioned” is relevant to the entire land surface and is done so that water flow is continuous across the surface, whether that flow is in a stream channel or not. The purpose for continuous flow is so that relationships/links among basins/catchments can be known for large areas. This term is specifically used when describing EDNA (see Chapter 4), the dataset of NED derivatives made specifically for hydrologic modeling purposes.

2. **Hydrologically-Enforced (Hydro-Enforced)** – Processing of mapped water bodies so that lakes and reservoirs are level and so that streams flow downhill. For example, a DEM, TIN or topographic contour dataset with elevations removed from the tops of selected drainage structures (bridges and culverts) so as to depict the terrain under those structures. Hydro-enforcement enables hydrologic and hydraulic models to depict water flowing under these structures, rather than appearing in the computer model to be dammed by them because of road deck elevations higher than the water levels. Hydro-enforced TINs also utilize breaklines along shorelines and stream centerlines, for example, where these breaklines form the edges of TIN triangles along the alignment of drainage features. Shore breaklines for streams would be 3-D breaklines...
with elevations that decrease as the stream flows downstream; however, shore breaklines for lakes or reservoirs would have the same elevation for the entire shoreline if the water surface is known or assumed to be level throughout. See figures 1.21 through 1.24. See also the definition for “hydrologically-conditioned” which has a slightly different meaning.

While these are important and useful modifications, they both result in surfaces that differ significantly from a traditional DEM. A “hydro-conditioned” surface has had its sinks filled and may have had its water bodies flattened. This is necessary for correct flow modeling within and across large drainage basins. “Hydro-enforcement” extends this conditioning by requiring water bodies be leveled and streams flattened with the appropriate downhill gradient, and also by cutting through road crossings over streams (culvert locations) to allow a continuous flow path for water within the drainage. Both treatments result in a surface on which water behaves as it physically does in the real world, and both are invaluable for specific types of hydraulic and hydrologic (H&H) modeling activities. Neither of these treatments is typical of a traditional DEM surface.

A traditional DEM such as the NED, on the other hand, attempts to represent the ground surface more the way a bird, or person in an airplane, sees it. On this surface, natural depressions exist, and road fills create apparent sinks because the road fill and surface is depicted without regard to the culvert beneath. Bridges, it should be noted, are removed in most all types of DEMs because they are man-made, above-ground structures that have been added to the landscape.

Note: DEMs developed solely for orthophoto production may include bridges, as their presence can prevent the “smearing” of structures and reduce the amount of post-production correction of the final orthophoto. These are “special use DEMs” and are not relevant to this discussion.

For years, raster Digital Elevation Models (DEMs), have been created from a Digital Surface Model (DSM) of masspoints and breaklines, which in turn were created through photogrammetric compilation from stereo imagery. Photogrammetric DSMs inherently contain breaklines defining the edges of water bodies, coastlines, single-line streams, and double-line streams and rivers, as well as numerous other surface features.

Lidar technology, however, does not inherently collect the breaklines necessary to produce traditional DEMs. Breaklines have to be developed separately through a variety of techniques, and either used with the lidar points in the generation of the DEM, or applied as a correction to DEMs generated without breaklines.

In order to maintain the consistent character of the NED as a traditional DEM, the USGS NGP requires that all DEMs delivered have their inland water bodies flattened. This does not imply that a complete network of topologically correct hydrologic breaklines be developed for every dataset; only those breaklines necessary to ensure that the conditions defined in Section III exist in the final DEM.
APPENDIX 3
SAMPLE METADATA TEMPLATE

[to be added]
APPENDIX 4
REFERENCES

USGS NED Website: www.ned.usgs.gov
USGS CLICK Website: www.lidar.cr.usgs.gov
MP-Metadata Parser: http://geology.usgs.gov/tools/metadata