NRCS Accessibility Statement

The Natural Resources Conservation Service (NRCS) is committed to making its information accessible to all of its customers and employees. If you are experiencing accessibility issues and need assistance, please contact our Helpdesk by phone at 1-800-457-3642 or by e-mail at ServiceDesk-FTC @ftc.usda.gov. For assistance with publications that include maps, graphs, or similar forms of information, you may also wish to contact our State or local office. You can locate the correct office and phone number at http://offices.sc.egov.usda.gov/locator/app.

United States
Department of
Agriculture

Natural
Resources
Conservation
Service

In cooperation with The Connecticut Agricultural Experiment Station, The Storrs
Agricultural Experiment Station, and Connecticut Department of
Environmental Protection

Soil Survey of the State of Connecticut

How To Use This Soil Survey

General Soil Map

The general soil map associated with this publication is the Digital General Soil Map of the United States, formerly known as STATSGO. This map shows broad areas with a distinctive pattern of soils, relief, and drainage. The map is available for download from the Soil Data Mart of the Natural Resources Conservation Service, accessed at http:// soils.usda.gov.

To find information about your area of interest, locate that area on the map, identify the name of the map unit in the area, then refer to the section General Soil Map Units for a general description of the soils in your area.

Detailed Soil Maps

The detailed soil maps can be useful in planning the use and management of small areas.

To find information about your area of interest, locate that area on the Index to Map Sheets. Note the number of the map sheet and turn to that sheet.

Locate your area of interest on the map sheet. Note the map unit symbols that are in that area. Turn to the Contents, which lists the map units by symbol and name and shows the page where each map unit is described.

The Contents shows which table has data on a specific land use for each detailed soil map unit. Also see the Contents for sections of this publication that may address your specific needs.

MAP SHEET

This soil survey is a publication of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (formerly the Soil Conservation Service) has leadership for the Federal part of the National Cooperative Soil Survey.

Earlier soil surveys of the eight Connecticut counties (Fairfield, Hartford, Litchfield, Middlesex, New Haven, New London, Tolland, and Windham) were published by the United States Department of Agriculture Soil Conservation Service between 1958 and 1983. This survey supercedes the earlier ones and provides additional information and maps that show the soil in greater detail. Major fieldwork for this soil survey was completed in 2002. Soil names and descriptions were approved in 2003. Unless otherwise indicated, statements in this publication refer to conditions in the survey area in 2003. This survey was made cooperatively by the Natural Resources Conservation Service and the Connecticut Agricultural Experiment Station, the Storrs Agricultural Experiment Station, and the Connecticut Department of Environmental Protection. Partial funding for this survey was provided by the United States Environmental Protection Agency and the Connecticut Department of Transportation.

Soil maps in this survey may be copied without permission. Enlargement of these maps, however, could cause misunderstanding of the detail of mapping. If enlarged, maps do not show the small areas of contrasting soils that could have been shown at a larger scale.

The United States Department of Agriculture (USDA) prohibits discrimination in all of its programs on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact the USDA's TARGET Center at 202-720-2600 (voice or TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue SW, Washington, DC 202509410, or call 202-720-5964 (voice or TDD). USDA is an equal opportunity provider and employer.

Cover: This stone wall, located in Woodstock, Connecticut, is in an area of Woodbridge fine sandy loam. Old stone walls in the woods indicate that the land was cleared for agriculture in the past.

Additional information about the Nation's natural resources is available online from the Natural Resources Conservation Service at http://www.nrcs.usda.gov.

Contents

How To Use This Soil Survey i
Foreword xV
General Nature of the Survey Area 1
How This Survey Was Made 7
General Soil Map Units 9
S1438. Charlton-Canton-Paxton 9
S1439. Charlton-Chatfield-Hollis 10
S1440. Woodbridge-Paxton-Ridgebury 10
S1441. Hinckley-Agawam-Merrimac 11
S1442. Catden-Merrimac-Saco 11
S1443. Urban land-Udorthents-Cheshire 12
S1444. Stockbridge-Charlton-Mudgepond 12
S1445. Copake-Groton-Hero 13
S1446. Windsor-Merrimac-Hinckley 13
S1447. Windsor-Agawam-Haven 14
S1448. Brancroft-Scitico-Shaker 14
S1449. Brookfield-Brimfield-Leicester 15
S1451. Holyoke-Rock outcrop-Yalesville 15
S1452. Cheshire-Yalesville-Wethersfield 16
S1453. Narragansett-Cheshire-Wapping 16
S1454. Wethersfield-Ludlow-Wilbraham 17
S1455. Manchester-Branford-Rippowam 17
S1456. Manchester-Penwood-Hartford 18
S1457. Wethersfield-Berlin-Belgrade 18
S1458. Winooski-Hadley-Occum 18
S3111. Macomber-Taconic-Lanesboro 19
S3114. Copake-Hero-Halsey 20
S3115. Hinckley-Windsor-Merrimac 21
S3120. Wethersfield-Meckesville-Scarboro 21
S3121. Brookfield-Brimfield-Paxton 22
S3122. Paxton-Woodbridge-Hollis 22
S3136. Hollis-Chatfield-Rock outcrop 23
S6623. Charlton-Canton-Sutton 24
S6625. Woodbridge-Paxton-Ridgebury 24
S6627. Carlisle-Adrian-Scarboro 25
S9569. Bice-Shelburne-Ashfield 25
S9570. Bice-Millsite-Westminster 26
S9571. Ashfield-Shelburne-Loonmeadow 27
Detailed Soil Map Units 29
2—Ridgebury fine sandy loam 30
3—Ridgebury, Leicester, and Whitman soils, extremely stony 31
4-Leicester fine sandy loam 33
5-Wilbraham silt loam 34
6-Wilbraham and Menlo soils, extremely stony 35
7-Mudgepond silt loam 37
8-Mudgepond and Alden soils, extremely stony 38
9-Scitico, Shaker, and Maybid soils 39
10—Raynham silt loam 41
12-Raypol silt loam 42
13-Walpole sandy loam 44
14-Fredon silt loam 45
15-Scarboro muck 46
16-Halsey silt loam 47
17-Timakwa and Natchaug soils 48
18-Catden and Freetown soils 50
20A-Ellington silt loam, 0 to 5 percent slopes 52
21A-Ninigret and Tisbury soils, 0 to 5 percent slopes 53
22A-Hero gravelly loam, 0 to 3 percent slopes 55
22B-Hero gravelly loam, 3 to 8 percent slopes 56
23A-Sudbury sandy loam, 0 to 5 percent slopes 57
24A-Deerfield loamy fine sand, 0 to 3 percent slopes 58
25A-Brancroft silt loam, 0 to 3 percent slopes 59
25B-Brancroft silt loam, 3 to 8 percent slopes 60
25C-Brancroft silt loam, 8 to 15 percent slopes 62
26A-Berlin silt loam, 0 to 3 percent slopes 63
26B-Berlin silt loam, 3 to 8 percent slopes 64
27A-Belgrade silt loam, 0 to 5 percent slopes 65
28A-Elmridge fine sandy loam, 0 to 3 percent slopes 66
28B-Elmridge fine sandy loam, 3 to 8 percent slopes 67
29A-Agawam fine sandy loam, 0 to 3 percent slopes 68
29B-Agawam fine sandy loam, 3 to 8 percent slopes 69
29C-Agawam fine sandy loam, 8 to 15 percent slopes 70
30A-Branford silt loam, 0 to 3 percent slopes 72
30B-Branford silt loam, 3 to 8 percent slopes 73
30C-Branford silt loam, 8 to 15 percent slopes 74
31A-Copake fine sandy loam, 0 to 3 percent slopes 75
31B-Copake fine sandy loam, 3 to 8 percent slopes 76
31C-Copake gravelly loam, 8 to 15 percent slopes 77
32A-Haven and Enfield soils, 0 to 3 percent slopes 78
32B-Haven and Enfield soils, 3 to 8 percent slopes 80
32C-Haven and Enfield soils, 8 to 15 percent slopes 81
33A-Hartford sandy loam, 0 to 3 percent slopes 83
33B-Hartford sandy loam, 3 to 8 percent slopes 85
34A-Merrimac sandy loam, 0 to 3 percent slopes 86
34B-Merrimac sandy loam, 3 to 8 percent slopes 87
34C-Merrimac sandy loam, 8 to 15 percent slopes 88
35A-Penwood loamy sand, 0 to 3 percent slopes 89
35B-Penwood loamy sand, 3 to 8 percent slopes 90
36A-Windsor loamy sand, 0 to 3 percent slopes 91
36B-Windsor loamy sand, 3 to 8 percent slopes 92
36C-Windsor loamy sand, 8 to 15 percent slopes 93
37A-Manchester gravelly sandy loam, 0 to 3 percent slopes 94
37C-Manchester gravelly sandy loam, 3 to 15 percent slopes 96
37E-Manchester gravelly sandy loam, 15 to 45 percent slopes 97
38A-Hinckley gravelly sandy loam, 0 to 3 percent slopes 98
38 C -Hinckley gravelly sandy loam, 3 to 15 percent slopes 99
38 E -Hinckley gravelly sandy loam, 15 to 45 percent slopes 100
39A-Groton gravelly sandy loam, 0 to 3 percent slopes 102
39C-Groton gravelly sandy loam, 3 to 15 percent slopes 103
39E-Groton gravelly sandy loam, 15 to 45 percent slopes 104
40A—Ludlow silt loam, 0 to 3 percent slopes 105
40B—Ludlow silt loam, 3 to 8 percent slopes 106
41B—Ludlow silt loam, 2 to 8 percent slopes, very stony 107
42C—Ludlow silt loam, 2 to 15 percent slopes, extremely stony 109
43A—Rainbow silt loam, 0 to 3 percent slopes 110
43B—Rainbow silt loam, 3 to 8 percent slopes 111
44B—Rainbow silt loam, 2 to 8 percent slopes, very stony 112
45A—Woodbridge fine sandy loam, 0 to 3 percent slopes 113
45B—Woodbridge fine sandy loam, 3 to 8 percent slopes 114
45C-Woodbridge fine sandy loam, 8 to 15 percent slopes 116
46B-Woodbridge fine sandy loam, 2 to 8 percent slopes, very stony 117
46C-Woodbridge fine sandy loam, 8 to 15 percent slopes, very stony 118
47C-Woodbridge fine sandy loam, 2 to 15 percent slopes, extremely stony 119
48B—Georgia and Amenia silt loams, 2 to 8 percent slopes 121
48C-Georgia and Amenia silt loams, 8 to 15 percent slopes 123
49B-Georgia and Amenia silt loams, 3 to 8 percent slopes, very stony 124
49C-Georgia and Amenia silt loams, 8 to 15 percent slopes, very stony 126
50A-Sutton fine sandy loam, 0 to 3 percent slopes 128
50B—Sutton fine sandy loam, 3 to 8 percent slopes 129
51B-Sutton fine sandy loam, 2 to 8 percent slopes, very stony 130
52C—Sutton fine sandy loam, 2 to 15 percent slopes, extremely stony 131
53A-Wapping very fine sandy loam, 0 to 3 percent slopes 132
53B-Wapping very fine sandy loam, 3 to 8 percent slopes 134
54B-Wapping very fine sandy loam, 2 to 8 percent slopes, very stony 135
55A-Watchaug fine sandy loam, 0 to 3 percent slopes 136
55B-Watchaug fine sandy loam, 3 to 8 percent slopes 137
56B-Watchaug fine sandy loam, 2 to 8 percent slopes, very stony 138
57B—Gloucester gravelly sandy loam, 3 to 8 percent slopes 139
57C-Gloucester gravelly sandy loam, 8 to 15 percent slopes 140
57D-Gloucester gravelly sandy loam, 15 to 25 percent slopes 142
58B—Gloucester gravelly sandy loam, 3 to 8 percent slopes, very stony 143
58C-Gloucester gravelly sandy loam, 8 to 15 percent slopes, very stony 144
59C—Gloucester gravelly sandy loam, 3 to 15 percent slopes, extremely stony 145
59D—Gloucester gravelly sandy loam, 15 to 35 percent slopes, extremely stony 146
60B-Canton and Charlton soils, 3 to 8 percent slopes 147
60C-Canton and Charlton soils, 8 to 15 percent slopes 149
60D-Canton and Charlton soils, 15 to 25 percent slopes 151
61B-Canton and Charlton soils, 3 to 8 percent slopes, very stony 152
61C-Canton and Charlton soils, 8 to 15 percent slopes, very stony 154
62C-Canton and Charlton soils, 3 to 15 percent slopes, extremely stony 156
62D-Canton and Charlton soils, 15 to 35 percent slopes, extremely stony 157
63B-Cheshire fine sandy loam, 3 to 8 percent slopes 159
63C-Cheshire fine sandy loam, 8 to 15 percent slopes 160
63D—Cheshire fine sandy loam, 15 to 25 percent slopes 161
64B-Cheshire fine sandy loam, 3 to 8 percent slopes, very stony 162
64C-Cheshire fine sandy loam, 8 to 15 percent slopes, very stony 163
65C—Cheshire fine sandy loam, 3 to 15 percent slopes, extremely stony 164
65D-Cheshire fine sandy loam, 15 to 35 percent slopes, extremely stony 165
66B—Narragansett silt loam, 2 to 8 percent slopes 166
66C-Narragansett silt loam, 8 to 15 percent slopes 168
67B—Narragansett silt loam, 3 to 8 percent slopes, very stony 169
67C-Narragansett silt loam, 8 to 15 percent slopes, very stony 170
68C—Narragansett silt loam, 3 to 15 percent slopes, extremely stony 171
68D—Narragansett silt loam, 15 to 25 percent slopes, extremely stony 172
69B-Yalesville fine sandy loam, 3 to 8 percent slopes 174
69C-Yalesville fine sandy loam, 8 to 15 percent slopes 175
70C—Branford-Holyoke complex, 3 to 15 percent slopes, very rocky 176
71C—Brookfield-Brimfield-Rock outcrop complex, 3 to 15 percent slopes 178
71E—Brookfield-Brimfield-Rock outcrop complex, 15 to 45 percent slopes 179
73C-Charlton-Chatfield complex, 3 to 15 percent slopes, very rocky 181
73E-Charlton-Chatfield complex, 15 to 45 percent slopes, very rocky 183
74C—Narragansett-Hollis complex, 3 to 15 percent slopes, very rocky 185
75C—Hollis-Chatfield-Rock outcrop complex, 3 to 15 percent slopes 187
75E—Hollis-Chatfield-Rock outcrop complex, 15 to 45 percent slopes 189
76E—Rock outcrop-Hollis complex, 3 to 45 percent slopes 191
76F—Rock outcrop-Hollis complex, 45 to 60 percent slopes 192
77C-Cheshire-Holyoke complex, 3 to 15 percent slopes, very rocky 193
77D-Cheshire-Holyoke complex, 15 to 35 percent slopes, very rocky 195
78C—Holyoke-Rock outcrop complex, 3 to 15 percent slopes 197
78E—Holyoke-Rock outcrop complex, 15 to 45 percent slopes 198
79E—Rock outcrop-Holyoke complex, 3 to 45 percent slopes 199
80B—Bernardston silt loam, 3 to 8 percent slopes 201
80C-Bernardston silt loam, 8 to 15 percent slopes 202
81C-Bernardston silt loam, 3 to 15 percent slopes, extremely stony 203
81D—Bernardston silt loam, 15 to 25 percent slopes, extremely stony 204
82B—Broadbrook silt loam, 3 to 8 percent slopes 205
82C—Broadbrook silt loam, 8 to 15 percent slopes 206
82D—Broadbrook silt loam, 15 to 25 percent slopes 207
83B—Broadbrook silt loam, 3 to 8 percent slopes, very stony 209
83C—Broadbrook silt loam, 8 to 15 percent slopes, very stony 210
84B—Paxton and Montauk fine sandy loams, 3 to 8 percent slopes 211
84C—Paxton and Montauk fine sandy loams, 8 to 15 percent slopes 213
84D—Paxton and Montauk fine sandy loams, 15 to 25 percent slopes 215
85B—Paxton and Montauk fine sandy loams, 3 to 8 percent slopes, very stony 216
85C—Paxton and Montauk fine sandy loams, 8 to 15 percent slopes, very stony 218
86C—Paxton and Montauk fine sandy loams, 3 to 15 percent slopes, extremely stony 220
86D—Paxton and Montauk fine sandy loams, 15 to 35 percent slopes, extremely stony 222
87B-Wethersfield loam, 3 to 8 percent slopes 224
87C-Wethersfield loam, 8 to 15 percent slopes 225
87D-Wethersfield loam, 15 to 25 percent slopes 226
88B—Wethersfield loam, 3 to 8 percent slopes, very stony 228
88C-Wethersfield loam, 8 to 15 percent slopes, very stony 229
89C-Wethersfield loam, 3 to 15 percent slopes, extremely stony 230
89D—Wethersfield loam, 15 to 35 percent slopes, extremely stony 231
90B—Stockbridge loam, 3 to 8 percent slopes 233
90C—Stockbridge loam, 8 to 15 percent slopes 234
90D—Stockbridge loam, 15 to 25 percent slopes 235
91B—Stockbridge loam, 3 to 8 percent slopes, very stony 237
91C—Stockbridge loam, 8 to 15 percent slopes, very stony 238
91D—Stockbridge loam, 15 to 35 percent slopes, very stony 239
92B—Nellis fine sandy loam, 3 to 8 percent slopes 240
92C-Nellis fine sandy loam, 8 to 15 percent slopes 241
92D-Nellis fine sandy loam, 15 to 25 percent slopes 242
93C-Nellis fine sandy loam, 3 to 15 percent slopes, very stony 244
94C-Farmington-Nellis complex, 3 to 15 percent slopes, very rocky 245
94 E -Farmington-Nellis complex, 15 to 35 percent slopes, very rocky 247
95C-Farmington-Rock outcrop complex, 3 to 15 percent slopes 249
95E-Farmington-Rock outcrop complex, 15 to 45 percent slopes 250
96-lpswich mucky peat 251
97-Pawcatuck mucky peat 253
98-Westbrook mucky peat 254
99-Westbrook mucky peat, low salt 255
100-Suncook loamy fine sand 256
101-Occum fine sandy loam 257
102-Pootatuck fine sandy loam 258
103-Rippowam fine sandy loam 260
104-Bash silt loam 261
105-Hadley silt loam 262
106-Winooski silt loam 263
107-Limerick and Lim soils 264
108-Saco silt loam 265
109-Fluvaquents-Udifluvents complex, frequently flooded 266
221A-Ninigret-Urban land complex, 0 to 5 percent slopes 268
224A-Deerfield-Urban land complex, 0 to 3 percent slopes 269
225B-Brancroft-Urban land complex, 0 to 8 percent slopes 271
226B-Berlin-Urban land complex, 0 to 8 percent slopes 272
228B-Elmridge-Urban land complex, 0 to 8 percent slopes 273
229B-Agawam-Urban land complex, 0 to 8 percent slopes 275
229C—Agawam-Urban land complex, 8 to 15 percent slopes 276
230B-Branford-Urban land complex, 0 to 8 percent slopes 277
230C-Branford-Urban land complex, 8 to 15 percent slopes 279
232B-Haven-Urban land complex, 0 to 8 percent slopes 280
234B-Merrimac-Urban land complex, 0 to 8 percent slopes 281
235B-Penwood-Urban land complex, 0 to 8 percent slopes 282
236B-Windsor-Urban land complex, 0 to 8 percent slopes 284
237A-Manchester-Urban land complex, 0 to 3 percent slopes 285
237C-Manchester-Urban land complex, 3 to 15 percent slopes 286
238A-Hinckley-Urban land complex, 0 to 3 percent slopes 288
238C-Hinckley-Urban land complex, 3 to 15 percent slopes 289
240B-Ludlow-Urban land complex, 0 to 8 percent slopes 290
243B-Rainbow-Urban land complex, 0 to 8 percent slopes 292
245B-Woodbridge-Urban land complex, 0 to 8 percent slopes 293
245C-Woodbridge-Urban land complex, 8 To 15 percent slopes 294
248B-Georgia-Urban land complex, 2 to 8 percent slopes 296
250B-Sutton-Urban land complex, 0 to 8 percent slopes 297
253B-Wapping-Urban land complex, 0 to 8 percent slopes 298
255B-Watchaug-Urban land complex, 0 to 8 percent slopes 300
260B-Charlton-Urban land complex, 3 to 8 percent slopes 301
260C-Charlton-Urban land complex, 8 to 15 percent slopes 302
260D-Charlton-Urban land complex, 15 to 25 percent slopes 304
263B-Cheshire-Urban land complex, 3 to 8 percent slopes 305
263C-Cheshire-Urban land complex, 8 to 15 percent slopes 306
266B-Narragansett-Urban land complex, 3 to 8 percent slopes 307
269B-Yalesville-Urban land complex, 3 to 8 percent slopes 309
269C-Yalesville-Urban land complex, 8 to 15 percent slopes 310
273C—Urban land-Charlton-Chatfield complex, rocky, 3 to 15 percent slopes 311
273E—Urban land-Charlton-Chatfield complex, rocky, 15 to 45 percent slopes 313
275C—Urban land-Chatfield complex, rocky, 3 to 15 percent slopes 315
275E—Urban land-Chatfield-Rock outcrop complex, 15 to 45 percent slopes 317
282B—Broadbrook-Urban land complex, 3 to 8 percent slopes 318
284B—Paxton-Urban land complex, 3 to 8 percent slopes 320
284C—Paxton-Urban land complex, 8 to 15 percent slopes 321
284D—Paxton-Urban land complex, 15 to 25 percent slopes 322
287B-Wethersfield-Urban land complex, 3 to 8 percent slopes 324
287C-Wethersfield-Urban land complex, 8 to 15 percent slopes 325
287D—Wethersfield-Urban land complex, 15 to 25 percent slopes 326
290B—Stockbridge-Urban land complex, 3 to 8 percent slopes 328
290C—Stockbridge-Urban land complex, 8 to 15 percent slopes 329
290D—Stockbridge-Urban land complex, 15 to 25 percent slopes 330
301-Beaches-Udipsamments complex, coastal 332
302—Dumps 333
303-Pits, Quarries 334
304-Udorthents, loamy, very steep 334
305-Udorthents-Pits complex, gravelly 335
306-Udorthents-Urban land complex 336
307-Urban Land 337
308-Udorthents, smoothed 338
309-Udorthents, flood control 339
310-Udorthents, periodically flooded 340
401C-Macomber-Taconic complex, 3 to 15 percent slopes, very rocky 341
402D-Taconic-Macomber-Rock outcrop complex, 15 to 25 percent slopes 342
403C-Taconic-Rock outcrop complex, 3 to 15 percent slopes 344
403E-Taconic-Rock outcrop complex, 15 to 45 percent slopes 345
403F-Taconic-Rock outcrop complex, 45 to 70 percent slopes 346
405C—Dummerston gravelly loam, 3 to 15 percent slopes, very stony 348
405E—Dummerston gravelly loam, 15 to 45 percent slopes, very stony 349
407C—Lanesboro loam, 3 to 15 percent slopes, very stony 350
407E—Lanesboro loam, 15 to 45 percent slopes, very stony 351
408C—Fullam silt loam, 3 to 15 percent slopes, very stony 352
409B—Brayton mucky silt loam, 0 to 8 percent slopes, very stony 354
412B-Bice fine sandy loam, 3 to 8 percent slopes 355
412C-Bice fine sandy loam, 8 to 15 percent slopes 356
412D—Bice fine sandy loam, 15 to 25 percent slopes 357
413C—Bice-Millsite complex, 3 to 15 percent slopes, very rocky 358
413E—Bice-Millsite complex, 15 to 45 percent slopes, very rocky 360
414-Fredon silt loam, cold 361
415C-Westminster-Millsite-Rock outcrop complex, 3 to 15 percent slopes 362
415E—Westminster-Millsite-Rock outcrop complex, 15 to 45 percent slopes 364
416E—Rock outcrop-Westminster complex, 8 to 45 percent slopes 366
416F—Rock outcrop-Westminster complex, 45 to 70 percent slopes 367
417B—Bice fine sandy loam, 3 to 8 percent slopes, very stony 368
417C—Bice fine sandy loam, 8 to 15 percent slopes, very stony 369
417D—Bice fine sandy loam, 15 to 25 percent slopes, very stony 370
418C—Schroon fine sandy loam, 2 to 15 percent slopes, very stony 371
420A-Schroon fine sandy loam, 0 to 3 percent slopes 373
420B—Schroon fine sandy loam, 3 to 8 percent slopes 374
421A-Ninigret fine sandy loam, cold, 0 to 3 percent slopes 375
423A—Sudbury sandy loam, cold, 0 to 3 percent slopes 376
424B—Shelburne fine sandy loam, 3 to 8 percent slopes 377
424C-Shelburne fine sandy loam, 8 to 15 percent slopes 379
424D-Shelburne fine sandy loam, 15 to 25 percent slopes 380
425B—Shelburne fine sandy loam, 3 to 8 percent slopes, very stony 381
425C-Shelburne fine sandy loam, 8 to 15 percent slopes, very stony 382
426D—Shelburne fine sandy loam, 15 to 35 percent slopes, extremely stony 384
427B—Ashfield fine sandy loam, 2 to 8 percent slopes, very stony 385
427C—Ashfield fine sandy loam, 8 to 15 percent slopes, very stony 386
428A-Ashfield fine sandy loam, 0 to 3 percent slopes 388
428B—Ashfield fine sandy loam, 3 to 8 percent slopes 389
428C—Ashfield fine sandy loam, 8 to 15 percent slopes 390
429A—Agawam fine sandy loam, cold, 0 to 3 percent slopes 391
429B—Agawam fine sandy loam, cold, 3 to 8 percent slopes 393
429C-Agawam fine sandy loam, cold, 8 to 15 percent slopes 394
433-Moosilauke sandy loam 395
434A-Merrimac sandy loam, cold, 0 to 3 percent slopes 396
434B-Merrimac sandy loam, cold, 3 to 8 percent slopes 397
434C-Merrimac sandy loam, cold, 8 to 15 percent slopes 398
435-Scarboro muck, cold 399
436-Halsey silt loam, cold 400
437-Wonsqueak mucky peat 401
438-Bucksport muck 402
440A-Boscawen gravelly sandy loam, 0 to 3 percent slopes 403
440C-Boscawen gravelly sandy loam, 3 to 15 percent slopes 404
440E—Boscawen gravelly sandy loam, 15 to 45 percent slopes 406
442-Brayton Loam 407
443-Brayton-Loonmeadow complex, extremely stony 408
448B—Hogansburg loam, 3 to 8 percent slopes 410
449B—Hogansburg loam, 3 to 8 percent slopes, very stony 411
449C—Hogansburg loam, 8 to 15 percent slopes, very stony 412
450B—Pyrities loam, 3 to 8 percent slopes 413
450C—Pyrities loam, 8 to 15 percent slopes 414
450D—Pyrities loam, 15 to 25 percent slopes 415
451B—Pyrities loam, 3 to 8 percent slopes, very stony 416
451C—Pyrities loam, 8 to 15 percent slopes, very stony 417
451D—Pyrities loam, 15 to 25 percent slopes, very stony 419
457-Mudgepond silt loam, cold 420
458-Mudgepond and Alden soils, extremely stony, cold 421
501-Ondawa fine sandy loam 422
503-Rumney fine sandy loam 423
508-Medomak silt loam 424
Prime Farmland 427
Use and Management of the Soils 429
Interpretive Ratings 429
Rating Class Terms 429
Numerical Ratings 429
Crops and Pasture 430
Yields per Acre 431
Land Capability Classification 432
Forest Productivity and Management 433
Forest Productivity 434
Forest Management 434
Conservation and Environmental Plantings 436
Recreation 436
Wildlife Habitat 438
Hydric Soils 440
Connecticut Inland Wetland Soils 442
Engineering 442
Building Site Development 443
Sanitary Facilities 444
Construction Materials 446
Water Management 447
Soil Properties 449
Engineering Index Properties 449
Physical Properties 450
Chemical Properties 452
Water Features 452
Soil Features 454
Storm Water Runoff Management Systems 455
Classification of the Soils 457
Soil Series and Their Morphology 457
Agawam Series 458
Alden Series 459
Amenia Series 461
Ashfield Series 462
Bash Series 464
Belgrade Series 465
Berlin Series 466
Bernardston Series 468
Bice Series 469
Boscawen Series 471
Brancroft Series 472
Branford Series 474
Brayton Series Taxadjunct 475
Brayton Series Taxadjunct 477
Brimfield Series 479
Broadbrook Series 480
Brookfield Series 481
Bucksport Series 482
Canton Series 483
Catden Series 485
Charlton Series 486
Chatfield Series 487
Cheshire Series 489
Copake Series 490
Deerfield Series 491
Dummerston Series 493
Ellington Series 494
Elmridge Series 496
Enfield Series 497
Farmington Series 499
Fluvaquents 500
Fredon Series 501
Freetown Series 502
Fullam Series 503
Georgia Series 505
Gloucester Series 506
Groton Series 507
Hadley Series 509
Halsey Series 510
Hartford Series 511
Haven Series 513
Hero Series 514
Hinckley Series 515
Hogansburg Series 517
Hollis Series 518
Holyoke Series 519
Ipswich Series 520
Lanesboro Series 521
Leicester Series 523
Lim Series 525
Limerick Series 526
Loonmeadow series 528
Ludlow Series 529
Macomber Series 530
Manchester Series 531
Maybid Series 532
Medomak Series Taxadjunct 534
Menlo Series 535
Merrimac Series 537
Millsite Series 538
Montauk Series 539
Moosilauke Series 541
Mudgepond Series 542
Narragansett Series 544
Natchaug Series 545
Nellis Series 547
Ninigret Series 548
Occum Series 550
Ondawa Series 551
Pawcatuck Series 552
Paxton Series 553
Penwood Series 555
Pootatuck Series 556
Pyrities Series 557
Rainbow Series 559
Raynham Series 560
Raypol Series 562
Ridgebury Series Taxadjunct 563
Rippowam Series 565
Rumney Series 566
Saco Series 568
Scarboro Series 569
Schroon Series 570
Scitico Series 572
Shaker Series 573
Shelburne Series 575
Stockbridge Series 576
Sudbury Series 578
Suncook Series 579
Sutton Series 580
Taconic Series 582
Timakwa Series 583
Tisbury Series 584
Udifluvents 586
Udipsamments 587
Udorthents 588
Walpole Series 589
Wapping Series 590
Watchaug Series 591
Westbrook Series 593
Westminster Series 594
Wethersfield Series 595
Whitman Series 596
Wilbraham Series 598
Windsor Series 599
Winooski Series 600
Wonsqueak Series 602
Woodbridge Series 603
Yalesville Series 604
Formation of the Soils 607
Factors of Soil Formation 607
Processes of Soil Formation 609
References 611
Glossary 615
Tables 635
Table 1.-Temperature and Precipitation 636
Table 2.-Freeze Dates in Spring and Fall 646
Table 3.-Growing Season 656
Table 4.-Acreage and Proportionate Extent of the Soils 661
Table 5.-Prime and other Important Farmland 666
Table 6.-Non-Irrigated Yields by Map Unit Component 668
Table 7.-Acreage by Capability Class and Subclass 687
Table 8.-Forestland Productivity 688
Table 9.-Forestland Management 727
Table 10.-Hazard of Erosion and Suitability for Roads on Forestland 765
Table 11.-Damage by Fire and Seedling Mortality on Forestland 798
Table 12.-Conservation and Environmental Plantings 835
Table 13.-Recreation (Part 1) 886
Table 14.-Recreation (Part 2) 933
Table 15.-Wildlife Habitat 969
Table 16.-Connecticut Inland Wetlands 994
Table 17.-Building Site Development (Part 1) 995
Table 18.-Building Site Development (Part 2) 1029
Table 19.-Sewage Disposal 1073
Table 20.-Source of Sand and Gravel 1118
Table 21.-Construction Materials 1151
Table 22.-Ponds and Embankments 1198
Table 23.-Engineering Properties 1235
Table 24.-Physical Properties of the Soils 1418
Table 25.-Chemical Properties of the Soils 1479
Table 26.-Water Features 1525
Table 27.-Soil Features 1582
Table 28.-Storm Water Runoff Systems 1607

Table 29.—Taxonomic Classification of the Soils .. 1700
Table 30.-Relationships Among Parent Material, Dominant Texture, and
Drainage of the Soils ... 1703

Issued 2008

Foreword

This soil survey contains information that affects land use planning in this survey area. It contains predictions of soil behavior for selected land uses. The survey also highlights soil limitations, improvements needed to overcome the limitations, and the impact of selected land uses on the environment.

This soil survey is designed for many different users. Farmers, foresters, and agronomists can use it to evaluate the potential of the soil and the management needed for maximum food and fiber production. Planners, community officials, engineers, developers, builders, and home buyers can use the survey to plan land use, select sites for construction, and identify special practices needed to ensure proper performance. Conservationists, teachers, students, and specialists in recreation, wildlife management, waste disposal, and pollution control can use the survey to help them understand, protect, and enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. The information in this report is intended to identify soil properties that are used in making various land use or land treatment decisions. Statements made in this report are intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are shallow to bedrock. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

These and many other soil properties that affect land use are described in this soil survey. Broad areas of soils are shown on the general soil map. The location of each soil is shown on the detailed soil maps. Each soil in the survey area is described. Information on specific uses is given for each soil. Help in using this publication and additional information are available at the local offices of the Natural Resources Conservation Service or the Cooperative Extension Service.

Margo Wallace
State Conservationist
Natural Resources Conservation Service

Soil Survey of The State of Connecticut

By Marjorie Faber, Natural Resources Conservation Service

Fieldwork by Barbara Alexander, Mark Beroz, Christine Clarke, Marjorie Faber, Nancy Gottung, Kipen Kolesinskas, Shawn McVey, Donald Parizek, Alfred Roberts, Roy Shook, Glenn Stanisewski, and Deborah Surabian

United States Department of Agriculture, Natural Resources Conservation Service, in cooperation with
The Connecticut Agricultural Experiment Station, the Storrs Agricultural Experiment Station, and the Connecticut Department of Environmental Protection

General Nature of the Survey Area

Connecticut is the southernmost state in New England. The total area of the state is $3,194,700$ acres, or 4,992 square miles. Connecticut is bordered by New York State on the west, Rhode Island on the east, Massachusetts on the north, and Long Island Sound on the south (fig. 1). The three major waterways draining the state are the Housatonic River, the Connecticut River, and the Thames River. These rivers drain into Long Island Sound.

The coastal slope and central valley are mostly flat and contain most of the population of the state. The eastern uplands and western uplands are mostly in farmland, open space, and forests. Agriculture is no longer as prominent as it once was in Connecticut because of the displacement of agricultural lands by expanding suburbs, new ex-urban areas (development not connected to older urban areas), and industrial growth.

Below is general information about the climate, physiography, relief, and drainage, water supply, agriculture, recreation, history, and industry and transportation of Connecticut.

Climate

Prepared by the Natural Resources Conservation Service National Water and Climate Center, Portland, Oregon.

Climate tables are created from climate stations in Bridgeport, Cockaponset Ranger Station, Falls Village, Groton, Hartford Brainard Field, Mt. Carmel, Norfolk 2 SW, Shepaug Dam, Storrs, and West Thompson Lake, Connecticut.

Thunderstorm days, relative humidity, percent sunshine, and wind information are estimated from First Order stations Bridgeport and Hartford, Connecticut.

Table 1 gives data on temperature and precipitation for the survey area as recorded at these stations in the period 1961 to 1990, except 1966 to 1990 at West Thompson Lake. Table 2 shows probable dates of the first freeze in fall and the last freeze in spring. Table 3 provides data on the length of the growing season. In the narrative below, normals are for these averaging periods, while extremes are for the full period of record for each station. These generally extend from 1948 to 1998,

Figure 1.-The location of the State of Connecticut.
except records at Storrs begin in 1900, in 1920 at Hartford, in 1936 at Mt. Carmel, and in 1943 at Norfolk.

In winter, average temperatures range from 21.5 degrees F at Norfolk and the higher hills in the northwest, to 31.2 degrees at Bridgeport. Most of the central interior averages around 27 degrees, and the coastal areas generally average around 30. Average daily minimum temperatures in winter range from around 13 degrees in Norfolk and most of the higher northwest region, to 24 degrees at Bridgeport. Most of the central portion of the state averages around 20 degrees. The lowest temperatures on record include -25 at Norfolk on February 16, 1943; -24 at Hartford on the same date; -20 at Storrs on February 9, 1934; -30 at Falls Village on January 22, 1961; and -7 at Bridgeport on January 22, 1984.

In summer, average temperatures range from around 65 degrees at Norfolk to around 70 at Hartford and 71 at Bridgeport. Average daily maximum temperatures in summer range from 75 at Norfolk to around 78 along most of the coast, and around 81 at Hartford, Cockaponset, Falls Village and most of the interior. Highest temperatures ever recorded include: 101 at Falls Village on September 2, 1953; 101 at Storrs on July 6, 1919; 102 at Hartford on August 3, 1975; 103 at Bridgeport on July 22, 1957; and 93 at Norfolk on August 6, 1955.

Growing degree days are shown in table 1. They are equivalent to "heat units". During the month, growing degree days accumulate by the amount that the average temperature each day exceeds a base temperature (40 degrees F). The normal monthly accumulation is used to schedule single or successive plantings of a crop between the last freeze in spring and the first freeze in fall.

Average annual precipitation is generally between 44 and 54 inches across the state. Lowest average totals are 42.65 inches at Hartford and 41.67 at Bridgeport (the central Connecticut River Valley, and along the southwest coast). Highest annual averages include 51.24 inches at Norfolk, 50.32 inches at Cockaponset, and 49.54 inches at West Thompson Lake, with most of the highlands north of Bridgeport and also northwest of Torrington receiving between 52 and 54 inches annually. Of these annual average totals, around 22 to 25 inches, or about 50 percent of the annual total, generally falls during the growing season, which is usually May to October. The heaviest 1-day precipitation events during the periods of record included: 9.50 inches at Falls Village on August 19, 1955; 10.47 inches at Cockaponset on June 6, 1982; 10.67 inches at Norfolk on August 19, 1955; 6.10 inches at Hartford on September 20, 1938; 6.21 inches at Storrs, also on September 21, 1938; and 7.43 inches at

Groton on September 21, 1961. Thunderstorms occur on about 21 days each year, and most occur in between May and August.

Average seasonal snowfall is quite variable across the state, with lowest average totals along the coast where many winter events fall as rain or freezing rain. This includes 23 inches annually at Groton, and 26 inches at Bridgeport. Inland, annual average snowfall is greater, including 32 inches at Mt. Carmel, 36 inches at Cockaponset, 28 inches at Hartford, 38 inches at Storrs, and 34 inches in the northeast at West Thompson Lake. The snowiest area is the northwest, where annual averages include 40 inches at Falls Village, 54 inches at Shepaug Dam, and 99 inches at Norfolk. These totals are also aligned with the average number of days per year that have at least 1 inch of snow on the ground, which ranges from 26 at Groton and 29 at Bridgeport; to 39 at Hartford and 33 at Cockaponset; and to 110 days per year at Norfolk and most of the higher terrain in the northwest.

Greatest snow depths at any one time during the periods of record included: 20 inches at Bridgeport on January 10, 1996; 19 inches at Groton on February 4, 1961; 23 inches at Cockaponset on February 5, 1961; 45 inches at Falls Village on February 10, 1969; 30 inches at West Thompson Lake on February 8, 1978; and 55 inches at Norfolk on February 5, 1961.

Heaviest 1-day snowfall records include: 25.7 inches at Norfolk on February 10, 1969; 17.7 inches at Hartford on December 29, 1945; 19.8 inches at Cockaponset on February 8, 1978; 24.0 inches at Falls Village on January 20, 1961; 20.0 inches at Shepaug Dam on February 12, 1983; and 16.0 inches at Bridgeport on December 19, 1948.

The average relative humidity in mid-afternoon is generally around 60 percent along the coast and 50 to 55 percent inland. Humidity is higher at night, and the average at dawn is generally around 70 percent, except around 80 to 85 percent in the late summer and fall. The sun shines about 60 percent of the time in summer and about 50 to 55 percent in winter. The prevailing wind is from the northwest from November to March, and from the south or southwest for much of the rest of the year. Northeast winds predominate in September and much of October. Wind direction is quite variable; although, can be influenced by local topography. Average wind speeds are highest, generally around 13 miles per hour along the coast and around 10 mph in inland valleys, in the winter and early spring.

Physiography, Relief, and Drainage

Connecticut lies within the New England physiographic province. This area is divided into four physiographic regions: Western Uplands, Central Valley, Eastern Uplands, and Coastal Slope. These physiographic regions are each characterized by different landscapes and geology. They may be categorized in still further detail (Bell, 1985).

Combining physiography with vegetation and other factors, an ecoregional classification has been developed for the state. The ecoregions are characterized by a distinctive pattern of landscapes and regional climate as expressed by the vegetation composition and pattern and the presence or absence of certain indicatory species and species groups (Dowhan and Craig, 1976). Additional work by the USDA Natural Resources Conservation Service on describing soils and ecoregions is anticipated.

The Central Valley, a north-south trending physiographic region, lies between the Western and Eastern Uplands. It is a broad, flat valley developed on fairly weak, tilted, stratified rocks. The rocks are Triassic in age, from which more resistant Triassic lava flows of basalt, known as traprock, are exposed primarily at high ridges such as Vexation Hill, Cedar Mountain, and Talcott Mountain. In this region, most soils formed
in glacial till, glaciofluvial, and glaciolacustrine deposits of sandstone, shale, conglomerate, and basalt.

Dividing the Central Valley longitudinally is the Talcott Mountain Range. The area east of the mountain range is drained by the Connecticut River and the smaller area west of the range is drained by the Farmington River (a tributary of the Connecticut River). The Connecticut Valley consists of flood plains along the Connecticut and Farmington rivers, with nearly level to sloping terraces, low glacial upland hills, and narrow ridges of basalt. Elevations above sea level in this region range from about 10 feet on the flood plain of the Connecticut River, to about 500 to 950 feet on the highest basalt ridges.

Flanking the Central Lowlands to the west are the Western Uplands which include the Northwest Highlands. To the east are the Eastern Highlands. The Western and Eastern Uplands consist mainly of till plains and drumlins dissected by narrow valleys that are underlain by metamorphic rocks of early Paleozoic age. Some areas of the Western Uplands are dominated by soils formed in glacial till and glaciofluvial deposits derived from limestone or dolomite. The Eastern Uplands are dominated by soils formed in glacial till and glaciofluvial deposits derived from granite, gneiss, or schist.

Elevations above sea level in the Western Uplands range from 350 feet on the lowest valley floor, to about 2,350 feet on the highest peak in the northwest corner of the state. The area is sloping to steep, and drainage generally runs south and southeast into the Farmington River or Housatonic River.

Elevations above sea level in the Eastern Uplands range from about 300 feet on the lowest valley floor, to over 1,000 feet on the highest hills. The area is sloping to hilly and drainage generally flows to the west-southwest into the Connecticut River or south into the Thames River.

The Coastal Slope includes the areas significantly affected by ocean processes. This area is rather rocky, where hills extend out into the water and coves lie in between. It is a sheltered coastline with an abundance of calm, secure harbors. The Coastal Slope also includes a scattering of small islands along the coastline formed by a recessional moraine. The two small, rocky recessional moraines, the Madison and the Old Saybrook, each mark a short halt in the retreat of glaciation from New England. Some areas of the Coastal Slope are affected by tidal water and are dominated by soils formed in organic material.

Within 10 miles of Long Island Sound, elevations in the Coastal Slope range from sea level to a few hilltops approximately 400 feet above sea level. The area is level and drainage flows into the Long Island Sound. Many Connecticut rivers that flow into the Long Island Sound are tidal rivers whose water levels respond to the rise and fall of tide. Examples include the Niantic, Connecticut, Thames, and Housatonic rivers.

Water Supply

Connecticut's ground water resources are the source of drinking water for approximately one million people, which is about one-third of the state's population. In addition, it is also the baseflow for many rivers, streams, and wetlands. Thus, the quality of ground water plays an important role in the quality of surface water resources.

Ground water is withdrawn through 1,200 community wells (public supply), more than 3,000 non-community wells (schools, hospitals, etc.), and about 250,000 individual private home wells. In all, about 83 percent of the state's population receives its water from public water utilities while the remainder relies on individual private wells.

Connecticut has two major types of aquifers, glaciofluvial and bedrock.
Glaciofluvial aquifers are composed of unconsolidated, stratified sand and gravel of
glacial origin. These aquifers line the larger river valleys, are the most productive, and are the primary source of ground water for water utilities that serve populations of greater than 1,000 people. Bedrock aquifers are composed of sedimentary, crystalline or carbonate-rock. These aquifers underlie most of the state and are the primary source of ground water for non-community water supplies and private wells.

Connecticut's aquifers are shallow, typically less than 300 feet deep with the water table within 50 feet of the land surface, and are therefore susceptible to contamination. Some of the sources of contamination include historical industrial activities, underground storage tanks, landfills, salt storage facilities, road salt application, pesticide and fertilizer application, and numerous accidental spills of chemicals. On average, 75 to 100 contaminated drinking water wells are identified every year. Thus, all sources of water must be continuously protected from intensive development and potentially deleterious land uses.

Agriculture

About 10 percent of the land of Connecticut is in cropland or pastureland and about 55 percent is in forests (1997 NRI). Important agriculture and aquaculture products of the state include: oysters, milk, poultry, beef, greenhouse and nursery crops, fruit, tobacco, maple syrup, Christmas trees, and mushrooms.

Recreation

With nearly two-thirds of the state classified as open land, Connecticut has many areas of scenic, geologic, and historical interest. There are more than 100 state parks and forests that provide a variety of recreational uses including boating, fishing, hunting, camping, horseback riding, snowmobiling, hiking, and picnicking. Public lands available for recreation include Patchaug State Forest, Hammonasset Beach State Park, West Rock Ridge State Park, Dinosaur Park, and Kent Falls State Park. The Appalachian Trail, stretching from Springer Mountain, Georgia, to Mt. Katahdin, Maine, passes through 14 states, including Connecticut. The trail, started in 1921 and completed in 1937, is known as the longest national park in the world. It is 2,150 miles long, with over 50 miles and nearly 7,000 acres of National Park land along the Appalachian Trail corridor in Connecticut.

Many soils in the state are well suited to the development of recreational areas. Wooded slopes, rolling topography, exposed rock formations, and many streams provide a variety of possibilities for recreation.

History

The native Americans who settled in what was then known as Quinnehtukqut (a Mohegan word meaning beside the Long Tidal River), migrated in series. There were four distinct groups of Algonkians, followed by the Delaware Indians. Over time, the tribes from earlier migrations formed affiliations. This led to further localization of smaller, scattered tribes.

The Pequots were the last to migrate, settling in 1600. The northeastern portion of the state (along with part of Massachusetts) was occupied by the Nipmuck Tribe; the southeastern section by the Mohegan and Pequot Tribes; the River Valley by the River Tribes; and the western section by two groups-the Mahicans and the MattabesecWappinger Confederacy. The population remained constant for almost 30 years.

In late 1629, a powerful and popular preacher named Thomas Hooker began looking for relief from England's religious persecution. Hooker, who later became known as the Father of Connecticut, eventually fled to the New World. He, along with several other leaders, arrived in Boston in 1633. Cramped living conditions made

Hooker and his congregation to decide to move to the rich lands of the Connecticut River Valley. In June 1636, Thomas Hooker, 100 people, 160 head of cattle, and a number of swine and goats left Newtown, Massachusetts for Connecticut. They settled in an area they called Newtown, now Hartford.

In the following years, Connecticut was ruled by a governor and eight magistrates. In 1638, Hooker delivered a sermon that put forth the idea it was the people's Godgiven right to select magistrates, and that they also had a right to limit the elected magistrate's powers. Written and adopted in 1639, the Fundamental Orders became the beginning of government in Connecticut. It was the first constitution adopted in North America, establishing representative government, thus giving Connecticut the nickname The Constitution State.

As settlements grew, towns were formed and town greens set aside. The greens were generally set aside for public uses such as grazing cattle or sheep, military parades, marketplaces, and as general meeting places.

On January 9, 1788, Connecticut became the fifth territory to receive statehood and in that same year built the first State House in America. Currently, Connecticut consists of 169 towns, and eight counties-Fairfield, Hartford, Middlesex, New Haven, New London, Litchfield, Tolland, and Windham. As of the 2000 Census, the state's population has swelled to over 3.4 million people, Fairfield County being the most populous, and Windham the least.

Connecticut has a population of over 9,000 American Indians. The state recognizes the Mashantucket (Western Pequot), Paucatuck (Eastern Pequot), Mohegan, Golden Hill Paugussett (who boast the oldest Indian reservation in the country), Schaghticoke, and two Mattabesic tribes.

Industry and Transportation

Industry and transportation systems have been strongly linked in Connecticut for several centuries. The types of industries, their locations relative to geographic features (e.g. rivers and ports), and the scales at which industry took place have changed in the last three centuries as have the modes and networks of transportation.

Many early roads in Connecticut were well-worn pathways of American Indians. In 1633, Connecticut's first primitive road was established and by 1635, the now named Boston Post Road began to establish settlements and connect cities such as Hartford and Windsor. By 1671, roads were built connecting Hartford to Boston, New York, and Providence.

Connecticut's waterways also provided a primary means for transporting goods and people. By the early 1800's, the state had developed several canals and locks. The now Windsor Locks in Enfield was built in 1824 and the Farmington Canal, connecting New Haven and Northampton, Massachusetts, was completed in 1835.

In the early 1800s industrialization began to transform classic New England towns. Towns soon became centered around factories located in river valleys beside streams rather than a central town green bordered by colonial homes and a church. In 1806, the Town of Seymour became the first planned and established factory-town in America.

Much of Connecticut's industry was small in scale and often run by families. In the 19th century, some of the products local industries produced included woolens, sewing machines and spools, arms and hardware, agricultural implements, greeting cards, glass, textiles, silk velvet, and clocks. Beginning in the 1830s, railroads provided a flexible and effective way to transport manufactured goods. Shipping between railroads and steamship lines were important to port cities such as Bridgeport, New Haven, New London, and Norwich.

Journeying by railway and steamboat was popular, but more hazardous than by stagecoach or foot. In 1810, the nation's first insurance company, ITT Hartford Group, Inc., was opened enabling people to get insurance covering loss of life or personal injury incurred while traveling.

In the 20th century, highways and roadways were improved with the completion of the interstate highway system in 1958. Suddenly, trucks and automobiles became the primary means of transportation of goods and individuals. The automobile also encouraged individuals to move from the city center to suburban areas.

As technology advanced, a concentration of companies and industries settled into Connecticut. The boom was due to the interconnection of markets served and type of products produced, as well as the presence of suppliers, trade associations, and educational institutions. Through the years, Connecticut's industrial genius gave rise to inventions such as the first helicopter-designed by Igor Sikorsky in 1939; the first nuclear submarine-launched in New London in 1954; and the first artificial heartinvented by Dr. Robert K. Jarvik in 1982.

In the 21st century, some of the industries key to Connecticut's economic competitiveness in the global economy include manufacturing, transportation equipment, financial services, telecommunications and information, health care services, high technology, and tourism. Only a few visible signs of industrial activities of the past such as buried foundations, waterworks, and abandoned machinery and products remain

Today, Connecticut has an interconnecting transportation system that includes interstate highways, aviation facilities, rail and bus service, ports, and ferries. A network of interstate highway systems provides major routes for travelers and trucking. The Merritt Parkway, one of the oldest in America, extends from Meriden to the New York state line.

The state boasts 123 public and private aviation facilities in addition to six stateowned airports, the largest being Bradley International Airport in Windsor Locks. Bradley is New England's second largest airport, having 21 carriers with over 250 flights daily.

Rail passenger service connects Metro-North, Amtrak, and Shore Line East, and now includes a high-speed rail service from Washington to Boston. Freight rail services are also available, along with local bus service in eighteen transit areas.

Connecticut has three major port operations in Bridgeport, New Haven, and New London that handle cargo such as food, steel, tin, paper, woodpulp, lumber, and automobiles. The state also has two seasonal river ferries, one in the Rocky HillGlastonbury area, and the other in Chester-Hadlyme. The Rocky Hill-Glastonbury ferry is the nation's oldest continuously operating commuter boat, providing service since 1655.

How This Survey Was Made

This survey was made to provide information about the soils and miscellaneous areas in the survey area. The information includes a description of the soils and miscellaneous areas and their location and a discussion of their suitability, limitations, and management for specified uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They dug many holes to study the soil profile, which is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

The soils and miscellaneous areas in the survey area are in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area.

Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept or model of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

The descriptions, names, and delineations of the soils in this survey area do not fully agree with those of the soils in adjacent survey areas. Differences are the result of a better knowledge of soils, modifications in series concepts, or variations in the intensity of mapping or in the extent of the soils in the survey area.

General Soil Map Units

The general soil map associated with this publication is the Digital General Soil Map of the United States, formerly known as STATSGO. This map shows broad areas with a distinctive pattern of soils, relief, and drainage. The digital soil survey area maps and attribute tables are available for download from the Soil Data Mart of the Natural Resources Conservation Service, accessed at http://soils.usda.gov. Each map unit on the Digital General Soil Map of the U.S. is a unique natural landscape. Typically, a map unit is multi-state in extent and consists of one or more major soils and some minor soils. It is named for the major soils. The soils making up one map unit can occur in other units but in a different pattern. Some of the soil names used in these map units are common to and dominant in adjacent states only, and were not mapped in the detailed Soil Survey of the State of Connecticut.

The Digital General Soil Map of the U.S. can be used to compare the suitability of large areas for general land uses. Areas of suitable soils can be identified on the map. Likewise, areas where the soils are not suitable can be identified.

Because of its small scale ($1: 250,000$), the map is not suitable for planning the management of a farm or field or for selecting a site for a road or building or other structure. The soils in any one map unit differ from place to place in slope, depth, drainage, and other characteristics that affect management.

The 33 Digital General Soil Map of the U.S. soil map units in Connecticut are described in the following pages.

S1438. Charlton-Canton-Paxton

Gently sloping to steep, well drained, loamy soils; on glacial till uplands
The soils in this map unit make up about 34 percent of the state. The landscape is predominantly upland hill landforms. Charlton and Canton soils formed in melt-out till and Paxton soils formed in lodgement till. Stones and boulders are common on the surface in many places.

Charlton soils make up about 23 percent of this map unit. They are very deep, well drained, loamy soils with moderate or moderately rapid permeability in the substratum. Charlton soils are gently sloping to steep and are on hills.

Canton soils make up about 15 percent of this map unit. They are very deep, well drained, loamy over sandy and gravelly soils with rapid permeability in the substratum. Canton soils are gently sloping to steep and are on hills.

Paxton soils make up about 14 percent of this map unit. They are very deep, well drained, loamy soils with slow or very slow permeability in the substratum. Paxton soils are gently sloping to steep and are on hills and drumlins.

Soils of minor extent make up about 48 percent of this map unit. They are mainly Leicester, Woodbridge, Sutton, Chatfield, and Hollis soils. Most areas of this map unit are in woodland or cropland. Some areas are in community development. The soils of this map unit are suited to forestry, cropland, community development, and wildlife habitat.

The major limiting factors for community development are the slow or very slow permeability in Paxton soils and the rapid permeability of the substratum in the

Canton soils. Stones and boulders need to be removed from the surface in some areas.

S1439. Charlton-Chatfield-Hollis

Gently sloping to very steep, well drained and somewhat excessively drained, loamy soils; on glacial till uplands

The soils in this map unit make up about 10 percent of the state. The landscape is predominantly upland hill and ridges landscapes. The soils formed in melt-out till. Stones and boulders are common on the surface in most places, and many areas have outcrops of bedrock.

Charlton soils make up about 31 percent of this map unit. They are very deep, well drained, loamy soils with moderate or moderately rapid permeability in the substratum. Charlton soils are gently sloping to steep and are on hills.

Chatfield soils make up about 18 percent of this map unit. They are moderately deep to bedrock, well drained, loamy soils with moderate or moderately rapid permeability in the substratum. Chatfield soils are gently sloping to steep and are on bedrock-controlled hills and ridges.

Hollis soils make up about 17 percent of this map unit. They are shallow to bedrock, somewhat excessively drained, loamy soils with moderate or moderately rapid permeability in the substratum. Hollis soils are gently sloping to very steep and are on bedrock-controlled hills and ridges.

Soils of minor extent make up about 34 percent of this map unit. They are mainly Leicester, Rock outcrop, Canton, Catden, Sutton, Hinckley, and Paxton soils. Most areas of this map unit are in woodland and some areas are in community development. The soils of this map unit are suited to forestry and wildlife habitat.

The major limiting factor for community development is the depth to bedrock in Chatfield and Hollis soils. Stones and boulders need to be removed from the surface in some areas.

S1440. Woodbridge-Paxton-Ridgebury

Nearly level to steep, poorly drained to well drained, loamy soils; on glacial till uplands
The soils in this map unit make up about 16 percent of the state. The landscape is predominantly upland hill and drumlin landforms with a north-south orientation. The soils formed in lodgement till. Stones and boulders are common on the surface in many places.

Woodbridge soils make up about 32 percent of this map unit. They are very deep, moderately well drained, loamy soils with slow or very slow permeability in the substratum. Woodbridge soils are nearly level to strongly sloping and are on hills and drumlins.

Paxton soils make up about 28 percent of this map unit. They are very deep, well drained, loamy soils with slow or very slow permeability in the substratum. Paxton soils are gently sloping to steep and are on hills and drumlins.

Ridgebury soils make up about 11 percent of this map unit. They are very deep, poorly drained, loamy soils with slow or very slow permeability in the substratum. Ridgebury soils are nearly level to gently sloping and are in depressions and drainageways.

Soils of minor extent make up about 29 percent of this map unit. They are mainly Canton, Charlton, Catden, Chatfield, Hollis, and Merrimac soils. Most areas of this map unit are in woodland or cropland. Some areas are in community development. The soils of this map unit are suited to forestry, cropland, and wildlife habitat.

The major limiting factors for community development are the slow or very slow permeability in the substratum and the seasonal high water table in Woodbridge and

Ridgebury soils. Stones and boulders need to be removed from the surface in some areas.

S1441. Hinckley-Agawam-Merrimac

Nearly level to steep, well drained to excessively drained, sandy to loamy soils; on outwash plains and terraces

The soils in this map unit make up about 11 percent of the state. The landscape is predominantly outwash plains, stream terraces, kames, and eskers in valleys between glacial till uplands. The soils formed in glacial outwash.

Hinckley soils make up about 34 percent of this map unit. They are very deep, excessively drained, soils with very rapid permeability in the substratum. Hinckley soils are nearly level to steep and are on kames, eskers, and outwash plains and terraces.

Agawam soils make up about 15 percent of this map unit. They are very deep, well drained, loamy soils with rapid or very rapid permeability in the substratum. Agawam soils are nearly level to strongly sloping and are on outwash plain and stream terraces.

Merrimac soils make up about 13 percent of this map unit. They are very deep, somewhat excessively drained, sandy soils with rapid or very rapid permeability in the substratum. Merrimac soils are nearly level to strongly sloping and are on outwash plains, stream terraces, and kames.

Soils of minor extent make up about 38 percent of this map unit. They are mainly Ninigret, Paxton, Rippowam, Timakwa, Walpole, Occum, Charlton, and Chatfield soils. Most areas of this map unit are in cropland or community development. The soils of this map unit are suited to cropland and community development, and are also a source of sand and gravel.

The major limiting factors for community development are rapid and very rapid permeability in the substratum.

The major limiting factors for cropland are droughtiness in Hinckley soils and steep slopes in some areas limiting the use of farming equipment.

S1442. Catden-Merrimac-Saco

Nearly level to strongly sloping, very poorly drained to somewhat excessively drained, organic, sandy, and silty soils; on drainageways, stream terraces, and outwash plains

The soils in this map unit make up less than 1 percent of the state. The landscape is predominantly stream terrace landforms.

Catden soils make up about 31 percent of this map unit. They are very deep, very poorly drained, woody organic soils with variable mineral substrata below 51 inches. Catden soils are nearly level and are in depressions.

Merrimac soils make up about 15 percent of this map unit. They are very deep, somewhat excessively drained, sandy soils with rapid or very permeability in the substratum. Merrimac soils are nearly level to strongly sloping and are on outwash plains, stream terraces, and kames.

Saco soils make up about 8 percent of this map unit. They are very deep, very poorly drained, silty soils formed in alluvium. Saco soils are nearly level and are in depressions and drainageways.

Soils of minor extent make up about 46 percent of this map unit. They are mainly Lim, Natchaug, Timakwa, Paxton, Walpole, Charlton, Deerfield, and Sutton soils. Most areas of this map unit are in woodland and wildlife habitat. The soils of this map unit are suited to forestry and wildlife habitat.

The major limiting factors for forestry are the seasonal high water table in Catden and Saco soils and the low load bearing strength of these soils.

S1443. Urban land-Udorthents-Cheshire

Nearly level to very steep, variably drained, sandy to loamy soils; on mostly human influenced landforms

The soils in this map unit make up about 4 percent of the state. The natural landscapes have been altered by human activity.

Urban lands make up about 40 percent of this map unit. Urban land is land mostly covered by buildings, streets, parking lots or other impervious surfaces.

Udorthents soils make up about 30 percent of this map unit. They occur in cut and fill areas, road and railroad beds, and on spoil piles with a wide range of soil textures and permeability. The substratum often resembles the original, preconstruction soil existing in the area. Udorthents soils are nearly level to very steep.

Cheshire soils make up about 5 percent of this map unit. They are very deep, well drained, loamy soils with moderate or moderately rapid permeability in the substratum. Cheshire soils are gently sloping to steep and are on upland hills and till plains.

Soils of minor extent make up about 25 percent of this map unit. They are mainly Charlton, Penwood, Windsor, Leicester, Walpole, Wethersfield, and Rippowam soils. Most areas of this map unit are in community development and the soils have been modified to be suited to community development.

S1444. Stockbridge-Charlton-Mudgepond

Gently sloping to steep, poorly drained to well drained, loamy soils; on glacial till uplands

The soils in this map unit make up about 1 percent of the state. The landscape is predominantly upland hill and drainageway landforms in the Northwestern part of Connecticut. The soils formed in melt-out till (fig. 2).

Stockbridge soils make up about 37 percent of this map unit. They are very deep, well drained, loamy soils with moderately slow permeability in the substratum. Stockbridge soils are gently sloping to steep and are on hills.

Figure 2.-Typical pattern of soils in the Stockbridge-Charlton-Mudgepond general soil map unit.

Charlton soils make up about 11 percent of this map unit. They are very deep, well drained, loamy soils with moderate or moderately rapid permeability in the substratum. Charlton soils are gently sloping to steep and are on hills.

Mudgepond soils make up about 10 percent of this map unit. They are very deep, very poorly drained, loamy soils with moderate permeability in the substratum. Mudgepond soils are nearly level to gently sloping and are in depressions and drainageways.

Soils of minor extent make up about 42 percent of this map unit. They are mainly Charlton, Georgia, Amenia, Copake, Catden, Nellis, Farmington, Chatfield, and Hollis soils. Most areas of this map unit are in cropland or woodland. Some areas are in community development. The soils of this map unit are suited to these uses.

The major limiting factor for community development is the seasonal high water table in Mudgepond soils.

S1445. Copake-Groton-Hero

Nearly level to steep, moderately well drained to excessively drained, loamy to sandy soils; on outwash valley uplands

The soils in this map unit make up about 1 percent of the state. The landscape is predominantly outwash plain, terrace, and kame landforms in upland valleys of Northwestern Connecticut. The soils formed in outwash.

Copake soils make up about 33 percent of this map unit. They are very deep, well drained, loamy soils with rapid or very permeability in the substratum. Copake soils are nearly level to strongly sloping and are on kame, terrace, and plain landforms.

Groton soils make up about 14 percent of this map unit. They are very deep, excessively drained, sandy soils with rapid or very permeability in the substratum. Groton soils are nearly level to steep and are on kame, esker, terrace and plain landforms.

Hero soils make up about 12 percent of this map unit. They are very deep, moderately well drained, loamy soils with rapid or very rapid permeability in the substratum. Hero soils are nearly level to gently sloping and are on terrace and plain landforms.

Soils of minor extent make up about 41 percent of this map unit. They are mainly Fredon, Saco, Charlton, Catden, Lim, Stockbridge, Chatfield, Hollis, and Nellis soils. Most areas of this map unit are in cropland or community development. Some areas are in woodland. The soils of this map unit are suited to these uses and are also a source of sand and gravel.

The major limiting factors for community development are the rapid or very rapid permeability of these soils and the seasonal high water table in Hero soils.

S1446. Windsor-Merrimac-Hinckley

Nearly level to steep, somewhat excessively drained to excessively drained, sandy and gravelly soils; on outwash plains, terrace, kames, and eskers

The soils in this map unit make up about 1 percent of the state. The landscape is predominantly outwash plain, terrace, esker, and kame landforms. The soils formed in outwash.

Windsor soils make up about 46 percent of this map unit. They are very deep, excessively drained, sandy soils with rapid or very permeability in the substratum. Windsor soils are nearly level to strongly sloping and are on kames, terraces and plains.

Merrimac soils make up about 10 percent of this map unit. They are very deep, somewhat excessively drained, sandy soils with rapid or very rapid permeability in the substratum. Merrimac soils are nearly level to strongly sloping and are on kames, terraces and plains.

Hinckley soils make up about 10 percent of this map unit. They are very deep, excessively drained, sandy and gravelly soils with very rapid permeability in the substratum. Hinckley soils are nearly level to steep on kames, terraces, plains, and eskers.

Soils of minor extent make up about 34 percent of this map unit. They are mainly Agawam, Raypol, Elmridge, Occum, Saco, Cheshire, Lim, Scarboro, Shaker, and Winooski soils. Most areas of this map unit are in woodland or community development. Some small areas are in cropland. The soils of this map unit are suited to woodland and community development and also are a source of sand and gravel.

These soils are droughty for cropland, unless irrigation is provided. Steep slopes in some areas limit the use of farming equipment.

The major limiting factor for community development is the rapid or very rapid permeability of Windsor and Hinckley soils.

S1447. Windsor-Agawam-Haven

Nearly level to strongly sloping, well drained to excessively drained, sandy and loamy soils; on outwash plains, terraces, and kames

The soils in this map unit make up about 2 percent of the state. The landscape is predominantly upland hill, drumlin, and drainageway landforms with a north-south orientation. The landscape is predominantly outwash plain, terrace, and kame landforms. The soils formed in outwash.

Windsor soils make up about 22 percent of this map unit. They are very deep, excessively drained, sandy soils with rapid or very rapid permeability in the substratum. Windsor soils are nearly level to strongly sloping and are on kames, terraces and plains.

Agawam soils make up about 15 percent of this map unit. They are very deep, well drained, loamy soils with rapid or very rapid permeability in the substratum. Agawam soils are nearly level to strongly sloping and are on outwash plains and terraces.

Haven soils make up about 15 percent of this map unit. They are very deep, well drained, loamy soils with very rapid permeability in the substratum. Haven soils are nearly level to strongly sloping and are on outwash plains and terraces.

Soils of minor extent make up about 48 percent of this map unit. They are mainly Manchester, Walpole, Ninigret, Elmridge, Typic Udorthents, Rippowam, Timakwa, Wapping, and Saco soils. Most areas of this map unit are in cropland or community development. Some areas are in woodland. The soils of this map unit are suited to these uses, although Windsor soil can be droughty for cropland unless irrigation is provided.

The major limiting factor for community development is the rapid or very rapid permeability of Windsor and Agawam soils.

S1448. Brancroft-Scitico-Shaker

Nearly level to strongly sloping, poorly drained to moderately well drained, silty soils; on lake plain, terrace, and drainageway landforms

The soils in this map unit make up about 1 percent of the state. The landscape is predominantly lake plain landforms. The soils formed in silty and clayey glaciolacustrine materials.

Brancroft soils make up about 24 percent of this map unit. They are very deep, moderately well drained, silty and clayey soils with very slow permeability in the substratum. Brancroft soils are nearly level to sloping and are on terraces.

Scitico soils make up about 17 percent of this map unit. They are very deep, poorly drained, clayey soils with very slow permeability in the substratum. Scitico soils are nearly level and are in depressions and drainageways.

Shaker soils make up about 14 percent of this map unit. They are very deep, poorly drained, clayey soils with slow or very slow permeability in the substratum. Shaker soils are nearly level and are in depressions and drainageways.

Soils of minor extent make up about 45 percent of this map unit. They are mainly Elmridge, Maybid, Scarboro, Broadbrook, Belgrade, Lim, Ludlow, Ninigret, Wilbraham, and Timakwa soils. Most areas of this map unit are in woodland, hayland, or pasture. Some areas are in community development. The soils of this map unit are suited to forestry, hayland, and pastureland.

The major limiting factors for community development are the slow to very slow permeability of these soils and the seasonal high water table in Scitico and Shaker soils.

S1449. Brookfield-Brimfield-Leicester

Nearly level to steep, poorly drained to somewhat excessively drained, loamy soils; on glacial till uplands

The soils in this map unit make up about 1 percent of the state. The landscape is predominantly upland hill and ridge landforms in Northeastern Connecticut. The soils formed in melt-out till. Stones and boulders are common on the surface in most places, and many areas have outcrops of bedrock.

Brookfield soils make up about 40 percent of this map unit. They are very deep, well drained, loamy soils with moderate or moderately rapid permeability in the substratum. Brookfield soils are gently sloping to steep and are on bedrock-controlled hills and ridges.

Brimfield soils make up about 21 percent of this map unit. They are shallow to bedrock, somewhat excessively drained, loamy soils with moderate or moderately rapid permeability in the substratum. Brimfield soils are gently sloping to steep and are on bedrock-controlled hills and ridges.

Leicester soils make up about 12 percent of this map unit. They are very deep, poorly drained, loamy soils with moderate to rapid permeability in the substratum. Leicester soils are nearly level to gently sloping and are in depressions and drainageways.

Soils of minor extent make up about 27 percent of this map unit. They are mainly Sutton, Paxton, Catden, Hinckley, and Rippowam soils. Most areas of this map unit are in woodland. Some areas are in community development. The soils of this map unit are suited to these uses.

The major limiting factor for community development is the shallow to bedrock in Brimfield soils. Stones and boulders need to be removed from the surface in some areas.

S1451. Holyoke-Rock outcrop-Yalesville

Gently sloping to very steep, well drained, silty to loamy soils; on glacial till uplands
The soils in this map unit make up about 1 percent of the state. The landscape is predominantly bedrock-controlled upland hill and ridge landforms in the Connecticut Valley with a north-south orientation. The soils formed in melt-out till. Stones and boulders are common on the surface in most places, and many areas have outcrops of bedrock.

Holyoke soils make up about 35 percent of this map unit. They are shallow to bedrock, well drained, silty soils with moderate permeability in the substratum. Holyoke soils are gently sloping to steep and are on bedrock-controlled hills and ridges.

Rock outcrop makes up about 18 percent of this map unit and occurs on bedrockcontrolled landforms with slopes that are sometimes very steep.

Yalesville soils make up about 14 percent of this map unit. They are moderately deep to bedrock, well drained, loamy soils with moderately rapid permeability in the substratum. Yalesville soils are gently sloping to strongly sloping and are on bedrockcontrolled hills and ridges.

Soils of minor extent make up about 33 percent of this map unit. They are mainly Wilbraham, Cheshire, Wethersfield, and Catden soils. Most areas of this map unit are in woodland. Some areas are in community development. The soils of this map unit are suited to forestry and wildlife habitat.

The major limiting factors for community development are the depth to bedrock in Holyoke and Yalesville soils, the steep slopes, and rock outcrops. Stones and boulders need to be removed from the surface in some areas.

S1452. Cheshire-Yalesville-Wethersfield

Nearly level to steep, well drained, loamy soils; on glacial till uplands

The soils in this map unit make up about 2 percent of the state. The landscape is predominantly upland hill, drumlin, and plain landforms in the Connecticut Valley with a north-south orientation. The soils formed in melt-out or lodgement till. Stones and boulders are common on the surface in many places.

Cheshire soils make up about 26 percent of this map unit. They are very deep, well drained, loamy soils with moderate or moderately rapid permeability in the substratum. Cheshire soils are gently sloping to steep and are on hills and plains.

Yalesville soils make up about 21 percent of this map unit. They are moderately deep to bedrock, well drained, loamy soils with moderately rapid permeability in the substratum. Yalesville soils are gently sloping to strongly sloping and are on bedrockcontrolled hills and ridges.

Wethersfield soils make up about 11 percent of this map unit. They are very deep, well drained, loamy soils with slow or very slow permeability in the substratum. Wethersfield soils are nearly level to steep and are on hills and drumlins.

Soils of minor extent make up about 42 percent of this map unit. They are mainly Wilbraham, Manchester, Raypol, Bash, Ludlow, and Catden soils. Most areas of this map unit are in cropland or community development. Some small areas are in woodland. The soils of this map unit are suited to these uses.

The major limiting factors for community development are the slow or very slow permeability in Wethersfield soils and the depth to bedrock in Yalesville soils. Stones and boulders need to be removed from the surface in some areas.

S1453. Narragansett-Cheshire-Wapping

Nearly level to steep, moderately well drained to well drained, silty to loamy soils; on glacial till uplands

The soils in this map unit make up about 1 percent of the state. The landscape is predominantly upland hill and plain landforms in the Connecticut Valley. The soils formed in melt-out till. Stones and boulders are common on the surface in many places.

Narragansett soils make up about 32 percent of this map unit. They are very deep, well drained, silty soils with moderate or moderately rapid permeability in the substratum. Narragansett soils are nearly level to moderately steep and are on hills and plains.

Cheshire soils make up about 29 percent of this map unit. They are very deep, well drained, loamy soils with moderate or moderately permeability in the substratum. Cheshire soils are gently sloping to steep and are on hills and plains.

Wapping soils make up about 9 percent of this map unit. They are very deep, moderately well drained, silty soils with moderately rapid or rapid permeability in the substratum. Wapping soils are nearly level to gently sloping and are on hills and plains.

Soils of minor extent make up about 30 percent of this map unit. They are mainly Wilbraham, Haven, Broadbrook, Manchester, Rippowam, Watchaug, and Catden soils. Most areas of this map unit are in cropland or woodland. Some areas are in community development. The soils of this map unit are suited to these uses.

Stones and boulders need to be removed from the surface in some areas.

S1454. Wethersfield-Ludlow-Wilbraham

Nearly level to steep, poorly drained to well drained, loamy and silty soils; on glacial till uplands

The soils in this map unit make up about 5 percent of the state. The landscape is predominantly upland hill, drumlin, and drainageway landforms in the Connecticut Valley with a north-south orientation. The soils formed in lodgement till.

Wethersfield soils make up about 37 percent of this map unit. They are very deep, well drained, loamy soils with slow or very slow permeability in the substratum. Wethersfield soils are nearly level to steep and are on hills and drumlins.

Ludlow soils make up about 14 percent of this map unit. They are very deep, moderately well drained, loamy soils with slow or very slow permeability in the substratum. Ludlow soils are nearly level to strongly sloping and are on hills and drumlins.

Wilbraham soils make up about 11 percent of this map unit. They are very deep, poorly drained, silty soils with slow or very slow permeability in the substratum. Wilbraham soils are nearly level and are in depressions and drainageways.

Soils of minor extent make up about 38 percent of this map unit. They are mainly Branford, Cheshire, Holyoke, Yalesville, and Manchester soils. Most areas of this map unit are in woodland. Some areas are in community development. The soils of this map unit are suited to forestry and wildlife habitat.

The major limiting factors for community development are the slow or very slow permeability in these soils and the seasonal high water table in Wilbraham soils.

S1455. Manchester-Branford-Rippowam

Nearly level to steep, poorly drained to excessively drained, sandy and gravelly to loamy soils; on glacial outwash plains, kames, terraces, and drainageways

The soils in this map unit make up about 1 percent of the state. The landscape is predominantly outwash plain and drainageway landforms in the Connecticut Valley. The soils formed in outwash and silty alluvium.

Manchester soils make up about 31 percent of this map unit. They are very deep, excessively drained, sandy and gravelly soils with rapid or very permeability in the substratum. Manchester soils are nearly level to steep sloping and are on plains, kames, eskers, and terraces.

Branford soils make up about 31 percent of this map unit. They are very deep, well drained, loamy soils with rapid or very rapid permeability in the substratum. Branford soils are nearly level to strongly sloping and are on plains and terraces.

Rippowam soils make up about 6 percent of this map unit. They are very deep, poorly drained, silty soils with rapid or very rapid permeability in the substratum. Rippowam soils are nearly level and are in depressions on flood plains.

Soils of minor extent make up about 32 percent of this map unit. They are mainly Sudbury, Udorthents, Raypol, Penwood, Timakwa, Wethersfield, Cheshire, and Holyoke soils. Most areas of this map unit are in cropland, woodland or community development. The soils of this map unit are suited to these uses.

The major limiting factors for community development are the rapid or very rapid permeability in Manchester and Branford soils and the seasonal high water table in Rippowam soils.

S1456. Manchester-Penwood-Hartford

Nearly level to steep, somewhat excessively drained to excessively drained, sandy and gravelly soils; on outwash plains

The soils in this map unit make up about 1 percent of the state. The landscape is predominantly outwash plain, terrace, and kame landforms in the Connecticut Valley. The soils formed in outwash.

Manchester soils make up about 37 percent of this map unit. They are very deep, excessively drained, sandy and gravelly soils with rapid or very rapid permeability in the substratum. Manchester soils are nearly level to steep and are on plains, kames, eskers, and terraces.

Penwood soils make up about 14 percent of this map unit. They are very deep, excessively drained, sandy soils with rapid or very rapid permeability in the substratum. Penwood soils are nearly level to gently sloping and are on plains and terraces.

Hartford soils make up about 12 percent of this map unit. They are very deep, somewhat excessively drained, sandy soils with rapid or very rapid permeability in the substratum. Hartford soils are nearly level to gently sloping and are on plains and terraces.

Soils of minor extent make up about 37 percent of this map unit. They are mainly Walpole, Haven, Ellington, Sudbury, Wethersfield, Rippowam, Timakwa, and Cheshire soils. Most areas of this map unit are in community development. Some areas are in cropland. The soils of this map unit are suited to these uses, although these soils can be droughty unless irrigation is provided.

The major limiting factor for community development is the rapid or very rapid permeability in Manchester and Penwood soils.

S1457. Wethersfield-Berlin-Belgrade

Nearly level to steep, moderately well drained and well drained, loamy and silty soils; on glacial till uplands

The soils in this map unit make less than 1 percent of the state. The landscape is predominantly drumlin and lake plain and terrace landforms in the Connecticut Valley. The soils formed in lodgement till and glaciolacustrine materials. Stones and boulders are common on the surface in many places.

Wethersfield soils make up about 25 percent of this map unit. They are very deep, well drained, loamy soils with slow or very slow permeability in the substratum. Wethersfield soils are nearly level to steep and are on hills and drumlins.

Berlin soils make up about 24 percent of this map unit. They are very deep, moderately well drained, silty soils with very slow permeability in the substratum. Berlin soils are nearly level to gently sloping and are on plains and terraces.

Belgrade soils make up about 20 percent of this map unit. They are very deep, moderately well drained, silty soils with moderate permeability in the substratum. Belgrade soils are nearly level to gently sloping and are on plains and terraces.

Soils of minor extent make up about 31 percent of this map unit. They are mainly Scitico, Shaker, Branford, Bash, Ludlow, Manchester, Maybid, and Raynham soils. Most areas of this map unit are in woodland. Some areas are in community development. The soils of this map unit are suited to forestry and wildlife habitat.

The major limiting factor for community development is the slow or very slow permeability in the Wethersfield and Berlin soils.

S1458. Winooski-Hadley-Occum

Nearly level, moderately well drained and well drained, silty and loamy soils; on flood plains

The soils in this map unit make up less than 1 percent of the state. The landscape is predominantly flood plain landforms (fig. 3). The soils formed in alluvium.

Figure 3.-Relationship of soils, landscapes, and parent material along the Connecticut River.

Winooski soils make up about 31 percent of this map unit. They are very deep, moderately well drained, silty soils with moderate or moderately rapid permeability in the substratum. Winooski soils are nearly level and are on flood plains subject to frequent flooding.

Hadley soils make up about 26 percent of this map unit. They are very deep, well drained, silty soils with moderate to rapid permeability in the substratum. Hadley soils are nearly level and are on flood plains subject to occasional flooding.

Occum soils make up about 19 percent of this map unit. They are very deep, well drained, loamy soils with rapid or very rapid permeability in the substratum. Occum soils are nearly level and are on flood plains subject to occasional flooding.

Soils of minor extent make up about 24 percent of this map unit. They are mainly Limerick, Pootatuck, Lim, Saco, and Suncook soils. Most areas of this map unit are in cropland or woodland. The soils of this map unit are suited to these uses and are some of the most productive soils in Connecticut.

The major limiting factors for cropland are the occasional to frequent flooding hazards associated with these soils.

S3111. Macomber-Taconic-Lanesboro

Gently sloping to very steep, well drained to somewhat excessively drained, loamy soils; on glacial till uplands

The soils in this map unit make up less than 1 percent of the state. The landscape is predominantly bedrock-controlled upland landforms in Northwestern Connecticut (fig.4). The soils formed in melt-out till and lodgement till. Stones and boulders are common on the surface in many places.

Macomber soils make up about 32 percent of this map unit. They are moderately deep to bedrock, well drained, loamy soils with moderate permeability in the

Figure 4.-Typical pattern of soils in the Macomber-Taconic-Lanesboro general soil map unit.
substratum. Macomber soils are gently sloping to moderately steep and are on bedrock-controlled hills and ridges.

Taconic soils make up about 32 percent of this map unit. They are shallow to bedrock, somewhat excessively drained, loamy soils with moderate or moderately rapid permeability in the substratum. Taconic soils are gently sloping to very steep and are on bedrock-controlled hills and ridges.

Lanesboro soils make up about 11 percent of this map unit. They are very deep, well drained, loamy soils with slow or very slow permeability in the substratum. Lanesboro soils are gently sloping to steep and are on hills.

Soils of minor extent make up about 25 percent of this map unit. They are mainly Fullam, Rock outcrop, Dummerston, Brayton, Farmington, Fluvaquents, and Hoosic soils. Most areas of this map unit are in woodland. Some areas are in community development. The soils of this map unit are suited to forestry and wildlife habitat.

The major limiting factors for community development are the slow or very slow permeability in Lanesboro soils and the depth to bedrock in Macomber and Taconic soils. Stones and boulders need to be removed from the surface in some areas.

S3114. Copake-Hero-Halsey

Nearly level to strongly sloping, very poorly drained to well drained, loamy soils; on upland valley outwash plains

The soils in this map unit make up less than 1 percent of the state. The landscape is predominantly upland valley landforms in Northwestern Connecticut. The soils formed in outwash.

Copake soils make up about 38 percent of this map unit. They are very deep, well drained, loamy soils with rapid or very rapid permeability in the substratum. Copake soils are nearly level to strongly sloping and are on kames, plains, and terraces.

Hero soils make up about 9 percent of this map unit. They are very deep, moderately well drained, loamy soils with rapid or very rapid permeability in the substratum. Hero soils are nearly level to gently sloping and are on plains and terraces.

Halsey soils make up about 8 percent of this map unit. They are very deep, very poorly drained, loamy soils with rapid or very rapid permeability in the substratum. Halsey soils are nearly level and are on in depressions and drainageways.

Soils of minor extent make up about 45 percent of this map unit. They are mainly Fredon, Natchaug, Deerfield, Groton, Farmington, Catden, Hinckley, Oakville, and Winooski soils. Most areas of this map unit are in woodland or cropland. The soils of this map unit are suited to these uses.

The major limiting factors for cropland are steep slopes in some areas and the seasonal high water table in Halsey soils.

S3115. Hinckley-Windsor-Merrimac

Nearly level to steep, somewhat excessively drained and excessively drained, loamy soils; on outwash plains

The soils in this map unit make up less than 1 percent of the state. The landscape is predominantly outwash plain, terrace, kame and esker landforms. The soils formed in outwash.

Hinckley soils make up about 26 percent of this map unit. They are very deep, excessively drained, soils with very rapid permeability in the substratum. Hinckley soils are nearly level to steep and are on kames, eskers, and outwash plains and terraces.

Windsor soils make up about 20 percent of this map unit. They are very deep, excessively drained, sandy soils with rapid or very rapid permeability in the substratum. Windsor soils are nearly level to strongly sloping and are on kames, terraces and plains.

Merrimac soils make up about 18 percent of this map unit. They are very deep, somewhat excessively drained, sandy soils with rapid or very rapid permeability in the substratum. Merrimac soils are nearly level to strongly sloping and are on outwash plains, terraces, and kames.

Soils of minor extent make up about 36 percent of this map unit. They are mainly Freetown, Deerfield, Urban land, Pits, Belgrade, Scarboro, Wareham, Saco, and Sudbury soils. Most areas of this map unit are in woodland, cropland, or community development. The soils of this map unit are suited to these uses and also are a source of sand and gravel.

The major limiting factors for community development are steep slopes in some areas and the rapid to very rapid permeability.

S3120. Wethersfield-Meckesville-Scarboro

Nearly level to steep, very poorly drained to well drained, loamy soils; on glacial till uplands

The soils in this map unit make up less than 1 percent of the state. The landscape is predominantly upland hill, drumlin, and drainageway landforms with a north-south orientation. The soils formed in lodgement till. Stones and boulders are common on the surface in many places.

Wethersfield soils make up about 47 percent of this map unit. They are very deep, well drained, loamy soils with slow or very slow permeability in the substratum. Wethersfield soils are nearly level to steep and are on hills and drumlins.

Meckesville soils make up about 15 percent of this map unit in the U.S.; however the Meckesville soils do not occur in Connecticut. They are very deep, well drained, loamy soils with very slow permeability in the substratum. Meckesville soils are nearly level to steep and are on hills and ridges.

Scarboro soils make up about 12 percent of this map unit. They are very deep, very poorly drained, loamy soils with rapid or very rapid permeability in the substratum. Scarboro soils are nearly level and are in depressions and drainageways.

Soils of minor extent make up about 26 percent of this map unit. They are mainly Windsor, Ridgebury, Wareham, Agawam, Holyoke, and Swansea. Most areas of this map unit are in woodland or community development. The soils of this map unit are suited to these uses.

The major limiting factors for community development are the slow or very slow permeability in Wethersfield and Meckesville soils and the seasonal high water table in Scarboro soils. Stones and boulders need to be removed from the surface in some areas.

S3121. Brookfield-Brimfield-Paxton

Gently sloping to steep, well drained and somewhat excessively drained, loamy soils; on glacial till uplands

The soils in this map unit make up less than 1 percent of the state. The landscape is predominantly upland hill, drumlin, and ridge landforms in Northeastern Connecticut. The soils formed in melt-out till and lodgement till. Stones and boulders are common on the surface in many places.

Brookfield soils make up about 30 percent of this map unit. They are very deep, well drained, loamy soils with moderate or moderately rapid permeability in the substratum. Brookfield soils are gently sloping to steep and are on bedrock-controlled hills and ridges.

Brimfield soils make up about 19 percent of this map unit. They are shallow to bedrock, somewhat excessively drained, loamy soils with moderate or moderately rapid permeability in the substratum. Brimfield soils are gently sloping to steep and are on bedrock-controlled hill tops and ridges.

Paxton soils make up about 12 percent of this map unit. They are very deep, well drained, loamy soils with slow or very slow permeability in the substratum. Paxton soils are gently sloping to steep and are on hills and drumlins.

Soils of minor extent make up about 39 percent of this map unit. They are mainly Rock outcrop, Freetown, Hinckley, Ridgebury, and Woodbridge soils. Most areas of this map unit are in woodland. Some areas are in cropland and community development. The soils of this map unit are suited to forestry and wildlife habitat.

The major limiting factors for community development are the slow or very slow permeability in Paxton soils and depth to bedrock in Brimfield soils. Stones and boulders need to be removed from the surface in some areas.

S3122. Paxton-Woodbridge-Hollis

Nearly level to very steep, moderately well drained to somewhat excessively drained, loamy soils; on glacial till uplands

The soils in this map unit make up less than 1 percent of the state. The landscape is predominantly upland hill, drumlin, and ridge landforms with a north-south orientation (fig. 5). The soils formed in lodgement till. Stones and boulders are common on the surface in many places.

Paxton soils make up about 35 percent of this map unit. They are very deep, well drained, loamy soils with slow or very slow permeability in the substratum. Paxton soils are nearly level to gently sloping to steep and are on hills and drumlins.

Figure 5.-Relationship of soils, landscapes, and parent material in the Paxton-Woodbridge-Hollis general soil map unit.

Woodbridge soils make up about 22 percent of this map unit. They are very deep, moderately well drained, loamy soils with slow or very slow permeability in the substratum. Woodbridge soils are nearly level to strongly sloping and are on hills and drumlins.

Hollis soils make up about 11 percent of this map unit. They are shallow to bedrock, somewhat excessively drained, loamy soils with moderate or moderately rapid permeability in the substratum. Hollis soils are gently sloping to very steep and are on bedrock-controlled hills and ridges.

Soils of minor extent make up about 32 percent of this map unit. They are mainly Freetown, Whitman, Charlton, Ridgebury, and Rock outcrop. Most areas of this map unit are in woodland, cropland, or community development. The soils of this map unit are suited to forestry and wildlife habitat.

The major limiting factors for community development are the slow or very slow permeability in Paxton and Woodbridge soils and the depth to bedrock in Hollis soils. Stones and boulders need to be removed from the surface in some areas.

S3136. Hollis-Chatfield-Rock outcrop

Nearly level to very steep, well drained to somewhat excessively drained, loamy soils; on bedrock-controlled glacial till uplands

The soils in this map unit make up less than 1 percent of the state. The landscape is predominantly bedrock-controlled upland hill and ridge landforms. The soils formed in melt-out till. Stones and boulders, as well as exposed areas of Rock outcrop are common on the surface in many places.

Hollis soils make up about 20 percent of this map unit. They are shallow to bedrock, somewhat excessively drained, loamy soils with moderate or moderately
rapid permeability in the substratum. Hollis soils are gently sloping to very steep and are on bedrock-controlled hills and drumlins.

Chatfield soils make up about 19 percent of this map unit. They are moderately deep to bedrock, well drained, loamy soils with moderate or moderately rapid permeability in the substratum. Chatfield soils are gently sloping to steep and are on bedrock-controlled hills and ridges.

Rock outcrop makes up about 17 percent of this map unit and occurs on bedrockcontrolled landforms with slopes that are sometimes very steep.

Soils of minor extent make up about 44 percent of this map unit. They are mainly Charlton, Woodbridge, Paxton, Ridgebury, Whitman, Scarboro, Freetown, Urban land, and Udorthents soils. Most areas of this map unit are in woodland. Some areas are in community development. The soils of this map unit are suited to forestry and wildlife habitat.

The major limiting factors for community development are the depth to bedrock in and steep slopes in some areas. Stones and boulders need to be removed from the surface in some areas.

S6623. Charlton-Canton-Sutton

Nearly level to steep, moderately well drained and well drained, loamy soils; on glacial till uplands

The soils in this map unit make up about 2 percent of the state. The landscape is predominantly upland hill landforms. The soils formed in melt-out till. Stones and boulders are common on the surface in many places.

Charlton soils make up about 24 percent of this map unit. They are very deep, well drained, loamy soils with moderate or moderately rapid permeability in the substratum. Charlton soils are gently sloping to steep and are on hills.

Canton soils make up about 24 percent of this map unit. They are very deep, well drained, loamy over sandy and gravelly soils with rapid permeability in the substratum. Canton soils are gently sloping to steep and are on hills.

Sutton soils make up about 12 percent of this map unit. They are very deep, moderately well drained, loamy soils with moderately rapid permeability in the substratum. Sutton soils are nearly level to strongly sloping and are on hills.

Soils of minor extent make up about 40 percent of this map unit. They are mainly Leicester, Paxton, Catden, Chatfield, Hollis, and Woodbridge soils. Most areas of this map unit are in cropland or woodland. Some areas are in community development. The soils of this map unit are suited to these uses.

Stones and boulders need to be removed from the surface in some areas.

S6625. Woodbridge-Paxton-Ridgebury

Nearly level to steep, poorly drained to well drained, loamy soils; on glacial till uplands
The soils in this map unit make up less than 1 percent of the state. The landscape is predominantly upland hill and drumlin landforms with a north-south orientation. The soils formed in lodgement till. Stones and boulders are common on the surface in many places.

Woodbridge soils make up about 37 percent of this map unit. They are very deep, moderately well drained, loamy soils with slow or very slow permeability in the substratum. Woodbridge soils are nearly level to strongly sloping and are on hills and drumlins.

Paxton soils make up about 23 percent of this map unit. They are very deep, well drained, loamy soils with slow or very slow permeability in the substratum. Paxton soils are gently sloping to steep and are on hills and drumlins.

Ridgebury soils make up about 20 percent of this map unit. They are very deep, poorly drained, loamy soils with slow or very slow permeability in the substratum.

Ridgebury soils are nearly level to gently sloping and are in depressions and drainageways.

Soils of minor extent make up about 20 percent of this map unit. They are mainly Canton, Catden, Charlton, Chatfield, and Hollis soils. Most areas of this map unit are in cropland, woodland, or community development. The soils of this map unit are suited to these uses.

The major limiting factors for community development are the slow or very slow permeability and the seasonal high water table in Woodbridge and Ridgebury soils. Stones and boulders need to be removed from the surface in some areas.

S6627. Carlisle-Adrian-Scarboro

Nearly level, very poorly drained, woody organic soils; on drainageways
The soils in this map unit make up less than 1 percent of the state. The landscape is predominantly depressions and drainageway landforms. The soils formed in organic materials or outwash.

Carlisle soils make up about 65 percent of this map unit in the U.S.; however Carlisle soils are not mapped in Connecticut. Catden soils are mapped in Connecticut and are similar to Carlisle soils. They are very deep, very poorly drained, organic soils with variable mineral substrata below 51 inches. Catden soils are nearly level and are in depressions.

Adrian soils make up about 13 percent of this map unit in the U.S.; however Adrian soils are not mapped in Connecticut. Timakwa soils are mapped in Connecticut and are similar to Adrian soils. They are very deep, very poorly drained, organic soils with sandy mineral substrata between 16 and 51 inches below the surface. Timakwa soils are nearly level and are in depressions.

Scarboro soils make up about 11 percent of this map unit. They are very deep, very poorly drained, loamy soils with rapid or very rapid permeability in the substratum. Scarboro soils are nearly level and are in depressions and drainageways.

Soils of minor extent make up about 11 percent of this map unit. They are mainly Merrimac, Woodbridge, and Hinckley soils.

Most areas of this map unit are in woodland and wildlife habitat, which these soils are well suited.

S9569. Bice-Shelburne-Ashfield

Nearly level to steep, moderately well drained and well drained, loamy soils; on glacial till uplands

The soils in this map unit make up about 3 percent of the state. The landscape is predominantly upland hill and drumlin landforms. The soils formed in melt-out till and lodgement till. Stones and boulders are common on the surface in many places.

Bice soils make up about 30 percent of this map unit. They are very deep, well drained, loamy soils with moderate or moderately rapid permeability in the substratum. Bice soils are gently sloping to steep and are on hills.

Shelburne soils make up about 25 percent of this map unit. They are very deep, well drained, loamy soils with slow or very slow permeability in the substratum. Shelburne soils are gently to steep and are on hills and drumlins.

Ashfield soils make up about 20 percent of this map unit. They are very deep, moderately well drained, loamy soils with slow or very slow permeability in the substratum. Ashfield soils are nearly level to strongly sloping and are on hills and drumlins.

Soils of minor extent make up about 25 percent of this map unit. They are mainly Loonmeadow, Millsite, Schroon, and Westminster soils. Most areas of this map unit are in woodland. Some areas are in community development. The soils of this map unit are suited to forestry and wildlife habitat.

The major limiting factors for community development are the slow or very slow permeability in Shelburne and Ashfield soils and the seasonal high water table in Ashfield soils. Stones and boulders need to be removed from the surface in some areas.

S9570. Bice-Millsite-Westminster

Gently sloping to very steep, well drained and somewhat excessively drained, loamy soils; on glacial till uplands

The soils in this map unit make up about 1 percent of the state. The landscape is predominantly upland hill and ridge landforms (fig. 6). The soils formed in melt-out till. Rock outcrop, stones and boulders are common on the surface in many places.

Bice soils make up about 30 percent of this map unit. They are very deep, well drained, loamy soils with moderate or moderately rapid permeability in the substratum. Bice soils are gently sloping to steep and are on hills.

Millsite soils make up about 25 percent of this map unit. They are moderately deep, well drained, loamy soils with moderate or moderately rapid permeability in the substratum. Millsite soils are gently sloping to steep and are on bedrock-controlled hills and ridges.

Westminster soils make up about 15 percent of this map unit. They are shallow to bedrock, somewhat excessively drained, loamy soils with moderately rapid permeability in the substratum. Westminster soils are gently sloping to very steep and are on bedrock-controlled hills and ridges.

Soils of minor extent make up about 30 percent of this map unit. They are mainly Schroon, Loonmeadow, and rock outcrop. Most areas of this map unit are in

Figure 6.-Typical pattern of soils in the Bice-Millsite-Westminster general soil map unit and the Ashfield-Shelburne-Loonmeadow general soil map unit.
woodland. Some areas are in community development. The soils of this map unit are suited to forestry and wildlife habitat.

The major limiting factor for community development is the depth to bedrock in Millsite and Westminster soils. Stones and boulders need to be removed from the surface in some areas.

S9571. Ashfield-Shelburne-Loonmeadow

Nearly level to steep, very poorly drained to well drained, loamy soils; on glacial till uplands

The soils in this map unit make up about 1 percent of the state. The landscape is predominantly upland hill and drumlin landforms with a north-south orientation. The soils formed in lodgement till. Stones and boulders are common on the surface in many places.

Ashfield soils make up about 20 percent of this map unit. They are very deep, moderately well drained, loamy soils with slow or very slow permeability in the substratum. Ashfield soils are nearly level to strongly sloping and are on hills and drumlins.

Shelburne soils make up about 20 percent of this map unit. They are very deep, well drained, loamy soils with slow or very slow permeability in the substratum. Shelburne soils are gently sloping to steep and are on hills and drumlins.

Loonmeadow soils make up about 15 percent of this map unit. They are very deep, very poorly drained, loamy soils with moderately slow to rapid permeability in the substratum. Loonmeadow soils are nearly level and are in depressions and drainageways.

Soils of minor extent make up about 45 percent of this map unit. They are mainly Brayton, Bice, Wonsqueak, and Fullam soils. Most areas of this map unit are in woodland. Some areas are in community development. The soils of this map unit are suited to forestry and wildlife habitat.

The major limiting factors for community development are the slow or very slow permeability in Ashfield and Shelburne soils and the seasonal high water table in Ashfield and Loonmeadow soils. Stones and boulders need to be removed from the surface in some areas.

Detailed Soil Map Units

The map units delineated on the detailed soil maps in this survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this section, along with the maps, can be used to determine the suitability and potential of a unit for specific uses. They also can be used to plan the management needed for those uses.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. The contrasting components are mentioned in the map unit descriptions. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives the principal hazards and limitations to be considered in planning for specific uses.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown
on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Windsor loamy sand, 0 to 3 percent slopes is a phase of the Windsor series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Hollis-Chatfield-Rock outcrop complex, 15 to 45 percent slopes is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Mudgepond and Alden soils, extremely stony is an undifferentiated group in this survey area.

This survey includes miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Beaches, Dumps, Pits, Rock outcrop, and Urban land are examples. Miscellaneous areas have few, if any, significant soil properties and typically little information is mentioned in the map unit descriptions.

Table 4 gives the acreage and proportionate extent of each map unit. Other tables give properties of the soils and the limitations, capabilities, and potentials for many uses. The Glossary defines many of the terms used in describing the soils or miscellaneous areas.

2—Ridgebury fine sandy loam

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: depressions on uplands, drainageways on uplands
Size of map unit: Areas commonly range from 3 to 50 acres

Map Unit Composition

Ridgebury and similar soils: 80 percent
Minor components: 20 percent

Major Component

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 5 inches; fine sandy loam
Bg1-5 to 14 inches; fine sandy loam
Bg2-14 to 21 inches; fine sandy loam
Cd-21 to 60 inches; sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderately rapid
Available water capacity: low
Reaction: very strongly acid to moderately acid

Depth to restrictive feature: 20 to 30 inches to densic material Depth to seasonal water table: 0 to 6 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4w Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of moderately well drained Sutton and Woodbridge soils on slightly higher areas of the landscape. Sutton soils lack the dense substratum that Woodbridge soils have. Poorly drained Leicester soils are included in areas that lack a dense substratum. Very poorly drained Whitman soils are in depressions and drainageways. Also included are very poorly drained Timakwa and Natchaug soils in marshy areas where muck is between 16 and 51 inches thick over mineral substratum. A few areas include a silt loam surface layer and subsoil, stones on the surface, or slopes steeper than 5 percent. Minor components make up about 20 percent of this map unit.

Use and Management

This soil is mostly in woodland. Some areas are in pasture, cropland, or community development.

The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Slow percolation is also a limitation for septic tank absorption fields. A more suitable site should be selected for these uses in a drier inclusion or nearby soil. The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarse grained subgrade to frost depth will reduce these limitations.

3-Ridgebury, Leicester, and Whitman soils, extremely stony

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: depressions on uplands, drainageways on uplands
Surface cover: 3 to 14 percent stones
Size of map unit: Areas commonly range from 3 to 150 acres.

Map Unit Composition

Ridgebury and similar soils: 40 percent
Leicester and similar soils: 35 percent
Whitman and similar soils: 15 percent
Minor components: 10 percent

Major Component

Ridgebury and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 5 inches; fine sandy loam
Bg1-5 to 14 inches; fine sandy loam
Bg2-14 to 21 inches; fine sandy loam
Cd-21 to 60 inches; sandy loam

Leicester and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 7 inches; fine sandy loam
Bg1-7 to 10 inches; fine sandy loam
Bg2-10 to 18 inches; fine sandy loam
BC-18 to 24 inches; fine sandy loam
C1-24 to 43 inches; gravelly fine sandy loam
C2—43 to 65 inches; gravelly fine sandy loam

Whitman and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi - 0 to 1 inch; slightly decomposed plant material
A-1 to 9 inches; fine sandy loam
Bg-9 to 16 inches; fine sandy loam
Cdg1-16 to 22 inches; fine sandy loam
Cdg2—22 to 60 inches; fine sandy loam

Major Component Properties and Qualities

Ridgebury and similar soils

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderately rapid
Available water capacity: low
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 30 inches to densic material
Depth to seasonal water table: 0 to 6 inches
Flooding: none
Leicester and similar soils
Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 0 to 18 inches
Flooding: none
Whitman and similar soils
Depth to bedrock: very deep
Drainage class: very poorly drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderately rapid
Available water capacity: very low
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: 12 to 20 inches to densic material
Ponding depth: 0 to 12 inches above surface
Depth to seasonal water table: 0 to 12 inches
Flooding: none

Interpretative Groups

Ridgebury and similar soils
Land capability classification (non-irrigated): 7s Hydrologic group: D
Leicester and similar soils
Land capability classification (non-irrigated): 7s
Hydrologic group: D
Whitman and similar soils
Land capability classification (non-irrigated): 7s
Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of moderately well drained Sutton and Woodbridge soils that are slightly higher on the landscape. Sutton soils lack the dense substratum that Woodbridge soils have. Also included are a few non-stony surface soils, small areas of soils subject to flooding, small areas with steeper slopes, and areas with silt loam surface and subsoil textures. Minor components make up about 10 percent of the map unit.

Use and Management

This soil is mostly in woodland. Some areas are in pasture.
The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Ponding is a limitation in areas of Whitman soils. Slow percolation is also a limitation for septic tank absorption fields in areas of Ridgebury and Whitman soils. Large stones are a limitation for lawns and landscaping. A more suitable site should be selected for these uses in a drier inclusion or nearby soil. The seasonal high water table and frost action are the main limitations for local roads and streets. Ponding is also a limitation for local roads and streets in Whitman soils. Construction on raised fill materials, installing a drainage system, and providing a coarse grained subgrade to frost depth will reduce these limitations.

4-Leicester fine sandy loam

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: depressions on uplands, drainageways on uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Leicester and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 7 inches; fine sandy loam
Bg1-7 to 10 inches; fine sandy loam
$\mathrm{Bg} 2-10$ to 18 inches; fine sandy loam
BC-18 to 24 inches; fine sandy loam
C1-24 to 43 inches; gravelly fine sandy loam
C2-43 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 0 to 18 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4w
Hydrologic group: D

Minor Components

Included with this soil in mapping are some areas of moderately well drained Sutton and Woodbridge soils on slightly higher areas of the landscape. Sutton soils lack the dense substratum that Woodbridge soils have. Also included are poorly drained Ridgebury soils and very poorly drained Whitman soils that have a dense substratum and occur along drainageways and in depressions. Soils with stones on the surface are included in a few small areas. Minor components make up about 20 percent of this map unit.

Use and Management

This soil is mostly in woodland. Some areas are in pasture.
The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank absorption fields. A more suitable site should be selected for these uses in a drier inclusion or nearby soil. The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarse grained subgrade to frost depth will reduce these limitations.

5-Wilbraham silt loam

Map Unit Setting

Slope: nearly level
Landscape: drainageways on uplands, depressions on uplands
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Wilbraham and similar soils: 80 percent
Minor components: 20 percent
Major Components
The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 4 inches; silt loam
Bw1-4 to 8 inches; silt loam
Bw2-8 to 20 inches; silt loam
Cd-20 to 65 inches; gravelly loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-loamy lodgment till derived from basalt and/or sandstone and shale
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 36 inches to densic material
Depth to seasonal water table: 0 to 18 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4w
Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of well drained Cheshire and Wethersfield soils that are higher on the landscape. Cheshire soils lack the very firm, dense substratum that Wethersfield soils have. Also included are moderately well drained Watchaug and Ludlow soils in slightly higher areas. Watchaug soils lack the dense substratum that Ludlow soils have. Very poorly drained Menlo soils are included in depressions and drainageways. Also included are small areas with slopes up to 8 percent, areas that lack a dense substratum, soils with a stony surface, and soils with a loam or fine sandy loam surface layer. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in pasture or brushland reverting to woodland.

The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Slow percolation is also a limitation for septic tank absorption fields. A more suitable site should be selected for these uses in a drier inclusion or nearby soil.

6-Wilbraham and Menlo soils, extremely stony

Map Unit Setting

Slope: nearly level
Landscape: drainageways on uplands, depressions on uplands
Surface cover: 3 to 15 percent stones
Size of map unit: Areas commonly range from 3 to 100 acres

Map Unit Composition

Wilbraham and similar soils: 60 percent
Menlo and similar soils: 25 percent
Minor components: 15 percent

Major Components

Wilbraham and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-

A-0 to 4 inches; silt loam
Bw1-4 to 8 inches; silt loam
Bw2-8 to 20 inches; silt loam
Cd-20 to 65 inches; gravelly loam

Menlo and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa-0 to 5 inches; highly decomposed plant material
A-5 to 16 inches; mucky silt loam
Bg1-16 to 22 inches; flaggy very fine sandy loam
Bg2-22 to 27 inches; flaggy fine sandy loam
Cd1-27 to 40 inches; fine sandy loam
Cd2-40 to 60 inches; fine sandy loam

Major Component Properties and Qualities

Wilbraham and similar soils

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-loamy lodgment till derived from basalt and/or sandstone and shale
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 36 inches to densic material
Depth to seasonal water table: 0 to 18 inches
Flooding: none

Menlo and similar soils

Depth to bedrock: very deep
Drainage class: very poorly drained
Parent material: coarse-loamy lodgment till derived from basalt and/or sandstone and shale
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately alkaline
Depth to restrictive feature: 20 to 36 inches to densic material
Ponding depth: 0 to 12 inches above surface
Depth to seasonal water table: 0 to 12 inches
Flooding: none

Interpretative Groups

Wilbraham and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: D

Menlo and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of well drained Cheshire and Wethersfield soils that are higher on the landscape. Cheshire soils lack the very firm, dense substratum that Wethersfield soils have. Also included are moderately well drained Watchaug and Ludlow soils on slightly higher areas of the landscape. Watchaug soils lack the dense substratum that Ludlow soils have. Also included are
small areas with slopes up to 8 percent, areas that lack a dense substratum, and soils with a loam or fine sandy loam surface layer. Minor components make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in brushland reverting to woodland.
The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Slow percolation is also a limitation for septic tank absorption fields. Ponding is a limitation in areas of Menlo soils for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Excess humus is also a limitation for lawns and landscaping. A more suitable site should be selected for these uses in a drier inclusion or nearby soil.

7-Mudgepond silt loam

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: drainageways on uplands, depressions on uplands
Size of map unit: Areas range from 3 to 50 acres

Map Unit Composition

Mudgepond and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 11 inches; silt loam
$\mathrm{Bg}-11$ to 16 inches; loam
Bw1-16 to 26 inches; fine sandy loam
Bw2-26 to 35 inches; gravelly fine sandy loam
C - 35 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: poorly drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist Permeability: moderate to moderately rapid
Available water capacity: high
Reaction: neutral to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 0 to 12 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4w
Hydrologic group: D

Minor Components

Included with this soil in mapping are moderately well drained Georgia and Amenia soils on slightly higher areas of the landscape. Georgia soils have carbonates between 40 and 80 inches below the surface. Amenia soils have carbonates above

40 inches. Also included are very poorly drained Alden soils in depressions. Minor components make up about 15 percent of this map unit.

Use and Management

This soil is mostly in woodland. Other areas are in pasture or cropland. Some areas are in community development.

The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Slow percolation is also a limitation for septic tank absorption fields. A more suitable site should be selected for these uses in a drier inclusion or nearby soil.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised filled materials, installing a drainage system, and providing a coarse grained subgrade to frost depth will reduce these limitations.

8-Mudgepond and Alden soils, extremely stony

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: depressions on uplands, drainageways on uplands
Surface cover: 3 to 15 percent stones
Size of map unit: Areas range from 3 to 50 acres

Map Unit Composition

Mudgepond and similar soils: 45 percent
Alden and similar soils: 35 percent
Minor components: 20 percent

Major Components

Mudgepond and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 11 inches; silt loam
$\mathrm{Bg}-11$ to 16 inches; loam
Bw1-16 to 26 inches; fine sandy loam
Bw2-26 to 35 inches; gravelly fine sandy loam
C-35 to 65 inches; gravelly fine sandy loam

Alden and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A1-0 to 4 inches; mucky silt loam
A2-4 to 13 inches; silt loam
Bg1-13 to 23 inches; silt loam
Bg2-23 to 29 inches; silt loam
Cg1-29 to 43 inches; gravelly loam
Cg2-43 to 60 inches; loam

Major Component Properties and Qualities

Mudgepond and similar soils

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist

Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: neutral to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 0 to 12 inches
Flooding: none
Alden and similar soils
Depth to bedrock: very deep
Drainage class: very poorly drained
Parent material: fine-loamy till derived from limestone and dolomite and/or schist
Permeability: moderately slow or moderate
Available water capacity: high
Reaction: strongly acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Ponding depth: 0 to 6 inches above surface
Depth to seasonal water table: 0 to 12 inches
Flooding: none
Interpretative Groups
Mudgepond and similar soils
Land capability classification (non-irrigated): 7s
Hydrologic group: D

Alden and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: D

Minor Components

Included with this soil in mapping are moderately well drained Georgia and Amenia soils. Georgia and Amenia soils are on slightly higher areas of the landscape. Also included are small areas of steeper slopes. Minor components make up about 15 percent of this map unit.

Use and Management

This soil is mostly in woodland. Some areas are in pasture.
The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Ponding is a limitation in areas of Alden soils. Slow percolation is also a limitation for septic tank absorption fields. A more suitable site should be selected for these uses in a drier inclusion or nearby soil.

The seasonal high water table and frost action are the main limitations for local roads and streets. Ponding is also a limitation in areas of Alden soils. Construction on raised filled materials, installing a drainage system, and providing a coarse grained subgrade to frost depth will reduce these limitations.

9-Scitico, Shaker, and Maybid soils

Map Unit Setting

Slope: nearly level
Landscape: depressions on lake plains, drainageways on lake plains, terraces
Size of map unit: Areas range from 3 to 200 acres

Map Unit Composition

Scitico and similar soils: 40 percent Shaker and similar soils: 30 percent Maybid and similar soils: 15 percent Minor components: 15 percent

Major Components

Scitico and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Eg-8 to 11 inches; silt loam
Bg1-11 to 18 inches; silty clay loam
Bg2-18 to 30 inches; silty clay loam
Bg3-30 to 38 inches; silty clay
Cg1-38 to 52 inches; silty clay loam
Cg2-52 to 65 inches; silty clay

Shaker and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 2 inches; moderately decomposed plant material
Ap-2 to 6 inches; fine sandy loam
$\mathrm{Bg}-6$ to 20 inches; sandy loam
Bw-20 to 30 inches; sandy loam
2C-30 to 65 inches; silty clay

Maybid and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 9 inches; silt loam
Bg1-9 to 18 inches; silty clay loam
Bg2-18 to 26 inches; silty clay loam
Cg1-26 to 36 inches; silty clay loam
Cg2-36 to 60 inches; silty clay loam

Major Component Properties and Qualities

Scitico and similar soils

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: clayey glaciolacustrine deposits
Permeability: very slow to moderate
Available water capacity: very high
Reaction: very strongly acid to slightly alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 0 to 12 inches
Flooding: none

Shaker and similar soils

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-loamy eolian deposits over clayey glaciolacustrine deposits
Permeability: very slow to moderately rapid
Available water capacity: very high
Reaction: strongly acid to slightly alkaline

Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 0 to 18 inches
Flooding: none

Maybid and similar soils

Depth to bedrock: very deep
Drainage class: very poorly drained
Parent material: clayey glaciolacustrine deposits
Permeability: very slow to moderate
Available water capacity: very high
Reaction: strongly acid to neutral
Depth to restrictive feature: greater than 72 inches
Ponding depth: 0 to 6 inches above surface
Depth to seasonal water table: 0 to 6 inches
Flooding: none

Interpretative Groups

Scitico and similar soils

Land capability classification (non-irrigated): 4w
Hydrologic group: D
Shaker and similar soils
Land capability classification (non-irrigated): 4w
Hydrologic group: D

Maybid and similar soils

Land capability classification (non-irrigated): 6w Hydrologic group: D

Minor Components

Included with this unit in mapping are moderately well drained Elmridrge and Brancroft soils. Elmridge soils are loamy over clayey and Brancroft soils are silty and clayey. Elmridge and Brancroft soils are on higher areas of the landscape. Also included are areas of sand and gravel at 2 to 4 foot depths and soils that are redder in color. Minor components make up 15 percent of this unit.

Use and Management

Most areas are in woodland. Some areas are cleared and in hayland, pasture or cultivated cropland. A few areas are in sod farming or community development.

The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank adsorption fields. Ponding is also a limitation in areas of Maybid soils. Slow percolation is also a limitation for septic tank adsorption fields. A more suitable site should be selected for these uses in a drier inclusion or nearby soil.

Seasonal high water table and frost action are the main limitations for local roads and streets. Ponding and low strength are also limitations in areas of Maybid soils. Construction on raised fill materials, installing a drainage system, and providing a coarse grained subgrade to frost depth will reduce these limitations.

10—Raynham silt loam

Map Unit Setting

Slope: nearly level
Landscape: drainageways on lake plains, depressions on lake plains
Size of map unit: Areas range from 3 to 50 acres

Map Unit Composition

Raynham and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 10 inches; silt loam
Bg1-10 to 16 inches; silt loam
Bg2—16 to 26 inches; silt loam
Bw-26 to 34 inches; very fine sandy loam
Cg-34 to 47 inches; silt loam
C-47 to 60 inches; silt loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-silty glaciolacustrine deposits
Permeability: very slow to moderate
Available water capacity: very high
Reaction: strongly acid to slightly alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 0 to 12 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4w
Hydrologic group: D

Minor Components

Included with this soil in mapping are moderately well drained Belgrade soils. Belgrade soils are on higher areas of the landscape. Also included are Scitico soils and very poorly drained Maybid soils in the deeper depressions and along drainageways. In New Haven County, moderately well drained Ellington soils are included on higher areas and are underlain by sandy materials. Minor components make up 20 percent of this unit.

Use and Management

Most areas are in woodland. Some areas are drained and in cultivated cropland or pasture. Other areas are in community development.

The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank adsorption fields. Slow percolation is also a limitation for septic tank adsorption fields. A more suitable site should be selected for these uses in a drier inclusion or nearby soil.

Seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarse grained subgrade to frost depth will reduce these limitations.

12—Raypol silt loam

Map Unit Setting

Slope: nearly level
Landscape: depressions on outwash plains, drainageways on outwash plains Size of map unit: Areas commonly range from 3 to 50 acres

Map Unit Composition

Raypol and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bg1-8 to 12 inches; very fine sandy loam
Bg2-12 to 20 inches; silt loam
Bw1-20 to 26 inches; silt loam
Bw2-26 to 29 inches; very fine sandy loam
2C1-29 to 52 inches; stratified very gravelly coarse sand to loamy fine sand
2C2-52 to 65 inches; stratified very gravelly coarse sand to loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 0 to 12 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4w Hydrologic group: D

Minor Components

Included with this soil in mapping are well drained Haven and Enfield soils, moderately well drained Ninigret and Tisbury soils, poorly drained Walpole soils, and very poorly drained Scarboro soils. Haven and Enfield soils are on higher areas of the landscape and Ninigret and Tisbury soils are on slightly higher areas. Walpole soils are sandy throughout. Scarboro soils are in depressions. Also included are small areas in Fairfield County with loamy material deeper than 40 inches. Minor components make up about 20 percent of the map unit.

Use and Management

Most areas are in woodland. Cleared areas are in cultivated cropland or pasture. Some areas are drained. Other areas are in residential development

The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank adsorption fields. Poor filtering is also a limitation for septic tank adsorption fields. There is a hazard of groundwater pollution because of the rapidly permeable substratum does not adequately filter effluent. A more suitable site should be considered on a drier inclusion or a nearby soil.

Frost action and a seasonal high water table are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarser grained subgrade to frost depth will reduce these limitations.

13-Walpole sandy loam

Map Unit Setting

Slope: nearly level
Landscape: drainageways on terraces, depressions on terraces, drainageways on outwash plains, depressions on outwash plains
Size of map unit: Areas commonly range from 3 to 100 acres

Map Unit Composition

Walpole and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 7 inches; sandy loam
$\mathrm{Bg}-7$ to 21 inches; sandy loam
Bw-21 to 25 inches; gravelly sandy loam
C1-25 to 41 inches; stratified very gravelly coarse sand to loamy fine sand
C2-41 to 65 inches; stratified very gravelly coarse sand to loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: poorly drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: very strongly acid to neutral
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 0 to 12 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4w
Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of excessively drained Hinckley soils, somewhat excessively drained Merrimac soils, and moderately well drained and somewhat poorly drained Sudbury Soils. Hinckley soils and Merrimac soils are on higher areas and Sudbury soils are on slightly higher areas of the landscape. Also included are moderately well drained Ninigret soils on slightly higher areas and the very poorly drained Scarboro soils in the depressions. Raypol soils are in areas that have a loamy surface and subsoil and Raynham soils which are silty throughout. Minor components make up about 20 percent of the unit.

Use and Management

Most areas are in woodland. Cleared areas are in cultivated cropland or pasture. Some areas are drained. Other areas are in residential development

The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank adsorption fields. Poor filtering is also a
limitation for septic tank adsorption fields. There is a hazard of groundwater pollution because of the rapidly permeable substratum does not adequately filter effluent. A more suitable site should be considered on a drier inclusion or a nearby soil.

Frost action and seasonal high water table are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarser grained subgrade to frost depth will reduce these limitations.

14—Fredon silt loam

Map Unit Setting

Slope: nearly level
Landscape: drainageways on outwash plains, terraces on outwash plains, depressions on outwash plains
Size of map unit: Areas commonly range from 3 to 50 acres

Map Unit Composition

Fredon and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
$\mathrm{Bg}-8$ to 17 inches; fine sandy loam
Bw-17 to 24 inches; fine sandy loam
2Cg1-24 to 29 inches; stratified gravelly sand to loamy fine sand
2C-29 to 48 inches; stratified gravelly sand to loamy fine sand
2Cg2-48 to 60 inches; stratified gravelly sand to loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-loamy over sandy and gravelly glaciofluvial deposits derived
from limestone and dolomite and/or schist
Permeability: moderate to very rapid
Available water capacity: high
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 0 to 12 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4w Hydrologic Group: D

Minor Components

Included with this soil in mapping are areas of well drained Copake and Groton soils that are higher on the landscape. Also included are moderately well drained Hero soils on slightly higher areas of the landscape and very poorly drained Halsey soils in depressions and along drainageways. Minor components make up about 15 percent of this map unit.

Use and Management

Most areas are in woodland. Cleared areas are in pasture or cropland. Some cleared areas are drained. Other areas are in residential development.

The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank adsorption fields. Poor filtering is also a limitation for septic tank adsorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. A more suitable site should be considered on a drier inclusion or a nearby soil.

Frost action and seasonal high water table are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarser grained subgrade to frost depth will reduce these limitations.

15-Scarboro muck

Map Unit Setting

Slope: nearly level
Landscape: terraces on outwash plains, drainageways on outwash plains, depressions on outwash plains
Size of map unit: Areas commonly range from 3 to 100 acres. Slopes range from 0 to 2 percent.

Map Unit Composition

Scarboro and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as

follows-

Oa-0 to 12 inches; muck
A-12 to 17 inches; loamy sand
Cg1-17 to 31 inches; stratified sand to loamy fine sand
Cg2-31 to 72 inches; stratified very gravelly coarse sand to loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: very poorly drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: very strongly acid to neutral
Depth to restrictive feature: greater than 72 inches
Ponding depth: 0 to 6 inches above surface
Depth to seasonal water table: 0 to 6 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 5w
Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of excessively drained Windsor soils on the highest areas of the landscape. Also included are moderately well drained

Sudbury soils in slightly higher areas of the landscape. Poorly drained Walpole and Raypol soils are in slight depressions. Timakwa and Natchaug soils are included in areas of muck that is 16 to 51 inches thick over mineral soil and Catden and Freetown soils are in areas with more than 51 inches of muck. Soils with a silt loam surface are included in New London County and soils with a sandy loam surface are included in New Haven County. Minor components make up about 20 percent of the unit.

Use and Management

Most areas are in woodland. Some areas are brushland reverting to woodland. Ponding is the main limitation for dwellings with basements and lawns and landscaping. Ponding and poor filtering are the main limitations for septic tank adsorption fields. There is a hazard of groundwater pollution because of the rapidly permeable substratum does not adequately filter effluent. A more suitable site should be considered on a drier inclusion or a nearby soil.

Ponding and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarser grained subgrade to frost depth will reduce these limitations.

16-Halsey silt loam

Map Unit Setting

Slope: nearly level
Landscape: terraces on outwash plains, depressions on outwash plains, drainageways on outwash plains
Size of map unit: Areas commonly range from 3 to 40 acres

Map Unit Composition

Halsey and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 8 inches; silt loam
Bg1-8 to 16 inches; silt loam
Bg2-16 to 28 inches; fine sandy loam
2Cg1-28 to 38 inches; loamy sand
2Cg2-38 to 60 inches; sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: very poorly drained
Parent material: coarse-loamy over sandy and gravelly glaciofluvial deposits derived
from limestone and dolomite and/or schist
Permeability: moderate to very rapid
Available water capacity: high
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Ponding depth: 0 to 6 inches above surface
Depth to seasonal water table: 0 to 6 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 5w Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of poorly drained Fredon soils in shallow depressions and drainageways. Also included are areas of well drained Copake soils and excessively drained Groton soils that are higher on the landscape. Moderately well drained Hero soils are included in slightly higher areas of the landscape. Very poorly drained Timakwa soils are included in marshy areas where the muck is between 16 and 51 inches thick over the sandy mineral substratum. A few soils with silt loam subsoil are included. Minor components make up 20 percent of this map unit

Use and Management

Most areas are in woodland. Some areas are in pasture or water tolerant shrubs and herbaceous plants.

The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank adsorption fields. Poor filtering is also a limitation for septic tank adsorption fields. There is a hazard of groundwater pollution because of the rapidly permeable substratum does not adequately filter effluent. A more suitable site should be considered on a drier inclusion or a nearby soil.

Frost action and seasonal high water table are the main limitations for local roads and streets. Constructing on raised fill materials, installing a drainage system, and providing a coarser grained subgrade to frost depth will reduce these limitations.

17-Timakwa and Natchaug soils

Map Unit Setting

Slope: nearly level
Landscape: depressions
Size of map unit: Areas commonly range from 3 to 150 acres.

Map Unit Composition

Timakwa and similar soils: 45 percent
Natchaug and similar soils: 40 percent
Minor components: 15 percent

Major Components

Timakwa and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa1-0 to 10 inches; muck
Oa2-10 to 21 inches; muck
Oa3-21 to 24 inches; muck
Oa4-24 to 37 inches; muck
2Cg1-37 to 47 inches; very gravelly loamy coarse sand
2Cg2-47 to 60 inches; gravelly loamy very fine sand
Natchaug and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-

> Oi1-0 to 2 inches; peat
> Oi2-2 to 4 inches; peat
> Oa1-4 to 6 inches; muck
> Oa2-6 to 11 inches; muck
> Oa3-11 to 18 inches; muck
> Oa4-18 to 24 inches; muck
> 2Cg1-24 to 33 inches; fine sandy loam
> 2Cg2-33 to 36 inches; fine sandy loam
> 2Cg3-36 to 80 inches; loam

Major Component Properties and Qualities

Timakwa and similar soils

Depth to bedrock: very deep
Drainage class: very poorly drained
Parent material: woody organic material over sandy and gravelly glaciofluvial deposits
Permeability: moderate to very rapid
Available water capacity:very high
Reaction: ultra acid to neutral
Depth to restrictive feature: greater than 72 inches
Ponding depth: 0 to 12 inches above surface
Depth to seasonal water table:0 to 12 inches
Flooding: rare

Natchaug and similar soils

Depth to bedrock: very deep
Drainage class: very poorly drained
Parent material: woody organic material over loamy alluvium and/or loamy glaciofluvial deposits and/or loamy till
Permeability: moderately slow to very rapid
Available water capacity: very high
Reaction: extremely acid to neutral
Depth to restrictive feature: greater than 72 inches
Ponding depth: 0 to 12 inches above surface Depth to seasonal water table: 0 to 12 inches
Flooding: rare

Interpretative Groups

Timakwa and similar soils

Land capability classification (non-irrigated): 5w
Hydrologic group: D
Natchaug and similar soils
Land capability classification (non-irrigated): 5w
Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of very poorly drained Catden soils where the muck is more than 51 inches thick over mineral substratum. Also included are areas of very poorly drained Whitman, Menlo, Scarboro, Maybid, and Saco soils. Whitman and Menlo soils formed in loamy glacial till. Scarboro soils are sandy and Maybid soils are silty and clayey. Saco soils are on flood plains and are silty. Minor components make up about 15 percent of the map unit.

Use and Management

Most areas of this soil are in woodland or wildlife habitat.

Ponding and subsidence are the main limitations for dwellings with basements, septic tank absorption fields, local roads, and streets. Excess humus is also a limitation for lawns and landscaping. Slow percolation is also a limitation for septic tank absorption fields. Frost action is also a limitation for local roads and streets. A more suitable site for all these uses should be selected on a drier soil.

18-Catden and Freetown soils

Map Unit Setting

Slope: nearly level
Landscape: depressions
Size of map unit: Areas commonly range from 3 to 300 acres.

Map Unit Composition

Catden and similar soils: 40 percent
Freetown and similar soils: 40 percent
Minor components: 20 percent

Major Components

Catden and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa1-0 to 2 inches; muck
Oa2-2 to 18 inches; muck
Oa3-18 to 47 inches; muck
Oa4-47 to 49 inches; muck
Oa5-49 to 61 inches; muck

Freetown and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi1-0 to 4 inches; peat
Oi2-4 to 10 inches; peat
Oa1-10 to 22 inches; muck
Oa2-22 to 35 inches; muck
Oa3- 35 to 41 inches; muck
Oa4-41 to 55 inches; muck
Oa5-55 to 71 inches; muck
Oa6-71 to 91 inches; muck

Major Component Properties and Qualities

Catden and similar soils

Depth to bedrock: very deep
Drainage class: very poorly drained (fig. 7)
Parent material: not specified
Permeability: moderate or moderately rapid
Available water capacity: very high
Reaction: extremely acid to neutral
Depth to restrictive feature: greater than 72 inches
Ponding depth: 0 to 12 inches above surface
Depth to seasonal water table: 0 to 12 inches
Flooding: rare

Figure 7.-Wetland vegetation is common in areas of very poorly drained Catden and Freetown soils.

Freetown and similar soils

Depth to bedrock: very deep
Drainage class: very poorly drained
Parent material: woody organic material
Permeability: moderate or moderately rapid
Available water capacity: very high
Reaction: ultra acid to extremely acid
Depth to restrictive feature: greater than 72 inches
Ponding depth: 0 to 12 inches above surface
Depth to seasonal water table: 0 inches
Flooding: rare

Interpretative Groups

Catden and similar soils

Land capability classification (non-irrigated): 5w
Hydrologic group: D

Freetown and similar soils

Land capability classification (non-irrigated): 5w
Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of very poorly drained Timakwa and Natchaug soils. Timakwa soils have muck between 16 to 51 inches thick over sandy substratum; Natchaug soils have muck between 16 to 51 inches thick over loamy substratum. Also included are very poorly drained Whitman, Menlo, Scarboro, Maybid, and Saco soils. Whitman and Menlo soils formed in loamy glacial till.

Scarboro soils are sandy and Maybid soils are silty and clayey. Saco soils are on flood plains and are silty. Minor Components make up about 20 percent of this map unit.

Use and Management

Most areas of this soil are in woodland or wildlife habitat.
Ponding and subsidence are the main limitations for dwellings with basements, septic tank absorption fields, local roads and streets. Low strength is also a limitation for dwellings with basements. Excess humus is a limitation for lawns and landscaping. Slow percolation is also a limitation for septic tank absorption fields. Frost action is also a limitation for local roads and streets. A more suitable site for all these uses should be selected on a drier soil.

20A—Ellington silt loam, 0 to 5 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: terraces on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 25 acres.

Map Unit Composition

Ellington and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 18 inches; silt loam
Bw2-18 to 26 inches; very fine sandy loam
2C-26 to 65 inches; stratified loamy fine sand to very gravelly coarse sand

Major Component Properties and Qualities

Depth to bedrock: very deep
 Drainage class: moderately well drained
 Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial
 deposits derived from sandstone and shale and/or basalt
 Permeability:moderate to very rapid
 Available water capacity: high
 Reaction: very strongly acid to moderately acid
 Depth to restrictive feature: greater than 72 inches
 Depth to seasonal water table:18 to 30 inches
 Flooding:none
 Interpretative Groups

Land capability classification (non-irrigated): 2 w
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Branford soils and poorly drained Raypol and Raynham soils. Branford soils are on higher areas of the landscape. Raypol and Raynham soils are in shallow depressions and along
drainageways. Raynham soils are silty throughout; Raypol soils are silty over sand and gravel. A few areas in Middlesex and New Haven counties include soils with a fine sandy loam surface layer. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated cropland. Some areas are in community development, woodland, or pasture.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and poor filtering are the main limitations for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal in places.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

21A-Ninigret and Tisbury soils, 0 to 5 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: terraces on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Ninigret and similar soils: 60 percent
Tisbury and similar soils: 25 percent
Minor components: 15 percent

Major Components

Ninigret and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 16 inches; fine sandy loam
Bw2-16 to 26 inches; fine sandy loam
2C-26 to 65 inches; stratified very gravelly coarse sand to loamy fine sand

Tisbury and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 18 inches; silt loam
Bw2-18 to 26 inches; silt loam
2C-26 to 60 inches; stratified very gravelly sand to loamy sand

Major Component Properties and Qualities

Ninigret and similar soils

Depth to bedrock: very deep
Drainage class: moderately well drained

Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none
Tisbury and similar soils
Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-silty eolian deposits over sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none
Interpretative Groups

Ninigret and similar soils
 Land capability classification (non-irrigated): 2 w
 Hydrologic group: B

Tisbury and similar soils

Land capability classification (non-irrigated): 2 w
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of somewhat excessively drained Merrimac soils and well drained Agawam, Enfield, and Haven soils that are on higher areas of the landscape. Agawam soils are loamy over sand and gravel; Enfield and Haven soils are silty over sand and gravel. Also included are moderately well drained Sudbury soils that are sandy and gravelly throughout. Small areas poorly drained Walpole soils and Raypol soils are included in shallow depressions and drainageways. A few areas include soils with a red color in the central lowlands of the Connecticut River Valley. Minor components make up about 15 percent of this map unit.

Use and Management

Most areas are cleared and in cultivated crops, hay, pasture, or brushland. Some areas are in woodland or community development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce the wetness.

Poor filtering and the seasonal high water table are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal. There is also a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

22A-Hero gravelly loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: outwash plains on valleys, terraces on valleys
Size of map unit: Areas commonly range from 3 to 40 acres.
Map Unit Composition
Hero and similar soils: 85 percent
Minor components: 15 percent

Major Components

Hero and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 9 inches; gravelly loam
Bw1-9 to 18 inches; gravelly silt loam
Bw2—18 to 24 inches; gravelly silt loam
Bw3-24 to 27 inches; gravelly sandy loam
2C-27 to 60 inches; stratified extremely gravelly coarse sand to gravelly loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: moderately well drained
Parent material: coarse-loamy over sandy and gravelly glaciofluvial deposits derived from limestone and dolomite and/or schist
Permeability: moderate to very rapid
Available water capacity: moderate
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2w
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Groton soils and well drained Copake soils that are higher on the landscape. Also included are small areas of poorly drained Fredon soils and very poorly drained Halsey soils in depressions and along drainageways. Minor components make up about 15 percent of this map unit.

Use and Management

Most areas are in woodland. Cleared areas are in pasture or cropland. Some areas are drained. Other areas are in residential development.

The seasonal high water table is the main limitation for dwelling with basements, lawns and landscaping, and septic tank absorption fields. Small stones are also a limitation for lawns and landscaping. Poor filtering is also a limitation for septic tank absorption. There is the hazard of groundwater pollution because the rapidly
permeable substratum does not adequately filter effluent. A more suitable site for these uses should be considered in a drier inclusion or nearby soil.

Frost action and the seasonal high water table are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarser grained subgrade to frost depth will reduce these limitations.

22B—Hero gravelly loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: outwash plains on valleys, terraces on valleys
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Hero and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 9 inches; gravelly loam
Bw1-9 to 18 inches; gravelly silt loam
Bw2-18 to 24 inches; gravelly silt loam
Bw3-24 to 27 inches; gravelly sandy loam
2C-27 to 60 inches; stratified extremely gravelly coarse sand to gravelly loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy over sandy and gravelly glaciofluvial deposits derived
from limestone and dolomite and/or schist
Permeability: moderate to very rapid
Available water capacity: moderate
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2w
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Groton soils and well drained Copake soils that are higher on the landscape. Also included are small areas of poorly drained Fredon soils and very poorly drained Halsey soils in depressions and along drainageways. Minor components make up about 15 percent of this map unit.

Use and Management

Most areas are in woodland. Cleared areas are in pasture or cropland. Some areas are drained. Other areas are in residential development.

The seasonal high water table is the main limitation for dwelling with basements, lawns and landscaping, and septic tank absorption fields. Small stones are also a limitation for lawns and landscaping. Poor filtering is also a limitation for septic tank absorption. There is the hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. A more suitable site for these uses should be considered in a drier inclusion or nearby soil.

Frost action and the seasonal high water table are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarser grained subgrade to frost depth will reduce these limitations.

23A—Sudbury sandy loam, 0 to 5 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: outwash plains on valleys, terraces on valleys
Size of map unit: Areas range from 3 to 40 acres.
Map Unit Composition
Sudbury and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 5 inches; sandy loam
Bw1-5 to 17 inches; gravelly sandy loam
Bw2-17 to 25 inches; sandy loam
2C-25 to 60 inches; stratified gravel to sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 36 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 w
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of somewhat excessively drained Merrimac soils and well drained Agawam soils that are higher on the landscape. Also included are moderately well drained Ninigret and Tisbury soils in areas with a finer surface texture. Small areas of poorly drained Walpole soils are included in drainageways and shallow depressions. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated cropland, hay, or pasture. Some areas are in woodland or community development.

The seasonal high water table is the main limitation for dwellings with basements. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and poor filtering are the main limitations for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Modifying a conventional septic system by extending the length of distribution lines and adding fill usually will allow on site sewage disposal. Specially designed septic systems are necessary in some areas of Sudbury soils.

The seasonal high water table and frost action are the main limitations for local roads and streets. Constructing roads on raised fill materials and installing a drainage system will reduce the wetness limitation. Providing a coarse grained subgrade to frost depth will reduce the limitation.

24A—Deerfield loamy fine sand, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: outwash plains on valleys, terraces on valleys
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Deerfield and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; loamy fine sand
Bw1-8 to 16 inches; loamy sand
Bw2-16 to 28 inches; loamy sand
C1-28 to 34 inches; fine sand
C2-34 to 60 inches; fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: sandy glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: rapid or very rapid
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 36 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2w
Hydrologic group: A

Minor Components

Included with this soil in mapping are areas of excessively drained Windsor, Penwood, and Hinckley soils that are higher on the landscape. Windsor soils are sandy throughout; Penwood soils have red subsoil; Hinckley soils are sandy and gravelly. Also included are moderately well drained Ninigret soils in areas with a finer surface texture. Small areas of poorly drained Walpole soils and very poorly drained Scarboro soils are included in depressions and drainageways. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland or residential development. Some areas are in cultivated cropland.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Droughtiness can make establishment and maintenance of lawns difficult. Locating dwellings on the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and poor filtering are the main limitations for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal in places.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarser grained subgrade to frost depth will reduce these limitations.

25A—Brancroft silt loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: terraces on lake plains
Size of map unit: Areas commonly range from 3 to 25 acres.

Map Unit Composition

Brancroft and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; silt loam
Bw1-6 to 17 inches; silt loam
Bw2-17 to 22 inches; silty clay loam
Bw3-22 to 32 inches; silt loam
C1-32 to 43 inches; silty clay loam
C2-43 to 66 inches; silt loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: fine-silty glaciolacustrine deposits
Permeability: very slow to moderate

Available water capacity: very high
Reaction: very strongly acid to neutral
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 w
Hydrologic group: C

Minor Components

Included with this soil in mapping are some areas of moderately well drained Elmridge and Berlin soils. Elmridge soils have a loamy over clayey substratum; Berlin soils are reddish brown in color. Also included are poorly drained Scitico soils in slight depressions on the landscape. Very poorly drained Maybid soils are included in deep depressions and drainageways (fig. 8). A few areas are underlain by sand and gravel or glacial till at 2 to 3 feet depths. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in community development or cultivated crops, hay, or pasture. Some areas are wooded. A small acreage is in sod development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings on the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal in places.

Low strength and frost action are the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce these limitations.

25B—Brancroft silt loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: terraces on lake plains
Size of map unit: Areas commonly range from 3 to 25 acres.

Map Unit Composition

Brancroft and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; silt loam
Bw1-6 to 17 inches; silt loam
Bw2-17 to 22 inches; silty clay loam
Bw3-22 to 32 inches; silt loam
C1-32 to 43 inches; silty clay loam
C2 43 to 66 inches; silt loam

Figure 8. -Small areas of very poorly drained Maybid soils are common in glaciolacustrine soils such as Brancroft silt loam.

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: fine-silty glaciolacustrine deposits Permeability: very slow to moderate Available water capacity: very high Reaction: very strongly acid to neutral Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: 18 to 30 inches Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2e Hydrologic group: C

Minor Components

Included with this soil in mapping are some areas of moderately well drained Elmridge and Berlin soils. Elmridge soils have a loamy over clayey substratum; Berlin soils are reddish brown in color. Also included are poorly drained Scitico soils in slight depressions on the landscape. Very poorly drained Maybid soils are included in deep depressions and drainageways. A few areas are underlain by sand and gravel or glacial till at 2 to 3 feet depths. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in community development or cultivated crops, hay, or pasture. Some areas are wooded. A small acreage is in sod development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings on the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal in places.

Low strength and frost action are the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce these limitations.

25C—Brancroft silt loam, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: terraces on lake plains
Size of map unit: Areas commonly range from 3 to 25 acres.

Map Unit Composition

Brancroft and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; silt loam
Bw1-6 to 17 inches; silt loam
Bw2-17 to 22 inches; silty clay loam
Bw3-22 to 32 inches; silt loam
C1-32 to 43 inches; silty clay loam
C2—43 to 66 inches; silt loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: fine-silty glaciolacustrine deposits
Permeability: very slow to moderate
Available water capacity: very high
Reaction: very strongly acid to neutral
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table:18 to 30 inches
Flooding: none
Interpretative Groups
Land capability classification (non-irrigated): 3e
Hydrologic group: C

Minor Components

Included with this soil in mapping are some areas of moderately well drained Elmridge and Berlin soils. Elmridge soils have a loamy over clayey substratum; Berlin soils are reddish brown in color. Also included are poorly drained Scitico soils in slight depressions on the landscape. Very poorly drained Maybid soils are included in deep depressions and drainageways. A few areas are underlain by sand and gravel or
glacial till at 2 to 3 feet depths. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in community development or cultivated crops, hay, or pasture. Some areas are wooded. A small acreage is in sod development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings on the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal in places.

Low strength and frost action are the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce these limitations.

26A—Berlin silt loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: terraces on lake plains
Size of map unit: Areas commonly range from 3 to 50 acres.
Map Unit Composition
Berlin and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; silt loam
Bw1-6 to 12 inches; silt loam
Bw2-12 to 20 inches; silty clay loam
Bw3-20 to 34 inches; silty clay loam
C1-34 to 48 inches; silty clay loam
C2-48 to 65 inches; silty clay loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: fine-silty glaciolacustrine deposits
Permeability: very slow to moderate
Available water capacity: very high
Reaction: very strongly acid to neutral
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table:12 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2w
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of moderately well drained Brancroft, Elmridge, and Belgrade soils. These soils are yellower in the subsoil and substratum. Also included are areas of moderately well drained Ludlow soils, which have a dense substratum. Well drained Wethersfield soils are included in areas that are higher on the landscape and have a dense substratum. Small areas of poorly drained Scitico soils and very poorly drained Maybid soils are included in depressions and along drainageways. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in community development. Some areas are in corn, vegetable or nursery crops, hay, or pasture. A few areas are in woodland.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings on the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal in places.

Low strength and frost action are the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce these limitations.

26B—Berlin silt loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: terraces on lake plains
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Berlin and similar soils: 80 percent Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; silt loam
Bw1-6 to 12 inches; silt loam
Bw2-12 to 20 inches; silty clay loam
Bw3-20 to 34 inches; silty clay loam
C1-34 to 48 inches; silty clay loam
C2-48 to 65 inches; silty clay loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: fine-silty glaciolacustrine deposits
Permeability: very slow to moderate
Available water capacity: very high
Reaction: very strongly acid to neutral
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 12 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 e

Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of moderately well drained Brancroft, Elmridge, and Belgrade soils. These soils are yellower in the subsoil and substratum. Also included are areas of moderately well drained Ludlow soils, which have a dense substratum. Well drained Wethersfield soils are included in areas that are higher on the landscape and have a dense substratum. Small areas of poorly drained Scitico soils and very poorly drained Maybid soils are included in depressions and along drainageways. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in community development. Some areas are in corn, vegetable or nursery crops, hay, or pasture. A few areas are in woodland.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings on the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal in places.

Low strength and frost action are the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce these limitations.

27A—Belgrade silt loam, 0 to 5 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: terraces on lake plains
Size of map unit: Areas commonly range from 3 to 30 acres.

Map Unit Composition

Belgrade and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 16 inches; silt loam
Bw2-16 to 27 inches; silt loam
C1—27 to 45 inches; silt loam
C2—45 to 60 inches; silt loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: silty glaciolacustrine deposits
Permeability: moderate
Available water capacity: very high

Reaction: very strongly acid to neutral
 Depth to restrictive feature: greater than 72 inches
 Depth to seasonal water table: 18 to 42 inches
 Flooding: none

Interpretative Groups
Land capability classification (non-irrigated): 2 w
Hydrologic group: B

Minor Components

Included with this soil in mapping are some areas of moderately well drained Elmridge, Brancroft, and Berlin soils. Elmridge soils have a loamy over clayey substratum; Brancroft soils are silty and clayey; Berlin soils are reddish brown in color. Also included are poorly drained Scitico, Raynham, and Shaker soils, and very poorly drained Maybid soils in depressions and along drainageways. Included in some areas are soils red in color. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated crops, hay, or pasture. Some areas are in vegetables and nursery stock. A few areas are in woodland or community development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings on the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal in places.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce these limitations.

28A—Elmridge fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: terraces on lake plains
Size of map unit: Areas commonly range from 3 to 200 acres.

Map Unit Composition

Elmridge and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; fine sandy loam
Bw1-6 to 10 inches; fine sandy loam
Bw2-10 to 18 inches; fine sandy loam
Bw3-18 to 25 inches; sandy loam
2C-25 to 65 inches; silty clay

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained

Parent material: coarse-loamy eolian sands over clayey glaciolacustrine deposits Permeability: very slow to moderately rapid Available water capacity: high
Reaction: very strongly acid to slightly alkaline Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none
Interpretative Groups
Land capability classification (non-irrigated): 2 w Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of moderately well drained Brancroft, Sudbury, Ninigret, Berlin, and Belgrade soils. Brancroft soils are silty and clayey; Sudbury soils are sandy and gravelly; Ninigret soils are loamy over sand and gravel; Berlin soils are redder; and Belgrade soils are silty throughout. Also included are small areas of poorly drained Shaker and Scitico soils in slight depressions on the landscape. Small areas of very poorly drained Maybid soils are also included in depressions and along drainageways. A few areas include soils from red parent materials. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated crops, hay, or pasture. Some areas are in vegetables or nursery stock. A few areas are in woodland or community development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings on the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal in places.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce these limitations.

28B—Elmridge fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: terraces on lake plains
Size of map unit: Areas commonly range from 3 to 200 acres.

Map Unit Composition

Elmridge and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; fine sandy loam
Bw1-6 to 10 inches; fine sandy loam
Bw2-10 to 18 inches; fine sandy loam
Bw3-18 to 25 inches; sandy loam
2C-25 to 65 inches; silty clay

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy eolian sands over clayey glaciolacustrine deposits
Permeability: very slow to moderately rapid
Available water capacity: high
Reaction: very strongly acid to slightly alkaline Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2w
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of moderately well drained Brancroft, Sudbury, Ninigret, Berlin, and Belgrade soils. Brancroft soils are silty and clayey; Sudbury soils are sandy and gravelly; Ninigret soils are loamy over sand and gravel; Berlin soils are redder; and Belgrade soils are silty throughout. Also included are small areas of poorly drained Shaker and Scitico soils are in slight depressions on the landscape. Small areas of very poorly drained Maybid soils are also included in depressions and along drainageways. A few areas include soils from red parent materials. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated crops, hay, or pasture. Some areas are in vegetables or nursery stock. A few areas are in woodland or community development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings on the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal in places.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce these limitations.

29A—Agawam fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: terraces on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 300 acres.

Map Unit Composition

Agawam and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-

Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 14 inches; fine sandy loam
Bw2-14 to 24 inches; fine sandy loam
2C-24 to 60 inches; stratified very gravelly coarse sand to fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 1
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Hinckley soils and somewhat excessively drained Merrimac soils that are higher on the landscape; Hinckley and Merrimac soils are sandier in the subsoil. Also included are some moderately well drained Ninigret soils in slightly lower areas on the landscape. Poorly drained Walpole soils and very poorly drained Scarboro soils are included in depressions and drainageways. Scarboro soils have a mucky surface layer. A few areas in Hartford County include soils with reddish brown subsoil. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated crops, community development, woodland, or are mined for sand and gravel. Some areas are in vegetables or nursery cropland.

This soil has few limitations for dwellings with basements and lawns and landscaping.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

This soil has few limitations for local roads and streets.

29B—Agawam fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: outwash plains on valleys, terraces on valleys
Size of map unit: Areas commonly range from 3 to 100 acres.
Map Unit Composition
Agawam and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 14 inches; fine sandy loam
Bw2-14 to 24 inches; fine sandy loam
2C-24 to 60 inches; stratified very gravelly coarse sand to fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial
deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none
Interpretative Groups
Land capability classification (non-irrigated): 2 e
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Hinckley soils and somewhat excessively drained Merrimac soils that are higher on the landscape; Hinckley and Merrimac soils are sandier in the subsoil. Also included are some moderately well drained Ninigret soils in slightly lower areas on the landscape. Poorly drained Walpole soils and very poorly drained Scarboro soils are included in depressions and drainageways. Scarboro soils have a mucky surface layer. A few areas in Hartford County include soils with reddish brown subsoil. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated crops, community development, woodland, or are mined for sand and gravel.

This soil has few limitations for dwellings with basements and lawns and landscaping. Droughtiness can make establishment and maintenance of lawns difficult.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

This soil has few limitations for local roads and streets.

29C—Agawam fine sandy loam, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: outwash plains on valleys, terraces on valleys
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Agawam and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 14 inches; fine sandy loam
Bw2-14 to 24 inches; fine sandy loam
2C-24 to 60 inches; stratified very gravelly coarse sand to fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table:greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3e
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Hinckley soils and somewhat excessively drained Merrimac soils that are higher on the landscape; Hinckley and Merrimac soils are sandier in the subsoil. Also included are some moderately well drained Ninigret soils in slightly lower areas on the landscape. Poorly drained Walpole soils and very poorly drained Scarboro soils are included in depressions and drainageways. Scarboro soils have a mucky surface layer. A few areas in Hartford County include soils with reddish brown subsoil. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated crops, community development, woodland, or are mined for sand and gravel.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a moderate hazard during construction.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

30A—Branford silt loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: terraces on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Branford and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 18 inches; loam
Bw2-18 to 24 inches; gravelly loam
2C-24 to 65 inches; stratified very gravelly coarse sand to loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from sandstone and shale and/or basalt
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none
Interpretative Groups
Land capability classification (non-irrigated): 1
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Haven and Enfield soils. Enfield soils are coarse-silty over sand and gravel and Haven soils are coarseloamy over sand and gravel. Also included are moderately well drained Ellington soils in slightly lower areas of the landscape. Excessively drained, sandy and gravelly Manchester soils and somewhat excessively drained, sandy Hartford soils are included in areas that are higher on the landscape. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated crops or community development. Some areas are in woodland, nursery crops, or vegetable crops.

This soil has few limitations for dwellings with basements and lawns and landscaping.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in places.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

30B—Branford silt loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: terraces on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 80 acres.
Map Unit Composition
Branford and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 18 inches; loam
Bw2-18 to 24 inches; gravelly loam
$2 \mathrm{C}-24$ to 65 inches; stratified very gravelly coarse sand to loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from sandstone and shale and/or basalt
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 e
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Haven and Enfield soils. Enfield soils are coarse-silty over sand and gravel and Haven soils are coarseloamy over sand and gravel. Also included are moderately well drained Ellington soils in slightly lower areas of the landscape. Excessively drained, sandy and gravelly Manchester soils and somewhat excessively drained, sandy Hartford soils are included in areas that are higher on the landscape. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated crops or community development. Some areas are in woodland.

This soil has few limitations for dwellings with basements and lawns and landscaping.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in places.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

30C—Branford silt loam, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: outwash plains on valleys, terraces on valleys
Size of map unit: Areas commonly range from 3 to 30 acres.

Map Unit Composition

Branford and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 18 inches; loam
Bw2-18 to 24 inches; gravelly loam
2C-24 to 65 inches; stratified very gravelly coarse sand to loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from sandstone and shale and/or basalt
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3e Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Haven and Enfield soils. Enfield soils are coarse-silty over sand and gravel and Haven soils are coarseloamy over sand and gravel. Also included are moderately well drained Ellington soils in slightly lower areas of the landscape. Excessively drained, sandy and gravelly Manchester soils and somewhat excessively drained, sandy Hartford soils are included in areas that are higher on the landscape. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated crops or community development. Some areas are in woodland or pasture.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a moderate hazard during construction. Designing dwellings to conform to the slope of the land will reduce the slope limitation.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in places.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

31A-Copake fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: terraces on valleys, outwash plains on valleys, kames on valleys Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Copake and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; fine sandy loam
$A B-6$ to 13 inches; gravelly fine sandy loam
Bw1-13 to 21 inches; gravelly fine sandy loam
Bw2—21 to 31 inches; gravelly fine sandy loam
2C1-31 to 56 inches; very gravelly coarse sand
2C2-56 to 65 inches; fine sand
2C3-65 to 75 inches; gravelly sand
2C4-75 to 80 inches; gravelly sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy over sandy and gravelly glaciofluvial deposits derived from limestone and dolomite and/or schist
Permeability: moderate to very rapid
Available water capacity: high
Reaction: strongly acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 1
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained, sandy and gravelly Groton soils that are higher on the landscape. Also included are areas of moderately well drained Hero soils in slightly lower areas of the landscape. Small areas of poorly drained Fredon soils and very poorly drained Halsey soils are included in depressions and along drainageways. Minor components make up about 15 percent of this map unit.

Use and Management

Most areas are in cultivated crops, hay, or pasture. Some areas are in woodland, residential development, or are mined for sand and gravel.

This soil has few limitations for dwelling with basements, lawns and landscaping. Small stones are also a limitation for lawns and landscaping.

Poor filtering is also a limitation for septic tank absorption. There is the hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed systems are necessary in some areas.

Frost action is the main limitation for local roads and streets. Providing a coarser grained subgrade to frost depth will reduce this limitation.

31B-Copake fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: terraces on valleys, outwash plains on valleys, kames on valleys Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Copake and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; fine sandy loam
$A B-6$ to 13 inches; gravelly fine sandy loam
Bw1-13 to 21 inches; gravelly fine sandy loam
Bw2-21 to 31 inches; gravelly fine sandy loam
2C1-31 to 56 inches; very gravelly coarse sand
2C2-56 to 65 inches; fine sand
2C3-65 to 75 inches; gravelly sand
2C4-75 to 80 inches; gravelly sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy over sandy and gravelly glaciofluvial deposits derived
from limestone and dolomite and/or schist
Permeability: moderate to very rapid
Available water capacity: high
Reaction: strongly acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 e

Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained, sandy and gravelly Groton soils that are higher on the landscape. Also included are areas of moderately well drained Hero soils in slightly lower areas on the landscape. Small areas of poorly drained Fredon soils and very poorly drained Halsey soils are included in depressions and along drainageways. Minor components make up about 15 percent of this map unit.

Use and Management

Most areas are in cultivated crops, hay, or pasture. Some areas are in woodland, residential development, or are mined for sand and gravel.

This soil has few limitations for dwelling with basements, lawns and landscaping. Small stones are also a limitation for lawns and landscaping.

Poor filtering is also a limitation for septic tank absorption. There is the hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed systems are necessary in some areas.

Frost action is the main limitation for local roads and streets. Providing a coarser grained subgrade to frost depth will reduce this limitation.

31C-Copake gravelly loam, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: outwash plains on valleys, terraces on valleys, kames on valleys Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Copake and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; fine sandy loam
$A B-6$ to 13 inches; gravelly fine sandy loam
Bw1-13 to 21 inches; gravelly fine sandy loam
Bw2-21 to 31 inches; gravelly fine sandy loam
2C1-31 to 56 inches; very gravelly coarse sand
2C2—56 to 65 inches; fine sand
2C3-65 to 75 inches; gravelly sand
2C4-75 to 80 inches; gravelly sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy over sandy and gravelly glaciofluvial deposits derived
from limestone and dolomite and/or schist
Permeability: moderate to very rapid

Available water capacity: high
Reaction: strongly acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none
Interpretative Groups
Land capability classification (non-irrigated): 3e
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained, sandy and gravelly Groton soils that are higher on the landscape. Also included are areas of moderately well drained Hero soils in slightly lower areas on the landscape. Small areas of poorly drained Fredon soils and very poorly drained Halsey soils are included in depressions and along drainageways. Minor components make up about 15 percent of this map unit.

Use and Management

Most areas are in cultivated crops, hay, or pasture. Some areas are in woodland, residential development, or are mined for sand and gravel.

Slope is the main limitation for dwelling with basements, lawns and landscaping. Small stones are also a limitation for lawns and landscaping. Designing dwellings to conform to the slope of the land will reduce the slope limitation. Erosion is a moderate hazard during construction.

Poor filtering is also a limitation for septic tank absorption. There is the hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed systems are necessary in some areas.

Frost action and slope are the main limitations for local roads and streets. Providing a coarser grained subgrade to frost depth and constructing roads on the contour will reduce these limitations.

32A-Haven and Enfield soils, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: outwash plains on valleys, terraces on valleys
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Haven and similar soils: 60 percent
Enfield and similar soils: 25 percent
Minor components: 15 percent

Major Components

Haven and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 7 inches; silt loam
Bw1-7 to 14 inches; silt loam
Bw2-14 to 20 inches; silt loam
BC-20 to 24 inches; fine sandy loam
2C-24 to 60 inches; stratified very gravelly sand to gravelly fine sand

Enfield and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 3 inches; slightly decomposed plant material
Oe-3 to 4 inches; moderately decomposed plant material
Ap-4 to 12 inches; silt loam
Bw1-12 to 20 inches; silt loam
Bw2-20 to 26 inches; silt loam
Bw3-26 to 30 inches; silt loam
2C-30 to 37 inches; stratified coarse sand to very gravelly loamy sand
3C-37 to 65 inches; stratified very gravelly coarse sand to loamy sand

Major Component Properties and Qualities

Haven and similar soils
Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderate to very rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Enfield and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-silty eolian deposits over sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Enfield and similar soils

Land capability classification (non-irrigated): 1
Hydrologic group: B
Haven and similar soils
Land capability classification (non-irrigated): 1
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Branford and Agawam soils. Branford soils are silty over sand and gravel, and are red in color. Agawam soils are sandier in the surface layer and subsoil. Also included are moderately well drained Ninigret and Tisbury soils in slightly lower areas of the landscape. Poorly drained Raypol soils are included in depressions and drainageways. A few areas in New London County include soils with a gravelly surface layer. Minor components make up about 15 percent of this map unit.

Use and Management

Most areas are in cultivated crops, woodland, or community development.
This unit has few limitations for dwellings with basements and lawns and landscaping.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in places.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

32B—Haven and Enfield soils, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: terraces on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Haven and similar soils: 60 percent
Enfield and similar soils: 25 percent
Minor components: 15 percent

Major Components

Haven and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 7 inches; silt loam
Bw1-7 to 14 inches; silt loam
Bw2-14 to 20 inches; silt loam
BC-20 to 24 inches; fine sandy loam
2C-24 to 60 inches; stratified very gravelly sand to gravelly fine sand

Enfield and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 3 inches; slightly decomposed plant material
Oe-3 to 4 inches; moderately decomposed plant material
Ap-4 to 12 inches; silt loam
Bw1-12 to 20 inches; silt loam
Bw2-20 to 26 inches; silt loam
Bw3-26 to 30 inches; silt loam
2C-30 to 37 inches; stratified coarse sand to very gravelly loamy sand
3C-37 to 65 inches; stratified very gravelly coarse sand to loamy sand

Major Component Properties and Qualities

Haven and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial
deposits derived from granite and/or schist and/or gneiss
Permeability: moderate to very rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid

Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet
Flooding: none

Enfield and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-silty eolian deposits over sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Haven and similar soils
 Land capability classification (non-irrigated): 2e
 Hydrologic group: B
 Enfield and similar soils
 Land capability classification (non-irrigated): 2 e
 Hydrologic croup: B

Minor Components

Included with this soil in mapping are areas of well drained Branford and Agawam soils. Branford soils are silty over sand and gravel, and are red in color. Agawam soils are sandier in the surface layer and subsoil. Also included are moderately well drained Ninigret and Tisbury soils in slightly lower areas of the landscape. Poorly drained Raypol soils are included in depressions and drainageways. A few areas in New London County include soils with a gravelly surface layer. Minor components make up about 15 percent of this map unit.

Use and Management

Most areas are in cultivated crops, woodland, or community development.
This unit has few limitations for dwellings with basements and lawns and landscaping.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in places.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

32C—Haven and Enfield soils, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: outwash plains on valleys, terraces on valleys
Size of map unit: Areas commonly range from 3 to 40 acres.
Map Unit Composition
Haven and similar soils: 60 percent
Enfield and similar soils: 25 percent
Minor components: 15 percent

Major Components

Haven and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 7 inches; silt loam
Bw1-7 to 14 inches; silt loam
Bw2-14 to 20 inches; silt loam
BC-20 to 24 inches; fine sandy loam
$2 \mathrm{C}-24$ to 60 inches; stratified very gravelly sand to gravelly fine sand

Enfield and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{Oi}-0$ to 3 inches; slightly decomposed plant material
Oe-3 to 4 inches; moderately decomposed plant material
Ap-4 to 12 inches; silt loam
Bw1-12 to 20 inches; silt loam
Bw2-20 to 26 inches; silt loam
Bw3-26 to 30 inches; silt loam
2C-30 to 37 inches; stratified coarse sand to very gravelly loamy sand
3C-37 to 65 inches; stratified very gravelly coarse sand to loamy sand

Major Component Properties and Qualities

Haven and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderate to very rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Enfield and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-silty eolian deposits over sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Haven and similar soils

Land capability classification (non-irrigated): 3e
Hydrologic group: B

Enfield and similar soils

Land capability classification (non-irrigated): 3e
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Branford and Agawam soils. Branford soils are silty over sand and gravel, and are red in color. Agawam soils are sandier in the surface layer and subsoil. Also included are moderately well drained Ninigret and Tisbury soils in slightly lower areas of the landscape. Poorly drained Raypol soils are included in depressions and drainageways. A few areas in New London County include soils with a gravelly surface layer. Minor components make up about 15 percent of this map unit.

Use and Management

Most areas are in cultivated crops, woodland, or community development.
Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a moderate hazard during construction. Designing dwellings to conform to the slope of the land will reduce the limitation.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in places.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

33A-Hartford sandy loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: outwash plains on valleys, terraces on valleys
Size of map unit: Areas commonly range from 3 to 300 acres.
Map Unit Composition
Hartford and similar soils: 80 percent
Minor components: 20 percent

Major Components

Hartford and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; sandy loam (fig. 9)
Bw1-8 to 20 inches; sandy loam
Bw2-20 to 26 inches; loamy sand
2C-26 to 65 inches; stratified very gravelly coarse sand to loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: somewhat excessively drained
Parent material: sandy glaciofluvial deposits derived from sandstone and/or basalt
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Figure 9.-The upper part of a typical profile of Hartford sandy loam.

Interpretative Groups

Land capability classification (non-irrigated): 1 Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Manchester and Penwood soils that are higher on the landscape. Manchester soils are sandy and gravelly throughout and Penwood soils are sandier in the surface layer and subsoil. Also included are well drained Branford soils and moderately well drained Ellington soils. Branford soils are silty over sand and gravel and Ellington soils are in slightly lower areas and broad drainageways. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in community development, cultivated crops, or nursery stock.
This soil has few limitations for dwelling with basements, lawns and landscaping, and local roads and streets.

Poor filtering is also a limitation for septic tank absorption. There is the hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed systems are necessary in some areas.

33B—Hartford sandy loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: terraces on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Hartford and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; sandy loam
Bw1-8 to 20 inches; sandy loam
Bw2-20 to 26 inches; loamy sand
2C-26 to 65 inches; stratified very gravelly coarse sand to loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: somewhat excessively drained
Parent material: sandy glaciofluvial deposits derived from sandstone and/or basalt
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 e
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Manchester and Penwood soils that are higher on the landscape. Manchester soils are sandy and gravelly throughout and Penwood soils are sandier in the surface layer and subsoil. Also included are well drained Branford soils and moderately well drained Ellington soils. Branford soils are silty over sand and gravel and Ellington soils are in slightly lower areas and broad drainageways. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in community development, cultivated crops, or nursery stock.
This soil has few limitations for dwelling with basements, lawns and landscaping, and local roads and streets.

Poor filtering is also a limitation for septic tank absorption. There is the hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed systems are necessary in some areas.

34A—Merrimac sandy loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: terraces on valleys, outwash plains on valleys, kames on valleys Size of map unit: Areas commonly range from 5 to 75 acres.

Map Unit Composition

Merrimac and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 9 inches; sandy loam
Bw1-9 to 16 inches; sandy loam
Bw2-16 to 24 inches; gravelly sandy loam
2C-24 to 60 inches; stratified very gravelly coarse sand to gravelly sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: somewhat excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 1
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Hinckley and Windsor soils that are higher on the landscape. Hinckley soils are sandy and gravelly and Windsor soils are sandy throughout. Also included are well drained Agawam soils that are loamy over sand and gravel. Moderately well drained Ninigret and Sudbury soils are included in slightly lower areas of the landscape. Ninigret soils are loamy over sand and gravel and Sudbury soils are sandy and gravelly. Small areas of poorly drained Walpole soils and very poorly drained Scarboro soils are included in depressions and drainageways. A few areas include soils with a fine sandy loam surface texture. Reddish brown soils are included in the southern part of the town of Woodbury, in Litchfield County. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated crops or community development Some areas are in woodland, vegetable or nursery crops, or pasture.

This soil has few limitations for dwellings with basements, lawns and landscaping, and local roads and streets.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

34B—Merrimac sandy loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: kames on valleys, outwash plains on valleys, terraces on valleys Size of map unit: Areas commonly range from 5 to 50 acres.

Map Unit Composition

Merrimac and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 9 inches; sandy loam
Bw1-9 to 16 inches; sandy loam
Bw2-16 to 24 inches; gravelly sandy loam
2C-24 to 60 inches; stratified very gravelly coarse sand to gravelly sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: somewhat excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none
Interpretative Groups
Land capability classification (non-irrigated): 2 e
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Hinckley and Windsor soils that are higher on the landscape. Hinckley soils are sandy and gravelly and Windsor soils are sandy throughout. Also included are well drained Agawam soils that are loamy over sand and gravel. Moderately well drained Ninigret and Sudbury soils are included in slightly lower areas on the landscape. Ninigret soils are loamy
over sand and gravel and Sudbury soils are sandy and gravelly. Small areas of poorly drained Walpole soils and very poorly drained Scarboro soils are included in depressions and drainageways. A few areas include soils with a fine sandy loam surface texture. Reddish brown soils are included in the southern part of the town of Woodbury, in Litchfield County. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated crops or community development Some areas are in woodland, vegetable or nursery crops, or pasture.

This soil has few limitations for dwellings with basements, lawns and landscaping, and local roads and streets.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

34C-Merrimac sandy loam, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: outwash plains on valleys, terraces on valleys, kames on valleys Size of map unit: Areas commonly range from 5 to 40 acres.

Map Unit Composition

Merrimac and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 9 inches; sandy loam
Bw1-9 to 16 inches; sandy loam
Bw2-16 to 24 inches; gravelly sandy loam
2C-24 to 60 inches; stratified very gravelly coarse sand to gravelly sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: somewhat excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3e
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Hinckley and Windsor soils that are higher on the landscape. Hinckley soils are sandy and gravelly and Windsor soils are sandy throughout. Also included are well drained Agawam soils that are loamy over sand and gravel. Moderately well drained Ninigret and Sudbury soils are included in slightly lower areas of the landscape. Ninigret soils are loamy over sand and gravel and Sudbury soils are sandy and gravelly. Small areas of poorly drained Walpole soils and very poorly drained Scarboro soils are included in depressions and drainageways. A few areas include soils with a fine sandy loam surface texture. Reddish brown soils are included in the southern part of the town of Woodbury, in Litchfield County. Minoe components make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated crops or community development Some areas are in woodland or pasture.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a moderate hazard during construction. Designing dwellings to conform to the slope of the land will reduce the slope limitation.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

35A—Penwood loamy sand, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: terraces on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 300 acres.

Map Unit Composition

Penwood and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; loamy sand
Bw1-8 to 18 inches; loamy sand
Bw2-18 to 30 inches; sand
C-30 to 60 inches; sand

Major Component Properties and Qualities

[^0]Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2s
Hydrologic group: A

Minor Components

Included with this soil in mapping are excessively drained Manchester soils and somewhat excessively drained Hartford soils in areas that are sandy and gravelly. Also included are areas of well drained Branford soils and moderately well drained Ellington soils in slighly lower areas of the landscape. Branford and Ellington soils are silty over sand and gravel. A few areas in New Haven County include soils with a gravelly substratum. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in community development Some areas in Middlesex County are in cultivated cropland.

This soil has few limitations for dwellings with basements and local roads and streets. Droughtiness is the main limitation for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

35B—Penwood loamy sand, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: terraces on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 75 acres.

Map Unit Composition

Penwood and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; loamy sand
Bw1-8 to 18 inches; loamy sand
Bw2-18 to 30 inches; sand
C- 30 to 60 inches; sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: excessively drained
Parent material: sandy glaciofluvial deposits derived from sandstone and shale
Permeability: rapid to very rapid
Available water capacity: low
Reaction: very strongly acid to moderately acid

Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 s
Hydrologic group: A

Minor Components

Included with this soil in mapping are excessively drained Manchester soils and somewhat excessively drained Hartford soils in areas that are sandy and gravelly. Also included are areas of well drained Branford soils and moderately well drained Ellington soils in slightly lower areas of the landscape. Branford and Ellington soils are silty over sand and gravel. A few areas in New Haven County include soils with a gravelly substratum. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in community development Some areas in Middlesex County are in cultivated cropland.

This soil has few limitations for dwellings with basements and local roads and streets. Droughtiness is the main limitation for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

36A-Windsor loamy sand, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: kames on valleys, outwash plains on valleys, terraces on valleys Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition
Windsor and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; loamy sand
Bw1-3 to 9 inches; loamy sand
Bw2-9 to 21 inches; loamy sand
Bw3-21 to 25 inches; sand
C-25 to 65 inches; sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: excessively drained

Parent material: eolian sands over sandy glaciofluvial deposits derived from granite and/or schist and/or gneiss
 Permeability: rapid or very rapid
 Available water capacity: low
 Reaction: very strongly acid to slightly acid
 Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 s
Hydrologic group: A

Minor Components

Included with this soil in mapping are areas of excessively drained Hinckley soils and somewhat excessively drained Merrimac soils that are sandy and gravelly. Also included are well drained Agawam soils that are loamy over sand and gravel. Moderately well drained Deerfield, Ninigret, and Sudbury soils are included in slightly lower areas of the landscape. Ninigret soils are loamy over sand and gravel and Sudbury soils are sandy and gravelly. A few valleys in Litchfield County include areas with neutral or less acid subsoil. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cropland or community development Some areas are in woodland, brushland, or pasture.

This soil has few limitations for dwellings with basements and local roads and streets. Droughtiness is the main limitation for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

36B—Windsor loamy sand, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: outwash plains on valleys, terraces on valleys, kames on valleys Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Windsor and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; loamy sand
Bw1-3 to 9 inches; loamy sand

Bw2-9 to 21 inches; loamy sand
Bw3-21 to 25 inches; sand
C-25 to 65 inches; sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: excessively drained
Parent material: eolian sands over sandy glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: rapid or very rapid
Available water capacity: low
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 s
Hydrologic group: A

Minor Components

Included with this soil in mapping are areas of excessively drained Hinckley soils and somewhat excessively drained Merrimac soils that are sandy and gravelly. Also included are well drained Agawam soils that are loamy over sand and gravel. Moderately well drained Deerfield, Ninigret, and Sudbury soils are included in slightly lower areas of the landscape. Ninigret soils are loamy over sand and gravel and Sudbury soils are sandy and gravelly. A few valleys in Litchfield County include areas with neutral or less acid subsoil. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cropland or community development Some areas are in woodland, brushland, or pasture.

This soil has few limitations for dwellings with basements and local roads and streets. Droughtiness is the main limitation for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

36C-Windsor loamy sand, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: terraces on valleys, outwash plains on valleys, kames on valleys Size of map unit: Areas commonly range from 3 to 75 acres.

Map Unit Composition

Windsor and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-

Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; loamy sand
Bw1-3 to 9 inches; loamy sand
Bw2-9 to 21 inches; loamy sand
Bw3-21 to 25 inches; sand
C-25 to 65 inches; sand

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: excessively drained
Parent material: eolian sands over sandy glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: rapid or very rapid
Available water capacity: low
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none
Interpretative Groups
Land capability classification (non-irrigated): 3e
Hydrologic group: A

Minor Components

Included with this soil in mapping are areas of excessively drained Hinckley soils and somewhat excessively drained Merrimac soils that are sandy and gravelly. Also included are well drained Agawam soils that are loamy over sand and gravel. Moderately well drained Deerfield, Ninigret, and Sudbury soils are included in slightly lower areas of the landscape. Ninigret soils are loamy over sand and gravel and Sudbury soils are sandy and gravelly. A few valleys in Litchfield County include areas with neutral or less acid subsoil. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in cropland or community development Some areas are in woodland, brushland, or pasture.

Slope is the main limitation for dwellings with basements. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Droughtiness and slope are the main limitations for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

37A—Manchester gravelly sandy loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: eskers on valleys, kames on valleys, outwash plains on valleys, terraces on valleys

Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Manchester and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 9 inches; gravelly sandy loam
Bw-9 to 18 inches; gravelly loamy sand
C-18 to 65 inches; stratified extremely gravelly coarse sand to very gravelly loamy sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from sandstone and shale and/or basalt
Permeability: rapid or very rapid
Available water capacity: low
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3s
Hydrologic group: A

Minor Components

Included with this soil in mapping are areas of excessively drained Penwood soils that are sandy throughout. Also included are somewhat excessively drained Hartford soils, well drained Branford soils, and moderately well drained Ellington soils. Hartford soils are sandy loam over a sandy and gravelly substratum, Branford soils are silty over a sandy and gravelly substratum, and Ellington soils are in slightly lower areas and broad drainageways. In places, soils that lack a gravelly surface are included. A few areas in New Haven County have a gravelly loamy sand surface layer. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated cropland or community development Some areas are in woodland, nursery crops, gravel pits, or pasture.

This soil has few limitations for dwellings with basements and local roads and streets. Droughtiness is the main limitation for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

37C-Manchester gravelly sandy loam, 3 to 15 percent slopes

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: terraces on valleys, eskers on valleys, kames on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 75 acres.

Map Unit Composition

Manchester and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 9 inches; gravelly sandy loam
Bw-9 to 18 inches; gravelly loamy sand
C-18 to 65 inches; stratified extremely gravelly coarse sand to very gravelly loamy sand

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from sandstone and shale and/or basalt
Permeability: rapid or very rapid
Available water capacity: low
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4e
Hydrologic group: A

Minor Components

Included with this soil in mapping are areas of excessively drained Penwood soils that are sandy throughout. Also included are somewhat excessively drained Hartford soils, well drained Branford soils, and moderately well drained Ellington soils. Hartford soils are sandy loam over a sandy and gravelly substratum, Branford soils are silty over a sandy and gravelly substratum, and Ellington soils are in slightly lower areas and broad drainageways. In places, soils that lack a gravelly surface are included. A few areas in New Haven County have a gravelly loamy sand surface layer. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated cropland or community development Some areas are in woodland, nursery crops, gravel pits, or pasture.

Slope is the main limitation for dwellings with basements. Erosion is a moderate hazard during construction. Designing dwellings to conform to the slope of the land will reduce the slope limitation. Droughtiness is the main limitation for lawns and
landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

37E—Manchester gravelly sandy loam, 15 to 45 percent slopes

Map Unit Setting

Slope: moderately steep to steep
Landscape: eskers on valleys, kames on valleys, outwash plains on valleys, terraces on valleys
Size of map unit: Areas commonly range from 3 to 75 acres.

Map Unit Composition

Manchester and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 9 inches; gravelly sandy loam
Bw-9 to 18 inches; gravelly loamy sand
C-18 to 65 inches; stratified extremely gravelly coarse sand to very gravelly loamy sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from sandstone and shale and/or basalt
Permeability: rapid or very rapid
Available water capacity: low
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 7e
Hydrologic group: A

Minor Components

Included with this soil in mapping are areas of excessively drained Penwood soils that are sandy throughout. Also included are somewhat excessively drained Hartford soils, well drained Branford soils, and moderately well drained Ellington soils. Hartford soils are sandy loam over a sandy and gravelly substratum, Branford soils are silty over a sandy and gravelly substratum, and Ellington soils are in slightly lower areas
and broad drainageways. In places, soils that lack a gravelly surface are included. A few areas in New Haven County have a gravelly loamy sand surface layer. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or gravel pits.

Slope is the main limitation for dwellings with basements. Erosion is a moderate hazard during construction. Designing dwellings to conform to the slope of the land will reduce the slope limitation. Droughtiness is the main limitation for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

38A-Hinckley gravelly sandy loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: terraces on valleys, outwash plains on valleys, kames on valleys, eskers on valleys
Size of map unit: Areas commonly range from 3 to 30 acres.

Map Unit Composition

Hinckley and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; gravelly sandy loam
Bw1-8 to 20 inches; very gravelly loamy sand
Bw2-20 to 27 inches; very gravelly sand
C1-27 to 42 inches; stratified cobbly coarse sand to extremely gravelly sand
C2-42 to 60 inches; stratified cobbly coarse sand to extremely gravelly sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: rapid or very rapid
Available water capacity: very low
Reaction: extremely acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3s

Hydrologic group: A

Minor Components

Included with this soil in mapping are areas of excessively drained Windsor soils which are sandy throughout. Also included are somewhat excessively drained Merrimac soils and well drained Agawam soils. Merrimac soils are sandy over sand and gravel and Agawam soils are loamy over sand and gravel. Small areas of moderately well drained Sudbury soils are included in slightly lower areas, poorly drained Walpole soils and very poorly drained Scarboro soils are included in shallow depressions and drainageways. A few areas in Litchfield and Hartford counties include soils with a reddish brown color. Windham County includes some soils with a fine sandy loam surface. New London County includes some soils with less gravel or a gravelly silt loam surface and subsoil. New Haven County includes some soils with less gravel or a gravelly loamy sand surface. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated crops or community development Some areas are in woodland, pasture, vegetable or nursery crops, or are mined for sand and gravel.

This soil has few limitations for dwellings with basements and local roads and streets. Droughtiness and slope are the main limitations for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

38C-Hinckley gravelly sandy loam, 3 to 15 percent slopes

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: terraces on valleys, outwash plains on valleys, eskers on valleys, kames on valleys
Size of map unit: Areas commonly range from 3 to 200 acres.

Map Unit Composition

Hinckley and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; gravelly sandy loam
Bw1-8 to 20 inches; very gravelly loamy sand
Bw2-20 to 27 inches; very gravelly sand
C1-27 to 42 inches; stratified cobbly coarse sand to extremely gravelly sand
C2-42 to 60 inches; stratified cobbly coarse sand to extremely gravelly sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: rapid or very rapid
Available water capacity: very low
Reaction: extremely acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4e
Hydrologic group: A

Minor Components

Included with this soil in mapping are areas of excessively drained Windsor soils which are sandy throughout. Also included are somewhat excessively drained Merrimac soils and well drained Agawam soils. Merrimac soils are sandy over sand and gravel and Agawam soils are loamy over sand and gravel. Small areas of moderately well drained Sudbury soils are included in slightly lower areas, poorly drained Walpole soils and very poorly drained Scarboro soils are included in shallow depressions and drainageways. A few areas in Litchfield and Hartford counties include soils with a reddish brown color. Windham County includes some soils with a fine sandy loam surface. New London County includes some soils with less gravel or a gravelly silt loam surface and subsoil. New Haven County includes some soils with less gravel or a gravelly loamy sand surface. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated crops or community development Some areas are in woodland, pasture, vegetable or nursery crops, or are mined for sand and gravel.

Slope is the main limitation for dwellings with basements. Erosion is a hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Droughtiness and slope are the main limitations for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

38E—Hinckley gravelly sandy loam, 15 to 45 percent slopes

Map Unit Setting

Slope: moderately steep to steep
Landscape: eskers on valleys, terraces on valleys, outwash plains on valleys, kames on valleys
Size of map unit: Areas commonly range from 3 to 200 acres.

Map Unit Composition

Hinckley and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; gravelly sandy loam
Bw1-8 to 20 inches; very gravelly loamy sand
Bw2-20 to 27 inches; very gravelly sand
C1-27 to 42 inches; stratified cobbly coarse sand to extremely gravelly sand
C2-42 to 60 inches; stratified cobbly coarse sand to extremely gravelly sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: rapid or very rapid
Available water capacity: very low
Reaction: extremely acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6e Hydrologic group: A

Minor Components

Included with this soil in mapping are areas of excessively drained Windsor soils which are sandy throughout. Also included are somewhat excessively drained Merrimac soils and well drained Agawam soils. Merrimac soils are sandy over sand and gravel and Agawam soils are loamy over sand and gravel. Small areas of moderately well drained Sudbury soils are included in slightly lower areas, poorly drained Walpole soils and very poorly drained Scarboro soils are included in shallow depressions and drainageways. A few areas in Litchfield and Hartford counties include soils with a reddish brown color. Windham County includes some soils with a fine sandy loam surface. New London County includes some soils with less gravel or a gravelly silt loam surface and subsoil. New Haven County includes some soils with less gravel or a gravelly loamy sand surface. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland or community development Some areas are in pasture, cropland or are mined for sand and gravel.

Slope is the main limitation for dwellings with basements. Erosion is a hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Droughtiness and slope are the main limitations for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not
adequately filter effluent. Specially designed septic systems are necessary in some areas.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

39A-Groton gravelly sandy loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: eskers on valleys, kames on valleys, outwash plains on valleys, terraces on valleys
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Groton and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; gravelly sandy loam
Bw1-8 to 18 inches; very gravelly sandy loam
Bw2-18 to 24 inches; very gravelly loamy sand
Bw3-24 to 30 inches; very gravelly loamy sand
C1-30 to 52 inches; stratified extremely gravelly coarse sand to very gravelly loamy fine sand
C2-52 to 72 inches; stratified extremely gravelly coarse sand to gravelly loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from limestone and dolomite and/or schist
Permeability: moderately rapid to very rapid
Available water capacity: low
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2s
Hydrologic group: A

Minor Components

Included with this soil in mapping are areas of well drained Copake soil that are loamy over sand and gravel. Also included are areas of moderately well drained Hero soils in slightly lower areas on the landscape. Poorly drained Fredon soils and very poorly drained Halsey soils are included in shallow depressions and along drainageways. Minor components make up about 15 percent of this map unit.

Use and Management

Most areas are in cultivated crops, hay, or pasture. Some areas are in woodland, residential development, or are mined for sand and gravel.

This soil has few limitations for dwelling with basements. Small stones and droughtiness are limitations for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is also a limitation for septic tank absorption. There is the hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed systems are necessary in some areas.

This soil has few limitations for local roads and streets.

39C-Groton gravelly sandy loam, 3 to 15 percent slopes

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: eskers on valleys, kames on valleys, terraces on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 50 acres.
Map Unit Composition
Groton and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as

follows-

Ap-0 to 8 inches; gravelly sandy loam
Bw1-8 to 18 inches; very gravelly sandy loam
Bw2-18 to 24 inches; very gravelly loamy sand
Bw3-24 to 30 inches; very gravelly loamy sand
C1-30 to 52 inches; stratified extremely gravelly coarse sand to very gravelly loamy fine sand
C2-52 to 72 inches; stratified extremely gravelly coarse sand to gravelly loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from limestone and dolomite and/or schist
Permeability: moderately rapid to very rapid
Available water capacity: low
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3e
Hydrologic group: A

Minor Components

Included with this soil in mapping are areas of well drained Copake soil that are loamy over sand and gravel. Also included are areas of moderately well drained Hero soils in slightly lower areas of the landscape. Poorly drained Fredon soils and very poorly drained Halsey soils are included in shallow depressions and along drainageways. Minor components make up about 15 percent of this map unit.

Use and Management

Most areas are in cultivated crops, hay, or pasture. Some areas are in woodland, residential development, or are mined for sand and gravel.

Slope is the main limitation for dwelling with basements, lawns and landscaping. Small stones and droughtiness are also limitations for lawns and landscaping. Designing dwellings to conform to the slope of the land will reduce the slope limitation. Erosion is a hazard during construction. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is also a limitation for septic tank absorption. There is the hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed systems are necessary in some areas.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce these limitations.

39E-Groton gravelly sandy loam, 15 to 45 percent slopes

Map Unit Setting

Slope: moderately steep to steep
Landscape: eskers on valleys, kames on valleys, outwash plains on valleys, terraces on valleys
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Groton and similar soils: 85 percent
Minor components: 15 percent
Major Components
The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; gravelly sandy loam
Bw1-8 to 18 inches; very gravelly sandy loam
Bw2-18 to 24 inches; very gravelly loamy sand
Bw3-24 to 30 inches; very gravelly loamy sand
C1-30 to 52 inches; stratified extremely gravelly coarse sand to very gravelly loamy fine sand
C2—52 to 72 inches; stratified extremely gravelly coarse sand to gravelly loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from limestone and dolomite and/or schist
Permeability: moderately rapid or very rapid
Available water capacity: low

Reaction: moderately acid to moderately alkaline Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6e Hydrologic group: A

Minor Components

Included with this soil in mapping are areas of well drained Copake soil that are loamy over sand and gravel. Also included are areas of moderately well drained Hero soils in slightly lower areas of the landscape. Poorly drained Fredon soils and very poorly drained Halsey soils are included in shallow depressions and along drainageways. Minor components make up about 15 percent of this map unit.

Use and Management

Most areas are in woodland, residential development, or pasture. Some areas are mined for sand and gravel.

Slope is the main limitation for dwelling with basements, lawns and landscaping. Small stones and droughtiness are also limitations for lawns and landscaping. Designing dwellings to conform to the slope of the land will reduce the slope limitation. Erosion is a hazard during construction. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is also a limitation for septic tank absorption. There is the hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed systems are necessary in some areas.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce these limitations.

40A—Ludlow silt loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: hills on uplands, drumlins on uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Ludlow and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 20 inches; silt loam
Bw2-20 to 26 inches; silt loam
Cd-26 to 65 inches; gravelly loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained

Parent material: coarse-loamy lodgment till derived from basalt and/or sandstone and shale
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2w
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of well drained Wethersfield soils that are higher on the landscape. Poorly drained Wilbraham soils and very poorly drained Menlo soils are included in depressions and drainageways. Moderately well drained Watchaug soils and well drained Cheshire soils are in areas lacking a dense substratum. Moderately deep, well drained Yalesville soils are included where bedrock is 20 to 40 inches below the surface. Also included are soils with a stony surface and soils with a loam or fine sandy loam surface. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or farmland.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil. Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

40B—Ludlow silt loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: drumlins on uplands, hills on uplands
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Ludlow and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 20 inches; silt loam

Bw2-20 to 26 inches; silt loam
Cd-26 to 65 inches; gravelly loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy lodgment till derived from basalt and/or sandstone and shale
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 e
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of well drained Wethersfield soils that are higher on the landscape. Poorly drained Wilbraham soils and very poorly drained Menlo soils are included in depressions and drainageways. Moderately well drained Watchaug soils and well drained Cheshire soils are in areas lacking a dense substratum. Moderately deep, well drained Yalesville soils are included where bedrock is 20 to 40 inches below the surface. Also included are soils with a stony surface and soils with a loam or fine sandy loam surface. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or farmland.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil. Frost action is the main limitation for roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

41B—Ludlow silt loam, 2 to 8 percent slopes, very stony

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: drumlins on uplands, hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Ludlow and similar soils: 80 percent
Minor components: 20 percent

Major Components

Ludlow and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 8 inches; silt loam
Bw1-8 to 20 inches; silt loam
Bw2-20 to 26 inches; silt loam
Cd-26 to 65 inches; gravelly loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy lodgment till derived from basalt and/or sandstone and shale
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of well drained Wethersfield soils that are higher on the landscape. Poorly drained Wilbraham soils and very poorly drained Menlo soils are included in depressions and drainageways. Moderately well drained Watchaug soils and well drained Cheshire soils are in areas lacking a dense substratum. Moderately deep, well drained Yalesville soils are included where bedrock is 20 to 40 inches below the surface. Also included are soils with a stony surface and soils with a loam or fine sandy loam surface. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or farmland.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Large stones are also a limitation for lawns and landscaping. Removing the stones will reduce the limitation. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil. Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

42C—Ludlow silt loam, 2 to 15 percent slopes, extremely stony

Map Unit Setting

Slope: nearly level to strongly sloping
Landscape: hills on uplands, drumlins on uplands
Surface cover: 3 to 15 percent stones
Size of map unit: 3 to 50 acres
Map Unit Composition
Ludlow and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 8 inches; silt loam
Bw1-8 to 20 inches; silt loam
Bw2-20 to 26 inches; silt loam
Cd—26 to 65 inches; gravelly loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy lodgment till derived from basalt and/or sandstone and shale
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 7s
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of well drained Wethersfield soils that are higher on the landscape. Poorly drained Wilbraham soils and very poorly drained Menlo soils are included in depressions and drainageways. Moderately well drained Watchaug soils and well drained Cheshire soils are in areas lacking a dense substratum. Moderately deep, well drained Yalesville soils are included where bedrock is 20 to 40 inches below the surface. Also included are soils with a stony surface and soils with a loam or fine sandy loam surface. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or farmland.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside
of basement walls, and diverting runoff from higher areas will reduce wetness. The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil. Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

43A—Rainbow silt loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: drumlins on uplands, hills on uplands
Size of map unit: Areas are commonly 3 to 30 acres.

Map Unit Composition

Rainbow and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; silt loam
Bw1-6 to 18 inches; silt loam
Bw2-18 to 26 inches; silt loam
2Cd-26 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: eolian deposits over coarse-loamy lodgment till derived from gneiss and/or schist and/or sandstone and/or basalt
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2w
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of well drained Broadbrook soils that are higher on the landscape. Also included are moderately well drained Sutton and Woodbridge soils. Sutton soils lack a dense substratum and Woodbridge soils are less silty. Poorly drained Ridgebury and Wilbraham soils are in depressions and drainageways. Ridgebury soils are less silty and Wilbraham soils are red. Well drained Narragansett soils are included in areas that lack a dense substratum. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland, cultivated crop, hay, or pasture. Some areas are in community development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil. Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

43B—Rainbow silt loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: drumlins on uplands, hills on uplands
Size of map unit: Areas are commonly 3 to 30 acres.

Map Unit Composition

Rainbow and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as

follows-

Ap-0 to 6 inches; silt loam
Bw1-6 to 18 inches; silt loam
Bw2-18 to 26 inches; silt loam
2Cd—26 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: eolian deposits over coarse-loamy lodgment till derived from gneiss and/or schist and/or sandstone and/or basalt
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 e
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of well drained Broadbrook soils that are higher on the landscape. Also included are moderately well drained Sutton and

Woodbridge soils. Sutton soils lack a dense substratum and Woodbridge soils are less silty. Poorly drained Ridgebury and Wilbraham soils are in depressions and drainageways. Ridgebury soils are less silty and Wilbraham soils are red. Well drained Narragansett soils are included in areas that lack a dense substratum. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland, cultivated crop, hay, or pasture. Some areas are in community development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil. Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

44B—Rainbow silt loam, 2 to 8 percent slopes, very stony

Map Unit Setting

Slope: gently sloping
Landscape: drumlins on uplands, hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas are commonly 3 to 30 acres.

Map Unit Composition

Rainbow and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; silt loam
Bw1-6 to 18 inches; silt loam
Bw2-18 to 26 inches; silt loam
2Cd-26 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: eolian deposits over coarse-loamy lodgment till derived from gneiss and/or schist and/or sandstone and/or basalt
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of well drained Broadbrook soils that are higher on the landscape. Also included are moderately well drained Sutton and Woodbridge soils. Sutton soils lack a dense substratum and Woodbridge soils are less silty. Poorly drained Ridgebury and Wilbraham soils are in depressions and drainageways. Ridgebury soils are less silty and Wilbraham soils are red. Well drained Narragansett soils are included in areas that lack a dense substratum. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland or pasture. Some areas are in community development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Large stones are also a limitation for lawns and landscaping. Removing the stones will reduce the limitation. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil. Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

45A-Woodbridge fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: drumlins on uplands, hills on uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Woodbridge and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 7 inches; fine sandy loam
Bw1-7 to 18 inches; fine sandy loam
Bw2-18 to 26 inches; fine sandy loam
Bw3-26 to 30 inches; fine sandy loam
Cd1-30 to 43 inches; gravelly fine sandy loam
Cd2-43 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained

Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none
Interpretative Groups
Land capability classification (non-irrigated): 2w
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of well drained Paxton and Montauk soils that are higher on the landscape. Also included are areas of poorly drained Ridgebury soils and very poorly drained Whitman soils in depressions and along drainageways. Moderately well drained Sutton soils are included in areas lacking a dense substratum. Poorly drained Leicester soils are in depressions and lack a dense substratum. In Fairfield and Litchfield counties where the soil is less acid and lacks a dense substratum, some areas of well drained Stockbridge soils and moderately well drained Georgia soils are included. A few areas in New London County include a loamy sand substratum. Minor components make up about 20 percent of the map unit.

Use and Management

Most areas are used for cropland, hayland, pastureland, or woodland. Some areas are used for community development or woodland.
community development or woodland
The seasonal high water table is the main limitation if this map unit is used as a site for dwellings with basements or lawns and landscaping. Locating dwellings in the highest part of the map unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Wetness and slow percolation are the main limitations if this map unit is used as a site for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil.

Frost action is the main limitation if this map unit is used as a site for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

45B-Woodbridge fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: hills on uplands, drumlins on uplands
Size of map unit: Areas commonly range from 3 to 80 acres.

Map Unit Composition

Woodbridge and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 7 inches; fine sandy loam
Bw1-7 to 18 inches; fine sandy loam
Bw2-18 to 26 inches; fine sandy loam
Bw3-26 to 30 inches; fine sandy loam
Cd1-30 to 43 inches; gravelly fine sandy loam
Cd2-43 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2w
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of well drained Paxton and Montauk soils that are higher on the landscape. Also included are areas of poorly drained Ridgebury soils and very poorly drained Whitman soils in depressions and along drainageways. Moderately well drained Sutton soils are included in areas lacking a dense substratum. Poorly drained Leicester soils are in depressions and lack a dense substratum. In Fairfield and Litchfield Counties where the soil is less acid and lacks a dense substratum, some areas of well drained Stockbridge soils and moderately well drained Georgia soils are included. A few areas in New London County include a loamy sand substratum. Minor components make up about 20 percent of the map unit.

Use and Management

Most areas are in cultivated crops, hay, pasture or woodland. Some areas are in community development.

The seasonal high water table is the main limitation if this map unit is used as a site for dwellings with basements or lawns and landscaping. Locating dwellings in the highest part of the map unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Wetness and slow percolation are the main limitations if this map unit is used as a site for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil.

Frost action is the main limitation if this map unit is used as a site for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

45C—Woodbridge fine sandy loam, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: hills on uplands, drumlins on uplands
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Woodbridge and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 7 inches; fine sandy loam
Bw1-7 to 18 inches; fine sandy loam
Bw2-18 to 26 inches; fine sandy loam
Bw3-26 to 30 inches; fine sandy loam
Cd1-30 to 43 inches; gravelly fine sandy loam
Cd2-43 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3e
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of well drained Paxton and Montauk soils that are higher on the landscape. Also included are areas of poorly drained Ridgebury soils and very poorly drained Whitman soils in depressions and along drainageways. Moderately well drained Sutton soils are included in areas lacking a dense substratum. Poorly drained Leicester soils are in depressions and lack a dense substratum. In Fairfield and Litchfield Counties where the soil is less acid and lacks a dense substratum, some areas of well drained Stockbridge soils and moderately well drained Georgia soils are included. A few areas in New London County include a loamy sand substratum. Minor componets make up about 20 percent of the map unit.

Use and Management

Most areas are in cultivated crops, hay, pasture, or woodland. Some areas are in community development.

The seasonal high water table is the main limitation if this map unit is used as a site for dwellings with basements or lawns and landscaping. Slope is also a limitation for lawns and landscaping. Erosion is a hazard during construction. Locating dwellings in the highest part of the map unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Wetness and slow percolation are the main limitations if this map unit is used as a site for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil.

Frost action is the main limitation if this map unit is used as a site for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

46B-Woodbridge fine sandy loam, 2 to 8 percent slopes, very stony

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: drumlins on uplands, hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Woodbridge and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 7 inches; fine sandy loam
Bw1-7 to 18 inches; fine sandy loam
Bw2-18 to 26 inches; fine sandy loam
Bw3-26 to 30 inches; fine sandy loam
Cd1-30 to 43 inches; gravelly fine sandy loam
Cd2-43 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of well drained Paxton and Montauk soils that are higher on the landscape. Also included are areas of poorly drained Ridgebury soils and very poorly drained Whitman soils in depressions and along drainageways. Moderately well drained Sutton soils are included in areas lacking a dense substratum. Poorly drained Leicester soils are in depressions and lack a dense substratum. In Fairfield and Litchfield Counties where the soil is less acid and lacks a dense substratum, some areas of well drained Stockbridge soils and moderately well drained Georgia soils are included. A few areas in New London County include a loamy sand substratum. Minor components make up about 20 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in pasture or community development.

The seasonal high water table is the main limitation if this map unit is used as a site for dwellings with basements or lawns and landscaping. Large stones are also a limitation for lawns and landscaping. Removing the stones will reduce the limitation. Locating dwellings in the highest part of the map unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Wetness and slow percolation are the main limitations if this map unit is used as a site for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil.

Frost action is the main limitation if this map unit is used as a site for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

46C-Woodbridge fine sandy loam, 8 to 15 percent slopes, very stony

Map Unit Setting

Slope: strongly sloping
Landscape: drumlins on uplands, hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Woodbridge and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 7 inches; fine sandy loam
Bw1-7 to 18 inches; fine sandy loam
Bw2-18 to 26 inches; fine sandy loam
Bw3-26 to 30 inches; fine sandy loam
Cd1-30 to 43 inches; gravelly fine sandy loam
Cd2-43 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of well drained Paxton and Montauk soils that are higher on the landscape. Also included are areas of poorly drained Ridgebury soils and very poorly drained Whitman soils in depressions and along drainageways. Moderately well drained Sutton soils are included in areas lacking a dense substratum. Poorly drained Leicester soils are in depressions and lack a dense substratum. In Fairfield and Litchfield Counties where the soil is less acid and lacks a dense substratum, some areas of well drained Stockbridge soils and moderately well drained Georgia soils are included. A few areas in New London County include a loamy sand substratum. Minor components make up about 20 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in pasture or community development.

The seasonal high water table is the main limitation if this map unit is used as a site for dwellings with basements or lawns and landscaping. Slope and large stones are also limitations for lawns and landscaping. Removing the stones will reduce the limitation. Locating dwellings in the highest part of the map unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Wetness and slow percolation are the main limitations if this map unit is used as a site for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil.

Frost action is the main limitation if this map unit is used as a site for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

47C-Woodbridge fine sandy loam, 2 to 15 percent slopes, extremely stony

Map Unit Setting

Slope: nearly level to strongly sloping
Landscape: drumlins on uplands, hills on uplands

Surface cover: 3 to 15 percent stones
Size of map unit: Areas commonly range from 3 to 80 acres.

Map Unit Composition

Woodbridge and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 7 inches; fine sandy loam
Bw1-7 to 18 inches; fine sandy loam
Bw2-18 to 26 inches; fine sandy loam
Bw3-26 to 30 inches; fine sandy loam
Cd1-30 to 43 inches; gravelly fine sandy loam
Cd2-43 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 7s Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of well drained Paxton and Montauk soils that are higher on the landscape. Also included are areas of poorly drained Ridgebury soils and very poorly drained Whitman soils in depressions and along drainageways. Moderately well drained Sutton soils are included in areas lacking a dense substratum. Poorly drained Leicester soils are in depressions and lack a dense substratum. In Fairfield and Litchfield counties where the soil is less acid and lacks a dense substratum, some areas of well drained Stockbridge soils and moderately well drained Georgia soils are included. A few areas in New London County include a loamy sand substratum. Minor components make up about 20 percent of the map unit.

Use and Management

Most areas are in woodland (fig. 10). Some areas are in pasture or community development.

The seasonal high water table is the main limitation if this map unit is used as a site for dwellings with basements or lawns and landscaping. Slope and large stones are also limitations for lawns and landscaping. Removing the stones will reduce the limitation. Locating dwellings in the highest part of the map unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Figure 10.-This extremely stony area of Woodbridge fine sandy loam is suited for woodland and wildlife habitat.

Wetness and slow percolation are the main limitations if this map unit is used as a site for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil.

Frost action is the main limitation if this map unit is used as a site for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

48B-Georgia and Amenia silt loams, 2 to 8 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: hills, uplands
Size of map unit: Areas commonly range from 3 to 40 acres.
Map Unit Composition
Georgia and similar soils: 50 percent
Amenia and similar soils: 35 percent
Minor components: 15 percent

Major Components

Georgia and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-

Ap-0 to 8 inches; silt loam
Bw1-8 to 14 inches; loam
Bw2-14 to 24 inches; loam
C-24 to 60 inches; gravelly fine sandy loam

Amenia and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 9 inches; silt loam
Bw1-9 to 16 inches; silt loam
Bw2-16 to 25 inches; silt loam
C-25 to 60 inches; gravelly loam

Major Component Properties and Qualities

Georgia and similar soils

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
Permeability: moderately slow or moderate
Available water capacity: high
Reaction: strongly acid to neutral
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 36 inches
Flooding: none

Amenia and similar soils

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
Permeability: moderately slow to moderate
Available water capacity: high
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 36 inches
Flooding: none

Interpretative Groups

Georgia and similar soils

Land capability classification (non-irrigated): 2e
Hydrologic group: B
Amenia and similar soils
Land capability classification (non-irrigated): 2e
Hydrologic group: B

Minor Components

Included with this unit in mapping are well drained Stockbridge and Nellis soils in higher areas of the landscape. Poorly drained Mudgepond soils and very poorly drained Alden soils are in depressions and along drainageways. Also included are well drained Paxton soils, moderately well drained Woodbridge soils, and poorly drained Ridgebury in areas with a dense substratum. Minor componets make up about 15 percent of the unit.

Use and Management

Most areas are in cultivated cropland or woodland. Some areas, mostly in Fairfield County, are in community development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

48C-Georgia and Amenia silt loams, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: hills, uplands
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Georgia and similar soils: 50 percent
Amenia and similar soils: 35 percent
Minor components: 15 percent

Major Components

Georgia and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 14 inches; loam
Bw2-14 to 24 inches; loam
C-24 to 60 inches; gravelly fine sandy loam

Amenia and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 9 inches; silt loam
Bw1-9 to 16 inches; silt loam
Bw2—16 to 25 inches; silt loam
C-25 to 60 inches; gravelly loam

Major Component Properties and Qualities

Georgia and similar soils

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
Permeability: moderately slow to moderate
Available water capacity: high
Reaction: strongly acid to neutral
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 36 inches
Flooding: none

Amenia and similar soils
 Depth to bedrock: very deep
 Drainage class: moderately well drained
 Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
 Permeability: moderately slow to moderate
 Available water capacity: high
 Reaction: moderately acid to moderately alkaline
 Depth to restrictive feature: greater than 72 inches
 Depth to seasonal water table: 18 to 36 inches
 Flooding: none

 Interpretative Groups

 Interpretative Groups

 Georgia and similar soils

 Georgia and similar soils
 Land capability classification (non-irrigated): 3e
 Hydrologic group: B
 Amenia and similar soils
 Land capability classification (non-irrigated): 3e
 Hydrologic group: B

Minor Components

Included with this unit in mapping are well drained Stockbridge and Nellis soils in higher areas of the landscape. Poorly drained Mudgepond soils and very poorly drained Alden soils are in depressions and along drainageways. Also included are well drained Paxton soils, moderately well drained Woodbridge soils, and poorly drained Ridgebury in areas with a dense substratum. Minor components make up about 15 percent of the unit.

Use and Management

Most areas are in cultivated cropland or woodland. Some areas, mostly in Fairfield County, are in community development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a hazard during construction. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

49B-Georgia and Amenia silt loams, 3 to 8 percent slopes, very stony

Map Unit Setting

Slope: gently sloping
Landscape: uplands, hills
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Georgia and similar soils: 50 percent
Amenia and similar soils: 35 percent
Minor components: 15 percent

Major Components

Georgia and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 14 inches; loam
Bw2-14 to 24 inches; loam
C-24 to 60 inches; gravelly fine sandy loam

Amenia and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A—0 to 9 inches; silt loam
Bw1-9 to 16 inches; silt loam
Bw2-16 to 25 inches; silt loam
C-25 to 60 inches; gravelly loam

Major Component Properties and Qualities

Georgia and similar soils

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
Permeability: moderately slow to moderate
Available water capacity: high
Reaction: strongly acid to neutral
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 36 inches
Flooding: none

Amenia and similar soils

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
Permeability: moderately slow to moderate
Available water capacity: high
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 36 inches
Flooding: none
Interpretative Groups

Georgia and similar soils

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Amenia and similar soils

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with this unit in mapping are well drained Stockbridge and Nellis soils in higher areas of the landscape. Poorly drained Mudgepond soils and very poorly
drained Alden soils are in depressions and along drainageways. Also included are well drained Paxton soils, moderately well drained Woodbridge soils, and poorly drained Ridgebury in areas with a dense substratum. Minor components make up about 15 percent of the unit.

Use and Management

Most areas are in cultivated cropland or woodland. Some areas, mostly in Fairfield County, are in community development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Large and small stones are also a limitation for lawns and landscaping. Removing the stones will reduce the limitation. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

49C-Georgia and Amenia silt loams, 8 to 15 percent slopes, very stony

Map Unit Setting

Slope: strongly sloping
Landscape: uplands, hills
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Georgia and similar soils: 50 percent
Amenia and similar soils: 35 percent
Minor components: 15 percent

Major Components

Georgia and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 14 inches; loam
Bw2-14 to 24 inches; loam
C-24 to 60 inches; gravelly fine sandy loam

Amenia and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A—0 to 9 inches; silt loam
Bw1-9 to 16 inches; silt loam
Bw2-16 to 25 inches; silt loam
C-25 to 60 inches; gravelly loam

Major Component Properties and Qualities

Georgia and similar soils

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
Permeability: moderately slow to moderate
Available water capacity: high
Reaction: strongly acid to neutral
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 36 inches
Flooding: none

Amenia and similar soils

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist Permeability: moderately slow to moderate
Available water capacity: high
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 36 inches
Flooding: none

Interpretative Groups

Georgia and similar soils

Land capability classification (non-irrigated): 6s
Hydrologic group: B
Amenia and similar soils
Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with this unit in mapping are well drained Stockbridge and Nellis soils in higher areas of the landscape. Poorly drained Mudgepond soils and very poorly drained Alden soils are in depressions and along drainageways. Also included are well drained Paxton soils, moderately well drained Woodbridge soils, and poorly drained Ridgebury in areas with a dense substratum. Minor componets make up about 15 percent of the unit.

Use and Management

Most areas are in woodland. Some areas are in pasture. Other areas, mostly in Fairfield County, are in community development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Slope and large and small stones are also a limitation for lawns and landscaping. Removing the stones will reduce the limitation. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

50A-Sutton fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: drainageways on uplands, depressions on uplands
Size of map unit: Areas commonly range from 3 to 50 acres.
Map Unit Composition
Sutton and similar soils: 80 percent
Minor components: 20 percent

Major Components

Sutton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; fine sandy loam
Bw1-6 to 12 inches; fine sandy loam
Bw2-12 to 24 inches; fine sandy loam
Bw3-24 to 28 inches; fine sandy loam
C1-28 to 36 inches; gravelly fine sandy loam
C2-36 to 65 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 w
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Canton, Charlton, and Paxton soils that are higher on the landscape. Canton soils are loamy over sandy, Charlton soils are sandy loam throughout, and Paxton soils have a dense substratum. Also included are small areas of poorly drained Leicester soils in depressions and drainageways. Small areas of moderately well drained Woodbridge soils are included in areas with a dense substratum. Some areas have a silt loam surface layer and subsoil. A few areas in New London County include well drained Narragansett soils and moderately well drained Rainbow soils. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated cropland, hay, pasture, or woodland. Some areas are in community development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill usually will allow on site sewage disposal.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

50B—Sutton fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: depressions on uplands, drainageways on uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Sutton and similar soils: 80 percent

Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; fine sandy loam
Bw1-6 to 12 inches; fine sandy loam
Bw2-12 to 24 inches; fine sandy loam
Bw3-24 to 28 inches; fine sandy loam
C1-28 to 36 inches; gravelly fine sandy loam
C2-36 to 65 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2w
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Canton, Charlton, and Paxton soils that are higher on the landscape. Canton soils are loamy over sandy, Charlton soils are sandy loam throughout, and Paxton soils have a dense substratum. Also included are small areas of poorly drained Leicester soils in depressions and drainageways. Small areas of moderately well drained Woodbridge soils are included
in areas with a dense substratum. Some areas have a silt loam surface layer and subsoil. A few areas in New London County include well drained Narragansett soils and moderately well drained Rainbow soils. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated cropland, hay, pasture, or woodland. Some areas are in community development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill usually will allow on site sewage disposal.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

51B—Sutton fine sandy loam, 2 to 8 percent slopes, very stony

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: drainageways on uplands, depressions on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Sutton and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; fine sandy loam
Bw1-6 to 12 inches; fine sandy loam
Bw2-12 to 24 inches; fine sandy loam
Bw3-24 to 28 inches; fine sandy loam
C1-28 to 36 inches; gravelly fine sandy loam
C2-36 to 65 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: moderately well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Canton, Charlton, and Paxton soils that are higher on the landscape. Canton soils are loamy over sandy, Charlton soils are sandy loam throughout, and Paxton soils have a dense substratum. Also included are small areas of poorly drained Leicester soils in depressions and drainageways. Small areas of moderately well drained Woodbridge soils are included in areas with a dense substratum. Some areas have a silt loam surface layer and subsoil. A few areas in New London County include well drained Narragansett soils and moderately well drained Rainbow soils. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or pasture.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Large stones are also a limitation for lawns and landscaping. Removing the stones will reduce this limitation. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill usually will allow on site sewage disposal.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

52C-Sutton fine sandy loam, 2 to 15 percent slopes, extremely stony

Map Unit Setting

Slope: nearly level to strongly sloping
Landscape: drainageways on uplands, depressions on uplands
Surface cover: 3 to 15 percent stones
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Sutton and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; fine sandy loam
Bw1-6 to 12 inches; fine sandy loam
Bw2-12 to 24 inches; fine sandy loam
Bw3-24 to 28 inches; fine sandy loam
C1-28 to 36 inches; gravelly fine sandy loam
C2-36 to 65 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 7s
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Canton, Charlton, and Paxton soils that are higher on the landscape. Canton soils are loamy over sandy, Charlton soils are sandy loam throughout, and Paxton soils have a dense substratum. Also included are small areas of poorly drained Leicester soils in depressions and drainageways. Small areas of moderately well drained Woodbridge soils are included in areas with a dense substratum. Some areas have a silt loam surface layer and subsoil. A few areas in New London County include well drained Narragansett soils and moderately well drained Rainbow soils. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development and pasture.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Large stones and slope are also limitations for lawns and landscaping. Removing the stones and designing lawns to conform to the slope of the land will reduce these limitations. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill usually will allow on site sewage disposal.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

53A-Wapping very fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: till plains on uplands, hills on uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Wapping and similar soils: 80 percent
Minor components: 20 percent

Major Components

Wapping and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 11 inches; very fine sandy loam
Bw1-11 to 16 inches; very fine sandy loam
Bw2-16 to 20 inches; very fine sandy loam
2C1-20 to 28 inches; gravelly sandy loam
2C2-28 to 36 inches; gravelly loamy sand
2C3-36 to 80 inches; gravelly loamy sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly melt-out till derived from gneiss and/or schist and/or sandstone and shale
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2w Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Narragansett soils that are higher on the landscape. Poorly drained Leicester and Wilbraham soils, and very poorly drained Menlo soils are included in depressions and drainageways. Leicester soils do not have the dense substratum that Wilbraham and Menlo soils have. Also included are moderately well drained Watchaug and Ludlow soils, and well drained Cheshire soils in areas where the subsoil and substratum are red. Watchaug soils do not have the dense substratum that Ludlow soils have. Small areas of moderately deep, well drained Yalesville soils are included where the depth to bedrock is 20 to 40 inches below the surface. Small areas of soils with a stony surface are also included. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in farmland or woodland. Some areas are in community development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines may allow on site sewage disposal. A more suitable site should be considered in a nearby soil.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

53B-Wapping very fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: till plains on uplands, hills on uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Wapping and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 11 inches; very fine sandy loam
Bw1-11 to 16 inches; very fine sandy loam
Bw2-16 to 20 inches; very fine sandy loam
2C1-20 to 28 inches; gravelly sandy loam
2C2-28 to 36 inches; gravelly loamy sand
2C3-36 to 80 inches; gravelly loamy sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly melt-out till derived from gneiss and/or schist and/or sandstone and shale
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table:18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 e
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Narragansett soils that are higher on the landscape. Poorly drained Leicester and Wilbraham soils, and very poorly drained Menlo soils are included in depressions and drainageways. Leicester soils do not have the dense substratum that Wilbraham and Menlo soils have. Also included are moderately well drained Watchaug and Ludlow soils, and well drained Cheshire soils in areas where the subsoil and substratum are red. Watchaug soils do not have the dense substratum that Ludlow soils have. Small areas of moderately deep, well drained Yalesville soils are included where the depth to bedrock is 20 to 40 inches below the surface. Small areas of soils with a stony surface are also included. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in farmland or woodland. Some areas are in community development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines may allow on site sewage disposal. A more suitable site should be considered in a nearby soil.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

54B-Wapping very fine sandy loam, 2 to 8 percent slopes, very stony

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: till plains on uplands, hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 50 acres.
Map Unit Composition
Wapping and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 11 inches; very fine sandy loam
Bw1-11 to 16 inches; very fine sandy loam
Bw2-16 to 20 inches; very fine sandy loam
2C1-20 to 28 inches; gravelly sandy loam
2C2-28 to 36 inches; gravelly loamy sand
2C3-36 to 80 inches; gravelly loamy sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly melt-out till derived from gneiss and/or schist and/or sandstone and shale
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Narragansett soils that are higher on the landscape. Poorly drained Leicester and Wilbraham soils, and very poorly drained Menlo soils are included in depressions and drainageways. Leicester soils do not have the dense substratum that Wilbraham and Menlo soils have. Also included are moderately well drained Watchaug and Ludlow soils, and well drained Cheshire soils in areas where the subsoil and substratum are red. Watchaug soils do not have the dense substratum that Ludlow soils have. Small areas of moderately deep, well drained Yalesville soils are included where the depth to bedrock is 20 to 40 inches below the surface. Small areas of soils with a non-stony surface are also included. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in pasture or community development.
The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Large stones are also a limitation for lawns and landscaping. Removing the stones will reduce the limitation. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines may allow on site sewage disposal. A more suitable site should be considered in a nearby soil.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

55A-Watchaug fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: till plains on uplands, hills on uplands
Size of map unit: Areas commonly range from 3 to 30 acres.

Map Unit Composition

Watchaug and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 18 inches; fine sandy loam
Bw2-18 to 24 inches; fine sandy loam
C-24 to 65 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy melt-out till derived from basalt and/or sandstone and shale

Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none
Interpretative Groups
Land capability classification (non-irrigated): 2w
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Cheshire soils that are higher on the landscape. Poorly drained Wilbraham soils and very poorly drained Menlo soils are in depressions and drainageways. Moderately well drained Ludlow soils are included in areas with a dense substratum. A few areas in New Haven County have a silt loam or stony surface. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cropland, pasture, or woodland. Some areas are in community development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings on the highest part of the unit with footing or foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill usually will allow on site sewage disposal in places.

Potential frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

55B-Watchaug fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: till plains on uplands, hills on uplands
Size of map unit: Areas commonly range from 3 to 30 acres.

Map Unit Composition

Watchaug and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 18 inches; fine sandy loam
Bw2-18 to 24 inches; fine sandy loam
C-24 to 65 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained

Parent material: coarse-loamy melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2w
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Cheshire soils that are higher on the landscape. Poorly drained Wilbraham soils and very poorly drained Menlo soils are in depressions and drainageways. Moderately well drained Ludlow soils are included in areas with a dense substratum. A few areas in New Haven County have a silt loam or stony surface. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cropland, pasture, or woodland. Some areas are in community development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings on the highest part of the unit with footing or foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill usually will allow on site sewage disposal in places.

Potential frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

56B-Watchaug fine sandy loam, 2 to 8 percent slopes, very stony

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: till plains on uplands, hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 30 acres.

Map Unit Composition

Watchaug and similar soils: 80 percent
Minor components: 20 percent

Major Components

Watchaug and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam

Bw1-8 to 18 inches; fine sandy loam
Bw2-18 to 24 inches; fine sandy loam
C-24 to 65 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Cheshire soils that are higher on the landscape. Poorly drained Wilbraham soils and very poorly drained Menlo soils are in depressions and drainageways. Moderately well drained Ludlow soils are included in areas with a dense substratum. A few areas in New Haven County have a silt loam or stony surface. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or pasture.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Large stones are also a limitation for lawns and landscaping. Locating dwellings on the highest part of the unit with footing or foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill usually will allow on site sewage disposal in places.

Potential frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

57B-Gloucester gravelly sandy loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: hills on uplands
Size of map unit: Areas commonly range from 5 to 70 acres.

Map Unit Composition

Gloucester and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 4 inches; gravelly sandy loam
Bw1-4 to 12 inches; gravelly sandy loam
Bw2-12 to 25 inches; very gravelly loamy sand
C1-25 to 35 inches; very gravelly loamy coarse sand
C2-35 to 60 inches; very gravelly loamy coarse sand

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: somewhat excessively drained
Parent material: sandy and gravelly melt-out till derived from granite and/or schist and/or gneiss
Permeability: rapid or very rapid
Available water capacity: moderate
Reaction: extremely acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 s
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Hinckley soils formed in stratified glacial outwash. Well drained Canton, Charlton, and Paxton soils are included in areas of finer textured soils. Paxton soils have a dense substratum. Areas of moderately well drained Sutton soils are in slightly lower areas of the landscape, and poorly drained Leicester soils are in depressions and drainageways. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated crops, hay, pasture, or woodland. Some areas are in community development.

Large stones are the main limitation for dwellings with basements. Removing the stones will reduce the limitation. Droughtiness and small stones are the main limitation for lawns and landscaping. Removing the stones will reduce this limitation. Planting early in the spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed systems are necessary in some areas of Gloucester soils.

Large stones are the main limitation for local roads and streets. Removing the stones will reduce the limitation.

57C-Gloucester gravelly sandy loam, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: hills on uplands

Size of map unit: Areas commonly range from 5 to 70 acres.

Map Unit Composition

Gloucester and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 4 inches; gravelly sandy loam
Bw1-4 to 12 inches; gravelly sandy loam
Bw2-12 to 25 inches; very gravelly loamy sand
C1-25 to 35 inches; very gravelly loamy coarse sand
C2-35 to 60 inches; very gravelly loamy coarse sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: somewhat excessively drained
Parent material: sandy and gravelly melt-out till derived from granite and/or schist and/or gneiss
Permeability: rapid or very rapid
Available water capacity: moderate
Reaction: extremely acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3e
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Hinckley soils formed in stratified glacial outwash. Well drained Canton, Charlton, and Paxton soils are included in areas of finer textured soils. Paxton soils have a dense substratum. Areas of moderately well drained Sutton soils are in slightly lower areas, and poorly drained Leicester soils are in depressions and drainageways. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated crops, hay, pasture, or woodland. Some areas are in community development.

Large stones are the main limitation for dwellings with basements. Removing the stones and designing dwellings to conform to the slope of the land will reduce these limitations. Erosion is a hazard during construction.

Slope, droughtiness, and small stones are the main limitation for lawns and landscaping. Removing the stones will reduce this limitation. Planting early in the spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed systems are necessary in some areas of Gloucester soils.

Slope and large stones are the main limitation for local roads and streets. Constructing roads on the contour and removing the stones will reduce the limitations.

57D-Gloucester gravelly sandy loam, 15 to 25 percent slopes

Map Unit Setting

Slope: moderately steep
Landscape: hills on uplands
Size of map unit: Areas commonly range from 5 to 70 acres.
Map Unit Composition
Gloucester and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 4 inches; gravelly sandy loam
Bw1-4 to 12 inches; gravelly sandy loam
Bw2-12 to 25 inches; very gravelly loamy sand
C1-25 to 35 inches; very gravelly loamy coarse sand
C2-35 to 60 inches; very gravelly loamy coarse sand

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: somewhat excessively drained
Parent material: sandy and gravelly melt-out till derived from granite and/or schist and/or gneiss
Permeability: rapid or very rapid
Available water capacity: moderate
Reaction: extremely acid to moderately acid
Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4e Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Hinckley soils formed in stratified glacial outwash. Well drained Canton, Charlton, and Paxton soils are included in areas of finer textured soils. Paxton soils have a dense substratum. Areas of moderately well drained Sutton soils are in slightly lower areas, and poorly drained Leicester soils are in depressions and drainageways. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in hay and pasture or woodland. Some areas are in community development.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Designing dwellings to conform to the slope of the land will reduce this limitation. Erosion is a severe hazard during construction.

Slope and poor filtering are the main limitations for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable
substratum does not adequately filter effluent. Specially designed systems are necessary in some areas of Gloucester soils.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the limitation.

58B-Gloucester gravelly sandy loam, 3 to 8 percent slopes, very stony

Map Unit Setting

Slope: gently sloping Landscape: hills on uplands Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 5 to 70 acres.

Map Unit Composition

Gloucester and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 4 inches; gravelly sandy loam
Bw1-4 to 12 inches; gravelly sandy loam
Bw2-12 to 25 inches; very gravelly loamy sand
C1-25 to 35 inches; very gravelly loamy coarse sand
C2-35 to 60 inches; very gravelly loamy coarse sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: somewhat excessively drained
Parent material: sandy and gravelly melt-out till derived from granite and/or schist and/or gneiss
Permeability: rapid or very rapid
Available water capacity: moderate
Reaction: extremely acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: A

Minor Components

Included with this soil in mapping are areas of excessively drained Hinckley soils formed in stratified glacial outwash. Well drained Canton, Charlton, and Paxton soils are included in areas of finer textured soils. Paxton soils have a dense substratum. Areas of moderately well drained Sutton soils are in slightly lower areas, and poorly drained Leicester soils are in depressions and drainageways. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in pasture or woodland. Some areas are in community development.

Large stones are the main limitation for dwellings with basements. Removing the stones will reduce the limitation. Droughtiness and small stones are the main limitation for lawns and landscaping. Removing the stones will reduce this limitation. Planting early in the spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed systems are necessary in some areas of Gloucester soils.

Large stones are the main limitation for local roads and streets. Removing the stones will reduce the limitation.

58C-Gloucester gravelly sandy loam, 8 to 15 percent slopes, very stony

Map Unit Setting

Slope: strongly sloping
Landscape: hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 5 to 70 acres.

Map Unit Composition

Gloucester and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 4 inches; gravelly sandy loam
Bw1-4 to 12 inches; gravelly sandy loam
Bw2-12 to 25 inches; very gravelly loamy sand
C1-25 to 35 inches; very gravelly loamy coarse sand
C2-35 to 60 inches; very gravelly loamy coarse sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: somewhat excessively drained
Parent material: sandy and gravelly melt-out till derived from granite and/or schist and/or gneiss
Permeability: rapid or very rapid
Available water capacity: moderate
Reaction: extremely acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: A

Minor Components

Included with this soil in mapping are areas of excessively drained Hinckley soils formed in stratified glacial outwash. Well drained Canton, Charlton, and Paxton soils are included in areas of finer textured soils. Paxton soils have a dense substratum. Areas of moderately well drained Sutton soils are in slightly lower areas, and poorly drained Leicester soils are in depressions and drainageways. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in pasture or community development.

Large stones are the main limitation for dwellings with basements. Removing the stones and designing dwellings to conform to the slope of the land will reduce these limitations. Erosion is a hazard during construction.

Slope, droughtiness, and small stones are the main limitation for lawns and landscaping. Removing the stones will reduce this limitation. Planting early in the spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed systems are necessary in some areas of Gloucester soils.

Slope and large stones are the main limitation for local roads and streets. Constructing roads on the contour and removing the stones will reduce the limitations.

59C-Gloucester gravelly sandy loam, 3 to 15 percent slopes, extremely stony

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: hills on uplands
Surface cover: 3 to 15 percent stones
Size of map unit: Areas commonly range from 5 to 70 acres.

Map Unit Composition

Gloucester and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 4 inches; gravelly sandy loam
Bw1-4 to 12 inches; gravelly sandy loam
Bw2-12 to 25 inches; very gravelly loamy sand
C1-25 to 35 inches; very gravelly loamy coarse sand
C2-35 to 60 inches; very gravelly loamy coarse sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: somewhat excessively drained

Parent material: sandy and gravelly melt-out till derived from granite and/or schist and/or gneiss
Permeability: rapid or very rapid
Available water capacity: moderate
Reaction: extremely acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 7s
Hydrologic group: A

Minor Components

Included with this soil in mapping are areas of excessively drained Hinckley soils formed in stratified glacial outwash. Well drained Canton, Charlton, and Paxton soils are included in areas of finer textured soils. Paxton soils have a dense substratum. Areas of moderately well drained Sutton soils are in slightly lower areas, and poorly drained Leicester soils are in depressions and drainageways. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in pasture or community development.

Large stones are the main limitation for dwellings with basements. Removing the stones and designing dwellings to conform to the slope of the land will reduce these limitations. Erosion is a moderate hazard during construction.

Slope, droughtiness, and small stones are the main limitation for lawns and landscaping. Removing the stones will reduce this limitation. Planting early in the spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed systems are necessary in some areas of Gloucester soils.

Slope and large stones are the main limitation for local roads and streets. Constructing roads on the contour and removing the stones will reduce the limitations.

59D-Gloucester gravelly sandy loam, 15 to 35 percent slopes, extremely stony

Slope: moderately steep
Landscape: hills on uplands
Surface cover: 3 to 15 percent stones
Size of map unit: Areas commonly range from 5 to 70 acres.
Map Unit Composition
Gloucester and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 4 inches; gravelly sandy loam
Bw1-4 to 12 inches; gravelly sandy loam
Bw2-12 to 25 inches; very gravelly loamy sand
C1-25 to 35 inches; very gravelly loamy coarse sand
C2-35 to 60 inches; very gravelly loamy coarse sand

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: somewhat excessively drained
Parent material: sandy and gravelly melt-out till derived from granite and/or schist and/or gneiss
Permeability: rapid or very rapid
Available water capacity: moderate
Reaction: extremely acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 7s
Hydrologic group: A

Minor Components

Included with this soil in mapping are areas of excessively drained Hinckley soils formed in stratified glacial outwash. Well drained Canton, Charlton, and Paxton soils are included in areas of finer textured soils. Paxton soils have a dense substratum. Areas of moderately well drained Sutton soils are in slightly lower areas, and poorly drained Leicester soils are in depressions and drainageways. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development.
Slope is the main limitation for dwellings with basements and lawns and landscaping. Designing dwellings to conform to the slope of the land will reduce this limitation. Erosion is a severe hazard during construction.

Slope and poor filtering are the main limitations for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed systems are necessary in some areas of Gloucester soils.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the limitation.

60B-Canton and Charlton soils, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: hills on uplands
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Canton and similar soils: 45 percent
Charlton and similar soils: 35 percent
Minor components: 20 percent

Major Components

Canton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; gravelly fine sandy loam
Bw1-3 to 15 inches; gravelly loam
Bw2-15 to 24 inches; gravelly loam
Bw3-24 to 30 inches; gravelly loam
$2 \mathrm{C}-30$ to 60 inches; very gravelly loamy sand

Charlton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 4 inches; fine sandy loam
Bw1-4 to 7 inches; fine sandy loam
Bw2-7 to 19 inches; fine sandy loam
Bw3-19 to 27 inches; gravelly fine sandy loam
C-27 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Canton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy over sandy and gravelly melt-out till derived from
granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: high
Reaction: extremely acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Charlton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Canton and similar soils

Land capability classification (non-irrigated): 2 e
Hydrologic group: B

Charlton and similar soils
 Land capability classification (non-irrigated): 2 e
 Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of moderately well drained Sutton soils in slight depressions on the landscape, and poorly drained Leicester soils in depressions and drainageways. Also included are areas of moderately deep, somewhat excessively drained and well drained Chatfield soils where bedrock is 20 to 40 inches below the surface. Shallow, somewhat excessively drained and well drained Hollis soils are in small areas where bedrock is 10 to 20 inches below the surface. A few areas in Litchfield County include soils with a silt loam surface and subsoil. Minor components make up about 20 percent of the map unit.

Use and Management

Most areas are in cultivated crops, pasture, residential development, or woodland.
This unit has few limitations for dwellings with basements. Large stones are a limitation for lawns and landscaping in areas of Canton soils. Removing the stones will reduce the limitation.

Charlton soils have few limitations for septic tank absorption fields. Poor filtering is the main limitation for septic tank absorption fields in areas of Canton soils. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in places. This unit has few limitations for local roads and streets.

60C-Canton and Charlton soils, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: hills on uplands
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Canton and similar soils: 45 percent
Charlton and similar soils: 35 percent
Minor components: 20 percent

Major Components

Canton and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; gravelly fine sandy loam
Bw1-3 to 15 inches; gravelly loam
Bw2-15 to 24 inches; gravelly loam
Bw3-24 to 30 inches; gravelly loam
$2 \mathrm{C}-30$ to 60 inches; very gravelly loamy sand

Charlton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 4 inches; fine sandy loam
Bw1-4 to 7 inches; fine sandy loam
Bw2-7 to 19 inches; fine sandy loam

Bw3-19 to 27 inches; gravelly fine sandy loam
C-27 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Canton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy over sandy and gravelly melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderately rapid or very rapid
Available water capacity: high
Reaction: extremely acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Charlton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Canton and similar soils
 Land capability classification (non-irrigated): 3e
 Hydrologic group: B
 Charlton and similar soils
 Land capability classification (non-irrigated): 3e
 Hydrologic group: B
 Minor Components

Included with these soils in mapping are areas of moderately well drained Sutton soils in slight depressions on the landscape, and poorly drained Leicester soils in depressions and drainageways. Also included are areas of moderately deep, somewhat excessively drained and well drained Chatfield soils where bedrock is 20 to 40 inches below the surface. Shallow, somewhat excessively drained and well drained Hollis soils are in small areas where bedrock is 10 to 20 inches below the surface. Minor components make up about 20 percent of the map unit.

Use and Management

Most areas are in cultivated crops, pasture, residential development, or woodland.
Slope is the main limitation for dwellings with basements. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Large stones are a limitation for lawns and landscaping in areas of Canton soils. Removing the stones will reduce the limitation.

Slope is the main limitation for septic tank absorption fields in areas of Charlton soils. Poor filtering is the main limitation for septic tank absorption fields in areas of Canton soils. There is a hazard of groundwater pollution because the rapidly
permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas of Canton soils.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

60D-Canton and Charlton soils, 15 to $\mathbf{2 5}$ percent slopes

Map Unit Setting

Slope: moderately steep
Landscape: hills on uplands
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Canton and similar soils: 45 percent
Charlton and similar soils: 35 percent
Minor components: 20 percent

Major Components

Canton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; gravelly fine sandy loam
Bw1-3 to 15 inches; gravelly loam
Bw2-15 to 24 inches; gravelly loam
Bw3-24 to 30 inches; gravelly loam
2C-30 to 60 inches; very gravelly loamy sand

Charlton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 4 inches; fine sandy loam
Bw1-4 to 7 inches; fine sandy loam
Bw2-7 to 19 inches; fine sandy loam
Bw3-19 to 27 inches; gravelly fine sandy loam
C-27 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Canton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy over sandy and gravelly melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: high
Reaction: extremely acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Charlton and similar soils

Depth to bedrock: very deep
Drainage class: well drained

Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate to moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Canton and similar soils
 Land capability classification (non-irrigated): 4e
 Hydrologic group: B
 Charlton and similar soils
 Land capability classification (non-irrigated): 4e Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of moderately well drained Sutton soils in slight depressions on the landscape, and poorly drained Leicester soils in depressions and drainageways. Also included are areas of moderately deep, somewhat excessively drained and well drained Chatfield soils where bedrock is 20 to 40 inches below the surface. Shallow, somewhat excessively drained and well drained Hollis soils are in small areas where bedrock is 10 to 20 inches below the surface. A few areas in Litchfield County include soils with a silt loam surface and subsoil. Minor components make up about 20 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in pasture or residential development.

Slope is the main limitations for dwellings with basements and lawns and landscaping. Erosion is a severe hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slope is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas of Canton soils.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

61B-Canton and Charlton soils, 3 to 8 percent slopes, very stony

Map Unit Setting

Slope: gently sloping
Landscape: hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 100 acres.
Map Unit Composition
Canton and similar soils: 45 percent
Charlton and similar soils: 35 percent
Minor components: 20 percent

Major Components

Canton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; gravelly fine sandy loam
Bw1-3 to 15 inches; gravelly loam
Bw2-15 to 24 inches; gravelly loam
Bw3-24 to 30 inches; gravelly loam
2C-30 to 60 inches; very gravelly loamy sand

Charlton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap- 0 to 4 inches; fine sandy loam
Bw1-4 to 7 inches; fine sandy loam
Bw2-7 to 19 inches; fine sandy loam
Bw3-19 to 27 inches; gravelly fine sandy loam
C-27 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Canton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy over sandy and gravelly melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: high
Reaction: extremely acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Charlton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Canton and similar soils

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Charlton and similar soils

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of moderately well drained Sutton soils in slight depressions on the landscape, and poorly drained Leicester soils in depressions and drainageways. Also included are areas of moderately deep, somewhat excessively drained and well drained Chatfield soils where bedrock is 20 to 40 inches below the surface. Shallow, somewhat excessively drained and well drained Hollis soils are in small areas where bedrock is 10 to 20 inches below the surface. A few areas in Litchfield County include soils with a silt loam surface and subsoil. Minor inclusions make up about 20 percent of the map unit.

Use and Management

Most areas are in residential development or woodland. Some areas are in pasture.

This unit has few limitations for dwellings with basements. Large stones are a limitation for lawns and landscaping in areas of Canton soils. Removing the stones will reduce the limitation.

Charlton soils have few limitations for septic tank absorption fields. Poor filtering is the main limitation for septic tank absorption fields in areas of Canton soils. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in places.

This unit has few limitations for local roads and streets.

61C-Canton and Charlton soils, 8 to 15 percent slopes, very stony

Map Unit Setting

Slope: strongly sloping
Landscape: hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Canton and similar soils: 45 percent
Charlton and similar soils: 35 percent
Minor components: 20 percent

Major Components

Canton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; gravelly fine sandy loam
Bw1-3 to 15 inches; gravelly loam
Bw2-15 to 24 inches; gravelly loam
Bw3-24 to 30 inches; gravelly loam
2C-30 to 60 inches; very gravelly loamy sand

Charlton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 4 inches; fine sandy loam
Bw1-4 to 7 inches; fine sandy loam

Bw2—7 to 19 inches; fine sandy loam
Bw3-19 to 27 inches; gravelly fine sandy loam
C-27 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Canton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy over sandy and gravelly melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: high
Reaction: extremely acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Charlton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Canton and similar soils
 Land capability classification (non-irrigated): 6s
 Hydrologic group: B
 Charlton and similar soils
 Land capability classification (non-irrigated): 6s Hydrologic group: B
 Minor Components

Included with these soils in mapping are areas of moderately well drained Sutton soils in slight depressions on the landscape, and poorly drained Leicester soils in depressions and drainageways. Also included are areas of moderately deep, somewhat excessively drained and well drained Chatfield soils where bedrock is 20 to 40 inches below the surface. Shallow, somewhat excessively drained and well drained Hollis soils are in small areas where bedrock is 10 to 20 inches below the surface. Minor components make up about 20 percent of the mapping unit.

Use and Management

Most areas are in woodland. Some areas are in pasture or residential development.

Slope is the main limitation for dwellings with basements. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Large stones are a limitation for lawns and landscaping in areas of Canton soils. Removing the stones will reduce the limitation.

Slope is the main limitation for septic tank absorption fields in areas of Charlton soils. Poor filtering is the main limitation for septic tank absorption fields in areas of

Canton soils. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Placing the distribution lines on the contour increases the efficiency of the system. Specially designed septic systems are necessary in some areas of Canton soils.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

62C-Canton and Charlton soils, 3 to 15 percent slopes, extremely stony

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: hills on uplands
Surface cover: 3 to 15 percent stones
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Canton and similar soils: 45 percent
Charlton and similar soils: 35 percent
Minor components: 20 percent

Major Components

Canton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; gravelly fine sandy loam
Bw1-3 to 15 inches; gravelly loam
Bw2-15 to 24 inches; gravelly loam
Bw3-24 to 30 inches; gravelly loam
$2 \mathrm{C}-30$ to 60 inches; very gravelly loamy sand

Charlton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap- 0 to 4 inches; fine sandy loam
Bw1-4 to 7 inches; fine sandy loam
Bw2-7 to 19 inches; fine sandy loam
Bw3-19 to 27 inches; gravelly fine sandy loam
C-27 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Canton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy over sandy and gravelly melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: high
Reaction: extremely acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Charlton and similar soils
 Depth to bedrock: very deep
 Drainage class: well drained
 Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
 Permeability: moderate or moderately rapid
 Available water capacity: high
 Reaction: very strongly acid to moderately acid Depth to restrictive feature: greater than 72 inches
 Depth to seasonal water table: greater than 6 feet
 Flooding: none

 Interpretative Groups

 Interpretative Groups

 Canton and similar soils

 Canton and similar soils
 Land capability classification (non-irrigated): 7s
 Hydrologic group: B
 Charlton and similar soils
 Land capability classification (non-irrigated): 7s
 Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of moderately well drained Sutton soils in slight depressions on the landscape, and poorly drained Leicester soils in depressions and drainageways. Also included are areas of moderately deep, somewhat excessively drained and well drained Chatfield soils where bedrock is 20 to 40 inches below the surface. Shallow, somewhat excessively drained and well drained Hollis soils are in small areas where bedrock is 10 to 20 inches below the surface. Minor components make up about 20 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in residential development.
Slope is the main limitation for dwellings with basements. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Large stones are a limitation for lawns and landscaping in areas of Canton soils. Removing the stones will reduce the limitation.

Slope is the main limitation for septic tank absorption fields in areas of Charlton soils. Poor filtering is the main limitation for septic tank absorption fields in areas of Canton soils. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Placing the distribution lines on the contour increases the efficiency of the system. Specially designed septic systems are necessary in some areas of Canton soils.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

62D-Canton and Charlton soils, 15 to 35 percent slopes, extremely stony

Map Unit Setting

Slope: moderately steep or steep
Landscape: hills on uplands
Surface cover: 3 to 15 percent stones
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Canton and similar soils: 45 percent
Charlton and similar soils: 35 percent
Minor components: 20 percent

Major Components

Canton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; gravelly fine sandy loam
Bw1-3 to 15 inches; gravelly loam
Bw2-15 to 24 inches; gravelly loam
Bw3-24 to 30 inches; gravelly loam
2C-30 to 60 inches; very gravelly loamy sand

Charlton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 4 inches; fine sandy loam
Bw1-4 to 7 inches; fine sandy loam
Bw2—7 to 19 inches; fine sandy loam
Bw3-19 to 27 inches; gravelly fine sandy loam
C-27 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Canton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy over sandy and gravelly melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: high
Reaction: extremely acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Charlton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Canton and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: B

Charlton and similar soils
 Land capability classification (non-irrigated): 7s
 Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of moderately well drained Sutton soils in slight depressions on the landscape, and poorly drained Leicester soils in depressions and drainageways. Also included are areas of moderately deep, somewhat excessively drained and well drained Chatfield soils where bedrock is 20 to 40 inches below the surface. Shallow, somewhat excessively drained and well drained Hollis soils are in small areas where bedrock is 10 to 20 inches below the surface. A few areas in Litchfield County include soils with a silt loam surface and subsoil. Minor components make up about 20 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in residential development.
Slope is the main limitations for dwellings with basements and lawns and landscaping. Erosion is a severe hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slope is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Placing the distribution lines on the contour increases the efficiency of the system. Specially designed septic systems are necessary in some areas of Canton soils.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

63B-Cheshire fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: till plains on uplands, hills on uplands
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Cheshire and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 16 inches; fine sandy loam
Bw2-16 to 26 inches; fine sandy loam
C-26 to 65 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate or moderately rapid
Available water capacity: high

Reaction: very strongly acid to moderately acid Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 e Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of moderately well drained Watchaug soils in slight depressions on the landscape. Poorly drained Wilbraham soils and very poorly drained Menlo soils are in depressions and drainageways. Also included are areas of well drained Wethersfield and Yalesville soils. Wethersfield soils have a dense substratum; Yalesville soils have bedrock between 20 and 40 inches below the surface. Some soils with slopes less than 3 percent and soils with strong brown subsoil are also included. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated crops, residential development, or woodland. Some areas are in pasture.

This soil has few limitations for dwellings with basements, lawns and landscaping, septic tank absorption fields, or local roads and streets.

63C-Cheshire fine sandy loam, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: till plains on uplands, hills on uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Cheshire and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 16 inches; fine sandy loam
Bw2-16 to 26 inches; fine sandy loam
C-26 to 65 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches

Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3e Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of moderately well drained Watchaug soils in slight depressions on the landscape. Poorly drained Wilbraham soils and very poorly drained Menlo soils are in depressions and drainageways. Also included are areas of well drained Wethersfield and Yalesville soils. Wethersfield soils have a dense substratum; Yalesville soils have bedrock between 20 and 40 inches below the surface. Some soils with slopes less than 3 percent and soils with strong brown subsoil are also included. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in residential development or woodland. Some areas are in pasture or cultivated cropland.

Slope is the main limitation for dwellings with basements, septic tank absorption fields, local roads, streets, and lawns and landscaping. Erosion is a severe hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Placing the septic tank absorption field distribution lines on the contour increases the efficiency of the system. Construction roads on the contour will reduce the slope limitation.

63D-Cheshire fine sandy loam, 15 to 25 percent slopes

Map Unit Setting

Slope: moderately steep
Landscape: till plains on uplands, hills on uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Cheshire and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 16 inches; fine sandy loam
Bw2-16 to 26 inches; fine sandy loam
C-26 to 65 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate or moderately rapid
Available water capacity: high

Reaction: very strongly acid to moderately acid Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4e Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of moderately well drained Watchaug soils in slight depressions on the landscape. Poorly drained Wilbraham soils and very poorly drained Menlo soils are in depressions and drainageways. Also included are areas of well drained Wethersfield and Yalesville soils. Wethersfield soils have a dense substratum; Yalesville soils have bedrock between 20 and 40 inches below the surface. Some soils with slopes less than 3 percent and soils with strong brown subsoil are also included. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in residential development or woodland. Some areas are in pasture or cultivated cropland.

Slope is the main limitation for dwellings with basements, septic tank absorption fields, local roads, streets, and lawns and landscaping. Erosion is a severe hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Placing the septic tank absorption field distribution lines on the contour increases the efficiency of the system. Construction roads on the contour will reduce the slope limitation.

64B-Cheshire fine sandy loam, 3 to 8 percent slopes, very stony

Map Unit Setting

Slope: gently sloping
Landscape: till plains on uplands, hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Cheshire and similar soils: 80 percent
Minor components: 20 percent

Major Components

Cheshire and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 16 inches; fine sandy loam
Bw2-16 to 26 inches; fine sandy loam
C-26 to 65 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of moderately well drained Watchaug soils in slight depressions on the landscape. Poorly drained Wilbraham soils and very poorly drained Menlo soils are in depressions and drainageways. Also included are areas of well drained Wethersfield and Yalesville soils. Wethersfield soils have a dense substratum; Yalesville soils have bedrock between 20 and 40 inches below the surface. Some soils with slopes less than 3 percent and soils with strong brown subsoil are also included. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in pasture or woodland. Some areas are in residential development.

This soil has few limitations for dwellings with basements, septic tank absorption fields, or local roads and streets.

Large stones are the main limitation for lawns and landscaping. Removing the stones will reduce the limitation.

64C-Cheshire fine sandy loam, 8 to 15 percent slopes, very stony

Map Unit Setting

Slope: strongly sloping
Landscape: till plains on uplands, hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Cheshire and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 16 inches; fine sandy loam

Bw2-16 to 26 inches; fine sandy loam
C-26 to 65 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of moderately well drained Watchaug soils in slight depressions on the landscape. Poorly drained Wilbraham soils and very poorly drained Menlo soils are in depressions and drainageways. Also included are areas of well drained Wethersfield and Yalesville soils. Wethersfield soils have a dense substratum; Yalesville soils have bedrock between 20 and 40 inches below the surface. Some soils with slopes less than 3 percent and soils with strong brown subsoil are also included. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in residential development or woodland. Some areas are in pasture.

Slope is the main limitation for dwellings with basements, septic tank absorption fields, local roads, streets, and lawns and landscaping. Erosion is a severe hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Placing the septic tank absorption field distribution lines on the contour increases the efficiency of the system. Construction roads on the contour will reduce the slope limitation.

65C-Cheshire fine sandy loam, 3 to 15 percent slopes, extremely stony

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: till plains on uplands, hills on uplands
Surface cover: 3 to 15 percent stones
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Cheshire and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap- 0 to 8 inches; fine sandy loam
Bw1-8 to 16 inches; fine sandy loam
Bw2-16 to 26 inches; fine sandy loam
C-26 to 65 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 7s
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of moderately well drained Watchaug soils in slight depressions on the landscape. Poorly drained Wilbraham soils and very poorly drained Menlo soils are in depressions and drainageways. Also included are areas of well drained Wethersfield and Yalesville soils. Wethersfield soils have a dense substratum; Yalesville soils have bedrock between 20 and 40 inches below the surface. Some soils with slopes less than 3 percent and soils with strong brown subsoil are also included. Minor components make up about 20 percent of this map unit.

Use and Management

Most areas are in residential development or woodland. Some areas are in pasture.

Slope is the main limitation for dwellings with basements, septic tank absorption fields, local roads, streets, and lawns and landscaping. Erosion is a severe hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Placing the septic tank absorption field distribution lines on the contour increases the efficiency of the system. Construction roads on the contour will reduce the slope limitation.

65D—Cheshire fine sandy loam, 15 to 35 percent slopes, extremely stony

Map Unit Setting

[^1]
Map Unit Composition

Cheshire and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 16 inches; fine sandy loam
Bw2-16 to 26 inches; fine sandy loam
C-26 to 65 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 7s
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of moderately well drained Watchaug soils in slight depressions on the landscape. Poorly drained Wilbraham soils and very poorly drained Menlo soils are in depressions and drainageways. Also included are areas of well drained Wethersfield and Yalesville soils. Wethersfield soils have a dense substratum; Yalesville soils have bedrock between 20 and 40 inches below the surface. Some soils with slopes less than 3 percent and soils with strong brown subsoil are also included. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in residential development or woodland. Some areas are in pasture.

Slope is the main limitation for dwellings with basements, septic tank absorption fields, local roads, streets, and lawns and landscaping. Erosion is a severe hazard during construction. A site should be selected on a less sloping portion of the unit or nearby soil. Construction roads on the contour will reduce the slope limitation.

66B-Narragansett silt loam, 2 to 8 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: hills on uplands, till plains on uplands
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Narragansett and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; silt loam
Bw1-6 to 15 inches; silt loam
Bw2-15 to 24 inches; silt loam
Bw3-24 to 28 inches; gravelly silt loam
2C-28 to 60 inches; very gravelly loamy coarse sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly melt-out till derived from gneiss and/or schist and/or sandstone and shale
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 e
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Broadbrook, Canton, and Charlton soils. Broadbrook soils have a dense substratum. Canton soils are coarser textured and Charlton soils are loamy throughout. Also included are small areas of moderately well drained Wapping and Sutton soils in slight depressions lower on the landscape. Wapping soils are silty over a sandy substratum; Sutton soils are loamy throughout. Poorly drained Leicester soils are in depressions and drainageways. A few areas in northeast Hartford County include red substrata. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are cropland or pasture. Some areas are in community development or woodland.

This soil has few limitations for dwellings with basements or lawns and landscaping.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas of Narragansett soils.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

66C—Narragansett silt loam, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: till plains on uplands, hills on uplands
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Narragansett and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; silt loam
Bw1-6 to 15 inches; silt loam
Bw2-15 to 24 inches; silt loam
Bw3-24 to 28 inches; gravelly silt loam
2C-28 to 60 inches; very gravelly loamy coarse sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly melt-out till
derived from gneiss and/or schist and/or sandstone and shale
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none
Interpretative Groups
Land capability classification (non-irrigated): 3e
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Broadbrook, Canton, and Charlton soils. Broadbrook soils have a dense substratum. Canton soils are coarser textured and Charlton soils are loamy throughout. Also included are small areas of moderately well drained Wapping and Sutton soils in slight depressions lower on the landscape. Wapping soils are silty over a sandy substratum; Sutton soils are loamy throughout. Poorly drained Leicester soils are in depressions and drainageways. A few areas in northeast Hartford County include red substrata. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are cropland or pasture. Some areas are in community development or woodland.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slope and poor filtering are the main limitations for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Placing the distribution lines on the contour increases the efficiency of the system. Specially designed septic systems are necessary in some areas of Narragansett soils.

Slope and frost action are the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth and constructing roads on the contour will reduce these limitations.

67B—Narragansett silt loam, 3 to 8 percent slopes, very stony

Map Unit Setting

Slope: gently sloping
Landscape: till plains on uplands, hills on uplands
Surface cover: 0 to 3 percent boulders
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Narragansett and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; silt loam
Bw1-6 to 15 inches; silt loam
Bw2—15 to 24 inches; silt loam
Bw3-24 to 28 inches; gravelly silt loam
$2 \mathrm{C}-28$ to 60 inches; very gravelly loamy coarse sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly melt-out till derived from gneiss and/or schist and/or sandstone and shale
Permeability: moderate or very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Broadbrook, Canton, and Charlton soils. Broadbrook soils have a dense substratum. Canton soils are coarser textured and Charlton soils are loamy throughout. Also included are small areas of moderately well drained Wapping and Sutton soils in slight depressions
lower on the landscape. Wapping soils are silty over a sandy substratum; Sutton soils are loamy throughout. Poorly drained Leicester soils are in depressions and drainageways. A few areas in northeast Hartford County include red substrata. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or pasture.

This soil has few limitations for dwellings with basements or lawns and landscaping. Large stones are the main limitation for lawns and landscaping. Removing the large stones will reduce the limitation.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas of Narragansett soils.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

67C—Narragansett silt loam, 8 to 15 percent slopes, very stony

Map Unit Setting

Slope: strongly sloping
Landscape: till plains on uplands, hills on uplands
Surface cover: 0 to 3 percent boulders
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Narragansett and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; silt loam
Bw1-6 to 15 inches; silt loam
Bw2-15 to 24 inches; silt loam
Bw3-24 to 28 inches; gravelly silt loam
2C-28 to 60 inches; very gravelly loamy coarse sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly melt-out till derived from gneiss and/or schist and/or sandstone and shale
Permeability: moderate or very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s

 Hydrologic group: B
Minor Components

Included with this soil in mapping are areas of well drained Broadbrook, Canton, and Charlton soils. Broadbrook soils have a dense substratum. Canton soils are coarser textured and Charlton soils are loamy throughout. Also included are small areas of moderately well drained Wapping and Sutton soils in slight depressions lower on the landscape. Wapping soils are silty over a sandy substratum; Sutton soils are loamy throughout. Poorly drained Leicester soils are in depressions and drainageways. A few areas in northeast Hartford County include red substrata. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or pasture.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Large stones are also a limitation for lawns and landscaping. Removing the stones will reduce the limitation. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slope and poor filtering are the main limitations for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Placing the distribution lines on the contour increases the efficiency of the system. Specially designed septic systems are necessary in some areas of Narragansett soils.

Slope and frost action are the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth and constructing roads on the contour will reduce these limitations.

68C—Narragansett silt loam, 3 to 15 percent slopes, extremely stony

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: hills on uplands, till plains on uplands
Surface cover: 3 to 15 percent stones
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Narragansett and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; silt loam
Bw1-6 to 15 inches; silt loam
Bw2-15 to 24 inches; silt loam
Bw3-24 to 28 inches; gravelly silt loam
2C-28 to 60 inches; very gravelly loamy coarse sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly melt-out till derived from gneiss and/or schist and/or sandstone and shale
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 7s
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Broadbrook, Canton, and Charlton soils. Broadbrook soils have a dense substratum. Canton soils are coarser textured and Charlton soils are loamy throughout. Also included are small areas of moderately well drained Wapping and Sutton soils in slight depressions lower on the landscape. Wapping soils are silty over a sandy substratum; Sutton soils are loamy throughout. Poorly drained Leicester soils are in depressions and drainageways. A few areas in northeast Hartford County include red substrata. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or pasture.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Large stones are also a limitation for lawns and landscaping. Removing the large stones will reduce the limitation. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slope and poor filtering are the main limitations for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Placing the distribution lines on the contour increases the efficiency of the system. Specially designed septic systems are necessary in some areas of Narragansett soils.

Slope and frost action are the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth and constructing roads on the contour will reduce these limitations.

68D—Narragansett silt loam, 15 to 25 percent slopes, extremely stony

Map Unit Setting

Slope: moderately steep
Landscape: hills on uplands, till plains on uplands
Surface cover: 3 to 15 percent stones
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Narragansett and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; silt loam
Bw1-6 to 15 inches; silt loam
Bw2—15 to 24 inches; silt loam
Bw3-24 to 28 inches; gravelly silt loam
2C-28 to 60 inches; very gravelly loamy coarse sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly melt-out till derived from gneiss and/or schist and/or sandstone and shale
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 7s

Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Broadbrook, Canton, and Charlton soils. Broadbrook soils have a dense substratum. Canton soils are coarser textured and Charlton soils are loamy throughout. Also included are small areas of moderately well drained Wapping and Sutton soils in slight depressions lower on the landscape. Wapping soils are silty over a sandy substratum; Sutton soils are loamy throughout. Poorly drained Leicester soils are in depressions and drainageways. A few areas in northeast Hartford County include red substrata. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development.
Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slope and poor filtering are the main limitations for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Placing the distribution lines on the contour increases the efficiency of the system. Specially designed septic systems are necessary in some areas of Narragansett soils.

Slope and frost action are the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth and constructing roads on the contour will reduce these limitations.

69B-Yalesville fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: bedrock controlled hills on uplands, bedrock controlled ridges on uplands Size of map unit: Areas commonly range from 3 to 80 acres.

Map Unit Composition

Yalesville and similar soils: 75 percent
Minor components: 25 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 14 inches; fine sandy loam
Bw2-14 to 25 inches; loam
C-25 to 36 inches; gravelly sandy loam
2R-36 to 80 inches; unweathered bedrock

Major Component Properties and Qualities

Depth to bedrock: moderately deep to deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate or moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none
Interpretative Groups
Land capability classification (non-irrigated): 2e
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of shallow well drained Holyoke soils in areas where the bedrock is between 10 to 20 inches deep. Very deep, well drained Cheshire soils are included where the bedrock is deeper than 60 inches. Also included are very deep, well drained Wethersfield soils in areas where the substratum is very firm. Moderately well drained Watchaug and Ludlow soils are included in slightly lower areas. Poorly drained Wilbraham soils are included in depressions and along drainageways. Also included are areas with a silt loam surface texture in Middlesex and New Haven counties. Areas with slopes less than 3 percent are included in New Haven County. Minor componets make up about 25 percent of the unit.

Use and Management

Most areas are in cultivated cropland, nursery crops, orchards, or woodland. Some areas are in community development.

Depth to bedrock is the main limitation for dwellings with basements and septic tank absorption fields. The short uneven slopes and variable depth to bedrock reduce
site selection options. Where possible, dwellings with basements and septic tank absorption fields should be constructed in very deep inclusions. This soil has few limitations for lawns and landscaping.

Depth to bedrock is the main limitation for local roads and streets. Careful planning of road locations will avoid some removal of rock.

69C-Yalesville fine sandy loam, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: bedrock-controlled ridges on uplands, bedrock controlled hills on uplands Size of map unit: Areas commonly range from 3 to 75 acres.

Map Unit Composition

Yalesville and similar soils: 75 percent
Minor components: 25 percent

Major Components

Yalesville and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 14 inches; fine sandy loam
Bw2-14 to 25 inches; loam
C-25 to 36 inches; gravelly sandy loam
2R-36 to 80 inches; unweathered bedrock

Major Component Properties and Qualities

Depth to bedrock: moderately deep or deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate or moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land Capability Classification (non-irrigated): 3e
Hydrologic Group: C

Minor Components

Included with this soil in mapping are areas of shallow well drained Holyoke soils in areas where the bedrock is between 10 to 20 inches deep. Very deep, well drained Cheshire soils are included where the bedrock is deeper than 60 inches. Also included are very deep, well drained Wethersfield soils in areas where the substratum is very firm. Moderately well drained Watchaug and Ludlow soils are included in slightly lower areas. Poorly drained Wilbraham soils are included in depressions and along drainageways. Also included are areas with a silt loam surface texture in Middlesex and New Haven counties. Minor componets make up about 25 percent of the unit.

Use and Management

Most areas are in cultivated cropland, nursery crops, orchards, or woodland. Some areas are in community development.

Depth to bedrock is the main limitation for dwellings with basements and septic tank absorption fields. The short uneven slopes and variable depth to bedrock reduce site selection options. Where possible, dwellings with basements and septic tank absorption fields should be constructed in very deep inclusions. This soil has few limitations for lawns and landscaping.

Depth to bedrock is the main limitation for local roads and streets. Careful planning of road locations will avoid some removal of rock. Constructing roads on the contour will reduce the slope limitation.

70C—Branford-Holyoke complex, 3 to 15 percent slopes, very rocky

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: terraces on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Branford and similar soils: 50 percent
Holyoke and similar soils: 30 percent
Minor components: 20 percent

Major Components

Branford and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 18 inches; loam
Bw2-18 to 24 inches; gravelly loam
2C-24 to 65 inches; stratified very gravelly coarse sand to loamy fine sand

Holyoke and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; silt loam
Bw1-3 to 8 inches; silt loam
Bw2-8 to 18 inches; gravelly silt loam
2R-18 to 80 inches; unweathered bedrock

Major Component Properties and Qualities

Branford and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from sandstone and shale and/or basalt
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid

Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet
Flooding: none
Holyoke and similar soils
Depth to bedrock: shallow to moderately deep
Drainage class: well drained
Parent material: loamy eolian deposits over melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate
Available water capacity: low
Reaction: extremely acid to moderately acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Branford and similar soils

Land capability classification (non-irrigated): 6s
Hydrologic group: B
Holyoke and similar soils
Land capability classification (non-irrigated): 6s
Hydrologic group: D

Minor Components

Included with this unit in mapping are areas of well drained Haven and Enfield soils, moderately well drained Ellington soils and poorly drained Raypol soils. Enfield soils are silty over sand and gravel and Haven soils are loamy over sand and gravel. Ellington soils are in slight depressions and broad drainageways and Raypol soils are in low depressions on the landscape. Minor componets make up about 20 percent of the unit.

Use and Management

Most areas are in woodland. Some areas are in community development or pasture.

Branford soils have few limitations for dwellings with basements. Shallow depth to bedrock in areas of Holyoke soils and frequent rock outcroppings are the main limitations for dwellings with basements and lawns and landscaping. Slope is also a limitation for lawns and landscaping in areas of Branford soil where the slope exceeds 8 percent. Erosion is a moderate hazard during construction. Dwellings can be built above the rock and landscaped with additional fill. Where possible, dwellings with basements should be constructed in inclusions of very deep Branford soils or a near soil.

Poor filtering is the main limitation for septic tank absorption fields in areas of Branford soils. Shallow depth to bedrock and frequent rock outcroppings are the main limitations in areas of Holyoke soils for septic tank absorption fields. There is a hazard of groundwater pollution in Holyoke and Branford soils because the substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas of Branford soils. A more suitable site should be selected in an inclusion of deeper, loamier soil or in a nearby soil.

Frost action is the main limitation for local roads and streets in areas of Branford soils. Providing a coarse textured subgrade will reduce this limitation. Depth to bedrock is the main limitation for local roads and streets in areas of Holyoke soils. Planning of grades and road locations will avoid some removal of rock in areas of Holyoke soils.

71C—Brookfield-Brimfield-Rock outcrop complex, 3 to 15 percent slopes

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: bedrock-controlled hills on uplands, bedrock-controlled ridges on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 300 acres.

Map Unit Composition

Brookfield and similar soils: 45 percent
Brimfield and similar soils: 30 percent
Rock outcrop and similar soils: 15 percent
Minor components: 10 percent

Major Components

Brookfield and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; fine sandy loam
Bw1-3 to 13 inches; gravelly fine sandy loam
Bw2-13 to 27 inches; gravelly fine sandy loam
C-27 to 60 inches; gravelly sandy loam

Brimfield and similar soils

The typical sequence, depth, and composition of the layers of the soil are as
follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; fine sandy loam
Bw1-3 to 6 inches; fine sandy loam
Bw2-6 to 17 inches; gravelly fine sandy loam
2R-17 to 80 inches; unweathered bedrock

Major Component Properties and Qualities

Brookfield and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from mica schist
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Brimfield and similar soils

Depth to bedrock: shallow to moderately deep
Drainage class: somewhat excessively drained
Parent material: loamy melt-out till derived from mica schist
Permeability: moderate to rapid
Available water capacity: very low
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)

Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Brookfield and similar soils

Land capability classification (non-irrigated): 6s
Hydrologic group: B
Brimfield and similar soils
Land capability classification (non-irrigated): 6s
Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of moderately well drained Sutton and Woodbridge soils and poorly drained Leicester soils. Sutton and Woodbridge soils are in slight depressions on the landscape, and Leicester soils are in depressions and drainageways. Woodbridge soils are in areas with a dense substratum. Also included are shallow, somewhat excessively drained Hollis soils where bedrock is 10 to 20 inches below the surface; Hollis soils are more yellow in the subsoil than Brimfield soils. Some areas of moderately deep, well drained Chatfield soils are included where bedrock is 20 to 40 inches below the surface. Areas of well drained Canton, Charlton, and Paxton soils are also included. These soils are more yellow in the subsoil than Brookfield soils, and Paxton soils have a dense substratum. Minor components make up 10 percent of the map unit.

Use and Management

This unit is mostly in woodland. Some areas are in pasture or community development.

The depth to bedrock in Brimfield soils and areas of Rock outcrop are the main limitations for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Slope is also a limitation for dwellings with basements and septic tank absorption fields on the steeper portions of the unit. A pollution hazard exists for septic tank absorption fields in Brimfield soils because the soil is not thick enough to filter effluent. Large stones are a limitation for lawns and landscaping. Erosion is a moderate hazard during construction. Uneven slopes and variable depth to bedrock reduce site selection. Where possible, dwellings with basements and septic tank absorption fields should be constructed in very deep Brookfield soils.

Slope, frost action, and variable depth to bedrock are the main limitations for local roads and streets. Constructing roads on the contour will reduce the slope limitation. Careful planning of grades and road locations will avoid some removal of rock. Providing a coarse grained subgrade will reduce frost action.

71E—Brookfield-Brimfield-Rock outcrop complex, 15 to 45 percent slopes

Map Unit Setting

Slope: moderately steep or steep
Landscape: bedrock-controlled hills on uplands, bedrock-controlled ridges on uplands Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 300 acres.

Map Unit Composition

Brookfield and similar soils: 45 percent

Brimfield and similar soils: 30 percent
Rock outcrop and similar soils: 15 percent
Minor components: 10 percent

Major Components

Brookfield and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; fine sandy loam
Bw1-3 to 13 inches; gravelly fine sandy loam
Bw2-13 to 27 inches; gravelly fine sandy loam
C-27 to 60 inches; gravelly sandy loam

Brimfield and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; fine sandy loam
Bw1-3 to 6 inches; fine sandy loam
Bw2-6 to 17 inches; gravelly fine sandy loam
2R-17 to 80 inches; unweathered bedrock

Major Component Properties and Qualities

Brookfield and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from mica schist
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Brimfield and similar soils

Depth to bedrock: shallow to moderately deep
Drainage class: somewhat excessively drained
Parent material: loamy melt-out till derived from mica schist
Permeability: moderate to rapid
Available water capacity: very low
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none
Interpretative Groups

Brookfield and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: B
Brimfield and similar soils
Land capability classification (non-irrigated): 7s
Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of moderately well drained Sutton and Woodbridge soils and poorly drained Leicester soils. Sutton and Woodbridge soils are in slight depressions on the landscape, and Leicester soils are in depressions and drainageways. Woodbridge soils are in areas with a dense substratum. Also included are shallow, somewhat excessively drained Hollis soils where bedrock is 10 to 20 inches below the surface; Hollis soils are more yellow in the subsoil than Brimfield soils. Some areas of moderately deep, well drained Chatfield soils are included where bedrock is 20 to 40 inches below the surface. Areas of well drained Canton, Charlton, and Paxton soils are also included. These soils are more yellow in the subsoil than Brookfield soils, and Paxton soils have a dense substratum. Minor componets make up about 10 percent of the map unit.

Use and Management

This unit is mostly in woodland.
Steep slope and the depth to bedrock in Brimfield soils and areas of Rock outcrop are the main limitations for dwellings with basements, lawns and landscaping, and septic tank absorption fields. A pollution hazard exists for septic tank absorption fields in Brimfield soils because the soil is not thick enough to filter effluent. Erosion is a severe hazard during construction. Uneven slopes and variable depth to bedrock reduce site selection.

Steep slope and variable depth to bedrock are the main limitations for local roads and streets. Constructing roads on the contour or locating them on less sloping inclusions will reduce the slope limitation. Careful planning of grades and road locations will avoid some removal of rock.

73C-Charlton-Chatfield complex, 3 to 15 percent slopes, very rocky

Map Unit Setting

Slope: gently sloping to strongly sloping Landscape: bedrock-controlled hills, bedrock-controlled uplands Surface cover: 0 to 3 percent stones Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Charlton and similar soils: 45 percent
Chatfield and similar soils: 30 percent
Minor components: 25 percent

Major Components

Charlton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 4 inches; fine sandy loam
Bw1-4 to 7 inches; fine sandy loam
Bw2-7 to 19 inches; fine sandy loam
Bw3-19 to 27 inches; gravelly fine sandy loam
C-27 to 65 inches; gravelly fine sandy loam

Chatfield and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa-0 to 1 inch; highly decomposed plant material
A-1 to 6 inches; gravelly fine sandy loam
Bw1-6 to 15 inches; gravelly fine sandy loam
Bw2-15 to 29 inches; gravelly fine sandy loam
2R-29 to 80 inches; unweathered bedrock

Major Component Properties and Qualities

Charlton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Chatfield and similar soils

Depth to bedrock: moderately deep to deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none
Interpretative Groups

Charlton and similar soils

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Chatfield and similar soils

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of moderately well drained Sutton soils and poorly drained Leicester soils. Sutton soils are in slight depressions in the landscape; Leicester soils are in depressions and drainageways. Also included are small areas of shallow, somewhat excessively drained Hollis soils where bedrock is 10 to 20 inches below the surface. A few areas in Litchfield County have a yellowish red surface layer and subsoil. Other areas in Litchfield County include sandier soils over bedrock. Minor components make up about 25 percent of the map unit.

Use and Management

Most areas are in woodland or residential development. Some areas are in pasture.

Depth to bedrock in areas of Chatfield soils and rock outcrops over portions of the unit are the main limitations for dwellings with basements. Slope is also a limitation. Erosion is a moderate hazard during construction. Uneven slopes and variable depth to bedrock reduce site selection. Where possible, dwellings with basements should be constructed in areas of very deep Charlton soils.

Slope is the main limitation for lawns and landscaping. Large stones are a limitation in areas of Charlton soils, and the thin soil layer is a limitation in areas of Chatfield soils. Droughtiness can make establishment and maintenance of lawns difficult. Addition of fill material and removing the stones will reduce these limitations.

Slope is the main limitation for septic tank absorption fields in areas of Charlton soils. Depth to bedrock in areas of Chatfield soils, and rock outcrops over portions of the landscape are also limitations. Where possible, septic tank absorption fields should be constructed in areas of very deep Charlton soils. Placing distribution lines on the contour increases the efficiency of the system.

Slope is the main limitation for local roads and streets. Depths to bedrock and frost action are also limitations in areas of Chatfield soils. Constructing roads on the contour will reduce the slope limitation. Careful planning of grades and road locations will avoid some removal of rock. Providing a coarse grained subgrade will reduce frost action.

73E—Charlton-Chatfield complex, 15 to 45 percent slopes, very rocky

Map Unit Setting

Slope: moderately steep or steep
Landscape: bedrock-controlled hills, uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Charlton and similar soils: 45 percent
Chatfield and similar soils: 30 percent
Minor components: 25 percent

Major Components

Charlton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 4 inches; fine sandy loam
Bw1-4 to 7 inches; fine sandy loam
Bw2-7 to 19 inches; fine sandy loam
Bw3-19 to 27 inches; gravelly fine sandy loam
C-27 to 65 inches; gravelly fine sandy loam

Chatfield and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa-0 to 1 inch; highly decomposed plant material
A-1 to 6 inches; gravelly fine sandy loam
Bw1-6 to 15 inches; gravelly fine sandy loam
Bw2-15 to 29 inches; gravelly fine sandy loam
2R-29 to 80 inches; unweathered bedrock

Major Component Properties and Qualities

Charlton and similar soils
Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none
\section*{Chatfield and similar soils}
Depth to bedrock: moderately deep or deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none
\section*{Interpretative Groups}
\section*{Charlton and similar soils}
Land capability classification (non-irrigated): 7s
Hydrologic group: B
\section*{Chatfield and similar soils}
Land capability classification (non-irrigated): 7s
Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of moderately well drained Sutton soils and poorly drained Leicester soils. Sutton soils are in slight depressions on the landscape; Leicester soils are in depressions and drainageways. Also included are small areas of shallow, somewhat excessively drained Hollis soils where bedrock is 10 to 20 inches below the surface. A few areas in Litchfield County have a yellowish red surface layer and subsoil. Other areas in Litchfield County include sandier soils over bedrock. Minor componets make up about 25 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or pasture.

Slope and depth to bedrock in areas of Chatfield soils and Rock outcrops over portions of the unit are the main limitations for dwellings with basements. Erosion is a severe or very severe hazard during construction. Uneven slopes and variable depth to bedrock reduce site selection. Where possible, dwellings with basements should be constructed in areas of very deep Charlton soils, a less sloping inclusion, or nearby soil.

Slope is the main limitation for lawns and landscaping. A site should be selected on a less sloping portion of the unit or nearby soil.

Slope is the main limitation for septic tank absorption fields in areas of Charlton soils. Depth to bedrock in areas of Chatfield soils and Rock outcrops over portions of the landscape are also limitations. Where possible, septic tank absorption fields should be constructed in areas of very deep Charlton soils on a less sloping portion of the unit. Placing distribution lines on the contour increases the efficiency of the system.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation. Careful planning of grades and road locations will avoid some removal of rock.

74C-Narragansett-Hollis complex, 3 to 15 percent slopes, very rocky

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: hills on uplands, till plains on uplands
Surface cover: 0 to 3 percent boulders
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Narragansett and similar soils: 55 percent
Hollis and similar soils: 20 percent
Minor components: 25 percent

Major Components

Narragansett and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; silt loam
Bw1-6 to 15 inches; silt loam
Bw2—15 to 24 inches; silt loam
Bw3-24 to 28 inches; gravelly silt loam
2C-28 to 60 inches; very gravelly loamy coarse sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly melt-out till derived from gneiss and/or schist and/or sandstone and shale
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Hollis and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa-0 to 1 inch; highly decomposed plant material
A-1 to 6 inches; gravelly fine sandy loam
Bw1-6 to 9 inches; channery fine sandy loam
Bw2-9 to 15 inches; gravelly fine sandy loam
2R-15 to 80 inches;

Major Component Properties and Qualities

Abstract

Depth to bedrock: shallow to moderately deep Drainage class: somewhat excessively drained Parent material: loamy melt-out till derived from granite and/or schist and/or gneiss Permeability: moderate or moderately rapid Available water capacity: very low Reaction: very strongly acid to moderately acid Depth to restrictive feature: 10 to 20 inches to bedrock (lithic) Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s

 Hydrologic group: D
Minor Components

Included with these soils in mapping are areas of moderately deep, well drained Chatfield soils in areas where the depth to bedrock is 20 to 40 inches below the surface. Also included are some areas of well drained Canton and Charlton soils. Canton soils are coarser textured; Charlton soils are loamy throughout. Areas of moderately well drained Wapping and Sutton soils are included in slight depressions on the landscape. Wapping soils are silty over a sandy substratum; and Sutton soils are loamy throughout. Poorly drained Leicester soils are in depressions and drainageways. Minor componets make up about 25 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or pasture.

Shallow depth to bedrock and many Rock outcrops in areas of Hollis soils are the main limitations for dwellings with basements and lawns and landscaping. The short, uneven slopes are also a limitation. Erosion is a moderate hazard during construction. Dwellings can be built above the rock and landscaped with additional fill. Droughtiness can make establishment and maintenance of lawns difficult. Where possible, dwellings with basements should be constructed in areas of very deep Narragansett soils.

Poor filtering, shallow depth to bedrock, and Rock outcrops are the main limitations for septic tank absorption fields. There is the hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent, or the soil is not thick enough to filter effluent. Specially designed septic systems are necessary in some areas of Narragansett soils. A more suitable site should be selected in a deeper, loamier inclusion or nearby soil.

Shallow depth to bedrock and many Rock outcrops are the main limitations for local roads and streets. Slope and frost action are also limitations. Careful planning of grades and road locations will avoid some removal of rock. Constructing roads on the
contour will reduce the slope limitation. Providing a coarse grained subgrade will reduce frost action.

75C-Hollis-Chatfield-Rock outcrop complex, 3 to 15 percent slopes

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: uplands, bedrock controlled hills, bedrock controlled ridges
Surface cover: 3 to 15 percent stones
Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Hollis and similar soils: 35 percent
Chatfield and similar soils: 30 percent
Rock outcrop and similar soils: 15 percent (fig. 11)
Minor components: 20 percent

Major Components

Hollis and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa-0 to 1 inch; highly decomposed plant material
A-1 to 6 inches; gravelly fine sandy loam
Bw1-6 to 9 inches; channery fine sandy loam
Bw2-9 to 15 inches; gravelly fine sandy loam
2R-15 to 80 inches

Figure 11. -Rock outcrop in an area of Hollis-Chatfield-Rock outcrop complex.

Chatfield and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa-0 to 1 inch; highly decomposed plant material
A-1 to 6 inches; gravelly fine sandy loam
Bw1-6 to 15 inches; gravelly fine sandy loam
Bw2-15 to 29 inches; gravelly fine sandy loam
2R-29 to 80 inches; unweathered bedrock

Major Component Properties and Qualities

Hollis and similar soils

Depth to bedrock: shallow to moderately deep
Drainage class: somewhat excessively drained
Parent material: loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: very low
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none
Chatfield and similar soils
Depth to bedrock: moderately deep to deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none
Interpretative Groups

Hollis and similar soils

Land capability classification (non-irrigated): 6s
Hydrologic group: D

Chatfield and similar soils

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of moderately well drained Sutton soils and poorly drained Leicester soils. Sutton soils are in slight depressions and Leicester soils are in depressions and drainageways. Also included are very deep, well drained Charlton soils adjacent to Hollis and Chatfield soils. Areas of shallow, somewhat excessively drained Brimfield soils are included where the underlying bedrock is micaceous schist at a depth of 10 to 20 inches below the surface. A few areas in Litchfield County have a yellowish red surface layer and subsoil. Other areas in Litchfield County include sandier soils above bedrock. Minor componets make up about 20 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or pasture.

Shallow depth to bedrock and many Rock outcrops in areas of Hollis soils are the main limitations for dwellings with basements and lawns and landscaping. The short, uneven slopes are also a limitation. Erosion is a moderate to severe hazard during construction. Uneven slopes and variable depth to bedrock reduce site selection. Where possible, dwellings with basements should be constructed in a deeper, less sloping inclusion or nearby soil. Droughtiness can make establishment and maintenance of lawns difficult in areas of Chatfield soils. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Shallow depth to bedrock and many Rock outcrops are the main limitations for septic tank absorption fields. There is the hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent, or the soil is not thick enough to filter effluent. A more suitable site should be selected in a deeper inclusion or nearby soil.

Shallow depth to bedrock and many Rock outcrops are the main limitations for local roads and streets. Frost action is also a limitation for Chatfield soils. Slope is a limitation in steeper areas at Chatfield. Careful planning of grades and road locations will avoid some removal of rock. Constructing roads on the contour will reduce the slope limitation. Providing a coarse grained subgrade will reduce frost action.

75E—Hollis-Chatfield-Rock outcrop complex, 15 to 45 percent slopes

Map Unit Setting

Slope: moderately steep or steep
Landscape: bedrock controlled hills, bedrock controlled ridges, uplands
Surface cover: 3 to 15 percent stones
Size of map unit: Areas commonly range from 3 to 500 acres.
Map Unit Composition
Hollis and similar soils: 35 percent
Chatfield and similar soils: 30 percent
Rock outcrop and similar soils: 15 percent
Minor components: 20 percent

Major Components

Hollis and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa-0 to 1 inch; highly decomposed plant material
A-1 to 6 inches; gravelly fine sandy loam
Bw1-6 to 9 inches; channery fine sandy loam
Bw2-9 to 15 inches; gravelly fine sandy loam
2R-15 to 80 inches

Chatfield and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa-0 to 1 inch; highly decomposed plant material
A-1 to 6 inches; gravelly fine sandy loam
Bw1-6 to 15 inches; gravelly fine sandy loam
Bw2-15 to 29 inches; gravelly fine sandy loam
2R-29 to 80 inches; unweathered bedrock

Major Component Properties and Qualities

Hollis and similar soils
Depth to bedrock: shallow to moderately deep
Drainage class: somewhat excessively drained
Parent material: loamy melt-out till derived from granite and/or schist and/or gneiss Permeability: moderate or moderately rapid
Available water capacity: very low
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none
\section*{Chatfield and similar soils}
Depth to bedrock: moderately deep to deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none
\section*{Interpretative Groups}

Hollis and similar soils
Land capability classification (non-irrigated): 7s
Hydrologic group: D
Chatfield and similar soils
Land capability classification (non-irrigated): 7s
Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of moderately well drained Sutton soils and poorly drained Leicester soils. Sutton soils are in slight depressions and Leicester soils are in depressions and drainageways. Also included are very deep, well drained Charlton soils adjacent to Hollis and Chatfield soils. Areas of shallow, somewhat excessively drained Brimfield soils are included where the underlying bedrock is micaceous schist at a depth of 10 to 20 inches below the surface. A few areas in Litchfield County have a yellowish red surface layer and subsoil. Other areas in Litchfield County include sandier soils above bedrock. Minor componets make up about 20 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or pasture.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Shallow depth to bedrock in areas of Hollis soils, and many Rock outcrops are also limitations. Erosion is a very severe hazard during construction. Additional fill will reduce the depth limitation. A more suitable site should be selected on a less sloping, deeper portion of the unit or nearby soil.

Slope, shallow depth to bedrock, and many Rock outcrops are the main limitations for septic tank absorption fields. There is the hazard of groundwater pollution because
the soil is not thick enough to filter effluent. A more suitable site should be selected in a less sloping, deeper inclusion or nearby soil.

Slope and many rock outcrops are the main limitations for local roads and streets. Shallow depth to bedrock is also a limitation in areas of Hollis soils. Constructing roads on the contour will reduce the slope limitation. Careful planning of grades and road locations will avoid some removal of rock.

76E—Rock outcrop-Hollis complex, 3 to 45 percent slopes

Map Unit Setting

Slope: gently sloping to steep
Landscape: bedrock-controlled hills, bedrock-controlled ridges, bedrock-controlled uplands
Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Rock outcrop and similar soils: 55 percent
Hollis and similar soils: 25 percent
Minor components: 20 percent

Major Components

Hollis and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa-0 to 1 inch; highly decomposed plant material
A-1 to 6 inches; gravelly fine sandy loam
Bw1-6 to 9 inches; channery fine sandy loam
Bw2-9 to 15 inches; gravelly fine sandy loam
2R-15 to 80 inches

Major Component Properties and Qualities

Hollis and similar soils

Depth to bedrock: shallow to moderately deep
Drainage class: somewhat excessively drained
Parent material: loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: very low
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Hollis and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of moderately deep, well drained Chatfield soils where bedrock is 20 to 40 inches below the surface. Also included are very deep, well drained Charlton soils adjacent to Hollis soils and moderately well drained Sutton soils in slight depressions. Poorly drained Leicester soils are included in depressions and drainageways. Areas of shallow, somewhat excessively drained

Brimfield soils are included where the underlying bedrock is micaceous schist at a depth of 10 to 20 inches below the surface. Minor componets make up 20 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development.
Many Rock outcrops and shallow depth to bedrock are the main limitations for dwellings with basements and lawns and landscaping. Slope is also a main limitation in steeper areas of the unit. Uneven slopes and variable depth to bedrock reduce site selection. Erosion is a severe to very severe hazard during construction. Dwellings can be built above the rock and landscaped in with additional fill to reduce the depth limitation. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. A more suitable site should be selected in a deeper, less sloping inclusion or nearby soil.

Shallow depth to bedrock and many Rock outcrops are the main limitations for septic tank absorption fields. Slope is also a main limitation in steeper areas. There is the hazard of groundwater pollution because the soil is not thick enough to filter effluent. Placing septic tank absorption field distribution lines on the contour increases the efficiency of the system. A more suitable site should be selected in a less sloping, deeper inclusion or nearby soil.

Shallow depth to bedrock and many Rock outcrops are the main limitations for local roads and streets. Slope is also a limitation in steeper areas. Constructing roads on the contour or locating them on less sloping inclusions will reduce the slope limitation. Careful planning of grades and road locations will avoid some removal of rock

76F—Rock outcrop-Hollis complex, 45 to 60 percent slopes

Map Unit Setting

Slope: very steep
Landscape: bedrock-controlled uplands, bedrock-controlled ridges, bedrockcontrolled hills
Size of map unit: Areas commonly range from 3 to 500 acres

Map Unit Composition

Rock outcrop and similar soils: 55 percent
Hollis and similar soils: 25 percent
Minor components: 20 percent

Major Components

Hollis and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa-0 to 1 inch; highly decomposed plant material
A-1 to 6 inches; gravelly fine sandy loam
Bw1-6 to 9 inches; channery fine sandy loam
Bw2-9 to 15 inches; gravelly fine sandy loam
2R-15 to 80 inches
Major Component Properties and Qualities
Hollis and similar soils
Depth to bedrock: shallow to moderately deep
Drainage class: somewhat excessively drained

Parent material: loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: very low
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none
Interpretative Groups
Hollis and similar soils
Land capability classification (non-irrigated): 7s
Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of moderately deep, well drained Chatfield soils where bedrock is 20 to 40 inches below the surface. Also included are very deep, well drained Charlton soils adjacent to Hollis soils. Poorly drained Leicester soils are included in depressions and drainageways. Areas of shallow, somewhat excessively drained Brimfield soils are included where the underlying bedrock is micaceous schist at a depth of 10 to 20 inches below the surface. Minor componets make up 20 percent of the map unit.

Use and Management

Most areas are in woodland.
Many rock outcrops, slope, and shallow depth to bedrock are the main limitations for dwellings with basements and lawns and landscaping. Erosion is a very severe hazard during construction. Addition of fill will reduce the depth limitation. A more suitable site should be selected in a deeper, less sloping inclusion or nearby soil.

Many Rock outcrops, slope, and shallow depth to bedrock are the main limitations for septic tank absorption fields. There is the hazard of groundwater pollution because the soil is not thick enough to filter effluent. A more suitable site should be selected in a less sloping, deeper inclusion or nearby soil.

Shallow depth to bedrock, slope, and many Rock outcrops are the main limitations for local roads and streets. Constructing roads on the contour or locating them on less sloping inclusions will reduce the slope limitation. Careful planning of grades and road locations will avoid some removal of rock.

77C-Cheshire-Holyoke complex, 3 to 15 percent slopes, very rocky

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: hills on uplands, till plains on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 125 acres.

Map Unit Composition

Cheshire and similar soils: 45 percent
Holyoke and similar soils: 35 percent
Minor components: 20 percent

Major Components

Cheshire and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 16 inches; fine sandy loam
Bw2-16 to 26 inches; fine sandy loam
C-26 to 65 inches; gravelly sandy loam

Holyoke and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; silt loam
Bw1-3 to 8 inches; silt loam
Bw2-8 to 18 inches; gravelly silt loam
2R-18 to 80 inches; unweathered bedrock

Major Component Properties and Qualities

Cheshire and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none
Holyoke and similar soils
Depth to bedrock: shallow to moderately deep
Drainage class: well drained
Parent material: loamy eolian deposits over melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate
Available water capacity: low
Reaction: extremely acid to moderately acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Cheshire and similar soils

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Holyoke and similar soils

Land capability classification (non-irrigated): 6s
Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of moderately deep, well drained Yalesville soils where bedrock is 20 to 40 inches below the surface. In places, the Yalesville soils may make up as much as 20 percent of the unit. Also included are well
drained Wethersfield soils in areas with a dense substratum. Moderately well drained Watchaug soils are in slight depressions on the landscape. Poorly drained Wilbraham soils and very poorly drained Menlo soils are included in drainageways and depressions.

Use and Management

Most areas are in woodland. Some areas are in residential development, pasture, or orchards.

Shallow depth to bedrock in areas of Holyoke soils, and Rock outcrops over portions of the unit are the main limitations for dwellings with basements. Slope is a limitation in steeper areas of Cheshire soil. Erosion is a moderate to severe hazard during construction. Dwellings can be built above the rock and landscaped in with additional fill to reduce the depth limitation. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Uneven slopes and variable depth to bedrock reduce site selection. Where possible, dwellings with basements should be constructed in inclusions of very deep Cheshire soils.

Shallow depth to bedrock in areas of Holyoke soils, and Rock outcrops over portions of the unit are the main limitation for lawns and landscaping. Large stones are the main limitation in areas of Cheshire soils. Addition of fill material will reduce the depth limitation. Removing the stones will reduce the stone limitation. Slope is also a limitation in the steeper Cheshire soils.

Shallow depth to bedrock in areas of Holyoke soils, and Rock outcrops over portions of the unit are the main limitations for septic tank absorption fields. Slope is also a limitation in the steeper Cheshire soils. A pollution hazard exists because the Holyoke soil is not thick enough to filter effluent. Placing the distribution lines on the contour increases the efficiency of the system. Where possible, septic tank absorption fields should be constructed in areas of very deep Cheshire soils.

Shallow depth to bedrock in areas of Holyoke soils, and Rock outcrops over portions of the unit are the main limitation for local roads and streets. Slope is also a limitation in the steeper Cheshire soils. Careful planning of grades and road locations will avoid some removal of rock. Constructing roads on the contour will reduce the slope limitation.

77D—Cheshire-Holyoke complex, 15 to 35 percent slopes, very rocky

Map Unit Setting

Slope: moderately steep to steep
Landscape: till plains on uplands, hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 125 acres.
Map Unit Composition
Cheshire and similar soils: 45 percent
Holyoke and similar soils: 35 percent
Minor components: 20 percent

Major Components

Cheshire and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 16 inches; fine sandy loam

Bw2-16 to 26 inches; fine sandy loam
C-26 to 65 inches; gravelly sandy loam
Holyoke and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; silt loam
Bw1-3 to 8 inches; silt loam
Bw2-8 to 18 inches; gravelly silt loam
2R-18 to 80 inches; unweathered bedrock

Major Component Properties and Qualities

Cheshire and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Holyoke and similar soils

Depth to bedrock: shallow to moderately deep
Drainage class: well drained
Parent material: loamy eolian deposits over melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate
Available water capacity: low
Reaction: extremely acid to moderately acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Cheshire and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: B
Holyoke and similar soils
Land capability classification (non-irrigated): 7s
Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of moderately deep, well drained Yalesville soils where bedrock is 20 to 40 inches below the surface. In places, the Yalesville soils may make up as much as 20 percent of the unit. Also included are well drained Wethersfield soils in areas with a dense substratum. Moderately well drained Watchaug soils are in slight depressions on the landscape. Poorly drained Wilbraham soils and very poorly drained Menlo soils are included in drainageways and depressions. Minor componets make up about 20 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in residential development, pasture, or orchards.

Slope is the main limitations for dwellings with basements and lawns and landscaping. Shallow depth to bedrock in areas of Holyoke soils, and Rock outcrops over portions of the unit are also limitations. Erosion is a very severe hazard during construction. Addition of fill will reduce the depth limitation. A site should be selected in less sloping, very deep Cheshire soils or nearby soil.

Slope is the main limitation for septic tank absorption fields. Shallow depth to bedrock in areas of Holyoke soils, and Rock outcrops over portions of the unit are also limitations. There is the hazard of groundwater pollution because the Holyoke soil is not thick enough to filter effluent. Placing distribution lines on the contour increases the efficiency of the system. A more suitable site should be considered in a less sloping, very deep Cheshire soil or nearby soil.

Slope is the main limitation for local roads and streets. Shallow depth to bedrock in areas of Holyoke soils, and Rock outcrops over portions of the unit are also limitations. Careful planning of grades and road locations will avoid some removal of rock. Constructing roads on the contour will reduce the slope limitation.

78C-Holyoke-Rock outcrop complex, 3 to 15 percent slopes

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: bedrock-controlled hills on uplands, bedrock-controlled ridges on uplands Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Holyoke and similar soils: 50 percent Rock outcrop and similar soils: 25 percent Minor components: 25 percent

Major Components

Holyoke and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; silt loam
Bw1-3 to 8 inches; silt loam
Bw2-8 to 18 inches; gravelly silt loam
2R-18 to 80 inches; unweathered bedrock

Major Component Properties and Qualities

Holyoke and similar soils

Depth to bedrock: shallow to moderately deep
Drainage class: well drained
Parent material: loamy eolian deposits over melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate
Available water capacity: low
Reaction: extremely acid to moderately acid

Depth to restrictive feature: 10 to 20 inches to bedrock (lithic) Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Holyoke and similar soils
Land capability classification (non-irrigated): 6s
Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of moderately deep, well drained Yalesville soils where bedrock is 20 to 40 inches below the surface. Also included are very deep Wethersfield and Cheshire soils. Moderately well drained Ludlow and Watchaug soils are in slight depressions and along drainageways. In New Haven County, soils with a fine sandy loam surface and subsoil are included. Minor componets make up about 25 percent of the unit.

Use and Management

Most areas are in woodland. Some areas are in residential development.
Shallow depth to bedrock and frequent rock outcroppings are the main limitations for dwellings with basements and lawns and landscaping. Erosion is a moderate to severe hazard during construction. Dwellings can be built above the rock and landscaped in with additional fill to reduce the depth limitation. Addition of fill materials will reduce the depth limitation for lawns and landscaping. Uneven slopes and variable depth to bedrock reduce site selection. Where possible, dwellings with basements should be constructed in a deeper inclusions or a nearby soil.

Shallow depth to bedrock and frequent rock outcroppings are the main limitations for septic tank absorption fields. A pollution hazard exists because the soil is not thick enough to filter effluent. Where possible, septic tank absorption fields should be constructed in deeper inclusion or nearby soil.

Shallow depth to bedrock and frequent rock outcroppings are the main limitations for local roads and streets. Careful planning of grades and road locations will avoid some removal of rock.

78E—Holyoke-Rock outcrop complex, 15 to 45 percent slopes

Map Unit Setting

Slope: moderately steep or steep
Landscape: bedrock-controlled hills on uplands, bedrock-controlled ridges on uplands Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 150 acres.

Map Unit Composition

Holyoke and similar soils: 50 percent Rock outcrop and similar soils: 25 percent Minor components: 25 percent

Major Components

Holyoke and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-

Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; silt loam
Bw1-3 to 8 inches; silt loam
Bw2-8 to 18 inches; gravelly silt loam
2R—18 to 80 inches; unweathered bedrock

Major Component Properties and Qualities

Holyoke and similar soils
Depth to bedrock: shallow to moderately deep
Drainage class: well drained
Parent material: loamy eolian deposits over melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate
Available water capacity: low
Reaction: extremely acid to moderately acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none
Interpretative Groups
Holyoke and similar soils
Land capability classification (non-irrigated): 7s
Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of moderately deep, well drained Yalesville soils where bedrock is 20 to 40 inches below the surface. Also included are very deep Wethersfield and Cheshire soils. Very poorly drained Menlo soils are included along drainageways. Some areas have slopes up to 90 percent or less than 15 percent. In New Haven County, soils with a fine sandy loam surface and subsoil are included. Minor componets make up about 25 percent of the unit.

Use and Management

Most areas are in woodland. Some areas are in residential development.
Slope, shallow to bedrock, and rock outcroppings are the main limitations for dwellings with basements and lawns and landscaping. Erosion is a very severe hazard during construction. Addition of fill will reduce the depth limitation. A site should be selected in deeper, less sloping inclusion or nearby soil.

Slope, shallow to bedrock, and rock outcropping are the main limitations for septic tank absorption fields. There is the hazard of groundwater pollution because the soil is not thick enough to filter effluent. A more suitable site should be considered in a deeper, less sloping inclusion or nearby soil.

Slope, shallow depth to bedrock, and rock outcroppings are the main limitations for local roads and streets. Careful planning of grades and road locations will avoid some removal of rock. Constructing roads on the contour will reduce the slope limitation.

79E—Rock outcrop-Holyoke complex, 3 to 45 percent slopes

Map Unit Setting

Slope: gently sloping to steep
Landscape: bedrock-controlled uplands, bedrock-controlled ridges, bedrockcontrolled hills
Size of map unit: Areas commonly range from 3 to 150 acres.

Map Unit Composition

Rock outcrop and similar soils: 55 percent
Holyoke and similar soils: 25 percent
Minor components: 20 percent

Major Components

Holyoke and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; silt loam
Bw1-3 to 8 inches; silt loam
Bw2-8 to 18 inches; gravelly silt loam
2R-18 to 80 inches; unweathered bedrock

Major Component Properties and Qualities

Holyoke and similar soils
Depth to bedrock: shallow to moderately deep
Drainage class: well drained
Parent material: loamy eolian deposits over melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate
Available water capacity: low
Reaction: extremely acid to moderately acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Holyoke and similar soils
Land capability classification (non-irrigated): 7s
Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of moderately deep, well drained Yalesville soils where bedrock is 20 to 40 inches below the surface. Also included are very deep Wethersfield and Cheshire soils. Very poorly drained Menlo soils are included along drainageways. Some areas have slopes up to 90 percent. Minor componets make up about 20 percent of the unit.

Use and Management

Most areas are in woodland.
Shallow to bedrock and frequent rock outcroppings are the main limitations for dwellings with basements and lawns and landscaping. Slope is also a main limitation in steeper areas. Erosion is a severe to very severe hazard during construction. Uneven slopes and variable depth to bedrock reduce site selection. Addition of fill will reduce the depth limitation. A site should be selected in deeper, less sloping inclusion or nearby soil.

Shallow to bedrock and frequent rock outcropping are the main limitations for septic tank absorption fields. Slope is also a limitation in steeper areas. There is the hazard of groundwater pollution because the soil is not thick enough to filter effluent. A more suitable site should be considered in a deeper, less sloping inclusion or nearby soil.

Shallow depth to bedrock and frequent rock outcroppings are the main limitations for local roads and streets. Slope is also a limitation in steeper areas. Careful
planning of grades and road locations will avoid some removal of rock. Constructing roads on the contour or locating them in less sloping inclusions will reduce the slope limitation.

80B—Bernardston silt loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: uplands, hills
Size of map unit: Areas commonly range from 3 to 50 acres.
Map Unit Composition
Bernardston and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 14 inches; channery silt loam
Bw2-14 to 24 inches; channery silt loam
BC-24 to 26 inches; channery silt loam
Cd-26 to 60 inches; channery silt loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from phyllite and/or schist
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 30 inches to densic material
Depth to seasonal water table: 18 to 24 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 e
Hydrologic group: C

Minor Components

Included with this soil are areas of well drained Paxton and Lanesboro soils, moderately well drained Woodbridge and Fullam soils, and poorly drained Brayton soils. Paxton and Woodbridge soils are included where the soil is less silty. Lanesboro, Fullam, and Brayton soils are included where the mean soil temperature is less than 48 degrees F. Also included are areas with slopes outside of the range. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated cropland, residential development, or woodland.
The seasonal high water table is the main limitation for dwellings with basements. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls and diverting
runoff from higher areas will reduce wetness. This soil has few limitations for lawns and landscaping.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional septic system by extending the length of distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarse grained subgrade to frost depth will reduce these limitations.

80C—Bernardston silt loam, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: uplands, hills
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Bernardston and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 14 inches; channery silt loam
Bw2-14 to 24 inches; channery silt loam
BC-24 to 26 inches; channery silt loam
Cd-26 to 60 inches; channery silt loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from phyllite and/or schist
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 30 inches to densic material
Depth to seasonal water table:18 to 24 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3e
Hydrologic group: C

Minor Components

Included with this soil are areas of well drained Paxton and Lanesboro soils, moderately well drained Woodbridge and Fullam soils, and poorly drained Brayton soils. Paxton and Woodbridge soils are included where the soil is less silty. Lanesboro, Fullam, and Brayton soils are included where the mean soil temperature is less than 48 degrees F. Also included are areas with slopes outside of the range. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated cropland, residential development, or woodland.
The seasonal high water table and slope are the main limitations for dwellings with basements. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls and diverting runoff from higher areas will reduce wetness. Erosion is a moderate hazard during construction. Designing dwellings to conform to the slope of the land will reduce the slope limitation.

Slope is the main limitation for lawns and landscaping.
Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional septic system by extending the length of distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarse grained subgrade to frost depth will reduce these limitations.

81C-Bernardston silt loam, 3 to 15 percent slopes, extremely stony

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: uplands, hills
Surface cover: 3 to 15 percent stones
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Bernardston and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 8 inches; silt loam
Bw1-8 to 14 inches; channery silt loam
Bw2-14 to 24 inches; channery silt loam
BC-24 to 26 inches; channery silt loam
Cd-26 to 60 inches; channery silt loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from phyllite and/or schist
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 30 inches to densic material
Depth to seasonal water table: 18 to 24 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 7s
Hydrologic group: C

Minor Components

Included with this soil are areas of well drained Paxton and Lanesboro soils, moderately well drained Woodbridge and Fullam soils, and poorly drained Brayton soils. Paxton and Woodbridge soils are included where the soil is less silty. Lanesboro, Fullam, and Brayton soils are included where the mean soil temperature is less than 48 degrees F. Also included are areas with slopes outside of the range. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland.
The seasonal high water table and slope are the main limitations for dwellings with basements. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls and diverting runoff from higher areas will reduce wetness. Erosion is a moderate hazard during construction. Designing dwellings to conform to the slope of the land will reduce the slope limitation.

Slope and large stones are the main limitations for lawns and landscaping. Removing the stones will reduce this limitation.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional septic system by extending the length of distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarse grained subgrade to frost depth will reduce these limitations.

81D—Bernardston silt loam, 15 to 25 percent slopes, extremely stony

Map Unit Setting

Slope: moderately steep
Landscape: uplands, hills
Surface cover: 3 to 15 percent stones
Size of map unit: Areas commonly range from 3 to 50 acres.
Map Unit Composition
Bernardston and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 8 inches; silt loam
Bw1-8 to 14 inches; channery silt loam
Bw2-14 to 24 inches; channery silt loam
BC-24 to 26 inches; channery silt loam
Cd-26 to 60 inches; channery silt loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from phyllite and/or schist
Permeability: very slow to moderate

Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 30 inches to densic material
Depth to seasonal water table:18 to 24 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 7s
Hydrologic group: C

Minor Components

Included with this soil are areas of well drained Paxton and Lanesboro soils, moderately well drained Woodbridge and Fullam soils, and poorly drained Brayton soils. Paxton and Woodbridge soils are included where the soil is less silty. Lanesboro, Fullam, and Brayton soils are included where the mean soil temperature is less than 48 degrees F. Also included are areas with slopes outside of the range. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland.
Slope is the main limitation for dwellings with basements. Erosion is a severe hazard during construction. Designing dwellings to conform to the slope of the land will reduce the slope limitation. A site should be selected on a less sloping portion of the unit or nearby soil.

Slope and large stones are the main limitations for lawns and landscaping.
Slow percolation and slope are the main limitations for septic tank absorption fields. Modifying a conventional septic system by extending the length of distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places. Placing the distribution lines on the contour increases the efficiency of the system. A more suitable site should be considered in a less dense inclusion or nearby soil.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

82B—Broadbrook silt loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: till plains on uplands, hills on uplands, drumlins on uplands Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Broadbrook and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 14 inches; silt loam
Bw2-14 to 25 inches; silt loam
2Cd-25 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: eolian deposits over coarse-loamy lodgment till derived from gneiss and/or schist and/or sandstone and/or basalt
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2e
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of moderately well drained Rainbow soils in slight depressions in the landscape. Also included are poorly drained Wilbraham soils and very poorly drained Menlo soils in depressions and drainageways. Areas of well drained Narragansett soils and Wethersfield soils are included. Narragansett soils lack a dense substratum; Wethersfield soils have a redder color in the subsoil. Small areas of shallow, well drained Holyoke soils are included where bedrock is 10 to 20 inches below the surface. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated cropland, residential development, or woodland.
The seasonal high water table is the main limitation for dwellings with basements. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls and diverting runoff from higher areas will reduce wetness. This soil has few limitations for lawns and landscaping.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional septic system by extending the length of distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarse grained subgrade to frost depth will reduce these limitations.

82C—Broadbrook silt loam, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: till plains on uplands, hills on uplands, drumlins on uplands Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Broadbrook and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 14 inches; silt loam
Bw2-14 to 25 inches; silt loam
2Cd—25 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: eolian deposits over coarse-loamy lodgment till derived from gneiss and/or schist and/or sandstone and/or basalt
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none
Interpretative Groups

Land capability classification (non-irrigated): 3e Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of moderately well drained Rainbow soils, poorly drained Wilbraham soils, and very poorly drained Menlo soils. Rainbow soils are in slightly lower areas. Wilbraham and Menlo soils in depressions and drainageways. Also included are small areas of Holyoke, Narragansett, and Wethersfield soils. Narragansett soils lack a dense substratum; Wethersfield soils have a redder color in the subsoil; Holyoke soils are shallow to bedrock. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated cropland, residential development, or woodland.
Slope is the main limitation for dwellings with basements and lawns and landscaping. The seasonal high water table is also a limitation for dwellings with basements. Erosion is a moderate hazard during construction. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls and diverting runoff from higher areas will reduce wetness.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional septic system by extending the length of distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

The seasonal high water table, slope, and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarse grained subgrade to frost depth will reduce these limitations.

82D—Broadbrook silt loam, 15 to 25 percent slopes

Map Unit Setting

Slope: moderately steep
Landscape: drumlins on uplands, hills on uplands, till plains on uplands Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Broadbrook and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 14 inches; silt loam
Bw2-14 to 25 inches; silt loam
2Cd-25 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: eolian deposits over coarse-loamy lodgment till derived from gneiss and/or schist and/or sandstone and/or basalt
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4e
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of moderately well drained Rainbow soils, poorly drained Wilbraham soils, and very poorly drained Menlo soils. Rainbow soils are in slightly lower areas. Wilbraham and Menlo soils in depressions and drainageways. Also included are small areas of Holyoke, Narragansett, and Wethersfield soils. Narragansett soils lack a dense substratum; Wethersfield soils have a redder color in the subsoil; Holyoke soils are shallow to bedrock. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in residential development.
Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a sever hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. A more suitable site should be considered on a less sloping inclusion or nearby soil.

Slow percolation and slope are the main limitations for septic tank absorption fields. Modifying a conventional septic system by extending the length of distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places. Placing distribution lines on the contour increases the efficiency of the system. A more suitable site should be considered in a less sloping, less dense inclusion or nearby soil.

Slope is the main limitation for local roads and streets. Constructing roads on the contour or locating them on less sloping inclusions will reduce the slope limitation.

83B—Broadbrook silt loam, 3 to 8 percent slopes, very stony

Map Unit Setting

Slope: gently sloping
Landscape: hills on uplands, till plains on uplands, drumlins on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Broadbrook and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 14 inches; silt loam
Bw2-14 to 25 inches; silt loam
2Cd-25 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: eolian deposits over coarse-loamy lodgment till derived from gneiss and/or schist and/or sandstone and/or basalt
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none
Interpretative Groups
Land capability classification (non-irrigated): 6s
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of moderately well drained Rainbow soils in slight depressionson the landscape. Also included are poorly drained Wilbraham soils and very poorly drained Menlo soils in depressions and drainageways. Areas of well drained Narragansett soils and Wethersfield soils are included. Narragansett soils lack a dense substratum; Wethersfield soils have a redder color in the subsoil. Small areas of shallow, well drained Holyoke soils are included where bedrock is 10 to 20 inches below the surface. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in residential development or woodland. Some areas are in pasture.

The seasonal high water table is the main limitation for dwellings with basements. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls and diverting runoff from higher areas will reduce wetness.

Large stones are the main limitation for lawns and landscaping. Removing the large stones will reduce this limitation.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional septic system by extending the length of distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarse grained subgrade to frost depth will reduce these limitations.

83C—Broadbrook silt loam, 8 to 15 percent slopes, very stony

Map Unit Setting

Slope: strongly sloping
Landscape: till plains on uplands, hills on uplands, drumlins on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Broadbrook and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 14 inches; silt loam
Bw2-14 to 25 inches; silt loam
2Cd-25 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: eolian deposits over coarse-loamy lodgment till derived from gneiss and/or schist and/or sandstone and/or basalt
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of moderately well drained Rainbow soils, poorly drained Wilbraham soils, and very poorly drained Menlo soils. Rainbow soils are in slightly lower areas. Wilbraham and Menlo soils in depressions and drainageways. Also included are small areas of Holyoke, Narragansett, and Wethersfield soils. Narragansett soils lack a dense substratum; Wethersfield soils
have a redder color in the subsoil; Holyoke soils are shallow to bedrock. Minor Inclusions make up about 20 percent of this map unit.

Use and Management

Most areas are in residential development or woodland. Some areas are in pasture.

Slope is the main limitation for dwellings with basements and lawns and landscaping. The seasonal high water table is also a limitation for dwellings with basements. Erosion is a moderate hazard during construction. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls and diverting runoff from higher areas will reduce wetness.

Large stones are the main limitation for lawns and landscaping. Removing the large stones will reduce this limitation.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional septic system by extending the length of distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

The seasonal high water table, slope, and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarse grained subgrade to frost depth will reduce these limitations.

84B—Paxton and Montauk fine sandy loams, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: hills on uplands, till plains on uplands, drumlins on uplands
Size of map unit: Areas commonly range from 3 to 85 acres.

Map Unit Composition

Paxton and similar soils: 55 percent
Montauk and similar soils: 30 percent
Minor components: 15 percent

Major Components

Paxton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 15 inches; fine sandy loam
Bw2-15 to 26 inches; fine sandy loam
Cd-26 to 65 inches; gravelly fine sandy loam

Montauk and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 4 inches; fine sandy loam
Bw1-4 to 14 inches; fine sandy loam
Bw2-14 to 25 inches; sandy loam
2Cd1-25 to 39 inches; gravelly loamy coarse sand
2Cd2-39 to 60 inches; gravelly sandy loam

Major Component Properties and Qualities

Paxton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Montauk and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or coarse-loamy lodgment till derived from gneiss and/or coarse-loamy lodgment till derived from gneiss and/or coarse-loamy lodgment till derived from granite
Permeability: very slow to moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 38 inches to densic material
Depth to seasonal water table: 24 to 30 inches
Flooding: none

Interpretative Groups

Paxton and similar soils

Land capability classification (non-irrigated): 2e
Hydrologic group: C
Montauk and similar soils
Land capability classification (non-irrigated): 2e
Hydrologic group: C

Minor Components

Included with these soils in mapping are areas of moderately well drained Woodbridge soils in slight depressions on the landscape. Also included are poorly drained Ridgebury soils in depressions and along drainageways. Well drained Canton and Charlton soils are included in areas lacking a dense substratum. Well drained Stockbridge soils are included in areas of Litchfield and Fairfield counties with carbonates below 40 inches. Also included are areas of nearly level soils and soils with a stony surface. A few areas in Hartford, Middlesex, and New Haven counties include soils with a red substratum. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in cultivated crops, pasture, or woodland. Some areas are in community development.

The seasonal high water table is the main limitation for dwellings with basements. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Droughtiness is the main limitation for lawns and landscaping in areas of Montauk soils. Planting early in the spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Slow percolation is the main limitation for septic tank absorption fields. The seasonal high water table is also a limitation in areas of Montauk soil. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials and installing a drainage system will reduce wetness. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation.

84C—Paxton and Montauk fine sandy loams, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: drumlins on uplands, hills on uplands, till plains on uplands
Size of map unit: Areas commonly range from 3 to 75 acres.

Map Unit Composition

Paxton and similar soils: 55 percent
Montauk and similar soils: 30 percent
Minor components: 15 percent

Major Components

Paxton and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 15 inches; fine sandy loam
Bw2-15 to 26 inches; fine sandy loam
Cd-26 to 65 inches; gravelly fine sandy loam

Montauk and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 4 inches; fine sandy loam
Bw1-4 to 14 inches; fine sandy loam
Bw2-14 to 25 inches; sandy loam
2Cd1-25 to 39 inches; gravelly loamy coarse sand
2Cd2-39 to 60 inches; gravelly sandy loam

Major Component Properties and Qualities

Paxton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Montauk and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or coarse-loamy lodgment till derived from gneiss and/or coarse-loamy lodgment till derived from gneiss and/or coarse-loamy lodgment till derived from granite
Permeability: very slow to moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 38 inches to densic material
Depth to seasonal water table: 24 to 30 inches
Flooding: none

Interpretative Groups

Paxton and similar soils
Land capability classification (non-irrigated): 3e
Hydrologic group: C
Montauk and similar soils
Land capability classification (non-irrigated): 3e Hydrologic group: C

Minor Components

Included with these soils in mapping are areas of moderately well drained Woodbridge soils in slight depressions on the landscape. Also included are poorly drained Ridgebury soils in depressions and along drainageways. Well drained Canton and Charlton soils are included in areas lacking a dense substratum. Well drained Stockbridge soils are included in some areas of Litchfield and Fairfield counties with free carbonates below 40 inches. Also included are soils with a stony surface. A few areas in Hartford, Middlesex, and New Haven counties include soils with a red substratum. Minor Componets make up about 15 percent of the map unit.

Use and Management

Most areas are in cultivated crops, pasture, or woodland. Some areas are in community development.

The seasonal high water table is the main limitation for dwellings with basements. Slope is also a limitation in areas of Paxton soil. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. Erosion is a moderate hazard during construction. Designing dwellings to conform to the slope of the land will reduce the slope limitation.

Slope is the main limitation for lawns and landscaping in areas of Montauk soils. Droughtiness is the main limitation in areas dominated by Montauk soils. Planting early in the spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Slow percolation is the main limitation for septic tank absorption fields. The seasonal high water table is also a limitation in areas of Montauk soil. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

The seasonal high water table, slope, and frost action are the main limitations for local roads and streets. Construction on raised fill materials and installing a drainage system will reduce wetness. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation. Constructing roads on the contour will reduce the slope limitation.

84D—Paxton and Montauk fine sandy loams, 15 to 25 percent slopes

Map Unit Setting

Slope: moderately steep
Landscape: hills on uplands, till plains on uplands, drumlins on uplands
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Paxton and similar soils: 55 percent
Montauk and similar soils: 30 percent
Minor components: 15 percent

Major Components

Paxton and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 8 inches; fine sandy loam
Bw1-8 to 15 inches; fine sandy loam
Bw2-15 to 26 inches; fine sandy loam
Cd-26 to 65 inches; gravelly fine sandy loam

Montauk and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 4 inches; fine sandy loam
Bw1-4 to 14 inches; fine sandy loam
Bw2-14 to 25 inches; sandy loam
2Cd1-25 to 39 inches; gravelly loamy coarse sand
2Cd2-39 to 60 inches; gravelly sandy loam

Major Component Properties and Qualities

Paxton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none
Montauk and similar soils
Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or coarse-loamy lodgment till derived from gneiss and/or coarse-loamy lodgment till derived from gneiss and/or coarse-loamy lodgment till derived from granite
Permeability: very slow to moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 38 inches to densic material

Depth to seasonal water table: 24 to 30 inches
Flooding: none

Interpretative Groups

Paxton and similar soils
Land capability classification (non-irrigated): 4e
Hydrologic group: C
Montauk and similar soils
Land capability classification (non-irrigated): 4e Hydrologic group: C

Minor Components

Included with these soils in mapping are areas of moderately well drained Woodbridge soils in slight depressions on the landscape. Also included are poorly drained Ridgebury soils in depressions and along drainageways. Well drained Canton and Charlton soils are included in areas lacking a dense substratum. Well drained Stockbridge soils are found in areas of Litchfield and Fairfield Counties with free carbonates below 40 inches. Also included are small areas with soils steeper than 25 percent slopes and soils with a stony surface. A few areas in Hartford, Middlesex, and New Haven counties include soils with a red substratum. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development, cultivated crops, or pasture.

Slope is the main limitation for dwellings with basements. The seasonal high water table is also a limitation in areas of Montauk soils. Erosion is a severe hazard during construction. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. Designing dwellings to conform to the slope of the land will reduce the slope limitation. A site should be selected on a less sloping portion of the unit or nearby soil.

Slope is the main limitation for lawns and landscaping. Droughtiness is also a limitation in areas dominated by Montauk soils. Planting early in the spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Slow percolation and slope are the main limitations for septic tank absorption fields. The seasonal high water table is also a limitation in areas of Montauk soil. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places. Placing the distribution lines on the contour increases the efficiency of the system. A more suitable site should be considered in a less dense inclusion or nearby soil.

Slope is the main limitations for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

85B—Paxton and Montauk fine sandy loams, 3 to 8 percent slopes, very stony

Map Unit Setting

Slope: gently sloping
Landscape: drumlins on uplands, till plains on uplands, hills on uplands

Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 200 acres.

Map Unit Composition

Paxton and similar soils: 55 percent
Montauk and similar soils: 30 percent
Minor components: 15 percent

Major Components

Paxton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 8 inches; fine sandy loam
Bw1-8 to 15 inches; fine sandy loam
Bw2-15 to 26 inches; fine sandy loam
Cd-26 to 65 inches; gravelly fine sandy loam
Montauk and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 4 inches; fine sandy loam
Bw1-4 to 14 inches; fine sandy loam
Bw2-14 to 25 inches; sandy loam
2Cd1-25 to 39 inches; gravelly loamy coarse sand
2Cd2-39 to 60 inches; gravelly sandy loam

Major Component Properties and Qualities

Paxton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Montauk and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or coarse-loamy lodgment till derived from gneiss and/or coarse-loamy lodgment till derived from gneiss and/or coarse-loamy lodgment till derived from granite
Permeability: very slow to moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 38 inches to densic material
Depth to seasonal water table: 24 to 30 inches
Flooding: none

Interpretative Groups

Paxton and similar soils
Land capability classification (non-irrigated): 6s
Hydrologic group: C

Montauk and similar soils
Land capability classification (non-irrigated): 6s
Hydrologic group: C

Minor Components

Included with these soils in mapping are areas of moderately well drained Woodbridge soils in slight depressions on the landscape. Also included are poorly drained Ridgebury soils in depressions and along drainageways. Well drained Canton and Charlton soils are included in areas lacking a dense substratum. Well drained Stockbridge soils are included in areas of Litchfield and Fairfield counties with free carbonates below 40 inches. Also included are areas of nearly level soils and soils with a stony surface. A few areas in Hartford, Middlesex, and New Haven counties include soils with a red substratum. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or pasture.

The seasonal high water table is the main limitation for dwellings with basements. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Small and large stones are the main limitation for lawns and landscaping. Removing the stones will reduce the limitation.

Slow percolation is the main limitation for septic tank absorption fields. The seasonal high water table is also a limitation in areas of Montauk soil. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials and installing a drainage system will reduce wetness. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation.

85C-Paxton and Montauk fine sandy loams, 8 to 15 percent slopes, very stony

Map Unit Setting

Slope: strongly sloping
Landscape: till plains on uplands, drumlins on uplands, hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 75 acres.

Map Unit Composition

Paxton and similar soils: 55 percent
Montauk and similar soils: 30 percent
Minor components: 15 percent

Major Components

Paxton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 8 inches; fine sandy loam

Bw1-8 to 15 inches; fine sandy loam
Bw2-15 to 26 inches; fine sandy loam
Cd-26 to 65 inches; gravelly fine sandy loam
Montauk and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 4 inches; fine sandy loam
Bw1-4 to 14 inches; fine sandy loam
Bw2-14 to 25 inches; sandy loam
2Cd1-25 to 39 inches; gravelly loamy coarse sand
2Cd2-39 to 60 inches; gravelly sandy loam

Major Component Properties and Qualities

Paxton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Montauk and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or coarse-loamy lodgment till derived from gneiss and/or coarse-loamy lodgment till derived from gneiss and/or coarse-loamy lodgment till derived from granite
Permeability: very slow to moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 38 inches to densic material
Depth to seasonal water table: 24 to 30 inches
Flooding: none

Interpretative Groups

Paxton and similar soils

Land capability classification (non-irrigated): 6s
Hydrologic group: C

Montauk and similar soils

Land capability classification (non-irrigated): 6s
Hydrologic group: C

Minor Components

Included with these soils in mapping are areas of moderately well drained Woodbridge soils in slight depressions on the landscape. Also included are poorly drained Ridgebury soils in depressions and along drainageways. Well drained Canton and Charlton soils are included in areas lacking a dense substratum. Well drained Stockbridge soils are included in areas of Litchfield and Fairfield counties in soils that have free carbonate below 40 inches. Also included are soils with a stony surface. A
few areas in Hartford, Middlesex, and New Haven counties include soils with a red substratum. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or pasture.

The seasonal high water table is the main limitation for dwellings with basements. Slope is also a limitation in areas of Paxton soil. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. Erosion is a moderate hazard during construction. Designing dwellings to conform to the slope of the land will reduce the slope limitation.

Large stones and slope are the main limitations for lawns and landscaping. Removing the stones will reduce the limitation.

Slow percolation is the main limitation for septic tank absorption fields. The seasonal high water table is also a limitation in areas of Montauk soil. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

The seasonal high water table, slope, and frost action are the main limitations for local roads and streets. Construction on raised fill materials and installing a drainage system will reduce wetness. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation. Constructing roads on the contour will reduce the slope limitation.

86C—Paxton and Montauk fine sandy loams, 3 to 15 percent slopes, extremely stony

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: drumlins on uplands, hills on uplands, till plains on uplands
Surface cover: 3 to 15 percent stones
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Paxton and similar soils: 55 percent
Montauk and similar soils: 30 percent
Minor components: 15 percent

Major Components

Paxton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 8 inches; fine sandy loam
Bw1-8 to 15 inches; fine sandy loam
Bw2-15 to 26 inches; fine sandy loam
Cd-26 to 65 inches; gravelly fine sandy loam

Montauk and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 4 inches; fine sandy loam
Bw1-4 to 14 inches; fine sandy loam
Bw2-14 to 25 inches; sandy loam

2Cd1-25 to 39 inches; gravelly loamy coarse sand
2Cd2-39 to 60 inches; gravelly sandy loam

Major Component Properties and Qualities

Paxton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Montauk and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or coarse-loamy lodgment till derived from gneiss and/or coarse-loamy lodgment till derived from gneiss and/or coarse-loamy lodgment till derived from granite
Permeability: very slow to moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 38 inches to densic material
Depth to seasonal water table: 24 to 30 inches
Flooding: none

Interpretative Groups

Paxton and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: C
Montauk and similar soils
Land capability classification (non-irrigated): 7s
Hydrologic group: C

Minor Components

Included with these soils in mapping are areas of moderately well drained Woodbridge soils in slight depressions on the landscape. Also included are poorly drained Ridgebury soils in depressions and along drainageways. Well drained Canton and Charlton soils are included in areas lacking a dense substratum. Well drained Stockbridge soils are included in litchfield and Fairfield counties in areas with free carbonates below 40 inches. Also included are soils with a stony surface. A few areas in Hartford, Middlesex, and New Haven counties include soils with a red substratum. Minor inclusions make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or pasture.

The seasonal high water table is the main limitation for dwellings with basements. Slope is also a limitation in areas of Paxton soil. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas
will reduce wetness. Erosion is a moderate hazard during construction. Designing dwellings to conform to the slope of the land will reduce the slope limitation.

Slope and large stones are the main limitations for lawns and landscaping. Removing the stones will reduce the limitation.

Slow percolation is the main limitation for septic tank absorption fields. The seasonal high water table is also a limitation in areas of Montauk soil. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

The seasonal high water table, slope, and frost action are the main limitations for local roads and streets. Construction on raised fill materials and installing a drainage system will reduce wetness. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation. Constructing roads on the contour will reduce the slope limitation.

86D—Paxton and Montauk fine sandy loams, 15 to 35 percent slopes, extremely stony

Map Unit Setting

Slope: moderately steep to steep
Landscape: till plains on uplands, drumlins on uplands, hills on uplands
Surface cover: 3 to 15 percent stones
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Paxton and similar soils: 55 percent
Montauk and similar soils: 30 percent
Minor components: 15 percent

Major Components

Paxton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 8 inches; fine sandy loam
Bw1-8 to 15 inches; fine sandy loam
Bw2-15 to 26 inches; fine sandy loam
Cd-26 to 65 inches; gravelly fine sandy loam

Montauk and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 4 inches; fine sandy loam
Bw1-4 to 14 inches; fine sandy loam
Bw2-14 to 25 inches; sandy loam
2Cd1-25 to 39 inches; gravelly loamy coarse sand
2Cd2-39 to 60 inches; gravelly sandy loam

Major Component Properties and Qualities

Paxton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderate

```
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none
```

Montauk and similar soils
Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or coarse-loamy lodgment till derived from gneiss and/or coarse-loamy lodgment till derived from gneiss and/or coarse-loamy lodgment till derived from granite
Permeability: very slow to moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 38 inches to densic material
Depth to seasonal water table: 24 to 30 inches
Flooding: none

Interpretative Groups

Paxton and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: C

Montauk and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: C

Minor Components

Included with these soils in mapping are areas of moderately well drained Woodbridge soils in slight depressions on the landscape. Also included are poorly drained Ridgebury soils in depressions and along drainageways. Well drained Canton and Charlton soils are included in areas lacking a dense substratum. Well drained Stockbridge Soils are included in litchfield and Fairfield counties in areas with free carbonates below 40 inches. Also included are soils with less stones on the surface. A few areas in Hartford, Middlesex, and New Haven counties include soils with a red substratum. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or pasture.

Slope is the main limitation for dwellings with basements. Erosion is a severe hazard during construction. Designing dwellings to conform to the slope of the land will reduce the slope limitation. A site should be selected on a less sloping portion of the unit or nearby soil.

Slope is the main limitation for lawns and landscaping.
Slow percolation and slope are the main limitations for septic tank absorption fields. The seasonal high water table is also a limitation in areas of Montauk soil. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places. Placing the distribution lines on the contour increases the efficiency of the system. A more suitable site should be considered in a less dense inclusion or nearby soil.

Slope is the main limitations for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

87B—Wethersfield loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: hills on uplands, drumlins on uplands
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Wethersfield and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 3 inches; loam
Bw1-3 to 13 inches; loam
Bw2-13 to 27 inches; gravelly loam
Cd-27 to 65 inches; gravelly loam

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from basalt and/or sandstone and shale
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to slightly alkaline
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none
Interpretative Groups
Land capability classification (non-irrigated): 2e
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of moderately well drained Ludlow soils in slight depressions on the landscape. Also included are poorly drained Wilbraham soils and very poorly drained Menlo soils in depressions and drainageways. Well drained Cheshire soils are included in areas that lack a dense substratum. Small areas of moderately deep, well drained Yalesville soils are included where bedrock is 20 to 40 inches from the surface. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in community development or cultivated crops, hay, or pasture. Some areas are in vegetables, orchards (fig. 12), nursery stock, or woodland.

The seasonal high water table is the main limitation for dwellings with basements. This soil has few limitations for lawns and landscaping. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Figure 12.-Wethersfield loam (foreground) is well suited for orchards.
Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials and installing a drainage system will reduce this limitation. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation.

87C-Wethersfield loam, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: drumlins on uplands, hills on uplands
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Wethersfield and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 3 inches; loam
Bw1-3 to 13 inches; loam
Bw2-13 to 27 inches; gravelly loam
Cd-27 to 65 inches; gravelly loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from basalt and/or sandstone and shale
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to slightly alkaline
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3 e
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of moderately well drained Ludlow soils in slight depressions on the landscape. Also included are poorly drained Wilbraham soils and very poorly drained Menlo soils in depressions and drainageways. Well drained Cheshire soils are included in areas that lack a dense substratum. Small areas of moderately deep, well drained Yalesville soils are included where bedrock is 20 to 40 inches from the surface. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in community development or cultivated crops, hay, or pasture. Some areas are in vegetables, orchards, nursery stock, or woodland.

The seasonal high water table is the main limitation for dwellings with basements. Slope is also a main limitation for dwellings with basements and for lawns and landscaping. Erosion is a moderate hazard during construction. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal.

The seasonal high water table, slope, and frost action are the main limitations for local roads and streets. Construction on raised fill materials and installing a drainage system will reduce this limitation. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation and constructing roads on the contour will reduce the slope limitation.

87D—Wethersfield loam, 15 to $\mathbf{2 5}$ percent slopes

Map Unit Setting

Slope: moderately steep
Landscape: hills on uplands, drumlins on uplands
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Wethersfield and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 3 inches; loam
Bw1-3 to 13 inches; loam
Bw2-13 to 27 inches; gravelly loam
Cd-27 to 65 inches; gravelly loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from basalt and/or sandstone and shale
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to slightly alkaline Depth to restrictive feature: 20 to 40 inches to densic material Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4e Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of moderately well drained Ludlow soils in slight depressions on the landscape. Also included are poorly drained Wilbraham soils and very poorly drained Menlo soils in depressions and drainageways. Well drained Cheshire soils are included in areas that lack a dense substratum. Small areas of moderately deep, well drained Yalesville soils are included where bedrock is 20 to 40 inches from the surface. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in community development or cultivated crops, hay, or pasture. Some areas are in vegetables, orchards, nursery stock, or woodland.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a severe hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slow percolation and slope are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal. Placing distribution lines on the contour increases the efficiency of the system. A more suitable site should be considered in a less sloping, less dense inclusion or nearby soil.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

88B—Wethersfield loam, 3 to 8 percent slopes, very stony

Map Unit Setting

Slope: gently sloping
Landscape: drumlins on uplands, hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Wethersfield and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; loam
Bw1-3 to 13 inches; loam
Bw2-13 to 27 inches; gravelly loam
Cd-27 to 65 inches; gravelly loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from basalt and/or sandstone and shale
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to slightly alkaline
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none
Interpretative Groups
Land capability classification (non-irrigated): 6s
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of moderately well drained Ludlow soils in slight depressions on the landscape. Also included are poorly drained Wilbraham soils and very poorly drained Menlo soils in depressions and drainageways. Well drained Cheshire soils are included in areas that lack a dense substratum. Small areas of moderately deep, well drained Yalesville soils are included where bedrock is 20 to 40 inches from the surface. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in community development or cultivated crops, hay, or pasture. Some areas are in vegetables, orchards, nursery stock, or woodland.

The seasonal high water table is the main limitation for dwellings with basements. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Large stones are a limitation for lawns and landscaping. Removing the stones will reduce the limitation.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials and installing a drainage system will reduce this limitation. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation.

88C-Wethersfield loam, 8 to 15 percent slopes, very stony

Map Unit Setting

Slope: strongly sloping
Landscape: hills on uplands, drumlins on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Wethersfield and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as

follows-

Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; loam
Bw1-3 to 13 inches; loam
Bw2-13 to 27 inches; gravelly loam
Cd—27 to 65 inches; gravelly loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from basalt and/or sandstone and shale
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to slightly alkaline
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of moderately well drained Ludlow soils in slight depressions on the landscape. Also included are poorly drained

Wilbraham soils and very poorly drained Menlo soils in depressions and drainageways. Well drained Cheshire soils are included in areas that lack a dense substratum. Small areas of moderately deep, well drained Yalesville soils are included where bedrock is 20 to 40 inches from the surface. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in community development or cultivated crops, hay, or pasture. Some areas are in vegetables, orchards, nursery stock, or woodland.

The seasonal high water table and slope are the main limitations for dwellings with basements and lawns and landscaping. Erosion is a moderate hazard during construction. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slope and large stones are limitations for lawns and landscaping. Removing the large stones will reduce the limitation.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal.

The seasonal high water table, slope, and frost action are the main limitations for local roads and streets. Construction on raised fill materials and installing a drainage system will reduce this limitation. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation and constructing roads on the contour will reduce the slope limitation.

89C-Wethersfield loam, 3 to 15 percent slopes, extremely stony

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: drumlins on uplands, hills on uplands
Surface cover: 3 to 15 percent stones
Size of map unit: Areas commonly range from 3 to 90 acres.

Map Unit Composition

Wethersfield and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; loam
Bw1-3 to 13 inches; loam
Bw2-13 to 27 inches; gravelly loam
Cd—27 to 65 inches; gravelly loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained

Parent material: coarse-loamy lodgment till derived from basalt and/or sandstone and shale
 Permeability: very slow to moderate
 Available water capacity: moderate
 Reaction: very strongly acid to slightly alkaline
 Depth to restrictive feature: 20 to 40 inches to densic material
 Depth to seasonal water table: 18 to 30 inches
 Flooding: none

 Interpretative Groups

 Interpretative Groups
 Land capability classification (non-irrigated): 7s
 Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of moderately well drained Ludlow soils in slight depressions on the landscape. Also included are poorly drained Wilbraham soils and very poorly drained Menlo soils in depressions and drainageways. Well drained Cheshire soils are included in areas that lack a dense substratum. Small areas of moderately deep, well drained Yalesville soils are included where bedrock is 20 to 40 inches from the surface. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are cleared and used for community development, hay, or pasture. Some areas are in orchards, nursery stock, or woodland.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Slope is a limitation in the steeper areas. Erosion is a moderate hazard during construction. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Large stones are limitations for lawns and landscaping. Removing the large stones will reduce the limitation. Slope is a limitation in the steeper areas.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal.

The seasonal high water table and frost action are the main limitations for local roads and streets. Slope is a limitation in the steeper areas. Construction on raised fill materials and installing a drainage system will reduce this limitation. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation and constructing roads on the contour will reduce the slope limitation.

89D-Wethersfield loam, 15 to 35 percent slopes, extremely stony

Map Unit Setting

[^2]
Map Unit Composition

Wethersfield and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; loam
Bw1-3 to 13 inches; loam
Bw2-13 to 27 inches; gravelly loam
Cd-27 to 65 inches; gravelly loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from basalt and/or sandstone and shale
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to slightly alkaline
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 7s
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of moderately well drained Ludlow soils in slight depressions on the landscape. Also included are poorly drained Wilbraham soils and very poorly drained Menlo soils in depressions and drainageways. Well drained Cheshire soils are included in areas that lack a dense substratum. Small areas of moderately deep, well drained Yalesville soils are included where bedrock is 20 to 40 inches from the surface. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are cleared and used for community development or pasture. Some areas are in orchards, nursery stock, or woodland.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a severe to very severe hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. A site should be selected on a less sloping portion of the unit or nearby soil.

Slope and large stones are also limitations for lawns and landscaping. Removing the large stones will reduce the limitation.

Slow percolation and slope are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal. Placing the distribution lines on the contour will increase the efficiency of the system and reduces the slope limitation. A more suitable site should be considered in a less sloping, less dense inclusion or nearby soil.

The slope is the main limitation for local roads and streets. Constructing roads on the contour or locating them on less sloping inclusions will reduce the slope limitation.

90B—Stockbridge loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: hills on uplands
Size of map unit: Areas commonly range from 3 to 40 acres.
Map Unit Composition
Stockbridge and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 10 inches; loam
Bw1-10 to 20 inches; loam
Bw2-20 to 28 inches; loam
C1-28 to 42 inches; gravelly loam
C2-42 to 48 inches; gravelly loam
C3-48 to 65 inches; gravelly loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist Permeability: moderately slow to moderate
Available water capacity: high
Reaction: strongly acid to moderately alkaline Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 e
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of moderately well drained Georgia soils, poorly drained Mudgepond soils, and very poorly drained Alden soils. Georgia soils are in slightly lower areas, Mudgepond and Alden soils are in depressions and along drainageways. Also included are Nellis soils in areas where the soil is calcareous within 40 inches. Areas of shallow well drained drained Farmington soils are included where the underlying limestone bedrock is between 10 and 20 inches below the surface. Paxton soils are included where the substratum is denser and more acid. Also included in Litchfield County are some areas with slopes less than 3 percent. Minor componets make up about 20 percent of the unit.

Use and Management

Most areas are in cropland or pasture. Other areas are in woodland or community development.

This soil has few limitations for dwellings with basements and lawns and landscaping.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

90C—Stockbridge loam, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: hills on uplands
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Stockbridge and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 10 inches; loam
Bw1-10 to 20 inches; loam
Bw2-20 to 28 inches; loam
C1-28 to 42 inches; gravelly loam
C2-42 to 48 inches; gravelly loam
C3-48 to 65 inches; gravelly loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
Permeability: moderately slow or moderate
Available water capacity: high
Reaction: strongly acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3e
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of moderately well drained Georgia soils, poorly drained Mudgepond soils, and very poorly drained Alden soils. Georgia soils are in slightly lower areas, Mudgepond and Alden soils are in depressions and along drainageways. Also included are Nellis soils in areas where the soil is calcareous within 40 inches. Areas of shallow well drained Farmington soils are included where the underlying limestone bedrock is between 10 and 20 inches below
the surface. Paxton soils are included where the substratum is denser and more acid. Also included in Litchfield County are some areas with slopes less than 3 percent. Minor componets make up about 20 percent of the unit.

Use and Management

Most areas are in cropland or pasture. Other areas are in woodland or community development.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation (fig. 13).

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal.

Frost action and slope are the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation. Constructing roads on the contour will reduce the slope limitation.

90D—Stockbridge loam, 15 to 25 percent slopes

Map Unit Setting

Slope: moderately steep
Landscape: hills on uplands Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition
Stockbridge and similar soils: 80 percent
Minor components: 20 percent

Figure 13.-Stripcropping reduces soil erosion on steeper Stockbridge soils (background).

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 10 inches; loam
Bw1-10 to 20 inches; loam
Bw2-20 to 28 inches; loam
C1-28 to 42 inches; gravelly loam
C2-42 to 48 inches; gravelly loam
C3-48 to 65 inches; gravelly loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
Permeability: moderately slow or moderate
Available water capacity: high
Reaction: strongly acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4 e
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of moderately well drained Georgia soils, poorly drained Mudgepond soils, and very poorly drained Alden soils. Georgia soils are in slightly lower areas, Mudgepond and Alden soils are in depressions and along drainageways. Also included are Nellis soils in areas where the soil is calcareous within 40 inches. Areas of shallow well drained Farmington soils are included where the underlying limestone bedrock is between 10 and 20 inches below the surface. Paxton soils are included where the substratum is denser and more acid. Also included in Litchfield County are some areas with slopes less than 3 percent. Minor componets make up about 20 percent of the unit.

Use and Management

Most areas are in hay, woodland, or pasture. Other areas are in community development.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a severe hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slow percolation and slope are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal. Placing the distribution lines on the contour increases the efficiency of the system. A more suitable site should be considered in a less sloping, less dense inclusion or nearby soil.

Frost action and slope are the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation. Constructing roads on the contour or locating them on less sloping inclusions will reduce the slope limitation.

91B—Stockbridge loam, 3 to 8 percent slopes, very stony

Map Unit Setting

Slope: gently sloping
Landscape: hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Stockbridge and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 10 inches; loam
Bw1-10 to 20 inches; loam
Bw2-20 to 28 inches; loam
C1-28 to 42 inches; gravelly loam
C2-42 to 48 inches; gravelly loam
C3-48 to 65 inches; gravelly loam

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist Permeability: moderately slow or moderate
Available water capacity: high
Reaction: strongly acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of moderately well drained Georgia soils, poorly drained Mudgepond soils, and very poorly drained Alden soils. Georgia soils are in slightly lower areas, Mudgepond and Alden soils are in depressions and along drainageways. Also included are Nellis soils in areas where the soil is calcareous within 40 inches. Areas of shallow well drained Farmington soils are included where the underlying limestone bedrock is between 10 and 20 inches below the surface. Paxton soils are included where the substratum is denser and more acid. Also included in Litchfield County are some areas with slopes less than 3 percent. Minor componets make up about 20 percent of the unit.

Use and Management

Most areas are in woodland or pasture. Other areas are in community development.

This soil has few limitations for dwellings with basements and lawns and landscaping. Large stones are the main limitation for lawns and landscaping. Removing the stones will reduce the limitation.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

91C—Stockbridge loam, 8 to 15 percent slopes, very stony

Map Unit Setting

Slope: strongly sloping Landscape: hills on uplands Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Stockbridge and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 10 inches; loam
Bw1-10 to 20 inches; loam
Bw2-20 to 28 inches; loam
C1-28 to 42 inches; gravelly loam
C2-42 to 48 inches; gravelly loam
C3-48 to 65 inches; gravelly loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
Permeability: moderately slow or moderate
Available water capacity: high
Reaction: strongly acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of moderately well drained Georgia soils, poorly drained Mudgepond soils, and very poorly drained Alden soils. Georgia soils are in slightly lower areas, Mudgepond and Alden soils are in depressions and along drainageways. Also included are Nellis soils in areas where the soil is calcareous within 40 inches. Areas of shallow well drained Farmington soils are included where the underlying limestone bedrock is between 10 and 20 inches below
the surface. Paxton soils are included where the substratum is denser and more acid. Minor componets make up about 20 percent of the unit.

Use and Management

Most areas are in woodland or pasture. Other areas are in community development.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Large stones are also a limitation for lawns and landscaping. Removing the stones will reduce this limitation. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal.

Frost action and slope are the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation. Constructing roads on the contour will reduce the slope limitation.

91D—Stockbridge loam, 15 to 35 percent slopes, very stony

Map Unit Setting

Slope: moderately steep to steep
Landscape: hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Stockbridge and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 10 inches; loam
Bw1-10 to 20 inches; Ioam
Bw2-20 to 28 inches; loam
C1-28 to 42 inches; gravelly loam
C2-42 to 48 inches; gravelly loam
C3-48 to 65 inches; gravelly loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
Permeability: moderately slow or moderate
Available water capacity: high
Reaction: strongly acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 7s Hydrologic group: B
 Minor Components

Included with this soil in mapping are areas of moderately well drained Georgia soils, poorly drained Mudgepond soils, and very poorly drained Alden soils. Georgia soils are in slightly lower areas, Mudgepond and Alden soils are in depressions and along drainageways. Also included are Nellis soils in areas where the soil is calcareous within 40 inches. Areas of shallow well drained Farmington soils are included where the underlying limestone bedrock is between 10 and 20 inches below the surface. Paxton soils are included where the substratum is denser and more acid. Minor componets make up about 20 percent of the unit.

Use and Management

Most areas are in woodland. Other areas are in pasture or community development.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a severe hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slow percolation and slope are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal. Placing the distribution lines on the contour increases the efficiency of the system. A more suitable site should be considered in a less sloping, less dense inclusion or nearby soil.

Slope is the main limitation for local roads and streets. Constructing roads on the contour or locating them on less sloping inclusions will reduce the slope limitation.

92B—Nellis fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: uplands, hills
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Nellis and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 14 inches; fine sandy loam
Bw2-14 to 25 inches; fine sandy loam
BC—25 to 27 inches; loam
C—27 to 60 inches; sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained

Parent material: coarse-loamy melt-out till derived from limestone and dolomite and/or schist
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 e
Hydrologic group: B

Minor Components

Included with this unit in mapping are areas of well drained Farmington soils, well drained Stockbridge soils, moderately well drained Amenia and Georgia soils, poorly drained Mudgepond soils, and very poorly drained Alden soils. Farmington soils are in areas underlain by limestone bedrock at depths of 10 to 20 inches and Stockbridge soils are in areas where the soil lack carbonates within 40 inches of the surface. Amenia and Georgia soils are in slightly lower areas. Mudgepond and Alden soils are in depressions and along drainageways. Minor componets make up about 15 percent of the unit.

Use and Management

Most areas are cleared and are in crops, pasture, or hay. Some areas are in residential development or woodland.

This unit has few limitations for dwellings with basements. Droughtiness is the main limitation for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduced seedling mortality. Lawns need watering in the summer.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation.

92C—Nellis fine sandy loam, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: hills, uplands
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Nellis and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 14 inches; fine sandy loam
Bw2-14 to 25 inches; fine sandy loam

BC-25 to 27 inches; loam
C-27 to 60 inches; sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from limestone and dolomite and/or schist
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3e Hydrologic group: B

Minor Components

Included with this unit in mapping are areas of well drained Farmington soils, well drained Stockbridge soils, moderately well drained Amenia and Georgia soils, poorly drained Mudgepond soils, and very poorly drained Alden soils. Farmington soils are in areas underlain by limestone bedrock at depths of 10 to 20 inches and Stockbridge soils are in areas where the soil lack carbonates within 40 inches of the surface. Amenia and Georgia soils are in slightly lower areas. Mudgepond and Alden soils are in depressions and along drainageways. Minor componets make up about 15 percent of the unit.

Use and Management

Most areas are cleared and are in crops, pasture, or hay. Some areas are in residential development or woodland.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Droughtiness is also a limitation for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduced seedling mortality. Lawns need watering in the summer.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal.

Frost action and slope are the main limitations for local roads and streets. Constructing roads on the contour will reduce the slope limitation. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation.

92D—Nellis fine sandy loam, 15 to 25 percent slopes

Map Unit Setting

Slope: moderately steep
Landscape: uplands, hills
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Nellis and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 14 inches; fine sandy loam
Bw2-14 to 25 inches; fine sandy loam
BC-25 to 27 inches; loam
C-27 to 60 inches; sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from limestone and dolomite and/or schist
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4e Hydrologic group: B

Minor Components

Included with this unit in mapping are areas of well drained Farmington soils, well drained Stockbridge soils, moderately well drained Amenia and Georgia soils, poorly drained Mudgepond soils, and very poorly drained Alden soils. Farmington soils are in areas underlain by limestone bedrock at depths of 10 to 20 inches and Stockbridge soils are in areas where the soil lack carbonates within 40 inches of the surface. Amenia and Georgia soils are in slightly lower areas. Mudgepond and Alden soils are in depressions and along drainageways. Minor componets make up about 15 percent of the unit.

Use and Management

Most areas are cleared and are in crops, pasture, or hay. Some areas are in residential development or woodland.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Droughtiness is also a limitation for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduced seedling mortality. Lawns need watering in the summer.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal.

Frost action and slope are the main limitations for local roads and streets. Constructing roads on the contour will reduce the slope limitation. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation.

93C-Nellis fine sandy loam, 3 to 15 percent slopes, very stony

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: uplands, hills
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 75 acres.
Map Unit Composition
Nellis and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 8 inches; fine sandy loam
Bw1-8 to 14 inches; fine sandy loam
Bw2-14 to 25 inches; fine sandy loam
BC-25 to 27 inches; loam
C-27 to 60 inches; sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from limestone and dolomite and/or schist
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with this unit in mapping are areas of well drained Farmington soils, well drained Stockbridge soils, moderately well drained Amenia and Georgia soils, poorly drained Mudgepond soils, and very poorly drained Alden soils. Farmington soils are in areas underlain by limestone bedrock at depths of 10 to 20 inches and Stockbridge soils are in areas where the soil lack carbonates within 40 inches of the surface. Amenia and Georgia soils are in slightly lower areas. Mudgepond and Alden soils are in depressions and along drainageways. Minor componets make up about 15 percent of the unit.

Use and Management

Most areas in residential development or woodland. Some areas are in pasture.
Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Large
stones are also a limitation for lawns and landscaping. Removing the stones will reduce the limitation.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal.

Frost action is the main limitation for local roads and streets. Slope is a limitation on steeper areas. Constructing roads on the contour will reduce the slope limitation. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation.

94C-Farmington-Nellis complex, 3 to 15 percent slopes, very rocky

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: bedrock-controlled ridges on glaciated uplands, bedrock-controlled hills on glaciated uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Farmington and similar soils: 40 percent
Nellis and similar soils: 35 percent
Minor components: 25 percent

Major Components

Farmington and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 3 inches; fine sandy loam
Bw1-3 to 8 inches; fine sandy loam
Bw2—8 to 17 inches; fine sandy loam
2R-17 to 80 inches; bedrock

Nellis and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 14 inches; fine sandy loam
Bw2-14 to 25 inches; fine sandy loam
BC-25 to 27 inches; loam
C-27 to 60 inches; sandy loam

Major Component Properties and Qualities

Farmington and similar soils

Depth to bedrock: shallow to moderately deep
Drainage class: well drained
Parent material: loamy melt-out till derived from limestone and dolomite and/or schist
Permeability: moderate or moderately rapid
Available water capacity: very low
Reaction: strongly acid to slightly alkaline
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Nellis and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from limestone and dolomite and/or schist
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Farmington and similar soils

Land capability classification (non-irrigated): 6s
Hydrologic group: D
Nellis and similar soils
Land capability classification (non-irrigated): 6s Hydrologic group: B

Minor Components

Included with this unit in mapping are areas of somewhat excessively drained, well drained Stockbridge soils, well drained Charlton soils, moderately well drained Amenia and Georgia soils, poorly drained Mudgepond soils, and very poorly drained Alden soils. Hollis soils are in areas where the underlying bedrock is less than 20 inches from the surface and is schist, granite, or gneiss. Charlton and Stockbridge soils are in areas where the soil is more acid. Amenia and Georgia soils are in slightly lower areas on the landscape. Mudgepond and Alden soils are in depressions and along drainageways. Soils with a silt loam surface are included in areas of Litchfield County and Farmington soils with slightly redder subsoils are included in areas of Fairfield County. Minor componets make up about 25 percent of the unit.

Use and Management

Most areas in pasture or woodland. Some areas are in community development.
Shallow depths to bedrock and rock outcroppings in areas of Farmington soils are the main limitations for dwellings with basements. Erosion is a moderate hazard during construction. Slope is a limitation in steeper areas of Nellis soils. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Where possible, dwellings with basements should be constructed in areas of very deep, less sloping Nellis soils or nearby soils.

Droughtiness is the main limitation for lawns and landscaping in areas of Nellis soils. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer. Slope is also a limitation in the steeper areas of Nellis soils. Large rocks are also a limitation. Removing the rocks will reduce the limitation.

Slow percolation in areas of Nellis soils and shallow depth to bedrock and rock outcroppings in areas of Farmington soils are the main limitations for septic tank absorption fields. There is the hazard of groundwater pollution because the Farmington soils are not thick enough to filter effluent. A more suitable site should be considered in areas of very deep Nellis soils. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal in areas of Nellis soils.

Shallow depths to bedrock and rock outcroppings are the main limitations for local roads and streets in areas of Farmington soils. Frost action is a main limitation for

Nellis soils. Slope is a limitation on steeper areas. Careful planning of grades and road locations will avoid some removal of rock. Constructing roads on the contour will reduce the slope limitation. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation.

94E—Farmington-Nellis complex, 15 to 35 percent slopes, very rocky

Map Unit Setting

Slope: moderately steep to steep
Landscape: bedrock-controlled ridges on glaciated uplands, bedrock-controlled hills on glaciated uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Farmington and similar soils: 40 percent
Nellis and similar soils: 35 percent
Minor components: 25 percent

Major Components

Farmington and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 3 inches; fine sandy loam
Bw1-3 to 8 inches; fine sandy loam
Bw2-8 to 17 inches; fine sandy loam
2R-17 to 80 inches; bedrock

Nellis and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 14 inches; fine sandy loam
Bw2-14 to 25 inches; fine sandy loam
BC-25 to 27 inches; loam
C-27 to 60 inches; sandy loam

Major Component Properties and Qualities

Farmington and similar soils

Depth to bedrock: shallow to moderately deep
Drainage class: well drained
Parent material: loamy melt-out till derived from limestone and dolomite and/or schist
Permeability: moderate or moderately rapid
Available water capacity: very low
Reaction: strongly acid to slightly alkaline
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Nellis and similar soils

Depth to bedrock: very deep
Drainage class: well drained

Parent material: coarse-loamy melt-out till derived from limestone and dolomite and/or schist
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Farmington and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: D

Nellis and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: B

Minor Components

Included with this unit in mapping are areas of somewhat excessively drained Hollis, well drained Stockbridge soils, well drained Charlton soils, moderately well drained Amenia and Georgia soils, poorly drained Mudgepond soils, and very poorly drained Alden soils. Hollis soils are in areas where the underlying bedrock is less than 20 inches from the surface and is schist, granite, or gneiss. Charlton and Stockbridge soils are in areas where the soil is more acid. Amenia and Georgia soils are in slightly lower areas on the landscape. Mudgepond and Alden soils are in depressions and along drainageways. Soils with a silt loam surface are included in areas of Litchfield County and Farmington soils with slightly redder subsoils are included in areas of Fairfield County. Minor componets make up about 25 percent of the unit.

Use and Management

Most areas in woodland. Some areas are in pasture or community development. Slope and rock outcroppings are the main limitations for dwellings with basements and lawns and landscaping. Shallow to depth bedrock is also a limitation in areas of Farmington soils for dwellings with basements. Erosion is a severe to very severe hazard during construction. Where possible, dwellings with basements should be constructed in areas of very deep, less sloping Nellis soils or nearby soils. Large rocks are also a limitation for lawns and landscaping. Removing the rocks will reduce the limitation.

Slope and rock outcroppings are the main limitations for septic tank absorption fields. Shallow depth to bedrock in areas of Farmington soils and slow percolation in areas of Nellis soils are also limitations for septic tank absorption fields. There is the hazard of groundwater pollution because the Farmington soils are not thick enough to filter effluent. A more suitable site should be considered in areas of very deep Nellis soils. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal in areas of Nellis soils.

Slope is the main limitation for local roads and streets. Shallow depths to bedrock and rock outcroppings are also limitations for local roads and streets in areas of Farmington soils. Frost action is a main limitation for Nellis soils. Careful planning of grades and road locations will avoid some removal of rock. Constructing roads on the contour will reduce the slope limitation.

95C—Farmington-Rock outcrop complex, 3 to 15 percent slopes

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: bedrock controlled ridges on glaciated uplands, bedrock controlled hills on glaciated uplands
Size of map unit: Areas commonly range from 3 to 50 acres.
Map Unit Composition
Farmington and similar soils: 60 percent
Rock outcrop and similar soils: 20 percent
Minor components: 20 percent

Major Components

Farmington and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 3 inches; fine sandy loam
Bw1-3 to 8 inches; fine sandy loam
Bw2-8 to 17 inches; fine sandy loam
2R-17 to 80 inches; bedrock

Major Component Properties and Qualities

Farmington and similar soils
Depth to bedrock: shallow to moderately deep
Drainage class: well drained
Parent material: loamy melt-out till derived from limestone and dolomite and/or schist Permeability: moderate or moderately rapid
Available water capacity: very low
Reaction: strongly acid to slightly alkaline
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Farmington and similar soils
Land capability classification (non-irrigated): 6s
Hydrologic group: D

Minor Components

Included with this unit in mapping are areas of somewhat excessively drained Hollis, well drained Stockbridge soils, well drained Nellis soils, well drained Charlton soils, moderately well drained Amenia and Georgia soils, poorly drained Mudgepond soils, and very poorly drained Alden soils. Hollis soils are in areas where the underlying bedrock is less than 20 inches from the surface and is schist, granite, or gneiss. Charlton, Nellis, and Stockbridge soils are in areas where the bedrock is deeper than 60 inches. Amenia and Georgia soils are in slightly lower areas on the landscape. Mudgepond and Alden soils are in depressions and along drainageways. Soils with slightly redder subsoils are included in areas of Fairfield County. Minor componets make up about 20 percent of the unit.

Use and Management

Most areas in woodland. Some areas are in pasture or community development.
Shallow depths to bedrock and rock outcroppings are the main limitations for dwellings with basements and lawns and landscaping. Slope is also a limitation. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Where possible, dwellings with basements should be constructed in areas of very deeper inclusions or nearby soils.

Shallow depths to bedrock and rock outcroppings are the main limitations for septic tank absorption fields. There is the hazard of groundwater pollution because the soils are not thick enough to filter effluent. A more suitable site should be considered in areas of deeper soils.

Shallow depths to bedrock and rock outcroppings are the main limitations for local roads and streets. Slope is a limitation on steeper areas. Careful planning of grades and road locations will avoid some removal of rock. Constructing roads on the contour will reduce the slope limitation.

95E—Farmington-Rock outcrop complex, 15 to 45 percent slopes

Map Unit Setting

Slope: moderately steep to steep
Landscape: bedrock-controlled ridges on glaciated uplands, bedrock-controlled hills on glaciated uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Farmington and similar soils: 60 percent
Rock outcrop and similar soils: 20 percent
Minor components: 20 percent

Major Components

Farmington and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 3 inches; fine sandy loam
Bw1-3 to 8 inches; fine sandy loam
Bw2-8 to 17 inches; fine sandy loam
2R-17 to 80 inches; bedrock

Major Component Properties and Qualities

Farmington and similar soils

Depth to bedrock: shallow to moderately deep
Drainage class: well drained
Parent material: loamy melt-out till derived from limestone and dolomite and/or schist
Permeability: moderate or moderately rapid
Available water capacity: very low
Reaction: strongly acid to slightly alkaline
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Farmington and similar soils
Land capability classification (non-irrigated): 7s
Hydrologic group: D

Minor Components

Included with this unit in mapping are areas of somewhat excessively drained Hollis, well drained Stockbridge soils, well drained Nellis soils, well drained Charlton soils, moderately well drained Amenia and Georgia soils, poorly drained Mudgepond soils, and very poorly drained Alden soils. Hollis soils are in areas where the underlying bedrock is less than 20 inches from the surface and is schist, granite, or gneiss. Charlton, Nellis, and Stockbridge soils are in areas where the bedrock is deeper than 60 inches. Amenia and Georgia soils are in slightly lower areas on the landscape. Mudgepond and Alden soils are in depressions and along drainageways. Soils with slightly redder subsoils are included in areas of Fairfield County. Minor componets make up about 20 percent of the unit.

Use and Management

Most areas in woodland. Some areas are in community development.
Slope, shallow depths to bedrock, and rock outcroppings are the main limitations for dwellings with basements and lawns and landscaping. Erosion is a very severe hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Where possible, dwellings with basements should be constructed in areas of very deeper inclusions or nearby soils.

Slope, shallow depths to bedrock, and rock outcroppings are the main limitations for septic tank absorption fields. There is the hazard of groundwater pollution because the soils are not thick enough to filter effluent. A more suitable site should be considered in areas of deeper soils.

Slope, shallow depths to bedrock, and rock outcroppings are the main limitations for local roads and streets. Careful planning of grades and road locations will avoid some removal of rock. Constructing roads on the contour will reduce the slope limitation.

96-Ipswich mucky peat

Map Unit Setting

Slope: nearly level
Landscape: salt marshs on coastal plains, tidal marshs on coastal plains (fig. 14) Size of map unit: Areas commonly range from 3 to 25 acres.

Map Unit Composition

Ipswich and similar soils: 85 percent
Minor components: 15 percent
Major Components
The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe1-0 to 16 inches; mucky peat
Oe2-16 to 23 inches; mucky peat
Oe3-23 to 64 inches; mucky peat
Oa-64 to 80 inches; muck

Figure 14.-Typical pattern of soils and parent material in coastal tidal marshes and glaciofluvial areas adjacent to Long Island Sound.

Major Component Properties and Qualities

> Depth to bedrock: very deep
> Drainage class: very poorly drained
> Parent material: herbaceous organic material
> Permeability: moderate to very rapid
> Available water capacity: very high
> Reaction: strongly acid to slightly alkaline
> Depth to restrictive feature: 20 to 40 inches to salic; 20 to 40 inches to sulfuric
> Ponding depth: 0 to 12 inches above surface
> Depth to seasonal water table: 0 to 12 inches
> Flooding: very frequent

Interpretative Groups
Land capability classification (non-irrigated): 8 Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of very poorly drained Pawcatuck soils where the mucky peat is between 16 to 51 inches thick over sandy substratum. Also included are very poorly drained Westbrook soils where the mucky peat is between 16 to 51 inches thick over loamy substratum. Some areas include Udorthents formed in dredge spoils. Minor componets make up about 15 percent of this map unit.

Use and Management

Most areas of this soil are undisturbed and provide habitat for wildlife and are suited to the reproduction of shellfish.

Flooding and ponding are the main limitations for dwellings with basements, lawns and landscaping, septic tank absorption fields, local roads, and streets. Low strength
is also a limitation for dwellings with basements, local roads, and streets. Excess salt and sulfur are also limitations for lawns and landscaping. A more suitable site for all of these uses should be selected on a drier soil not subject to tidal inundation.

97-Pawcatuck mucky peat

Map Unit Setting

Slope: nearly level
Landscape: salt marshs on coastal plains, tidal marshs on coastal plains Size of map unit: Areas commonly range from 3 to 75 acres.

Map Unit Composition

Pawcatuck and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe1-0 to 12 inches; mucky peat
Oe2-12 to 40 inches; mucky peat
Oe3-40 to 46 inches; mucky peat
2Cg1-46 to 50 inches; very fine sandy loam
2Cg2—50 to 60 inches; loamy sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: very poorly drained
Parent material: herbaceous organic material over sandy and gravelly glaciofluvial deposits
Permeability: moderate to very rapid
Available water capacity: moderate
Reaction: strongly acid to slightly alkaline
Depth to restrictive feature: 0 to 60 inches to salic; 0 to 60 inches to sulfuric
Ponding depth: 0 to 12 inches above surface
Depth to seasonal water table: 0 to 12 inches
Flooding: very frequent

Interpretative Groups

Land capability classification (non-irrigated): 8 Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of very poorly drained Ipswich soils where the mucky peat is greater than 51 inches thick. Also included are very poorly drained Westbrook soils where the mucky peat is between 16 to 51 inches thick over loamy substratum. Some areas include Udorthents formed in dredge spoils. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas of this soil are undisturbed and provide habitat for wildlife and are suited to the reproduction of shellfish.

Flooding and ponding are the main limitations for dwellings with basements, lawns and landscaping, septic tank absorption fields, local roads, and streets. Poor filtering
is also a limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Excess salt and sulfur are also limitations for lawns and landscaping. A more suitable site for all of these uses should be selected on a drier soil not subject to tidal inundation.

98-Westbrook mucky peat

Map Unit Setting

Slope: nearly level
Landscape: salt marshs on coastal plains, tidal marshs on coastal plains
Size of map unit: Areas commonly range from 3 to 200 acres.

Map Unit Composition

Westbrook and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe1-0 to 10 inches; mucky peat
Oe2-10 to 40 inches; mucky peat
Oe3-40 to 48 inches; mucky peat
Cg1-48 to 64 inches; silt loam
Cg2—64 to 99 inches; silt loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: very poorly drained
Parent material: herbaceous organic material over loamy drift and/or marine deposits Permeability: very slow to very rapid
Available water capacity: moderate
Reaction: strongly acid to slightly alkaline
Depth to restrictive feature: 0 to 51 inches to salic; 0 to 51 inches to sulfuric
Ponding depth: 0 to 12 inches above surface
Depth to seasonal water table: 0 to 12 inches
Flooding: very frequent

Interpretative Groups

Land capability classification (non-irrigated): 8 Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of very poorly drained Pawcatuck and Timakwa soils. Pawcatuck soils have mucky peat between 16 to 51 inches thick over sandy substratum; Timakwa soils have muck between 16 and 51 inches thick over a sandy substratum and have a lower salt content. Also included are very poorly drained Ipswich and Natchaug soils. Ipswich soils have mucky peat greater than 51 inches thick; Natchaug soils have muck between 16 to 51 inches thick over loamy substratum and have a lower salt content. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas of this soil are undisturbed and provide wildlife habitat. Some areas have been filled and are in community development.

Flooding and ponding are the main limitations for dwellings with basements, septic tank absorption fields, lawns and landscaping, local roads, and streets. Excess salt and sulfur are also limitations for lawns and landscaping. A more suitable site for all of these uses should be selected on a drier soil not subject to tidal inundation.

99-Westbrook mucky peat, low salt

Map Unit Setting

Slope: nearly level
Landscape: salt marshs on coastal plains, tidal marshs on coastal plains Size of map unit: Areas commonly range from 3 to 75 acres.

Map Unit Composition

Westbrook and similar soils: 80 percent (fig. 15)
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe1-0 to 10 inches; mucky peat
Oe2-10 to 40 inches; mucky peat
Oe3-40 to 48 inches; mucky peat
Cg1-48 to 64 inches; silt loam
Cg2-64 to 99 inches; silt loam

Figure 15.—Areas of Westbrook mucky peat are subject to daily tidal inundation.

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: very poorly drained
Parent material: herbaceous organic material over loamy drift and/or marine deposits
Permeability: very slow to very rapid
Available water capacity: very high
Reaction: strongly acid to slightly alkaline
Depth to restrictive feature: greater than 72 inches
Ponding depth: 0 to 12 inches above surface
Depth to seasonal water table: 0 to 12 inches
Flooding: very frequent

Interpretative Groups

Land capability classification (non-irrigated): 8 Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of very poorly drained Pawcatuck and Timakwa soils. Pawcatuck soils have mucky peat between 16 to 51 inches thick over sandy substratum; Timakwa soils have muck between 16 to 51 inches thick over a sandy substratum and have a lower salt content. Also included are very poorly drained Ipswich and Natchaug soils. Ipswich soils have mucky peat greater than 51 inches thick; Natchaug soils have muck between 16 to 51 inches thick over loamy substratum and have a lower salt content. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas of this soil are undisturbed and provide wildlife habitat. Some areas have been filled and are in community development.

Flooding and ponding are the main limitations for dwellings with basements, septic tank absorption fields, lawns and landscaping, local roads, and streets. Excess sulfur is a limitation for lawns and landscaping. A more suitable site for all of these uses should be selected on a drier soil not subject to tidal inundation.

100-Suncook loamy fine sand

Map Unit Setting

Slope: nearly level
Landscape: flood plains
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Suncook and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 7 inches; loamy fine sand
C1-7 to 15 inches; stratified coarse sand to loamy fine sand
C2-15 to 22 inches; stratified coarse sand to loamy fine sand

> C3-22 to 32 inches; stratified coarse sand to loamy fine sand
> C4-32 to 42 inches; stratified coarse sand to loamy fine sand
> C5-42 to 65 inches; stratified gravelly coarse sand to loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: excessively drained
Parent material: sandy alluvium
Permeability: rapid or very rapid
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 60 to 72 inches
Flooding: occasional

Interpretative Groups

Land capability classification (non-irrigated): 2s Hydrologic group: A

Minor Components

Included with this soil are areas of well drained Occum soils adjacent to natural levees and moderately well drained Pootatuck soils in slightly lower portions of the flood plain. Areas of poorly drained Rippowam soils and very poorly drained Saco soils are included in depressions and channel scars on the flood plain. Also included are Fluvaquents-Udifluvents complex in areas subject to frequent flooding and some soils that are not subject to flooding. A few areas in Litchfield County include soils with a fine sandy loam or very fine sandy loam surface layer. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in pasture or woodland. Some areas are in cultivated cropland.
Flooding is the main limitation for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Poor filtering is also a limitation for septic tank absorption fields. There is the hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. A more suitable site for these uses should be selected on a soil that does not flood.

Flooding is the main limitation for local roads and streets. Providing drainage and building on raised fill will reduce this limitation. A more suitable site should be considered on a soil that does not flood.

101-Occum fine sandy loam

Map Unit Setting

Slope: nearly level
Landscape: flood plains
Size of map unit: Areas commonly range from 3 to 30 acres.
Map Unit Composition
Occum and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 10 inches; fine sandy loam
Bw1-10 to 17 inches; fine sandy loam
Bw2-17 to 28 inches; sandy loam
C1-28 to 32 inches; stratified very gravelly coarse sand to loamy fine sand
C2-32 to 42 inches; stratified very gravelly coarse sand to loamy fine sand
C3-42 to 65 inches; stratified very gravelly coarse sand to loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy alluvium
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 60 to 72 inches
Flooding: occasional

Interpretative Groups

Land capability classification (non-irrigated): 1
Hydrologic group: B

Minor Components

Included with this soil are excessively drained Suncook soils on natural flood plain levees, well drained Agawam soils on nearby outwash plains and terraces, and moderately well drained Pootatuck soils in slightly lower portions of the flood plain. Areas of poorly drained Rippowam soils are included in depressions and channel scars on the flood plain. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated crops, hay, or pasture. Some areas are in woodland or urban development.

Flooding is the main limitation for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Poor filtering is also a limitation for septic tank absorption fields. There is the hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. A more suitable site for these uses should be selected on a soil that does not flood.

Flooding is the main limitation for local roads and streets. Providing drainage and building on raised fill will reduce this limitation. A more suitable site should be considered on a soil that does not flood.

102-Pootatuck fine sandy loam

Map Unit Setting

Slope: nearly level Landscape: flood plains
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Pootatuck and similar soils: 80 percent Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 4 inches; fine sandy loam
Bw1-4 to 16 inches; fine sandy loam
Bw2-16 to 21 inches; fine sandy loam
Bw3-21 to 29 inches; sandy loam
C1-29 to 35 inches; stratified very gravelly coarse sand to loamy fine sand
C2-35 to 40 inches; stratified very gravelly coarse sand to loamy fine sand
C3-40 to 65 inches; stratified very gravelly coarse sand to loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy alluvium
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: frequent

Interpretative Groups

Land capability classification (non-irrigated): 2 w
Hydrologic group: B

Minor Components

Included with this soil are areas of excessively drained Suncook soils on natural flood plain levees and well drained Occum soils on slightly higher portions of the flood plain. Areas of poorly drained Rippowam, Lim, and Limerick soils and very poorly drained Saco soils are included in depressions and channel scars on the flood plain. Lim and Limerick soils do not have the fine sandy loam or coarser textures throughout the substratum that Rippowam soils have. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are cleared and in cultivated crops, hay, or pasture.

Flooding is the main limitation for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Poor filtering is also a limitation for septic tank absorption fields. There is the hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. A more suitable site for these uses should be selected on a soil that does not flood.

Flooding is the main limitation for local roads and streets. Providing drainage and building on raised fill will reduce this limitation. A more suitable site should be considered on a soil that does not flood.

103-Rippowam fine sandy loam

Map Unit Setting

Slope: nearly level
Landscape: flood plains
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Rippowam and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 5 inches; fine sandy loam
Bg1-5 to 12 inches; fine sandy loam
Bg2-12 to 19 inches; fine sandy loam
BCg1-19 to 24 inches; sandy loam
BCg2-24 to 27 inches; sandy loam
Cg1-27 to 31 inches; loamy sand
Cg2-31 to 65 inches; stratified very gravelly coarse sand to loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-loamy alluvium
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to neutral
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 0 to 18 inches
Flooding: frequent

Interpretative Groups

Land capability classification (non-irrigated): not specified Hydrologic group: D

Minor Components

Included with this soil are areas of excessively drained, sandy Suncook soils on natural flood plain levees, well drained, loamy Occum soils and moderately well drained, loamy Pootatuck soils on slightly lower portions of the flood plain. Areas of poorly drained, silty Lim and Limerick soils are included. Lim and Limerick soils do not have the fine sandy loam or coarser textures throughout the substratum that Rippowam soils have. Very poorly drained, silty Saco soils are included in the lowest lying areas of the flood plain. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in cultivated crops, hay, or pasture.
Flooding and the seasonal high water table are the main limitations for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Poor filtering is also a limitation for septic tank absorption fields. There is the hazard of groundwater pollution because the rapidly permeable substratum does not
adequately filter effluent. A more suitable site for these uses should be selected on a soil that does not flood.

Flooding, wetness, and potential frost action are the main limitations for local roads and streets. Providing drainage and building on raised fill with a coarse grained subgrade to frost depth will reduce these limitations. A more suitable site should be considered on a soil that does not flood.

104—Bash silt loam

Map Unit Setting

Slope: nearly level Landscape: flood plains Size of map unit: Areas commonly range from 3 to 80 acres.

Map Unit Composition

Bash and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 11 inches; silt loam
Bw1-11 to 21 inches; silt loam
Bw2-21 to 28 inches; silt loam
C-28 to 60 inches; silt loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: somewhat poorly drained
Parent material: coarse-loamy alluvium derived from sandstone and shale
Permeability: moderately slow to moderate
Available water capacity: very high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 6 to 18 inches
Flooding: frequent

Interpretative Groups

Land capability classification (non-irrigated): 4w
Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of well drained Hadley soils and moderately well drained Winooski soils on slightly higher portions of the flood plain above Bash soils. Also included are poorly drained Limerick and Lim soils and very poorly drained Saco soils in depressions and channel scars on the flood plain. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are cleared and in cultivated crops and pasture. A few scattered areas are filled and in community development.

Flooding and the seasonal high water table are the main limitations for dwellings with basements, lawns and landscaping, and septic tank absorption fields. A more suitable site should be selected on a drier soil that does not flood.

Flooding, wetness, and potential frost action are the main limitations for local roads and streets. Providing drainage and building on raised fill with a coarse grained subgrade to frost depth will reduce these limitations. A more suitable site should be considered on a soil that does not flood.

105-Hadley silt loam

Map Unit Setting

Slope: nearly level
Landscape: flood plains
Size of map unit: Areas commonly range from 3 to 300 acres.

Map Unit Composition

Hadley and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 12 inches; silt loam
C1-12 to 29 inches; stratified very fine sand to silt loam
C2-29 to 40 inches; stratified very fine sand to silt loam
C3-40 to 45 inches; stratified sand to silt loam
C4-45 to 60 inches; stratified sand to silt loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-silty alluvium
Permeability: moderate to very rapid
Available water capacity: very high
Reaction: very strongly acid to slightly alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 60 to 72 inches
Flooding: occasional

Interpretative Groups

Land capability classification (non-irrigated): 1
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of moderately well drained Winooski soils on slightly lower portions of the flood plain. Also included are somewhat poorly drained Bash soils that are redder in color. Small areas of poorly drained Limerick and Lim soils and very poorly drained Saco soils are included in depressions and channel scars on the flood plain. A few areas in Litchfield County include soils with sand and gravel at 24 to 36 inches. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated crops, hay, or pasture. A few areas are wooded or in community development.

Flooding is the main limitation for dwellings with basements, lawns and landscaping, and septic tank absorption fields. A more suitable site should be selected on a drier soil that does not flood.

Flooding and potential frost action is the main limitation for local roads and streets. Providing drainage and building on raised fill with a coarse grained subgrade to frost depth will reduce these limitations. A more suitable site should be considered on a soil that does not flood.

106-Winooski silt loam

Map Unit Setting

Slope: nearly level Landscape: flood plains
Size of map unit: Areas commonly range from 3 to 25 acres.

Map Unit Composition

Winooski and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 12 inches; silt loam
Bw1-12 to 18 inches; silt loam
Bw2-18 to 36 inches; silt loam
C1-36 to 52 inches; very fine sandy loam
C2—52 to 65 inches; silt loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-silty alluvium
Permeability: moderate or moderately rapid
Available water capacity: very high
Reaction: moderately acid to neutral
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 36 inches
Flooding: frequent

Interpretative Groups

Land capability classification (non-irrigated): 2 w
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of well drained Hadley soils on slightly higher portions of the flood plain. Also included are somewhat poorly drained Bash soils that have a red color. Small areas of poorly drained Limerick and Lim soils and very poorly drained Saco soils are included in depressions and channel scars on the flood plain. A few areas in Litchfield County include some strongly acid soils and some soils with coarse textured materials at 24 to 30 inches. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in cultivated cropland. Some areas are in woodland or pasture.
Flooding and the seasonal high water table are the main limitations for dwellings with basements, lawns and landscaping, and septic tank absorption fields. A more suitable site should be selected on a drier soil that does not flood.

Flooding and potential frost action is the main limitation for local roads and streets. Providing drainage and building on raised fill with a coarse grained subgrade to frost depth will reduce these limitations. A more suitable site should be considered on a soil that does not flood.

107-Limerick and Lim soils

Map Unit Setting

Slope: nearly level
Landscape: flood plains
Size of map unit: Areas commonly range from 3 to 150 acres.

Map Unit Composition

Limerick and similar soils: 50 percent
Lim and similar soils: 30 percent
Minor components: 20 percent

Major Components

Limerick and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
BCg1-8 to 20 inches; silt loam
BCg2-20 to 36 inches; silt loam
BCg3-36 to 54 inches; silt loam
Cg-54 to 65 inches; silt loam

Lim and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 6 inches; very fine sandy loam
Bg1-6 to 11 inches; very fine sandy loam
Bg2-11 to 15 inches; very fine sandy loam
Bg3-15 to 22 inches; silt loam
Bg4-22 to 29 inches; fine sandy loam
CB-29 to 42 inches; stratified very gravelly coarse sand to loamy fine sand
Cg1-42 to 50 inches; stratified very gravelly coarse sand to loamy fine sand Cg2-50 to 57 inches; stratified very gravelly coarse sand to loamy fine sand Cg3-57 to 65 inches; stratified very gravelly coarse sand to loamy sand

Major Component Properties and Qualities

Limerick and similar soils

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-silty alluvium
Permeability: moderate
Available water capacity: very high

Reaction: strongly acid to neutral
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 0 to 18 inches
Flooding: frequent
Lim and similar soils
Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-loamy alluvium
Permeability: moderate to very rapid
Available water capacity: high
Reaction: strongly acid to neutral
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 0 to 18 inches
Flooding: frequent

Interpretative Groups

Limerick and similar soils
 Land capability classification (non-irrigated): not specified Hydrologic group: D

Lim and similar soils

Land capability classification (non-irrigated): 4w
Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of very poorly drained Saco soils in the lowest lying areas of the flood plain. Saco soils are greater than 40 inches to coarse textured substratum. Also included are areas of poorly drained Rippowam soils and somewhat poorly drained Bash soils. Rippowam soils are loamier throughout and Bash soils have red color. Areas of moderately well drained Winooski soils and well drained Hadley soils are on higher portions of the flood plain. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland or in marsh grasses and sedges. Some areas are drained or cleared. Cleared areas are in cultivated cropland or pasture and other areas are in residential development.

Flooding and the seasonal high water table are the main limitations for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Poor filtering is also a limitation for septic tank absorption fields in areas of Lim soils. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. A more suitable site should be selected on a drier soil that does not flood.

Flooding, potential frost action, and the seasonal high water table are the main limitations for local roads and streets. Providing drainage and building on raised fill with a coarse grained subgrade to frost depth will reduce these limitations. A more suitable site should be considered on a soil that does not flood.

108-Saco silt loam

Map Unit Setting

Slope: nearly level
Landscape: flood plains
Size of map unit: Areas commonly range from 3 to 150 acres.

Map Unit Composition

Saco and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 12 inches; silt loam
Cg1-12 to 32 inches; silt loam
Cg2—32 to 48 inches; silt loam
2Cg3-48 to 60 inches; stratified very gravelly coarse sand to loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: very poorly drained
Parent material: coarse-silty alluvium
Permeability: moderate to very rapid
Available water capacity: very high
Reaction: strongly acid to neutral
Depth to restrictive feature: greater than 72 inches
Ponding depth: 0 to 18 inches above surface
Depth to seasonal water table: 0 to 6 inches
Flooding: frequent

Interpretative Groups

Land capability classification (non-irrigated): 6w
Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of poorly drained Limerick, Lim, and Rippowam soils. Limerick soils are siltier throughout, Lim soils are less than 40 inches to coarse textured substratum, and Rippowam soils are loamier throughout. Somewhat poorly drained Bash soils are included in areas where the soil color is red due to parent material. Also included are moderately well drained Winooski soils and well drained Hadley soils on higher portions of the flood plain. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland or marsh, and are wetland wildlife habitat.
Flooding and the seasonal high water table are the main limitations for dwellings with basements, lawns and landscaping, and septic tank absorption fields. A more suitable site should be selected on a drier soil that does not flood.

Flooding, potential frost action, and the seasonal high water table are the main limitations for local roads and streets. Providing drainage and building on raised fill with a coarse grained subgrade to frost depth will reduce these limitations. A more suitable site should be considered on a soil that does not flood.

109-Fluvaquents-Udifluvents complex, frequently flooded

Map Unit Setting

Slope: nearly level
Landscape: flood plains

Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Fluvaquents and similar soils: 50 percent
Udifluvents and similar soils: 35 percent
Minor components: 15 percent

Major Components

Fluvaquents and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 4 inches; silt loam
Cg1-4 to 14 inches; fine sand
Cg2-14 to 21 inches; very fine sand
Ab1-21 to 38 inches; silt loam
Ab2-38 to 45 inches; fine sandy loam
C'g3-45 to 55 inches; sand
A'b3-55 to 60 inches; fine sandy loam

Udifluvents and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 2 inches; fine sandy loam
C-2 to 4 inches; loamy fine sand
Ap-4 to 12 inches; fine sandy loam
AC-12 to 18 inches; fine sandy loam
C1-18 to 35 inches; loamy sand
C2-35 to 38 inches; very gravelly loamy sand
C3-38 to 60 inches; very gravelly coarse sand

Major Component Properties and Qualities

Fluvaquents and similar soils
Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: alluvium
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to slightly alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 0 to 12 inches
Flooding: frequent

Udifluvents and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: alluvium
Permeability: moderate to very rapid
Available water capacity: moderate
Reaction: very strongly acid to neutral
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 72 inches
Flooding: frequent

Interpretative Groups

Fluvaquents and similar soils
Land capability classification (non-irrigated): 6w

Hydrologic group: D

Udifluvents and similar soils

Land capability classification (non-irrigated): 6w
Hydrologic group: B

Minor Components

Included with this complex in mapping are areas of Riverwash and other gravelly deposits. This map unit includes areas very poorly drained Saco soils, poorly drained Rippowam soils, moderateley well drained Pootatuck soils, and well drained Occum soils. Minor componets make up about 15 percent of this map unit.

Use and Management

Most areas are in woodland. A few areas are in pasture.
Flooding is the main limitation for dwellings with basements, lawns and landscaping, and septic tank absorption fields. The seasonal high water table is also a limitation for septic tank adsorption fields. A more suitable site should be selected on a drier soil that does not flood. Flooding and frost action are the main limitations for local roads and streets. Providing drainage and building on raised fill with a coarse grained subgrade to frost depth will reduce these limitations. A more suitable site should be considered on a soil that does not flood.

221A—Ninigret-Urban land complex, 0 to 5 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: outwash plains on valleys, terraces on valleys
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Ninigret and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent
Major Components

Ninigret and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 16 inches; fine sandy loam
Bw2-16 to 26 inches; fine sandy loam
2C-26 to 65 inches; stratified very gravelly coarse sand to loamy fine sand

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{H}-0$ to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: moderately well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderate to very rapid

Available water capacity: high
 Reaction: very strongly acid to slightly acid
 Depth to restrictive feature: greater than 72 inches
 Depth to seasonal water table: 18 to 30 inches
 Flooding: none

Interpretative Groups
Ninigret and similar soils
Land capability classification (non-irrigated): 2w
Hydrologic group: B

Urban land and similar soils

Land capability classification (non-irrigated): 8

Minor Components

Included with this complex in mapping are areas of somewhat excessively drained Merrimac soils and well drained Agawam and Haven soils that are higher on the landscape. Agawam soils are loamy over sand and gravel and Haven soils are silty over sand and gravel. Also included are moderately well drained Sudbury soils that are sandy and gravelly throughout. Small areas poorly drained Raypol soils are included in shallow depressions and drainageways. Areas of Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of this map unit.

Use and Management

This unit is in urban and suburban development. The open areas are in lawns, gardens, and woodland or brushland between structures.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce the wetness.

Poor filtering and the seasonal high water table are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal. There is also a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

224A—Deerfield-Urban land complex, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: terraces on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 100 acres.
Map Unit Composition
Deerfield and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Deerfield and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; loamy fine sand
Bw1-8 to 16 inches; loamy sand
Bw2-16 to 28 inches; loamy sand
C1-28 to 34 inches; fine sand
C2-34 to 60 inches; fine sand

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{H}-0$ to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: sandy glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: rapid or very rapid
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 36 inches
Flooding: none

Interpretative Groups

Deerfield and similar soils

Land capability classification (non-irrigated): 2w
Hydrologic group: A
Urban land and similar soils
Land capability classification (non-irrigated): 8

Minor Components

Included with this complex in mapping are areas of excessively drained Windsor and Penwood soils that are higher on the landscape. Windsor soils are sandy throughout and Penwood soils have a red subsoil. Small areas of poorly drained Walpole soils and very poorly drained Scarboro soils are included in shallow depressions and drainageways. Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of this map unit.

Use and Management

This unit is in urban and suburban development. The open areas are in lawns, gardens, and woodland or brushland between structures.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Droughtiness can make establishment and maintenance of lawns difficult. Locating dwellings on the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and poor filtering are the main limitations for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Modifying a conventional
system by extending the length of the distribution lines and adding fill will allow on site sewage disposal in places.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarser grained subgrade to frost depth will reduce these limitations.

225B—Brancroft-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: terraces on lake plains
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Brancroft and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Bancroft and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; silt loam
Bw1-6 to 17 inches; silt loam
Bw2-17 to 22 inches; silty clay loam
Bw3-22 to 32 inches; silt loam
C1-32 to 43 inches; silty clay loam
C2—43 to 66 inches; silt loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{H}-0$ to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: fine-silty glaciolacustrine deposits
Permeability: very slow to moderate
Available water capacity: very high
Reaction: very strongly acid to neutral
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Bancroft and similar soils

Land capability classification (non-irrigated): 2e
Hydrologic group: C

Urban land and similar soils
 Land capability classification (non-irrigated): 8

Minor Components

Included with this complex in mapping are some areas of moderately well drained Elmridge and Berlin soils. Elmridge soils have a loamy over clayey substratum and Berlin soils are reddish brown in color due to parent material. Poorly drained Scitico soils and very poorly drained Maybid soils are included in deep depressions and drainageways. Areas of Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of this map unit.

Use and Management

This unit is in urban and suburban development. The open areas are in lawns, gardens, and woodland or brushland between structures.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings on the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal in places.

Low strength and frost action are the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce these limitations.

226B—Berlin-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: terraces on lake plains
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Berlin and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Berlin and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; silt loam
Bw1-6 to 12 inches; silt loam
Bw2-12 to 20 inches; silty clay loam
Bw3-20 to 34 inches; silty clay loam
C1-34 to 48 inches; silty clay loam
C2—48 to 65 inches; silty clay loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{H}-0$ to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: fine-silty glaciolacustrine deposits
Permeability: very slow to moderate
Available water capacity: very high
Reaction: very strongly acid to neutral Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: 12 to 30 inches
Flooding: none

Interpretative Groups

Berlin and similar soils
Land capability classification (non-irrigated): 2e
Hydrologic group: C
Urban land and similar soils
Land capability classification (non-irrigated): 8

Minor Components

Included with this complex in mapping are areas of moderately well drained Brancroft, Elmridge, and Belgrade soils. These soils are yellower in the subsoil and substratum. Also included are areas of moderately well drained Ludlow soils, which have a dense substratum. Well drained Wethersfield soils are included in areas that are higher on the landscape and have a dense substratum. Small areas of poorly drained Scitico soils and very poorly drained Maybid soils are included in depressions and along drainageways. Areas of Udorthents are included adjacent to building and other structures. Minor componets make up about 25 percent of this map unit.

Use and Management

This unit is in urban and suburban development. The open areas are in lawns, gardens, and woodland or brushland between structures.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings on the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal in places.

Low strength and frost action are the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce these limitations.

228B—Elmridge-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: terraces on lake plains
Size of map unit: Areas commonly range from 3 to 200 acres.
Map Unit Composition
Elmridge and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Elmridge and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; fine sandy loam
Bw1-6 to 10 inches; fine sandy loam
Bw2-10 to 18 inches; fine sandy loam
Bw3-18 to 25 inches; sandy loam
2C-25 to 65 inches; silty clay

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy eolian deposits over clayey glaciolacustrine deposits Permeability: very slow to moderately rapid
Available water capacity: high
Reaction: very strongly acid to slightly alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table:18 to 30 inches
Flooding: none

Interpretative Groups

Elmridge and similar soils
 Land capability classification (non-irrigated): 2w
 Hydrologic group: C
 Urban land and similar soils
 Land capability classification (non-irrigated): 8
 Minor Components

Included with this complex in mapping are areas of moderately well drained Brancroft, Sudbury, Ninigret, Berlin, and Belgrade soils. Brancroft soils are silty and clayey; Sudbury soils are sandy and gravelly; Ninigret soils are loamy over sand and gravel; Berlin soils are redder; and Belgrade soils are silty throughout. Also included are small areas of poorly drained Shaker and Scitico soils in broad, flat low-lying or slightly concave areas. Small areas of very poorly drained Maybid soils are also included in depressions and along drainageways. A few areas include soils with reddish brown to yellowish red subsoil. Areas of Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of this map unit.

Use and Management

This unit is in urban and suburban development. Open areas are in lawns, gardens, and woodland or brushland structures.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings on the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal in places.

Frost action is the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce these limitations.

229B—Agawam-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: terraces on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 300 acres.

Map Unit Composition

Agawam and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Agawam and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 14 inches; fine sandy loam
Bw2-14 to 24 inches; fine sandy loam
2C-24 to 60 inches; stratified very gravelly coarse sand to fine sand

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial
deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid or very rapid
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Agawam and similar soils

Land capability classification (non-irrigated): 2e
Hydrologic group: B
Urban land and similar soils
Land capability classification (non-irrigated): 8

Minor Components

Included with this complex in mapping are areas of excessively drained Hinckley soils and somewhat excessively drained Merrimac soils that are higher on the landscape; Hinckley and Merrimac soils are sandier in the subsoil. Also included are some moderately well drained Ninigret soils in slightly lower areas below Agawam soils. Poorly drained Walpole soils and very poorly drained Scarboro soils are included in shallow depressions and drainageways. Scarboro soils have a mucky surface layer. A few areas in Hartford County include soils with red subsoil and substratum. Areas of Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of this map unit.

Use and Management

This unit is in urban and suburban development. The open areas are in lawns, gardens, and woodland or brushland between structures.

This soil has few limitations for dwellings with basements and lawns and landscaping. Droughtiness can make establishment and maintenance of lawns difficult.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

This soil has few limitations for local roads and streets

229C—Agawam-Urban land complex, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: terraces on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 200 acres.

Map Unit Composition

Agawam and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Agawam and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 14 inches; fine sandy loam
Bw2-14 to 24 inches; fine sandy loam
2C-24 to 60 inches; stratified very gravelly coarse sand to fine sand

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained

Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Agawam and similar soils

Land capability classification (non-irrigated): 3e
Hydrologic group: B
Urban land and similar soils
Land capability classification (non-irrigated): 8

Minor Components

Included with this complex in mapping are areas of excessively drained Hinckley soils and somewhat excessively drained Merrimac soils that are higher on the landscape; Hinckley and Merrimac soils are sandier in the subsoil. Also included are some moderately well drained Ninigret soils in slightly lower areas below Agawam soils. Poorly drained Walpole soils and very poorly drained Scarboro soils are included in shallow depressions and drainageways. Scarboro soils have a mucky surface layer. A few areas in Hartford County include soils with red subsoil and substratum. Areas of Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of this map unit.

Use and Management

This unit is in urban and suburban development. The open areas are in lawns, gardens, and woodland or brushland between structures.

Slope is the main limitation for dwellings with basements and for lawns and landscaping. Erosion is a moderate hazard during construction.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

230B—Branford-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: outwash plains on valleys, terraces on valleys Size of map unit: Areas commonly range from 3 to 75 acres.

Map Unit Composition

Branford and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Branford and similar soils

The typical sequence, depth, and composition of the layers of the soil are as

follows-

Ap-0 to 8 inches; silt loam
Bw1-8 to 18 inches; loam
Bw2-18 to 24 inches; gravelly loam
2C-24 to 65 inches; stratified very gravelly coarse sand to loamy fine sand

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from sandstone and shale and/or basalt
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Branford and similar soils

Land capability classification (non-irrigated): 2e
Hydrologic group: B
Urban land and similar soils
Land capability classification (non-irrigated): 8

Minor Components

Included with this complex in mapping are areas of well drained Haven and Enfield soils. Enfield soils are coarse-silty over sand and gravel and Haven soils are coarseloamy over sand and gravel. Also included are moderately well drained Ellington soils in slightly lower areas on the landscape. Small areas of poorly drained Raypol soils are included in shallow depressions and along drainageways. Areas of Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of this map unit.

Use and Management

This unit is in urban and suburban development. The open areas are in lawns, gardens, and woodland or brushland between structures.

This soil has few limitations for dwellings with basements and lawns and landscaping.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in places.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

230C—Branford-Urban land complex, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: outwash plains on valleys, terraces on valleys
Size of map unit: Areas commonly range from 3 to 75 acres.

Map Unit Composition

Branford and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Branford and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 18 inches; loam
Bw2-18 to 24 inches; gravelly loam
2C-24 to 65 inches; stratified very gravelly coarse sand to loamy fine sand

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{H}-0$ to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from sandstone and shale and/or basalt
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Branford and similar soils

Land capability classification (non-irrigated): 3e
Hydrologic group: B

Urban land and similar soils

Land capability classification (non-irrigated): 8

Minor Components

Included with this complex in mapping are areas of well drained Haven and Enfield soils. Enfield soils are coarse-silty over sand and gravel and Haven soils are coarseloamy over sand and gravel. Also included are moderately well drained Ellington soils in slightly lower areas below Branford soils. Small areas of very poorly drained Raypol soils are included in shallow depressions and along drainageways. Areas of

Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of this map unit.

Use and Management

This unit is in urban and suburban development. The open areas are in lawns, gardens, and woodland or brushland between structures.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a moderate hazard during construction. Designing dwellings to conform to the slope of the land will reduce the slope limitation.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in places.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

232B—Haven-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: outwash plains on valleys, terraces on valleys
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Haven and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Haven and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 7 inches; silt loam
Bw1-7 to 14 inches; silt loam
Bw2-14 to 20 inches; silt loam
BC-20 to 24 inches; fine sandy loam
$2 \mathrm{C}-24$ to 60 inches; stratified very gravelly sand to gravelly fine sand

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H—0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderate to very rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Haven and similar soils
 Land capability classification (non-irrigated): 2 e
 Hydrologic group: B
 Urban land and similar soils
 Land capability classification (non-irrigated): 8
 Minor Components

Included with this complex in mapping are areas of well drained Branford and Agawam soils. Branford soils are silty over sand and gravel, and are red in color. Agawam soils are sandier in the surface layer and subsoil. Also included are moderately well drained Ninigret and Tisbury soils in slightly lower areas below Haven and Enfield soils. Poorly drained Raypol soils are included in shallow depressions and drainageways. A few areas in New London County include soils with a gravelly surface layer. Areas of Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of this map unit.

Use and Management

This unit is in urban and suburban development. The open areas are in lawns, gardens, and woodland or brushland between structures.

This unit has few limitations for dwellings with basements and lawns and landscaping.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in places.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

234B—Merrimac-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: terraces on valleys, kames on valleys, outwash plains on valleys Size of map unit: Areas commonly range from 5 to 75 acres.

Map Unit Composition

Merrimac and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Merrimac and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 9 inches; sandy loam
Bw1-9 to 16 inches; sandy loam
Bw2-16 to 24 inches; gravelly sandy loam
2C-24 to 60 inches; stratified very gravelly coarse sand to gravelly sand

Urban land and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: somewhat excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Merrimac and similar soils
 Land capability classification (non-irrigated): 2 e
 Hydrologic group: B
 Urban land and similar soils
 Land capability classification (non-irrigated): 8

Minor Components

Included with this complex in mapping are areas of excessively drained Hinckley and Windsor soils that are higher on the landscape. Hinckley soils are sandy and gravelly and Windsor soils are sandy throughout. Also included are well drained Agawam soils that are loamy over sand and gravel. Moderately well drained Ninigret and Sudbury soils are included in slightly lower areas. Ninigret soils are loamy over sand and gravel and Sudbury soils are sandy and gravelly. Small areas of poorly drained Walpole soils and very poorly drained Scarboro soils are included in shallow depressions and drainageways. Areas of Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of this map unit.

Use and Management

This unit is in urban and suburban development. The open areas are in lawns, gardens, and woodland or brushland between structures.

This soil has few limitations for dwellings with basements, lawns and landscaping, and local roads and streets.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

235B—Penwood-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: terraces on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 300 acres.

Map Unit Composition

Penwood and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Penwood and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; loamy sand
Bw1-8 to 18 inches; loamy sand
Bw2-18 to 30 inches; sand
C-30 to 60 inches; sand

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: excessively drained
Parent material: sandy glaciofluvial deposits derived from sandstone and shale
Permeability: rapid or very rapid
Available water capacity: low
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Penwood and similar soils

Land capability classification (non-irrigated): 2s
Hydrologic group: A

Urban land and similar soils

Land capability classification (non-irrigated): 8

Minor Components

Included with this complex in mapping are excessively drained Manchester soils and somewhat excessively drained Hartford soils in areas that are sandy and gravelly. Also included are areas of well drained Branford soils and moderately well drained Ellington soils. Branford and Ellington soils are silty over sand and gravel. A few areas in New Haven County include soils with a gravelly substratum. Areas of Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of this map unit.

Use and Management

This unit is in urban and suburban development. The open areas are in lawns, gardens, and woodland or brushland between structures.

This soil has few limitations for dwellings with basements and local roads and streets. Droughtiness is the main limitation for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

236B—Windsor-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: terraces on valleys, outwash plains on valleys, kames on valleys
Size of map unit: Areas commonly range from 3 to 200 acres.

Map Unit Composition

Windsor and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Windsor and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 3 inches; loamy sand
Bw1-3 to 9 inches; loamy sand
Bw2-9 to 21 inches; loamy sand
Bw3-21 to 25 inches; sand
C-25 to 65 inches; sand

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{H}-0$ to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: excessively drained
Parent material: eolian sands over sandy glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: rapid or very rapid
Available water capacity: low
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none
Interpretative Groups

Windsor and similar soils

Land capability classification (non-irrigated): 2s
Hydrologic group: A
Urban land and similar soils
Land capability classification (non-irrigated): 8

Minor Components

Included with this complex in mapping are areas of excessively drained Hinckley soils and somewhat excessively drained Merrimac soils that are sandy and gravelly. Also included are well drained Agawam soils that are loamy over sand and gravel. Moderately well drained Deerfield, Ninigret, and Sudbury soils are included in slightly lower areas. Ninigret soils are loamy over sand and gravel and Sudbury soils are sandy and gravelly. Areas of Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of this map unit.

Use and Management

This unit is in urban and suburban development. The open areas are in lawns, gardens, and woodland or brushland between structures.

This soil has few limitations for dwellings with basements and local roads and streets. Droughtiness is the main limitation for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

237A—Manchester-Urban land complex, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: outwash plains on valleys, kames on valleys, terraces on valleys, eskers on valleys
Size of map unit: Areas commonly range from 3 to 75 acres.

Map Unit Composition

Manchester and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Manchester and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 9 inches; gravelly sandy loam
Bw-9 to 18 inches; gravelly loamy sand
C-18 to 65 inches; stratified extremely gravelly coarse sand to very gravelly loamy sand

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{H}-0$ to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: excessively drained

Parent material: sandy and gravelly glaciofluvial deposits derived from sandstone and shale and/or basalt
Permeability: rapid or very rapid
Available water capacity: low
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Manchester and similar soils

Land capability classification (non-irrigated): 2s
Hydrologic group: A

Urban land and similar soils

Land capability classification (non-irrigated): 8

Minor Components

Included with this complex in mapping are areas of excessively drained Penwood soils that are sandy throughout. Also included are somewhat excessively drained Hartford soils, well drained Branford soils, and moderately well drained Ellington soils. Hartford soils are sandy loam over a sandy and gravelly substratum, Branford soils are silty over a sandy and gravelly substratum, and Ellington soils are in slightly lower areas and broad drainageways. In places, soils that lack a gravelly surface are included. A few areas in New Haven County have a gravelly loamy sand surface layer. Udorthents are included in areas adjacent to buildings and other structures. Minor componets make up about 25 percent of this map unit.

Use and Management

This unit is in urban and suburban development. The open areas are in lawns, gardens, and woodland or brushland between structures.

This soil has few limitations for dwellings with basements and local roads and streets. Droughtiness is the main limitation for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

237C—Manchester-Urban land complex, 3 to 15 percent slopes

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: kames on valleys, eskers on valleys, terraces on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 150 acres.

Map Unit Composition

Manchester and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Manchester and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 9 inches; gravelly sandy loam
Bw-9 to 18 inches; gravelly loamy sand
C-18 to 65 inches; stratified extremely gravelly coarse sand to very gravelly loamy sand

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from sandstone and shale and/or basalt
Permeability: rapid or very rapid
Available water capacity: low
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Manchester and similar soils

Land capability classification (non-irrigated): 3e
Hydrologic group: A
Urban land and similar soils
Land capability classification (non-irrigated): 8

Minor Components

Included with this complex in mapping are areas of excessively drained Penwood soils that are sandy throughout. Also included are somewhat excessively drained Hartford soils, well drained Branford soils, and moderately well drained Ellington soils. Hartford soils are sandy loam over a sandy and gravelly substratum, Branford soils are silty over a sandy and gravelly substratum, and Ellington soils are in slightly lower areas and broad drainageways. A few areas in New Haven County have a gravelly loamy sand surface layer. Udorthents are included in areas adjacent to buildings and other structures. Minor componets make up about 25 percent of this map unit.

Use and Management

This unit is in urban and suburban development. The open areas are in lawns, gardens, and woodland or brushland between structures.

Slope is the main limitation for dwellings with basements. Erosion is a moderate hazard during construction. Designing dwellings to conform to the slope of the land will reduce the slope limitation. Droughtiness is the main limitation for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not
adequately filter effluent. Specially designed septic systems are necessary in some areas.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

238A—Hinckley-Urban land complex, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: kames on valleys, eskers on valleys, outwash plains on valleys, terraces on valleys
Size of map unit: Areas commonly range from 3 to 30 acres.

Map Unit Composition

Hinckley and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent
Major Components

Hinckley and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; gravelly sandy loam
Bw1-8 to 20 inches; very gravelly loamy sand
Bw2-20 to 27 inches; very gravelly sand
C1-27 to 42 inches; stratified cobbly coarse sand to extremely gravelly sand
C2-42 to 60 inches; stratified cobbly coarse sand to extremely gravelly sand

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H—0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: rapid or very rapid
Available water capacity: very low
Reaction: extremely acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none
Interpretative Groups

Hinckley and similar soils

Land capability classification (non-irrigated): 3s
Hydrologic group: A
Urban land and similar soils
Land capability classification (non-irrigated): 8

Minor Components

Included with this complex in mapping are areas of excessively drained Windsor soils which are sandy throughout. Also included are somewhat excessively drained Merrimac soils and well drained Agawam soils. Merrimac soils are sandy over sand and gravel and Agawam soils are loamy over sand and gravel. Small areas of moderately well drained Sudbury soils are included in slightly lower areas, poorly drained Walpole soils and very poorly drained Scarboro soils are included in shallow depressions and drainageways. Udorthents are included in areas adjacent to buildings and other structures. Minor componets make up about 25 percent of this map unit.

Use and Management

This unit is in urban and suburban development. The open areas are in lawns, gardens, and woodland or brushland between structures.

This soil has few limitations for dwellings with basements and local roads and streets. Droughtiness and slope are the main limitations for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

238C—Hinckley-Urban land complex, 3 to 15 percent slopes

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: kames on valleys, outwash plains on valleys, terraces on valleys, eskers on valleys
Size of map unit: Areas commonly range from 5 to 200 acres.

Map Unit Composition

Hinckley and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Hinckley and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; gravelly sandy loam
Bw1-8 to 20 inches; very gravelly loamy sand
Bw2-20 to 27 inches; very gravelly sand
C1-27 to 42 inches; stratified cobbly coarse sand to extremely gravelly sand
C2-42 to 60 inches; stratified cobbly coarse sand to extremely gravelly sand

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{H}-0$ to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: rapid or very rapid
Available water capacity: very low
Reaction: extremely acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Hinckley and similar soils
Land capability classification (non-irrigated): 4e
Hydrologic group: A
Urban land and similar soils
Land capability classification (non-irrigated): 8

Minor Components

Included with this complex in mapping are areas of excessively drained Windsor soils which are sandy throughout. Also included are somewhat excessively drained Merrimac soils and well drained Agawam soils. Merrimac soils are sandy over sand and gravel and Agawam soils are loamy over sand and gravel. Small areas of moderately well drained Sudbury soils are included in slightly lower areas, poorly drained Walpole soils and very poorly drained Scarboro soils are included in shallow depressions and drainageways. Udorthents are included in areas adjacent to buildings and other structures. Minor componets make up about 25 percent of this map unit.

Use and Management

This unit is in urban and suburban development. The open areas are in lawns, gardens, and woodland or brushland between structures.

Slope is the main limitation for dwellings with basements. Erosion is a hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Droughtiness and slope are the main limitations for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

240B—Ludlow-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: drumlins on uplands, hills on uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Ludlow and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Ludlow and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 20 inches; silt loam
Bw2-20 to 26 inches; silt loam
Cd—26 to 65 inches; gravelly loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{H}-0$ to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: moderately well drained
Parent material: coarse-loamy lodgment till derived from basalt and/or sandstone and shale
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Ludlow and similar soils

Land capability classification (non-irrigated): 2e
Hydrologic group: C

Urban land and similar soils

Land capability classification (non-irrigated): 8

Minor Components

Included with this unit in mapping are well drained Wethersfield soils, well drained Cheshire soils, well drained Yalesville soils, moderately well drained Watchaug soils, poorly drained Wilbraham, and very poorly drained Menlo. Wethersfield soils are on higher areas. Yalesville soils are moderately deep to bedrock. Watchaug and Cheshire soils are in areas where the substratum is friable. Wilbraham and Menlo soils are in depressions and along drainageways. Soils with a loam or fine sandy loam surface are included in New Haven County. Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with
foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

243B—Rainbow-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: drumlins on uplands, hills on uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Rainbow and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 20 percent

Major Components

Rainbow and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; silt loam
Bw1-6 to 18 inches; silt loam
Bw2-18 to 26 inches; silt loam
2Cd-26 to 65 inches; gravelly fine sandy loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{H}-0$ to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: eolian deposits over coarse-loamy lodgment till derived from gneiss and/or schist and/or sandstone and/or basalt
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Rainbow and similar soils
Land capability classification (non-irrigated): $2 e$
Hydrologic group: C

Urban land and similar soils
 Land capability classification (non-irrigated): 8

Minor Components

Included with this soil in mapping are areas of well drained Narragansett soils, well drained Broadbrook soils, and poorly drained Wilbraham soils. Narragansett soils are in areas of very friable to firm sandy glacial till. Broadbrook soils are on the highest parts of the landscape. Wilbraham soils are in depressions and along drainageways. Soils with a stony surface are included in some areas. Udorthents are included in areas adjacent to buildings and other structures. Minor componets make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

245B—Woodbridge-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: hills on uplands, drumlins on uplands
Size of map unit: Areas commonly range form 3 to 50 acres.

Map Unit Composition

Woodbridge and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Woodbridge and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 7 inches; fine sandy loam
Bw1-7 to 18 inches; fine sandy loam
Bw2-18 to 26 inches; fine sandy loam
Bw3-26 to 30 inches; fine sandy loam
Cd1-30 to 43 inches; gravelly fine sandy loam
Cd2-43 to 65 inches; gravelly fine sandy loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H—0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Woodbridge and similar soils

Land capability classification (non-irrigated): 2w
Hydrologic group: C
Urban land and similar soils
Land capability classification (non-irrigated): 8

Minor Components

Included with this unit in mapping are areas of well drained Paxton soils, well drained Montauk soils, moderately well drained Sutton and Rainbow soils, poorly drained Ridgebury and Leicester soils, and very poorly drained Whitman soils. Paxton and Montauk soils are on higher areas. Sutton soils have a friable substratum and Rainbow soils are finer in texture. Ridgebury, Leicester, and Whitman soils are in depressions and along drainageways. Udorthents are included in areas adjacent to buildings and other structures. Minor componets make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

Potential frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

245C—Woodbridge-Urban land complex, 8 To 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: drumlins on uplands, hills on uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Woodbridge and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Woodbridge and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 7 inches; fine sandy loam
Bw1-7 to 18 inches; fine sandy loam
Bw2-18 to 26 inches; fine sandy loam
Bw3-26 to 30 inches; fine sandy loam
Cd1-30 to 43 inches; gravelly fine sandy loam
Cd2-43 to 65 inches; gravelly fine sandy loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: moderately well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none
Interpretative Groups

Woodbridge and similar soils

Land capability classification (non-irrigated): 3e
Hydrologic group: C

Urban land and similar soils

Land capability classification (non-irrigated): 8
Minor Components
Included with this unit in mapping are areas of well drained Paxton soils, well drained Montauk soils, moderately well drained Sutton and Rainbow soils, poorly drained Ridgebury and Leicester soils, and very poorly drained Whitman soils. Paxton and Montauk soils are on higher areas. Sutton soils have a friable substratum and Rainbow soils are finer in texture. Ridgebury, Leicester, and Whitman soils are in depressions and along drainageways. Udorthents are included in areas adjacent to buildings and other structures. Minor componets make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

Potential frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

248B-Georgia-Urban land complex, 2 to 8 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: hills, uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range form 3 to 40 acres.

Map Unit Composition

Georgia and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Georgia and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 14 inches; loam
Bw2-14 to 24 inches; loam
C-24 to 60 inches; gravelly fine sandy loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{H}-0$ to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
Permeability: moderately slow to moderate
Available water capacity: high
Reaction: strongly acid to neutral
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 36 inches
Flooding: none

Interpretative Groups

Georgia and similar soils

Land capability classification (non-irrigated): 2e
Hydrologic group: B

Urban land and similar soils
 Land capability classification (non-irrigated): 8

Minor Components

Included with this unit in mapping are areas of well drained Stockbridge, Nellis, and Paxton soils, moderately well drained Amenia and Woodbridge soils, poorly drained Mudgepond and Ridgebury soils, and very poorly drained Alden soils. Amenia soils are less acid than Georgia soils and are calcareous within 40 inches. Stockbridge and Nellis soils are in higher areas. Mudgepond and Alden soils are in depressions and along drainageways. Paxton, Woodbridge, and Ridgebury soils are in areas with dense substratum. Udorthents are included in areas adjacent to buildings and other structures. Minor componets make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

The seasonal high water table is the main limitation for dwellings with basements. Large stones are a limitation for lawns and landscaping. Removing the stones will reduce the limitation. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, water proofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal in most places.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

250B—Sutton-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: depressions on uplands, drainageways on uplands
Size of map unit: Areas commonly range from 3 to 50 acres.
Map Unit Composition
Sutton and similar soils: 40 percent Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Sutton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; fine sandy loam
Bw1-6 to 12 inches; fine sandy loam
Bw2-12 to 24 inches; fine sandy loam
Bw3-24 to 28 inches; fine sandy loam
C1-28 to 36 inches; gravelly fine sandy loam
C2-36 to 65 inches; gravelly sandy loam

Urban land and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: moderately well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Sutton and similar soils

Land capability classification (non-irrigated): 2w
Hydrologic group: B

Urban land and similar soils

Land capability classification (non-irrigated): 8

Minor Components

Included with this soil in mapping are areas of well drained Canton, Charlton, and Paxton soils and moderately well drained Woodbridge soils. Canton soils are loamy over sandy; Charlton soils are sandy loam throughout; Paxton and Woodbridge soils have a dense substratum. Some areas have a silt loam surface layer and subsoil. Areas of Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of the map unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

253B-Wapping-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: till plains on uplands, hills on uplands
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Wapping and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Wapping and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 11 inches; very fine sandy loam
Bw1-11 to 16 inches; very fine sandy loam
Bw2-16 to 20 inches; very fine sandy loam
2C1-20 to 28 inches; gravelly sandy loam
2C2-28 to 36 inches; gravelly loamy sand
2C3-36 to 80 inches; gravelly loamy sand

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{H}-0$ to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly melt-out till
derived from gneiss and/or schist and/or sandstone and shale
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Wapping and similar soils

Land capability classification (non-irrigated): 2e
Hydrologic group: B

Urban land and similar soils

Land capability classification (non-irrigated): 8
Minor Components
Included with this unit in mapping are areas of well drained Narragansett, Cheshire, and Yalesville soils, moderately well drained Watchaug and Ludlow soils, poorly drained Leicester and Wilbraham soils, and very poorly drained Menlo soils. Narragansett soils are in higher areas and Yalesville soils are in areas moderately deep to bedrock. Cheshire, Watchaug, and Ludlow soils are in areas where the subsoil and substratum are red due to the parent material. Wilbraham, Leicester, and Menlo soils are in depressions and along drainageways. Also included are soils with a stony surface. Minor componets make up about 25 percent of the unit.

Use and Management

Most areas are in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with footing or foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of the basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal.

Frost action and low strength are the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce these limitations.

255B—Watchaug-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: hills on uplands, till plains on uplands
Size of map unit: Areas commonly range from 3 to 30 acres.

Map Unit Composition

Watchaug and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Watchaug and similar soils

The typical sequence, depth, and composition of the layers of the soil are as

follows-

$\mathrm{Ap}-0$ to 8 inches; fine sandy loam
Bw1-8 to 18 inches; fine sandy loam
Bw2-18 to 24 inches; fine sandy loam
C-24 to 65 inches; gravelly sandy loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate to moderately rapid
Available water capacity: high
Reaction: very strongly acid to slightly acid Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Watchaug and similar soils
Land capability classification (non-irrigated): 2w
Hydrologic group: B

Urban land and similar soils
 Land capability classification (non-irrigated): 8

Minor Components

Included with this unit in mapping are areas of well drained Cheshire soils, moderately well drained Ludlow soils, poorly drained Wilbraham and Watchaug soils, and very poorly drained Menlo soils. Cheshire soils are on higher areas and Ludlow soils are included in areas with dense substratum. Wilbraham and Menlo soils are in depressions and along drainageways. Areas of Watchaug soils with a silt loam surface or stony surface are included in New Haven County. Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings on the highest part of the unit with footing or foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff form higher areas will reduce wetness.

The seasonal high water table is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal.

Potential frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

260B—CharIton-Urban land complex, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: uplands, hills
Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Charlton and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Charlton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 4 inches; fine sandy loam
Bw1-4 to 7 inches; fine sandy loam
Bw2—7 to 19 inches; fine sandy loam
Bw3-19 to 27 inches; gravelly fine sandy loam
C-27 to 65 inches; gravelly fine sandy loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H—0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate to moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Charlton and similar soils

Land capability classification (non-irrigated): 2e
Hydrologic group: B

Urban land and similar soils

Land capability classification (non-irrigated): 8

Minor Components

Included with this unit in mapping are areas of somewhat excessively drained and well drained Chatfield and Hollis soils, moderately well drained Sutton soils, and poorly drained Leicester soils. Moderately deep Chatfield soils and shallow Hollis soils are in areas underlain by bedrock. Sutton soils are on slightly lower areas and Leicester soils are in depressions and along drainageways. Areas of Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of the map unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

This unit has few limitations for dwellings with basements, lawns and landscaping, septic tank absorption fields, and local roads and streets.

260C—Charlton-Urban land complex, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: hills, uplands
Size of map unit: Areas commonly range from 3 to 300 acres.

Map Unit Composition

Charlton and similar soils: 40 percent Urban land and similar soils: 35 percent Minor components: 25 percent

Major Components

Charlton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as

follows-

Ap-0 to 4 inches; fine sandy loam
Bw1-4 to 7 inches; fine sandy loam
Bw2-7 to 19 inches; fine sandy loam
Bw3-19 to 27 inches; gravelly fine sandy loam
C-27 to 65 inches; gravelly fine sandy loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Charlton and similar soils

Land capability classification (non-irrigated): 3e
Hydrologic group: B
Urban land and similar soils
Land capability classification (non-irrigated): 8

Minor Components

Included with this unit in mapping are areas of somewhat excessively drained and well drained Chatfield and Hollis soils, moderately well drained Sutton soils, and poorly drained Leicester soils. Moderately deep Chatfield soils and shallow Hollis soils are in areas underlain by bedrock. Sutton soils are on slightly lower areas and Leicester soils are in depressions and along drainageways. Areas of Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of the map unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

Slope is the main limitation for dwellings with basements, lawns and landscaping, septic tank absorption fields, and local roads and streets. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Placing the septic tank absorption field distribution lines on the contour increases the efficiency of the system. Constructing roads on the contour will reduce the slope limitation.

260D—Charlton-Urban land complex, 15 to 25 percent slopes

Map Unit Setting

Slope: moderately steep
Landscape: uplands, hills
Size of map unit: Areas commonly range from 3 to 300 acres.

Map Unit Composition

Charlton and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Charlton and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 4 inches; fine sandy loam
Bw1-4 to 7 inches; fine sandy loam
Bw2—7 to 19 inches; fine sandy loam
Bw3-19 to 27 inches; gravelly fine sandy loam
C-27 to 65 inches; gravelly fine sandy loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H—0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Charlton and similar soils

Land capability classification (non-irrigated): 4e
Hydrologic group: B

Urban land and similar soils

Land capability classification (non-irrigated): 8

Minor Components

Included with this unit in mapping are areas of somewhat excessively drained and well drained Chatfield and Hollis soils, moderately well drained Sutton soils, and poorly drained Leicester soils. Moderately deep Chatfield soils and shallow Hollis soils are in areas underlain by bedrock. Sutton soils are on slightly lower areas and

Leicester soils are in depressions and along drainageways. Areas of Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of the map unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

Slope is the main limitation for dwellings with basements, lawns and landscaping, septic tank absorption fields, and local roads and streets. Erosion is a severe hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Placing the septic tank absorption field distribution lines on the contour increases the efficiency of the system. Constructing roads on the contour will reduce the slope limitation. A more suitable site should be considered on a less sloping portion of the unit or nearby soil.

263B—Cheshire-Urban land complex, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: hills on uplands, till plains on uplands
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Cheshire and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Cheshire and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 16 inches; fine sandy loam
Bw2-16 to 26 inches; fine sandy loam
C-26 to 65 inches; gravelly sandy loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H—0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches

Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Cheshire and similar soils
 Land capability classification (non-irrigated): 2 e
 Hydrologic group: B
 Urban land and similar soils
 Land capability classification (non-irrigated): 8
 Minor Components

Included with this soil in mapping are areas of well drained Wethersfield and Yalesville soils, moderately well drained Watchaug soils, poorly drained Wilbraham soils, and very poorly drained Menlo soils. Wethersfield soils have a firm substratum and Yalesville soils are moderately deep to bedrock. Watchaug soils are on slightly lower areas. Wilbraham and Menlo soils are along drainageways. Areas of Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

This unit has few limitations for dwellings with basements, lawns and landscaping, septic tank absorption fields, or local roads and streets.

263C—Cheshire-Urban land complex, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: till plains on uplands, hills on uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Cheshire and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Cheshire and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 16 inches; fine sandy loam
Bw2-16 to 26 inches; fine sandy loam
C-26 to 65 inches; gravelly sandy loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{H}-0$ to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Cheshire and similar soils
Land capability classification (non-irrigated): 3e
Hydrologic group: B

Urban land and similar soils

Land capability classification (non-irrigated): 8

Minor Components

Included with this soil in mapping are areas of well drained Wethersfield and Yalesville soils, moderately well drained Watchaug soils, poorly drained Wilbraham soils, and very poorly drained Menlo soils. Wethersfield soils have a firm substratum and Yalesville soils are moderately deep to bedrock. Watchaug soils are on slightly lower areas. Wilbraham and Menlo soils are along drainageways. Areas of Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

Slope is the main limitation for dwellings with basements, lawns and landscaping, septic tank absorption fields, or local roads and streets. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Placing the septic tank absorption field distribution lines on the contour increases the efficiency of the system. Constructing roads on the contour will reduce the slope limitation.

266B—Narragansett-Urban land complex, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: hills on uplands, till plains on uplands
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Narragansett and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Narragansett and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 6 inches; silt loam
Bw1-6 to 15 inches; silt loam
Bw2-15 to 24 inches; silt loam
Bw3-24 to 28 inches; gravelly silt loam
$2 \mathrm{C}-28$ to 60 inches; very gravelly loamy coarse sand

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly melt-out till derived from gneiss and/or schist and/or sandstone and shale
Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Narragansett and similar soils

Land capability classification (non-irrigated): 2e
Hydrologic group: B

Urban land and similar soils

Land capability classification (non-irrigated): 8

Minor Components

Included with this soil in mapping are areas of well drained Broadbrook, Canton, and Charlton soils, moderately well drained Wapping and Sutton soils, and poorly drained Leicester soils. Broadbrook soils have a dense substratum, Canton soils are coarser textured, and Charlton soils are loamy throughout. Wapping and Sutton soils are on slightly lower areas. Leicester soils are in depressions and along drainageways. Soils with reddish color are included in northeast Hartford County. Minor componets make up about 20 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

This unit has few limitations for dwellings with basements or lawns and landscaping.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce these limitations.

269B—Yalesville-Urban land complex, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: bedrock-controlled hills on uplands, bedrock-controlled ridges on uplands Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Yalesville and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Yalesville and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 14 inches; fine sandy loam
Bw2-14 to 25 inches; loam
C-25 to 36 inches; gravelly sandy loam
2R-36 to 80 inches; unweathered bedrock

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: moderately deep to deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate or moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Yalesville and similar soils
Land capability classification (non-irrigated): 2e
Hydrologic group: C
Urban land and similar soils
Land capability classification (non-irrigated): 8

Minor Components

Included with this soil in mapping are areas of well drained Holyoke soils, well drained Cheshire and Wethersfield soils, and moderately well drained Watchaug and Ludlow soils. Holyoke soils are in areas where the bedrock is between 10 and 20 inches deep and Wethersfield soils are in areas where the substratum is very firm.

Watchaug and Ludlow soils are on slightly lower areas. Also included are areas with a silt loam surface texture in Middlesex and New Haven counties. Areas with slopes less than 3 percent are included in New Haven County. Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

Shallow depth to bedrock is the main limitation for dwellings with basements. Where possible, dwellings with basements should be constructed in a deeper inclusion or nearby soil. This unit has few limitations for lawns and landscaping.

Shallow depth to bedrock is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the soil is not thick enough to adequately filter effluent. A more suitable site should be considered in a deeper inclusion or nearby soil.

Shallow depth to bedrock is the main limitation for local roads and streets. Careful planning of grades and road locations will avoid some removal of rock.

269C-Yalesville-Urban land complex, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping Landscape: bedrock-controlled ridges on uplands, bedrock-controlled hills on uplands Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Yalesville and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent
Major Components

Yalesville and similar soils

The typical sequence, depth, and composition of the layers of the soil are as
follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 14 inches; fine sandy loam
Bw2-14 to 25 inches; loam
C-25 to 36 inches; gravelly sandy loam
2R-36 to 80 inches; unweathered bedrock

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{H}-0$ to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: moderately deep or deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from basalt and/or sandstone and shale
Permeability: moderate or moderately rapid

Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Yalesville and similar soils

Land capability classification (non-irrigated): 3e
Hydrologic group: C
Urban land and similar soils
Land capability classification (non-irrigated): 8

Minor Components

Included with this soil in mapping are areas of well drained Holyoke soils, well drained Cheshire and Wethersfield soils, and moderately well drained Watchaug and Ludlow soils. Holyoke soils are in areas where the bedrock is between 10 and 20 inches deep and Wethersfield soils are in areas where the substratum is very firm. Watchaug and Ludlow soils are on slightly lower areas. Also included are areas with a silt loam surface texture in Middlesex and New Haven counties. Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

Shallow depth to bedrock is the main limitation for dwellings with basements. Erosion is a moderate hazard during construction. Where possible, dwellings with basements should be constructed in a deeper inclusion or nearby soil. Slope is the main limitation for lawns and landscaping.

Shallow depth to bedrock is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the soil is not thick enough to adequately filter effluent. A more suitable site should be considered in a deeper inclusion or nearby soil.

Shallow depth to bedrock and slope are the main limitations for local roads and streets. Careful planning of grades and road locations will avoid some removal of rock. Constructing roads on the contour will reduce the slope limitation.

273C—Urban land-Charlton-Chatfield complex, rocky, 3 to 15 percent slopes

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: ridges, hills, uplands
Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Urban land and similar soils: 35 percent
Charlton and similar soils: 25 percent
Chatfield and similar soils: 15 percent
Minor components: 25 percent

Major Components

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Charlton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 4 inches; fine sandy loam
Bw1-4 to 7 inches; fine sandy loam
Bw2—7 to 19 inches; fine sandy loam
Bw3-19 to 27 inches; gravelly fine sandy loam
C-27 to 65 inches; gravelly fine sandy loam
Chatfield and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa- 0 to 1 inch; highly decomposed plant material
A-1 to 6 inches; gravelly fine sandy loam
Bw1-6 to 15 inches; gravelly fine sandy loam
Bw2—15 to 29 inches; gravelly fine sandy loam
2R-29 to 80 inches; unweathered bedrock

Major Component Properties and Qualities

Charlton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet
Flooding: none

Chatfield and similar soils

Depth to bedrock: moderately deep to deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none
Interpretative Groups

Urban land and similar soils

Land capability classification (non-irrigated): 8

Charlton and similar soils

Land capability classification (non-irrigated): 3e
Hydrologic group: B

Chatfield and similar soils
 Land capability classification (non-irrigated): 3e
 Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of somewhat excessively drained Hollis soils, moderately well drained Sutton soils and poorly drained Leicester soils. Hollis soils are in areas where the bedrock is between 10 and 20 inches deep. Sutton soils are on slightly lower areas and Leicester soils are in depressions and along drainageways. Udorthents are included adjacent to buildings and other structures. Minor componets and rock outcrops make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

Shallow depths to bedrock in areas of Chatfield soils and rock outcroppings are the main limitations for dwellings with basements. Slope is also a limitation in areas of Charlton soils. Erosion is a slight to moderate hazard during construction. Uneven slopes and variable depth to bedrock reduce site selection. Where possible, dwellings with basements should be constructed in a deeper inclusion or nearby soil.

Slope is the main limitation for lawns and landscaping. Large stones are also a limitation in areas of Charlton soils and the thin soil layer are also limitations in areas of Chatfield soils. Droughtiness can make establishment and maintenance of lawns difficult. Addition of fill material and removing the stones will reduce these limitations.

Slope in areas of Charlton soils is the main limitation for septic tank absorption fields. Depths to bedrock in areas of Chatfield soils and rock outcroppings over portions of the landscape are also limitations. There is a hazard of groundwater pollution in areas of Chatfield soils because the soil layer is not thick enough to adequately filter effluent. A more suitable site should be considered in a deeper inclusion or nearby soil. Placing distribution lines on the contour increases the efficiency of the system.

Slope is the main limitation for local roads and streets. Depths to bedrock and frost action are also limitations in areas of Chatfield soils. Constructing roads on the contour will reduce the slope limitation. Careful planning of grades and road locations will avoid some removal of rock. Providing a coarse grained subgrade will reduce frost action.

273E—Urban land-Charlton-Chatfield complex, rocky, 15 to 45 percent slopes

Map Unit Setting

Slope: moderately steep to steep
Landscape: ridges, hills, uplands
Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Urban land and similar soils: 35 percent Charlton and similar soils: 25 percent
Chatfield and similar soils: 15 percent
Minor components: 25 percent

Major Components

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H—0 to 6 inches; material

Charlton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 4 inches; fine sandy loam
Bw1-4 to 7 inches; fine sandy loam
Bw2—7 to 19 inches; fine sandy loam
Bw3-19 to 27 inches; gravelly fine sandy loam
C-27 to 65 inches; gravelly fine sandy loam

Chatfield and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa-0 to 1 inch; highly decomposed plant material
A-1 to 6 inches; gravelly fine sandy loam
Bw1-6 to 15 inches; gravelly fine sandy loam
Bw2—15 to 29 inches; gravelly fine sandy loam
2R—29 to 80 inches; unweathered bedrock

Major Component Properties and Qualities

Charlton and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet
Flooding: none

Chatfield and similar soils

Depth to bedrock: moderately deep to deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Urban land and similar soils

Land capability classification (non-irrigated): 8

Charlton and similar soils

Land capability classification (non-irrigated): 6e
Hydrologic group: B

Chatfield and similar soils
 Land capability classification (non-irrigated): 6e
 Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of somewhat excessively drained Hollis soils, moderately well drained Sutton soils and poorly drained Leicester soils. Hollis soils are in areas where the bedrock is between 10 and 20 inches deep. Sutton soils are on slightly lower areas and Leicester soils are in depressions and along drainageways. Udorthents are included adjacent to buildings and other structures. Minor componets and rock outcrop make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Shallow depth to bedrock in areas of Chatfield soils and rock outcroppings is also a limitation for dwellings with basements. Erosion is a severe or very severe hazard during construction. Uneven slopes and variable depth to bedrock reduce site selection. Where possible, dwellings with basements should be constructed in a deeper inclusion, in a less sloping inclusion, or nearby soil.

Slope is the main limitation for lawns and landscaping. Large stones are also a limitation in areas of Charlton soils and the thin soil layer are also limitations in areas of Chatfield soils. Droughtiness can make establishment and maintenance of lawns difficult. Addition of fill material and removing the stones will reduce these limitations.

Slope in areas of Charlton soils is the main limitation for septic tank absorption fields. Depth to bedrock in areas of Chatfield soils and rock outcroppings over portions of the landscape are also limitations. There is a hazard of groundwater pollution in areas of Chatfield soils because the soil layer is not thick enough to adequately filter effluent. A more suitable site should be considered in a deeper inclusion or nearby soil. Placing distribution lines on the contour increases the efficiency of the system.

Slope is the main limitation for local roads and streets. Depths to bedrock and frost action are also limitations in areas of Chatfield soils. Constructing roads on the contour will reduce the slope limitation. Careful planning of grades and road locations will avoid some removal of rock. Providing a coarse grained subgrade will reduce frost action.

275C—Urban land-Chatfield complex, rocky, 3 to 15 percent slopes

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: ridges, uplands, hills
Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Urban land and similar soils: 45 percent
Chatfield and similar soils: 30 percent
Minor components: 25 percent

Major Components

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H—0 to 6 inches; material

Chatfield and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa-0 to 1 inch; highly decomposed plant material
A-1 to 6 inches; gravelly fine sandy loam
Bw1-6 to 15 inches; gravelly fine sandy loam
Bw2-15 to 29 inches; gravelly fine sandy loam
2R-29 to 80 inches; unweathered bedrock

Major Component Properties and Qualities

Depth to bedrock: moderately deep to deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Urban land and similar soils
Land capability classification (non-irrigated): 8
Chatfield and similar soils
Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of somewhat excessively drained Hollis soils, well drained Charlton soils, moderately well drained Sutton soils and poorly drained Leicester soils. Hollis soils are in areas where the bedrock is between 10 and 20 inches deep and Charlton soils are very deep. Sutton soils are on slightly lower areas and Leicester soils are in depressions and along drainageways. Udorthents are included adjacent to buildings and other structures. Minor componets and rock outcrops make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

Shallow depth to bedrock and rock outcroppings are the main limitations for dwellings with basements. Slope is also a limitation in areas of Charlton soils. Erosion is a slight to moderate hazard during construction. Uneven slopes and variable depth to bedrock reduce site selection. Where possible, dwellings with basements should be constructed in a deeper inclusion or nearby soil.

Slope and a thin soil layer are the main limitations for lawns and landscaping. Droughtiness can make establishment and maintenance of lawns difficult. Addition of fill material will reduce these limitations.

Depth to bedrock and rock outcroppings are the main limitations for septic tank absorption fields. There is a hazard of groundwater pollution because the soil layer is not thick enough to adequately filter effluent. A more suitable site should be considered in a deeper inclusion or nearby soil.

Depth to bedrock and frost action are the main limitations for local roads and streets. Careful planning of grades and road locations will avoid some removal of rock. Providing a coarse grained subgrade will reduce frost action.

275E—Urban land-Chatfield-Rock outcrop complex, 15 to 45 percent slopes

Map Unit Setting

Slope: moderately steep or steep
Landscape: hills, ridges, uplands
Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Urban land and similar soils: 35 percent
Chatfield and similar soils: 25 percent
Rock outcrop and similar soils: 15 percent
Minor components: 25 percent

Major Components

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{H}-0$ to 6 inches; material

Chatfield and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa-0 to 1 inch; highly decomposed plant material
A-1 to 6 inches; gravelly fine sandy loam
Bw1-6 to 15 inches; gravelly fine sandy loam
Bw2-15 to 29 inches; gravelly fine sandy loam
2R-29 to 80 inches; unweathered bedrock

Major Component Properties and Qualities

Depth to bedrock: moderately deep or deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Urban land and similar soils
Land capability classification (non-irrigated): 8
Chatfield and similar soils
Land capability classification (non-irrigated): 7s
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of somewhat excessively drained Hollis soils, moderately well drained Sutton soils and poorly drained Leicester soils. Hollis soils are in areas where the bedrock is between 10 and 20 inches deep. Sutton soils are on slightly lower areas and Leicester soils are in depressions and along drainageways. Udorthents are included adjacent to buildings and other structures. Minor componets and rock outcrop make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Shallow depth to bedrock and rock outcroppings is also a limitation for dwellings with basements. Erosion is a severe hazard during construction. Uneven slopes and variable depth to bedrock reduce site selection. Where possible, dwellings with basements should be constructed in a deeper inclusion, in a less sloping inclusion, or nearby soil.

Slope, depth to bedrock, and rock outcroppings are the main limitations for septic tank absorption fields. There is a hazard of groundwater pollution because the soil layer is not thick enough to adequately filter effluent. A more suitable site should be considered in a deeper inclusion or nearby soil. Placing distribution lines on the contour increases the efficiency of the system.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

282B—Broadbrook-Urban land complex, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: drumlins on uplands, hills on uplands, till plains on uplands Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Broadbrook and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Broadbrook and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam
Bw1-8 to 14 inches; silt loam

Bw2-14 to 25 inches; silt loam
2Cd-25 to 65 inches; gravelly fine sandy loam
Urban land and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
H—0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: eolian deposits over coarse-loamy lodgment till derived from gneiss and/or schist and/or sandstone and/or basalt
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Broadbrook and similar soils

Land capability classification (non-irrigated): 2e
Hydrologic group: C

Urban land and similar soils

Land capability classification (non-irrigated): 8

Minor Components

Included with this soil in mapping are areas of well drained Holyoke soils, well drained Narragansett and Wethersfield soils, moderately well drained Rainbow soils, poorly drained Wilbraham soils, and very poorly drained Menlo soils. Holyoke soils are in areas where the bedrock is between 10 and 20 inches deep. Narragansett soils developed on very friable to firm sandy till and Wethersfield soils are 7.5YR or redder in the B horizon. Rainbow soils are on slightly lower areas. Wilbraham and Menlo soils are in depressions and along drainageways. Udorthents are included adjacent to buildings and other structures. Minor componets and rock outcrop make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

The seasonal high water table is the main limitation for dwellings with basements. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. This unit has few limitations for lawns and landscaping.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional septic system by extending the length of distribution lines will allow on site sewage disposal in many places.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarse grained subgrade will reduce these limitations.

284B—Paxton-Urban land complex, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: drumlins on uplands, till plains on uplands, hills on uplands
Size of map unit: Areas commonly range from 3 to 85 acres.

Map Unit Composition

Paxton and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Paxton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 15 inches; fine sandy loam
Bw2-15 to 26 inches; fine sandy loam
Cd-26 to 65 inches; gravelly fine sandy loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Paxton and similar soils

Land capability classification (non-irrigated): 2 e
Hydrologic group: C

Urban land and similar soils

Land capability classification (non-irrigated): 8

Minor Components

Included with this soil in mapping are areas of well drained Canton, Charlton, and Stockbridge soils, moderately well drained Woodbridge soils and poorly drained Ridgebury soils. Canton, Charlton, and Stockbridge soils are in areas lacking a firm substratum. Woodbridge soils are on slightly lower areas and Ridgebury soils are in depressions and along drainageways. Soils with a redder color in the substratum are
included in Hartford, Middlesex, and New Haven counties. Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

The seasonal high water table is the main limitation for dwellings with basements. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. This unit has few limitations for lawns and landscaping.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional septic system by extending the length of distribution lines will allow on site sewage disposal in many places.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarse grained subgrade will reduce these limitations.

284C—Paxton-Urban land complex, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: drumlins on uplands, hills on uplands, till plains on uplands
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Paxton and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Paxton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 15 inches; fine sandy loam
Bw2-15 to 26 inches; fine sandy loam
Cd-26 to 65 inches; gravelly fine sandy loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{H}-0$ to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderate
Available water capacity: moderate

Reaction: very strongly acid to slightly acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Paxton and similar soils
Land capability classification (non-irrigated): 3e
Hydrologic group: C
Urban land and similar soils
Land capability classification (non-irrigated): 8

Minor Components

Included with this soil in mapping are areas of well drained Canton, Charlton, and Stockbridge soils, moderately well drained Woodbridge soils and poorly drained Ridgebury soils. Canton, Charlton, and Stockbridge soils are in areas lacking a firm substratum. Woodbridge soils are on slightly lower areas and Ridgebury soils are in depressions and along drainageways. Soils with a redder color in the substratum are included in Hartford, Middlesex, and New Haven counties. Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

The seasonal high water table and slope are the main limitations for dwellings with basements. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. Designing dwellings to conform to the slope of the land will reduce the slope limitation. Erosion is a moderate hazard during construction. Slope is the main limitation for lawns and landscaping.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional septic system by extending the length of distribution lines will allow on site sewage disposal in many places.

The seasonal high water table, slope, and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, constructing roads on the contour, and providing a coarse grained subgrade will reduce these limitations.

284D—Paxton-Urban land complex, 15 to 25 percent slopes

Map Unit Setting

Slope: moderately steep
Landscape: drumlins on uplands, hills on uplands, till plains on uplands
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Paxton and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Paxton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 15 inches; fine sandy loam
Bw2-15 to 26 inches; fine sandy loam
Cd-26 to 65 inches; gravelly fine sandy loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Paxton and similar soils

Land capability classification (non-irrigated): 4e
Hydrologic group: C

Urban land and similar soils

Land capability classification (non-irrigated): 8

Minor Components

Included with this soil in mapping are areas of well drained Canton, Charlton, and Stockbridge soils, moderately well drained Woodbridge soils and poorly drained Ridgebury soils. Canton, Charlton, and Stockbridge soils are in areas lacking a firm substratum. Woodbridge soils are on slightly lower areas and Ridgebury soils are in depressions and along drainageways. Soils with a redder color in the substratum are included in Hartford, Middlesex, and New Haven counties. Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

Slope is the main limitation for dwellings with basements. Designing dwellings to conform to the slope of the land will reduce the slope limitation. Erosion is a severe hazard during construction. Slope is the main limitation for lawns and landscaping. A site should be selected on a less sloping portion of the unit or nearby soil.

Slow percolation and slope are the main limitations for septic tank absorption fields. Modifying a conventional septic system by extending the length of distribution lines and adding fill above the impermeable substratum may allow on site sewage
disposal. Placing the distribution lines on the contour increases the efficiency of the system. A more suitable site should be considered in a less sloping, less dense inclusion or nearby soil.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

287B—Wethersfield-Urban land complex, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: drumlins on uplands, hills on uplands
Size of map unit: Areas commonly range from 3 to 75 acres.

Map Unit Composition

Wethersfield and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Wethersfield and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 3 inches; loam
Bw1-3 to 13 inches; loam
Bw2-13 to 27 inches; gravelly loam
Cd-27 to 65 inches; gravelly loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{H}-0$ to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from basalt and/or sandstone and shale
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to slightly alkaline
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none
Interpretative Groups

Wethersfield and similar soils

Land capability classification (non-irrigated): 2e
Hydrologic group: C
Urban land and similar soils
Land capability classification (non-irrigated): 8

Minor Components

Included with this soil in mapping are areas of well drained Cheshire and Yalesville soils, moderately well drained Ludlow soils, poorly drained Wilbraham soils and very poorly drained Menlo soils. Cheshire soils have a friable substratum and Yalesville soils are moderately deep to bedrock. Ludlow soils are on slightly lower areas. Wilbraham and Menlo soils are in depressions and along drainageways. Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

The seasonal high water table is the main limitation for dwellings with basements. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. This unit has few limitations for lawns and landscaping.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional septic system by extending the length of distribution lines will allow on site sewage disposal in many places.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarse grained subgrade will reduce these limitations.

287C—Wethersfield-Urban land complex, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: hills on uplands, drumlins on uplands
Size of map unit: Areas commonly range from 3 to 30 acres.

Map Unit Composition

Wethersfield and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Wethersfield and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 3 inches; loam
Bw1-3 to 13 inches; loam
Bw2-13 to 27 inches; gravelly loam
Cd—27 to 65 inches; gravelly loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from basalt and/or sandstone and shale
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to slightly alkaline
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Wethersfield and similar soils

Land capability classification (non-irrigated): 3e
Hydrologic group: C
Urban land and similar soils
Land capability classification (non-irrigated): 8

Minor Components

Included with this soil in mapping are areas of well drained Cheshire and Yalesville soils, moderately well drained Ludlow soils, poorly drained Wilbraham soils and very poorly drained Menlo soils. Cheshire soils have a friable substratum and Yalesville soils are moderately deep to bedrock. Ludlow soils are on slightly lower areas. Wilbraham and Menlo soils are in depressions and along drainageways. Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

The seasonal high water table and slope are the main limitations for dwellings with basements. Erosion is a moderate hazard during construction. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Slope is the main limitation for lawns and landscaping.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional septic system by extending the length of distribution lines will allow on site sewage disposal in many places.

The seasonal high water table, slope, and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, constructing roads on the contour, and providing a coarse grained subgrade will reduce these limitations.

287D—Wethersfield-Urban land complex, 15 to 25 percent slopes

Map Unit Setting

Slope: moderately steep
Landscape: hills on uplands, drumlins on uplands
Size of map unit: Areas commonly range from 3 to 75 acres.

Map Unit Composition

Wethersfield and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Wethersfield and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 3 inches; loam
Bw1-3 to 13 inches; loam
Bw2-13 to 27 inches; gravelly loam
Cd-27 to 65 inches; gravelly loam
Urban land and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from basalt and/or sandstone and shale
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to slightly alkaline
Depth to restrictive feature: 20 to 40 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Wethersfield and similar soils

Land capability classification (non-irrigated): 4e
Hydrologic group: C

Urban land and similar soils

Land capability classification (non-irrigated): 8

Minor Components

Included with this soil in mapping are areas of well drained Cheshire and Yalesville soils, moderately well drained Ludlow soils, poorly drained Wilbraham soils and very poorly drained Menlo soils. Cheshire soils have a friable substratum and Yalesville soils are moderately deep to bedrock. Ludlow soils are on slightly lower areas. Wilbraham and Menlo soils are in depressions and along drainageways. Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

Slope is the main limitation for dwellings with basements. Erosion is a severe hazard during construction. Designing dwellings to conform to the slope of the land will reduce this limitation. This unit has few limitations for lawns and landscaping.

Slow percolation and slope are the main limitations for septic tank absorption fields. Modifying a conventional septic system by extending the length of distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. Placing the distribution lines on the contour increases the efficiency of the system. A more suitable site should be considered in a less sloping, less dense inclusion or nearby soil.

Slope is the main limitation for local roads and streets. Constructing roads on the contour or locating them on less sloping inclusions will reduce this limitation.

290B—Stockbridge-Urban land complex, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: hills on uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Stockbridge and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Stockbridge and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 10 inches; loam
Bw1-10 to 20 inches; loam
Bw2-20 to 28 inches; loam
C1-28 to 42 inches; gravelly loam
C2-42 to 48 inches; gravelly loam
C3-48 to 65 inches; gravelly loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist Permeability: moderately slow or moderate
Available water capacity: high
Reaction: strongly acid to moderately alkaline Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Stockbridge and similar soils
Land capability classification (non-irrigated): 2e
Hydrologic group: B

Urban land and similar soils
 Land capability classification (non-irrigated): 8

Minor Components

Included with this soil in mapping are areas of well drained Farmington, well drained Nellis and Paxton soils, moderately well drained Georgia soils, poorly drained Mudgepond soils, and very poorly drained Alden soils. Farmington soils are in areas where the underlying limestone bedrock is between 10 and 20 inches below the surface. Paxton soils have a dense substratum and are more acid. Nellis soils are in areas where the soil is calcareous within 40 inches. Georgia soils are on slightly lower areas. Mudgepond and Alden soils are in depressions and along drainageways. Also included in Litchfield County are some areas with slopes less than 3 percent. Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

This unit has few limitations for dwellings with basements and lawns and landscaping.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional septic system by extending the length of distribution lines will allow on site sewage disposal.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

290C—Stockbridge-Urban land complex, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: hills on uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Stockbridge and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Stockbridge and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 10 inches; loam
Bw1-10 to 20 inches; loam
Bw2-20 to 28 inches; loam
C1-28 to 42 inches; gravelly loam
C2-42 to 48 inches; gravelly loam
C3-48 to 65 inches; gravelly loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
Permeability: moderately slow or moderate
Available water capacity: high
Reaction: strongly acid to moderately alkaline Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Stockbridge and similar soils

Land capability classification (non-irrigated): 3e
Hydrologic group: B
Urban land and similar soils
Land capability classification (non-irrigated): 8

Minor Components

Included with this soil in mapping are areas of well drained Farmington, well drained Nellis and Paxton soils, moderately well drained Georgia soils, poorly drained Mudgepond soils, and very poorly drained Alden soils. Farmington soils are in areas where the underlying limestone bedrock is between 10 and 20 inches below the surface. Paxton soils have a dense substratum and are more acid. Nellis soils are in areas where the soil is calcareous within 40 inches. Georgia soils are on slightly lower areas. Mudgepond and Alden soils are in depressions and along drainageways. Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional septic system by extending the length of distribution lines will allow on site sewage disposal.

Frost action and slope are the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth and constructing roads on the contour will reduce these limitations.

290D—Stockbridge-Urban land complex, 15 to 25 percent slopes

Map Unit Setting

[^3]
Map Unit Composition

Stockbridge and similar soils: 40 percent
Urban land and similar soils: 35 percent
Minor components: 25 percent

Major Components

Stockbridge and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 10 inches; loam
Bw1-10 to 20 inches; Ioam
Bw2-20 to 28 inches; loam
C1-28 to 42 inches; gravelly loam
C2—42 to 48 inches; gravelly loam
C3-48 to 65 inches; gravelly loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{H}-0$ to 6 inches; material

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
Permeability: moderately slow or moderate
Available water capacity: high
Reaction: strongly acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none
Interpretative Groups

Stockbridge and similar soils

Land capability classification (non-irrigated): 4e
Hydrologic group: B

Urban land and similar soils

Land capability classification (non-irrigated): 8

Minor Components

Included with this soil in mapping are areas of well drained Farmington, well drained Nellis and Paxton soils, moderately well drained Georgia soils, poorly drained Mudgepond soils, and very poorly drained Alden soils. Farmington soils are in areas where the underlying limestone bedrock is between 10 and 20 inches below the surface. Paxton soils have a dense substratum and are more acid. Nellis soils are in areas where the soil is calcareous within 40 inches. Georgia soils are on slightly lower areas. Mudgepond and Alden soils are in depressions and along drainageways. Udorthents are included adjacent to buildings and other structures. Minor componets make up about 25 percent of the unit.

Use and Management

This unit is in urban and suburban development. The open areas between structures are in lawns, gardens, woodland, or brushland.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a severe hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. A site should be selected on a less sloping portion of the unit or nearby site.

Slow percolation and slope are the main limitations for septic tank absorption fields. Modifying a conventional septic system by extending the length of distribution lines and adding fill may allow on site sewage disposal. Placing the distribution lines on the contour increases the efficiency of the system. A more suitable site should be considered in a less sloping inclusion or nearby soil.

Slope is the main limitation for local roads and streets. Constructing roads on the contour or locating them on less sloping inclusions will reduce these limitations.

301—Beaches-Udipsamments complex, coastal

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: beachs on coastal plains
Size of map unit: Areas are long and narrow and range from 3 to 100 acres.

Map Unit Composition

Beaches and similar soils: 50 percent Udipsamments and similar soils: 35 percent
Minor components: 15 percent

Major Components

Beaches and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
C-0 to 65 inches; gravelly sand

Udipsamments and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
C1-0 to 38 inches; sand
C2-38 to 50 inches; coarse sand
C3-50 to 65 inches; sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: excessively drained
Parent material: beach sand
Permeability: rapid or very rapid
Available water capacity: low
Reaction: moderately acid to neutral
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 48 to 72 inches
Flooding: occasional

Interpretative Groups

Beaches and similar soils
Land capability classification (non-irrigated): 8

Udipsamments and similar soils
 Land capability classification (non-irrigated): 3s
 Hydrologic group: A

Minor Components

Included with this complex in mapping are small areas of very poorly drained Westbrook, Pawcatuck, and Ipswich soils in tidal marshes. Also included are areas of Udorthents, urbanized areas, and a few areas of rock outcrop. Udorthents are in areas that have been altered by cutting and filling. Minor componets make up about 15 percent of this map unit.

Use and Management

This complex is poorly suited for most uses other than for recreation. On site investigation is required to determine the suitability for proposed uses.

Coastal flooding is the main limitation for dwellings with basements, lawns and landscaping, and septic tank absorption fields. The high water table is also a limitation for septic tank adsorption fields. A more suitable site should be selected on a drier soil that does not flood. Coastal flooding is the main limitations for local roads and streets. Providing drainage and building on raised fill with a coarse grained subgrade will reduce this limitation. A more suitable site should be considered on a soil that does not flood during coastal storms.

302—Dumps

Map Unit Setting

Slope: nearly level to strongly sloping
Landscape: None assigned Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Dumps and similar soils: 95 percent Minor components: 5 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-C-0 to 65 inches; variable

Interpretative Groups

Land capability classification (non-irrigated): 8

Minor Components

Included in mapping are small areas of Westbrook soils and small areas of Udorthents. Westbrook soils are in very poorly drained tidal marshes. Udorthents are soils that have been altered by cutting and filling. In a few small dumps there are rock outcrops. A few dumps along the larger steams are subject to flooding. Minor componets make up about 5 percent of this map unit.

Use and Management

This unit is in both active and inactive landfills.
Dumps require onsite investigation and evaluation if considered for other uses. An important item to consider is the leachate and from the land fill and its environmental inpacts.

303—Pits, Quarries

Map Unit Setting

Slope: nearly level to very steep
Landscape: hills, ridges, uplands
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Pits, quarries and similar soils: 90 percent
Minor components: 10 percent

Major Components

Pits, quarries and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
R-0 to 1 inch; unweathered bedrock
Interpretative Groups
Land capability classification (non-irrigated): 8

Minor Components

Included in mapping are small areas of somewhat excessively drained Hollis soils, well drained Holyoke soils and Farmington soils where bedrock is 10 to 20 inches below the surface. bedrock outcrops and cliff faces are also common. Minor componets make up 10 percent of this map unit.

Use and Management

This unit is in both active and inactive quarries. Pits and quarries require onsite investigation and evaluation if considered for other uses.

304—Udorthents, loamy, very steep

Map Unit Setting

Slope: steep to very steep
Landscape: terrace escarpments on lake plains
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Udorthents and similar soils: 90 percent
Minor components: 10 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 5 inches; loam
C1-5 to 21 inches; gravelly loam
C2-21 to 80 inches; very gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained

Parent material: glaciolacustrine deposits
Permeability: very slow to very rapid
Available water capacity: high
Reaction: very strongly acid to slightly alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 54 to 72 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 7e

Hydrologic group: B

Minor Components

Included with this unit in mapping are small areas of very poorly drained Maybid soils and poorly drained Shaker, Scitico, and Raynam soils in depressions and along drainageways. Soils subject to flooding are included along streams in highly dissected areas. Exsesively drained Windsor soils are included on the upper slopes of some map uints. Minor componets make up about 10 percent of the unit.

Use and Management

Most areas are in woodland or brushland. Some areas are in pasture or community developement.

Steep slopes are the main limitation for dwellings with basements and lawns and landscaping. slippage is also a limitation for dwellings with basements. Erosion is a very severe hazard during construction. A site should be selected on a nearby soil that is less sloping.

Slope, slow percolation and slippage are the main limmitations for septic tank adsorption fields. Modifying a conventional system by extending the the length of the distrbution lines along the contour and adding fill my allow for onsite sewage disposal. A more suitable site should be considered in a less sloping soil.

Slope, frost action and slippage are the main limitations for local roads and streets. Constructing roads on the contour or locating them on less sloping inclusions will reduce the slope limitations. Providing a coarse grained sugrade to the frost depth will reduce the frost limitation.

305-Udorthents-Pits complex, gravelly

Map Unit Setting

Slope: nearly level to steep
Landscape: sand pits, gravel pits
Size of map unit: Areas commonly range from 3 to 200 acres.

Map Unit Composition

Udorthents and similar soils: 65 percent
Pits and similar soils: 25 percent
Minor components: 10 percent

Major Components

Udorthents and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 5 inches; loam
C1-5 to 21 inches; gravelly loam

C2—21 to 80 inches; very gravelly sandy loam

Pits and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
C-0 to 65 inches; very gravelly sand

Major Component Properties and Qualities

Udorthents and similar soils
Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: gravelly outwash
Permeability: very slow to very rapid
Available water capacity: high
Reaction: very strongly acid to slightly alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 24 to 54 inches
Flooding: none

Interpretative Groups

Udorthents and similar soils

Land capability classification (non-irrigated): 4e
Hydrologic group: B

Pits and similar soils

Land capability classification (non-irrigated): 8

Minor Components

Included with this unit in mapping are areas of undisturbed soils. These are excessively drained Hinckley and Windsor soils, somewhat excessively drained Merrimac and Gloucester soils, and moderately well drained Ninigret and Sudbury soils. Also included are small bodies of water in areas that were excavated below the ground water table. Minor components make up 10 percent of the mapunit.

Use and Management

Most areas are in active sand and gravel mines. Some areas are in abandon sand and gravel mines which have reverted back to woodland and or brushland.

The characteristics of this unit are so variable that an onsite investigation is required to determine the suitability for proposed uses.

306-Udorthents-Urban land complex

Map Unit Setting

Slope: nearly level to moderately steep
Landscape: urban lands
Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Udorthents and similar soils: 50 percent
Urban land and similar soils: 35 percent
Minor components: 15 percent

Major Components

Udorthents and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 5 inches; loam
C1-5 to 21 inches; gravelly loam
C2—21 to 80 inches; very gravelly sandy loam

Urban land and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Major Component Properties and Qualities

Udorthents and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: drift
Permeability: very slow to very rapid
Available water capacity: high
Reaction: very strongly acid to slightly alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 54 to 72 inches
Flooding: none

Interpretative Groups

Udorthents and similar soils
Land capability classification (non-irrigated): 3e
Hydrologic group: B

Urban land and similar soils

Land capability classification (non-irrigated): 8

Minor Components

Included with this unit in mapping are areas of udorthents with a wet substratum, which were fomerly poorly drained and very poorly drained soils. Also incuded are areas of undisturbed soils and rock outcrop. Undisturbed soils are in areas between buildings and structures. Minor componets make up about 20 percent of the unit.

Use and Management

Most areas are in urban and built up areas. Some areas are in adjacienct open land.

The characteristics of this unit are so variable that an onsite investigation is required to determine the suitability for proposed uses.

307-Urban Land

Map Unit Setting

Slope: nearly level to steep
Landscape: none assigned
Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Urban land and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
H-0 to 6 inches; material

Interpretative Groups

Land capability classification (non-irrigated): 8

Minor Components

Included with this unit in mapping are areas of udorthents with a wet substratum, which were fomerly poorly drained and very poorly drained soils. Also incuded are areas of undisturbed soils and rock outcrop. Undisturbed soils are in areas between buildings and structures. Minor componets make up about 20 percent of the unit.

Use and Management

Most areas are in urban and built up areas. Some areas are in adjacienct open land.

The characteristics of this unit are so variable that an onsite investigation is required to determine the suitability for proposed uses.

308-Udorthents, smoothed

Map Unit Setting

Slope: nearly level to steep
Landscape: leveled lands, fills
Size of map unit: Areas commonly range from 3 to 300 acres.

Map Unit Composition

Udorthents and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 5 inches; loam
C1-5 to 21 inches; gravelly loam
C2-21 to 80 inches; very gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: not specified
Permeability: very slow to very rapid
Available water capacity: high
Reaction: very strongly acid to slightly alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 24 to 54 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4e

 Hydrologic group: B
Minor Components

Included with this unit in mapping are areas of udorthents which have a wet substratum, urban land, rock outcrop, and undisturbed soils. Rock outcrop is in areas which have been cut, exposing bedrock. Undisturbed soils are in areas where the fill is very thin. Inclusions having a wet substratum are filled areas which were formerly poorly drained and very poorly drained. Also inclucded are reclaimed sand and gravel pits and the soil is dominated by sand and gravel in these areas. Minor componets make up 20 percent of the unit.

Use and Management

Most areas are used for recreation, some areas are used for cropland, hayland, pasture or community development.

The characteristics of this unit are so variable that an onsite investigation is required to determine the suitability for proposed uses.

309—Udorthents, flood control

Map Unit Setting

Slope: nearly level to steep
Landscape: artificial levees
Size of map unit: Areas commonly range from 3 to 300 acres.

Map Unit Composition

Udorthents and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 5 inches; loam
C1-5 to 21 inches; gravelly loam
C2—21 to 80 inches; very gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: drift
Permeability: very slow to very rapid
Available water capacity: high
Reaction: very strongly acid to slightly alkaline Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: 24 to 54 inches
Flooding: very rare

Interpretative Groups

Land capability classification (non-irrigated): 4e
Hydrologic group: B

Minor Components

Included with this unit in mapping are areas of udorthents which have a wet substratum, Typic Udifluvents, urban land, rock outcrop, and undisturbed soils. Rock outcrop is in areas which have been cut, exposing bedrock. Undisturbed soils are in areas where the fill is very thin. Inclusions having a wet substratum are filled areas which were formerly poorly drained and very poorly drained. Minor componets make up 20 percent of the unit.

Use and Management

Most areas are in dams, levees, channels or other flood control structures.

310-Udorthents, periodically flooded

Map Unit Setting

Slope: nearly level to steep
Landscape: river valleys, valleys
Size of map unit: Areas commonly range from 50 to 500 acres in size.

Map Unit Composition

Udorthents and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 5 inches; loam
C1-5 to 21 inches; gravelly loam
C2-21 to 80 inches; very gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: drift
Permeability: very slow to very rapid
Available water capacity: high
Reaction: very strongly acid to slightly alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 24 to 54 inches
Flooding: very rare

Interpretative Groups

Land capability classification (non-irrigated): 4e Hydrologic group: B

Minor Components

Included with this unit in mapping are areas of udorthents which have a wet substratum, Typic Udifluvents, urban land, rock outcrop, and undisturbed soils. Rock outcrop is in areas which have been cut, exposing bedrock. Undisturbed soils are in areas where the fill is very thin. Inclusions having a wet substratum are filled areas which were formerly poorly drained and very poorly drained. Minor componets make up 20 percent of the unit.

Use and Management

Most areas are in flood control impoundments.
The characteristics of this unit are so variable that an onsite investigation is required to determine the suitability for proposed uses.

401C-Macomber-Taconic complex, 3 to 15 percent slopes, very rocky

Map Unit Setting

Slope: gently sloping to strongly sloping Landscape: bedrock-controlled hills on uplands, bedrock-controlled ridges on uplands Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Macomber and similar soils: 55 percent
Taconic and similar soils: 30 percent
Minor components: 15 percent

Major Components

Macomber and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa-0 to 1 inch; highly decomposed plant material
A-1 to 2 inches; very channery loam
Bw1-2 to 10 inches; very channery loam
Bw2-10 to 21 inches; very channery loam
C-21 to 30 inches; very channery loam
2R-30 to 80 inches; bedrock

Taconic and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 4 inches; very gravelly loam
Bw-4 to 11 inches; very gravelly loam
2R-11 to 80 inches; bedrock

Major Component Properties and Qualities

Macomber and similar soils

Depth to bedrock: moderately deep to deep
Drainage class: well drained
Parent material: loamy skeletal melt-out till derived from phyllite and/or schist
Permeability: moderate
Available water capacity: low
Reaction: very strongly acid to strongly acid
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Taconic and similar soils

Depth to bedrock: shallow to moderately deep
Drainage class: somewhat excessively drained

Parent material: loamy melt-out till derived from phyllite and/or schist
Permeability: moderate or moderately rapid
Available water capacity: very low
Reaction: very strongly acid to strongly acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none
Interpretative Groups

Macomber and similar soils

Land capability classification (non-irrigated): 6s
Hydrologic group: C
Taconic and similar soils
Land capability classification (non-irrigated): 6s
Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of well drained Dummerston and Lanesboro soils, and very poorly drained Wonsqueak and Bucksport soils. Dummerston soils are very deep. Lanesboro soils are very deep and have a dense substratum. Wonsqueak and Bucksport soils are organic soils in depressions. Also included are areas of rock outcrop and steeper slopes. Minor componets make up about 15 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development.
Shallow depth to bedrock and many rock outcrops in areas of Taconic soils are the main limitations for dwellings with basements and lawns and landscaping. The short, uneven slopes are also a limitation. Erosion is a moderate to severe hazard during construction. Uneven slopes and variable depth to bedrock reduce site selection. Where possible, dwellings with basements should be constructed in a deeper, less sloping inclusion or nearby soil. Droughtiness can make establishment and maintenance of lawns difficult. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Shallow depth to bedrock and many rock outcrops are the main limitations for septic tank absorption fields. There is the hazard of groundwater pollution because the soil is not thick enough to filter effluent. A more suitable site should be selected in a deeper inclusion or nearby soil.

Shallow depth to bedrock and many rock outcrops are the main limitations for local roads and streets. Frost action is also a limitation. Careful planning of grades and road locations will avoid some removal of rock. Providing a coarse grained subgrade will reduce frost action.

402D-Taconic-Macomber-Rock outcrop complex, 15 to 25 percent slopes

Map Unit Setting

Slope: moderately steep
Landscape: bedrock-controlled ridges on uplands, bedrock-controlled hills on uplands Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Macomber and similar soils: 50 percent
Taconic and similar soils: 25 percent
Rock outcrop and similar soils: 15 percent
Minor components: 10 percent

Major Components

Macomber and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa-0 to 1 inch; highly decomposed plant material
A-1 to 2 inches; very channery loam
Bw1-2 to 10 inches; very channery loam
Bw2-10 to 21 inches; very channery loam
C-21 to 30 inches; very channery loam
2R-30 to 80 inches; bedrock

Taconic and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 4 inches; very gravelly loam
Bw-4 to 11 inches; very gravelly loam
2R-11 to 80 inches; bedrock

Major Component Properties and Qualities

Macomber and similar soils

Depth to bedrock: moderately deep to deep
Drainage class: well drained
Parent material: loamy skeletal melt-out till derived from phyllite and/or schist
Permeability: moderate
Available water capacity: low
Reaction: very strongly acid to strongly acid
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Taconic and similar soils

Depth to bedrock: shallow to moderately deep
Drainage class: somewhat excessively drained
Parent material: loamy melt-out till derived from phyllite and/or schist
Permeability: moderate or moderately rapid
Available water capacity: very low
Reaction: very strongly acid to strongly acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Macomber and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: C
Taconic and similar soils
Land capability classification (non-irrigated): 7s
Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of well drained Dummerston and Lanesboro soils. Dummerston soils are very deep. Lanesboro soils are very deep and have a dense substratum. Also include are small areas of less slope.Minor componets make up about 10 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development.
Slope is the main limitation for dwellings with basements and lawns and landscaping. Shallow depth to bedrock and many rock outcrops are also limitations. Erosion is a very severe hazard during construction. Additional fill will reduce the depth limitation. A more suitable site should be selected on a less sloping, deeper portion of the unit or nearby soil.

Slope, shallow depth to bedrock, and many rock outcrops are the main limitations for septic tank absorption fields. There is the hazard of groundwater pollution because the soil is not thick enough to filter effluent. A more suitable site should be selected in a less sloping, deeper inclusion or nearby soil.

Slope and many rock outcrops are the main limitations for local roads and streets. Shallow depth to bedrock is also a limitation. Constructing roads on the contour will reduce the slope limitation. Careful planning of grades and road locations will avoid some removal of rock.

403C-Taconic-Rock outcrop complex, 3 to 15 percent slopes

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: bedrock-controlled ridges, uplands, bedrock-controlled hills
Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Taconic and similar soils: 70 percent
Rock outcrop and similar soils: 25 percent
Minor components: 5 percent

Major Components

Taconic and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 4 inches; very gravelly loam
Bw-4 to 11 inches; very gravelly loam
2R-11 to 80 inches; bedrock

Major Component Properties and Qualities

Taconic and similar soils

Depth to bedrock: shallow to moderately deep
Drainage class: somewhat excessively drained
Parent material: loamy melt-out till derived from phyllite and/or schist
Permeability: moderate or moderately rapid
Available water capacity: very low

Reaction: very strongly acid to strongly acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Taconic and similar soils
 Land capability classification (non-irrigated): 7s
 Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of well drained Macomber. Macomber soils are moderately deep with bedrock between 20 to 40 inches. Also included are small areas of steeper slopes. areas Minor componets up about 5 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development.
Shallow depth to bedrock and many rock outcrops in areas of Taconic soils are the main limitations for dwellings with basements and lawns and landscaping. The short, uneven slopes are also a limitation. Erosion is a moderate to severe hazard during construction. Uneven slopes and variable depth to bedrock reduce site selection. Where possible, dwellings with basements should be constructed in a deeper, less sloping inclusion or nearby soil. Droughtiness can make establishment and maintenance of lawns difficult. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Shallow depth to bedrock and many rock outcrops are the main limitations for septic tank absorption fields. There is the hazard of groundwater pollution because the soil is not thick enough to filter effluent. A more suitable site should be selected in a deeper inclusion or nearby soil.

Shallow depth to bedrock and many rock outcrops are the main limitations for local roads and streets. Frost action is also a limitation. Careful planning of grades and road locations will avoid some removal of rock. Providing a coarse grained subgrade will reduce frost action.

403E-Taconic-Rock outcrop complex, 15 to 45 percent slopes

Map Unit Setting

Slope: moderately steep to steep
Landscape: uplands, bedrock-controlled hills, bedrock-controlled ridges
Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Taconic and similar soils: 70 percent
Rock outcrop and similar soils: 20 percent
Minor components: 10 percent

Major Components

Taconic and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-

Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 4 inches; very gravelly loam
Bw-4 to 11 inches; very gravelly loam
2R-11 to 80 inches; bedrock

Major Component Properties and Qualities

Taconic and similar soils

Depth to bedrock: shallow to moderately deep
Drainage class: somewhat excessively drained
Parent material: loamy melt-out till derived from phyllite and/or schist
Permeability: moderate to moderately rapid
Available water capacity: very low
Reaction: very strongly acid to strongly acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Taconic and similar soils
 Land capability classification (non-irrigated): 7s
 Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of well drained Macomber and Dummerston soils. Macomber soils are moderately deep with bedrock between 20 and 40 inches and Dummerston soils are very deep. Also included are small areas of less sloping land. Minor componets make up about 10 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development.
Slope is the main limitation for dwellings with basements and lawns and landscaping. Shallow depth to bedrock and many rock outcrops are also limitations. Erosion is a very severe hazard during construction. Additional fill will reduce the depth limitation. A more suitable site should be selected on a less sloping, deeper portion of the unit or nearby soil.

Slope, shallow depth to bedrock, and many rock outcrops are the main limitations for septic tank absorption fields. There is the hazard of groundwater pollution because the soil is not thick enough to filter effluent. A more suitable site should be selected in a less sloping, deeper inclusion or nearby soil.

Slope and many rock outcrops are the main limitations for local roads and streets. Shallow depth to bedrock is also a limitation. Constructing roads on the contour will reduce the slope limitation. Careful planning of grades and road locations will avoid some removal of rock.

403F-Taconic-Rock outcrop complex, 45 to 70 percent slopes

Map Unit Setting

Slope: very steep

Landscape: bedrock-controlled ridges, bedrock-controlled hills, uplands Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Taconic and similar soils: 70 percent
Rock outcrop and similar soils: 20 percent
Minor components: 10 percent

Major Components

Taconic and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 4 inches; very gravelly loam
Bw-4 to 11 inches; very gravelly loam
2R-11 to 80 inches; bedrock

Major Component Properties and Qualities

Taconic and similar soils

Depth to bedrock: shallow to moderately deep
Drainage class: somewhat excessively drained
Parent material: loamy melt-out till derived from phyllite and/or schist
Permeability: moderate or moderately rapid
Available water capacity: very low
Reaction: very strongly acid to strongly acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Taconic and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of well drained Macomber and Dummerston soils. Macomber soils are moderately deep with bedrock between 20 and 40 inches and Dummerston soils are very deep. Also included are small areas of less sloping land. Minor componets make up about 10 percent of the map unit.

Use and Management

Most areas are in woodland.
Many rock outcrops, slope, and shallow depth to bedrock are the main limitations for dwellings with basements and lawns and landscaping. Erosion is a very severe hazard during construction. Addition of fill will reduce the depth limitation. A more suitable site should be selected in a deeper, less sloping inclusion or nearby soil.

Many rock outcrops, slope, and shallow depth to bedrock are the main limitations for septic tank absorption fields. There is the hazard of groundwater pollution because the soil is not thick enough to filter effluent. A more suitable site should be selected in a less sloping, deeper inclusion or nearby soil.

Shallow depth to bedrock, slope, and many rock outcrops are the main limitations for local roads and streets. Constructing roads on the contour or locating them on less sloping inclusions will reduce the slope limitation. Careful planning of grades and road locations will avoid some removal of rock.

405C—Dummerston gravelly loam, 3 to 15 percent slopes, very stony

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: uplands, hills
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Dummerston and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 2 inches; gravelly loam
E-2 to 3 inches; gravelly loam
Bs-3 to 4 inches; gravelly loam
Bw1-4 to 6 inches; gravelly loam
Bw2-6 to 11 inches; gravelly loam
Bw3-11 to 22 inches; gravelly loam
BC-22 to 27 inches; gravelly loam
C1-27 to 40 inches; very gravelly loam
C2-40 to 64 inches; very stony loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from phyllite and/or schist Permeability: moderate
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of well drained Lanesboro soils, moderately well drained Fullam soils, and poorly drained Brayton soils. Macomber soils are moderately deep, between 20 and 40 inches to bedrock. Lanesboro, Fullam, and Brayton soils have a dense substratum. Also included are small areas of steeper slopes. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in residential development.
Slope is the main limitation for dwellings with basements. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the
land will reduce the slope limitation. Large stones are a limitation for lawns and landscaping. Removing the stones will reduce the limitation.

Slope is the main limitation for septic tank absorption fields. Placing the distribution lines on the contour increases the efficiency of the system. Specially designed septic systems are necessary in some areas.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

405E—Dummerston gravelly loam, 15 to 45 percent slopes, very stony

Map Unit Setting

Slope: moderately steep to steep
Landscape: hills, uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Dummerston and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 2 inches; gravelly loam
$\mathrm{E}-2$ to 3 inches; gravelly loam
Bs-3 to 4 inches; gravelly loam
Bw1-4 to 6 inches; gravelly loam
Bw2-6 to 11 inches; gravelly loam
Bw3-11 to 22 inches; gravelly loam
BC-22 to 27 inches; gravelly loam
C1-27 to 40 inches; very gravelly loam
C2-40 to 64 inches; very stony loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from phyllite and/or schist
Permeability: moderate
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 7s
Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of well drained Lanesboro soils and moderately well drained Fullam soils. Lanesboro, Fullam and Brayton soils have a dense substratum. Fullam soils are slight depressions,Brayton soils are in dressions and drainageways. Also included are small areas of lesser slopes. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in residential development.
Slope is the main limitations for dwellings with basements and lawns and landscaping. Erosion is a severe hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slope is the main limitation for septic tank absorption fields. Placing the distribution lines on the contour increases the efficiency of the system. Specially designed septic systems are necessary in some areas.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

407C—Lanesboro loam, 3 to 15 percent slopes, very stony

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Lanesboro and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa-0 to 3 inches; highly decomposed plant material
A-3 to 6 inches; loam
Bw1-6 to 8 inches; loam
Bw2-8 to 16 inches; channery loam
Bw3-16 to 22 inches; channery loam
BC-22 to 30 inches; channery loam
Cd-30 to 60 inches; very channery loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from phyllite and/or schist
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 35 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s

 Hydrologic group: C
Minor Components

Included with these soils in mapping are areas of well drained Dummerston soils, moderately well drained Fullam soils, and poorly drained Brayton soils. Dummerston soils are in areas that lack a dense substratum. Fullam soils are in slight depressions below Lanesboro soils and Brayton soils are in depressions and drainageways. Also included are small areas of steeper slopes. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland or brushland reverting to woodland. Some areas are in community development.

The seasonal high water table is the main limitation for dwellings with basements. Slope is also a limitation. Erosion is a moderate hazard during construction. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. Designing dwellings to conform to the slope of the land will reduce the slope limitation.

Large stones and slope are the main limitations for lawns and landscaping. Removing the stones will reduce this limitation.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

The seasonal high water table, slope, and frost action are the main limitations for local roads and streets. Construction on raised fill materials and installing a drainage system will reduce wetness. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation. Constructing roads on the contour will reduce the slope limitation.

407E—Lanesboro loam, 15 to 45 percent slopes, very stony

Map Unit Setting

Slope: moderately steep to steep
Landscape: hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Lanesboro and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa-0 to 3 inches; highly decomposed plant material
A-3 to 6 inches; loam
Bw1-6 to 8 inches; loam
Bw2-8 to 16 inches; channery loam

Bw3-16 to 22 inches; channery loam
BC-22 to 30 inches; channery loam
Cd-30 to 60 inches; very channery loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from phyllite and/or schist
Permeability: very slow to moderate
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 35 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 7s Hydrologic group: C

Minor Components

Included with these soils in mapping are areas of well drained Macomber and Dummerston soils, and moderately well drained Fullam soils. Macomber soils are moderately deep, between 20 and 40 inches to bedrock. Dummerston soils are in areas that lack a dense substratum and Fullam soils are in slight depressions below Lanesboro soils. Also included are small areas of lesser slopes. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development.
Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a severe hazard during construction. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. Designing dwellings to conform to the slope of the land will reduce the slope limitation. A site should be selected on a less sloping portion of the unit or nearby soil.

Slow percolation and slope are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places. Placing the distribution lines on the contour increases the efficiency of the system. A more suitable site should be considered in a less dense inclusion or nearby soil.

Slope is the main limitations for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

408C—Fullam silt loam, 3 to 15 percent slopes, very stony

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: hills, uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Fullam and similar soils: 85 percent Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 2 inches; moderately decomposed plant material
A-2 to 4 inches; silt loam
Bw1-4 to 10 inches; silt loam
Bw2-10 to 20 inches; gravelly loam
Cd1-20 to 49 inches; very channery loam
Cd2-49 to 60 inches; very channery fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy lodgment till derived from phyllite and/or schist
Permeability: very slow to moderate
Available water capacity: low
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 30 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: C

Minor Components

Included with these soils in mapping are areas of well drained Macomber, Lanesboro, and Dummerston soils, and poorly drained Brayton soils. Macomber soils are moderately deep, between 20 and 40 inches to bedrock. Dummerston soils are in areas that lack a dense substratum and Lanesboro soils are higher on the landscape . Brayton soils are in depressions and drainageways. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development.
The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Slope and large stones are also limitations for lawns and landscaping. Removing the stones will reduce the limitation. Locating dwellings in the highest part of the map unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Wetness and slow percolation are the main limitations if this map unit is used as a site for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

409B—Brayton mucky silt loam, 0 to 8 percent slopes, very stony

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: depressions on uplands, drainageways on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Brayton and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 3 inches; moderately decomposed plant material
Oa-3 to 6 inches; highly decomposed plant material
A-6 to 7 inches; mucky silt loam
Bg1-7 to 9 inches; silt loam
$\mathrm{Bg} 2-9$ to 13 inches; gravelly loam
Cd1-13 to 18 inches; gravelly fine sandy loam
Cd2-18 to 23 inches; gravelly fine sandy loam
Cd3-23 to 60 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-loamy lodgment till derived from phyllite and/or schist
Permeability: very slow to moderately rapid
Available water capacity: very low
Reaction: extremely acid to neutral
Depth to restrictive feature: 10 to 20 inches to densic material
Depth to seasonal water table: 0 to 12 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of moderately well drained Fullam soils and very poorly drained Wonsqueak and Bucksport soils. Fullam soils are in slightly higher areas on the landscape. Wonsqueak and Bucksport soils are organic soils in depressions. Minor componets make up about 15 percent of the map unit.

Use and Management

This soil is mostly in woodland. Some areas are in community development.
The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Slow percolation is also a limitation for septic tank absorption fields. A more suitable site should be selected for these uses in a drier inclusion or nearby soil. The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill
materials, installing a drainage system, and providing a coarse grained subgrade to frost depth will reduce these limitations.

412B—Bice fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: uplands, hills
Size of map unit: Areas commonly range from 3 to 500 acres.
Map Unit Composition
Bice and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 7 inches; fine sandy loam
Bw1-7 to 16 inches; fine sandy loam
Bw2-16 to 24 inches; gravelly fine sandy loam
C-24 to 60 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 e
Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of somewhat excessively drained Westminster, well drained Millsite and Shelburne soils, and moderately well drained Schroon soils. Schroon soils are in slight depressions and Shelburne soils have a dense substratum. Millsite soils are where bedrock is between 20 to 40 inches below the surface and Westminster soils are where bedrock is 10 to 20 inches below the surface. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland or residential development. Some areas are in pasture.

This unit has few limitations for dwellings with basements. Large stones are a limitation for lawns and landscaping. Removing the stones will reduce the limitation.

Bice soils have few limitations for septic tank absorption fields. This unit has few limitations for local roads and streets.

412C—Bice fine sandy loam, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: uplands, hills
Size of map unit: Areas commonly range from 3 to 500 acres.
Map Unit Composition
Bice and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 7 inches; fine sandy loam
Bw1-7 to 16 inches; fine sandy loam
Bw2-16 to 24 inches; gravelly fine sandy loam
C-24 to 60 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3e
Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of somewhat excessively drained Westminster, well drained Millsite and Shelburne soils, and moderately well drained Schroon soils. Schroon soils are in slight depressions and Shelburne soils have a dense substratum. Millsite soils are where bedrock is between 20 to 40 inches below the surface and Westminster soils are where bedrock is 10 to 20 inches below the surface. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland or residential development. Some areas are in pasture.

Slope is the main limitation for dwellings with basements. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the
land will reduce the slope limitation. Large stones are a limitation for lawns and landscaping. Removing the stones will reduce the limitation.

Slope is the main limitation for septic tank absorption fields. Placing the distribution lines on the contour increases the efficiency of the system.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

412D-Bice fine sandy loam, 15 to 25 percent slopes

Map Unit Setting

Slope: moderately steep
Landscape: hills, uplands
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Bice and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 7 inches; fine sandy loam
Bw1-7 to 16 inches; fine sandy loam
Bw2-16 to 24 inches; gravelly fine sandy loam
C-24 to 60 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4e Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of somewhat excessively drained Westminster, well drained Millsite and Shelburne soils, and moderately well drained Schroon soils. Schroon soils are in slight depressions and Shelburne soils have a dense substratum. Millsite soils are where bedrock is between 20 to 40 inches below the surface and Westminster soils are where bedrock is 10 to 20 inches below the surface. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in pasture or residential development.

Slope is the main limitations for dwellings with basements and lawns and landscaping. Erosion is a severe hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slope is the main limitation for septic tank absorption fields. Placing the distribution lines on the contour increases the efficiency of the system.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

413C-Bice-Millsite complex, 3 to 15 percent slopes, very rocky

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: bedrock-controlled hills, bedrock-controlled uplands Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Bice and similar soils: 45 percent
Millsite and similar soils: 40 percent
Minor components: 15 percent

Major Components

Bice and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 7 inches; fine sandy loam
Bw1-7 to 16 inches; fine sandy loam
Bw2-16 to 24 inches; gravelly fine sandy loam
C-24 to 60 inches; gravelly sandy loam

Millsite and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 5 inches; fine sandy loam
Bw1-5 to 13 inches; stony fine sandy loam
Bw2-13 to 24 inches; fine sandy loam
C-24 to 31 inches; sandy loam
2R-31 to 80 inches; bedrock

Major Component Properties and Qualities

Bice and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid

```
Available water capacity: high
Reaction: very strongly acid to moderately acid Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet
Flooding: none
Millsite and similar soils
Depth to bedrock: moderately deep to deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none
```


Interpretative Groups

Bice and similar soils

Land capability classification (non-irrigated): 6s
Hydrologic group: B
Millsite and similar soils
Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of rock outcrops, somewhat excessively drained Westminster, and moderately well drained Schroon soils. Schroon soils are in slight depressions and areas of shallow Westminster soils are where bedrock is 10 to 20 inches below the surface. Also included are small areas of steeper slopes. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland or residential development. Some areas are in pasture.

Depth to bedrock is the main limitation for dwellings with basements. Slope is also a limitation. Erosion is a moderate hazard during construction. Uneven slopes and variable depth to bedrock reduce site selection. Where possible, dwellings with basements should be constructed in areas of very deep Bice soils.

Slope is the main limitation for lawns and landscaping. Large rocks are a limitation in areas of Bice soils, and the thin soil layer is a limitation in areas of Millsite soils. Droughtiness can make establishment and maintenance of lawns difficult. Addition of fill material and removing the rocks will reduce these limitations.

Slope is the main limitation for septic tank absorption fields in areas of Bice soils. Depth to bedrock in areas of Millsite soils and Rock outcrops over portions of the landscape are also limitations. Where possible, septic tank absorption fields should be constructed in areas of very deep Bice soils. Placing distribution lines on the contour increases the efficiency of the system.

Slope is the main limitation for local roads and streets. Depths to bedrock and frost action are limitations in areas of Millsite soils. Constructing roads on the contour will reduce the slope limitation. Careful planning of grades and road locations will avoid some removal of rock. Providing a coarse grained subgrade will reduce frost action.

413E—Bice-Millsite complex, 15 to 45 percent slopes, very rocky

Map Unit Setting

Slope: moderately steep to steep
Landscape: bedrock-controlled uplands, bedrock-controlled hills Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Bice and similar soils: 45 percent
Millsite and similar soils: 40 percent
Minor components: 15 percent

Major Components

Bice and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 7 inches; fine sandy loam
Bw1-7 to 16 inches; fine sandy loam
Bw2-16 to 24 inches; gravelly fine sandy loam
C-24 to 60 inches; gravelly sandy loam

Millsite and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 5 inches; fine sandy loam
Bw1-5 to 13 inches; stony fine sandy loam
Bw2-13 to 24 inches; fine sandy loam
C-24 to 31 inches; sandy loam
2R-31 to 80 inches; bedrock

Major Component Properties and Qualities

Bice and similar soils

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none
Millsite and similar soils
Depth to bedrock: moderately deep to deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to slightly acid

Depth to restrictive feature: 20 to 40 inches to bedrock (lithic) Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Bice and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: B
Millsite and similar soils
Land capability classification (non-irrigated): 7s
Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of somewhat excessively drained Westminster and rock outcrops. Areas of shallow Westminster soils are where bedrock is 10 to 20 inches below the surface. Also included are small areas of lesser slopes. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development.
Slope and depth to bedrock in areas of Millsite soils are the main limitations for dwellings with basements. Erosion is a severe or very severe hazard during construction. Uneven slopes and variable depth to bedrock reduce site selection. Where possible, dwellings with basements should be constructed in areas of very deep Bice soils, a less sloping inclusion, or nearby soil.

Slope is the main limitation for lawns and landscaping. A site should be selected on a less sloping portion of the unit or nearby soil.

Slope is the main limitation for septic tank absorption fields in areas of Bice soils. Depth to bedrock in areas of Millsite soils is also a limitation. Where possible, septic tank absorption fields should be constructed in areas of very deep Bice soils on a less sloping portion of the unit. Placing distribution lines on the contour increases the efficiency of the system.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation. Careful planning of grades and road locations will avoid some removal of rock.

414-Fredon silt loam, cold

Map Unit Setting

Slope: nearly level
Landscape: depressions on outwash plains, drainageways on outwash plains, terraces on outwash plains
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Fredon and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; silt loam

Bg-8 to 17 inches; fine sandy loam
Bw-17 to 24 inches; fine sandy loam
2Cg1-24 to 29 inches; stratified gravelly sand to loamy fine sand
2C-29 to 48 inches; stratified gravelly sand to loamy fine sand
2Cg2-48 to 60 inches; stratified gravelly sand to loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-loamy over sandy and gravelly glaciofluvial deposits derived
from limestone and dolomite and/or schist
Permeability: moderate to very rapid
Available water capacity: high
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 0 to 12 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4w Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of excessively drained Boscawen soils, and cold phases of well drained Agawam and moderately well drained Ninigret soils that are higher on the landscape. Cold phases of very poorly drained Halsey soils are included in depressions and along drainageways. Minor componets up 15 percent of this map unit.

Use and Management

Most areas are in woodland. Cleared areas are in pasture or cropland. Some cleared areas are drained.

The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank adsorption fields. Poor filtering is also a limitation for septic tank adsorption fields. There is a hazard of groundwater pollution because of the rapidly permeable substratum does not adequately filter effluent. A more suitable site should be considered on a drier inclusion or a nearby soil.

Frost action and seasonal highwater table are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarser grained subgrade to frost depth will reduce these limitations.

415C-Westminster-Millsite-Rock outcrop complex, 3 to 15 percent slopes

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: uplands, bedrock controlled ridges, bedrock controlled hills Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Westminster and similar soils: 40 percent
Millsite and similar soils: 40 percent

Rock outcrop and similar soils: 15 percent
Minor components: 5 percent

Major Components

Westminster and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
Oe-1 to 2 inches; moderately decomposed plant material
A-2 to 5 inches; fine sandy loam
Bw1-5 to 12 inches; fine sandy loam
Bw2-12 to 16 inches; fine sandy loam
2R-16 to 80 inches; bedrock
Millsite and similar soils
The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 5 inches; fine sandy loam
Bw1-5 to 13 inches; stony fine sandy loam
Bw2-13 to 24 inches; fine sandy loam
C-24 to 31 inches; sandy loam
2R-31 to 80 inches; bedrock

Major Component Properties and Qualities

Westminster and similar soils

Depth to bedrock: shallow to moderately deep
Drainage class: somewhat excessively drained
Parent material: loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderately rapid
Available water capacity: very low
Reaction: extremely acid to strongly acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Millsite and similar soils

Depth to bedrock: moderately deep to deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Westminster and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: D

Millsite and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of well drained Bice soils. Very deep Bice soils are adjacent to Westminster and Millsite soils. Also included are small areas of steeper slopes. Minor componets make up about 5 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development.
Shallow depth to bedrock and many rock outcrops are the main limitations for dwellings with basements and lawns and landscaping. Uneven slopes are also a limitation. Erosion is a moderate to severe hazard during construction. Where possible, dwellings with basements should be constructed in a deeper, less sloping inclusion or nearby soil. Droughtiness can make establishment and maintenance of lawns difficult. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Shallow depth to bedrock and many rock outcrops are the main limitations for septic tank absorption fields. There is the hazard of groundwater pollution because the soil is not thick enough to filter effluent. A more suitable site should be selected in a deeper inclusion or nearby soil.

Shallow depth to bedrock and many rock outcrops are the main limitations for local roads and streets. Frost action is also a limitation. Slope is also a limitation in steeper areas. Careful planning of grades and road locations will avoid some removal of rock. Constructing roads on the contour will reduce the slope limitation. Providing a coarse grained subgrade will reduce frost action.

415E—Westminster-Millsite-Rock outcrop complex, 15 to 45 percent slopes

Map Unit Setting

Slope: moderately steep or steep
Landscape: uplands, bedrock-controlled ridges, bedrock-controlled hills
Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Westminster and similar soils: 40 percent
Millsite and similar soils: 40 percent
Rock outcrop and similar soils: 15 percent
Minor components: 5 percent

Major Components

Westminster and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
Oe-1 to 2 inches; moderately decomposed plant material
A-2 to 5 inches; fine sandy loam
Bw1-5 to 12 inches; fine sandy loam
Bw2-12 to 16 inches; fine sandy loam
2R-16 to 80 inches; bedrock

Millsite and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe- 0 to 1 inch; moderately decomposed plant material
A-1 to 5 inches; fine sandy loam
Bw1-5 to 13 inches; stony fine sandy loam
Bw2-13 to 24 inches; fine sandy loam
C-24 to 31 inches; sandy loam
2R-31 to 80 inches; bedrock

Major Component Properties and Qualities

Westminster and similar soils

Depth to bedrock: shallow to moderately deep
Drainage class: somewhat excessively drained
Parent material: loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderately rapid
Available water capacity: very low
Reaction: extremely acid to strongly acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Millsite and similar soils

Depth to bedrock: moderately deep or deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none
Interpretative Groups

Westminster and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: D

Millsite and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of well drained Bice soils. Very deep Bice soils are adjacent to Westminster and Millsite soils. Also included are small areas of lesser slopes. Minor componets make up about 5 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development.
Slope is the main limitation for dwellings with basements and lawns and landscaping. Shallow depth to bedrock and many rock outcrops are also limitations. Erosion is a very severe hazard during construction. Additional fill will reduce the depth limitation. A more suitable site should be selected on a less sloping, deeper portion of the unit, or nearby soil.

Slope, shallow depth to bedrock, and many Rock outcrops are the main limitations for septic tank absorption fields. There is the hazard of groundwater pollution because the soil is not thick enough to filter effluent. A more suitable site should be selected in a less sloping, deeper inclusion, or nearby soil.

Slope and many Rock outcrops are the main limitations for local roads and streets. Shallow depth to bedrock is also a limitation. Constructing roads on the contour will reduce the slope limitation. Careful planning of grades and road locations will avoid some removal of rock.

416E—Rock outcrop-Westminster complex, 8 to 45 percent slopes

Map Unit Setting

Slope: strongly sloping to steep
Landscape: bedrock-controlled ridges, bedrock-controlled hills, bedrock-controlled uplands
Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Rock outcrop and similar soils: 70 percent
Westminster and similar soils: 20 percent
Minor components: 10 percent

Major Components

Westminster and similar soils:

The typical sequence, depth, and composition of the layers of the soil are as

follows-

$\mathrm{Oi}-0$ to 1 inch; slightly decomposed plant material
Oe-1 to 2 inches; moderately decomposed plant material
A-2 to 5 inches; fine sandy loam
Bw1-5 to 12 inches; fine sandy loam
Bw2-12 to 16 inches; fine sandy loam
2R-16 to 80 inches; bedrock

Major Component Properties and Qualities

Westminster and similar soils:

Depth to bedrock: shallow to moderately deep
Drainage class: somewhat excessively drained
Parent material: loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderately rapid
Available water capacity: very low
Reaction: extremely acid to strongly acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Westminster and similar soils:
Land capability classification (non-irrigated): 7s
Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of well drained Millsite soil and well drained Bice soils. Very deep Bice soils and moderately deep Millsite soils are adjacent to Westminster soils. Also included are small areas of lesser slopes. Minor componets make up about 10 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development.
Many rock outcrops and shallow depth to bedrock are the main limitations for dwellings with basements and lawns and landscaping. Slope is also a main limitation in steeper areas of the unit. Uneven slopes and variable depth to bedrock reduce site selection. Erosion is a severe to very severe hazard during construction. A more suitable site should be selected in a deeper, less sloping inclusion or nearby soil.

Shallow depth to bedrock and many rock outcrops are the main limitations for septic tank absorption fields. Slope is also a main limitation in steeper areas. There is the hazard of groundwater pollution because the soil is not thick enough to filter effluent. Placing septic tank absorption field distribution lines on the contour increases the efficiency of the system. A more suitable site should be selected in a less sloping, deeper inclusion or nearby soil.

Shallow depth to bedrock and many rock outcrops are the main limitations for local roads and streets. Slope is also a limitation in steeper areas. Constructing roads on the contour or locating them on less sloping inclusions will reduce the slope limitation. Careful planning of grades and road locations will avoid some removal of rock.

416F—Rock outcrop-Westminster complex, 45 to 70 percent slopes

Map Unit Setting

Slope: very steep
Landscape: bedrock-controlled ridges, bedrock-controlled hills, bedrock-controlled uplands
Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Rock outcrop and similar soils: 70 percent
Westminster and similar soils: 20 percent
Minor components: 10 percent

Major Components

Westminster and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
Oe-1 to 2 inches; moderately decomposed plant material
A-2 to 5 inches; fine sandy loam
Bw1-5 to 12 inches; fine sandy loam
Bw2-12 to 16 inches; fine sandy loam
2R-16 to 80 inches; bedrock

Major Component Properties and Qualities

Westminster and similar soils

Depth to bedrock: shallow to moderately deep

Drainage class: somewhat excessively drained
Parent material: loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderately rapid
Available water capacity: very low
Reaction: extremely acid to strongly acid
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Westminster and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of well drained Millsite soil and well drained Bice soils. Very deep Bice soils and moderately deep Millsite soils are adjacent to Westminster soils. Also included are small areas of lesser slopes. Minor componets make up about 10 percent of the map unit.

Use and Management

Most areas are in woodland.
Many rock outcrops, slope, and shallow depth to bedrock are the main limitations for dwellings with basements and lawns and landscaping. Erosion is a very severe hazard during construction. Addition of fill will reduce the depth limitation. A more suitable site should be selected in a deeper, less sloping inclusion or nearby soil.

Many rock outcrops, slope, and shallow depth to bedrock are the main limitations for septic tank absorption fields. There is the hazard of groundwater pollution because the soil is not thick enough to filter effluent. A more suitable site should be selected in a less sloping, deeper inclusion, or nearby soil.

Shallow depth to bedrock, slope, and many rock outcrops are the main limitations for local roads and streets. Constructing roads on the contour or locating them on less sloping inclusions will reduce the slope limitation. Careful planning of grades and road locations will avoid some removal of rock.

417B—Bice fine sandy loam, 3 to 8 percent slopes, very stony

Map Unit Setting

Slope: gently sloping
Landscape: hills, uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 500 acres.

Map Unit Composition

Bice and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-

Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 7 inches; fine sandy loam
Bw1-7 to 16 inches; fine sandy loam
Bw2-16 to 24 inches; gravelly fine sandy loam
C-24 to 60 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of somewhat excessively drained Westminster, well drained Millsite and Shelburne soils, and moderately well drained Schroon soils. Schroon soils are in slight depressions and Shelburne soils have a dense substratum. Millsite soils are where bedrock is between 20 to 40 inches below the surface and Westminster soils are where bedrock is 10 to 20 inches below the surface. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland or residential development. Some areas are in pasture.

This unit has few limitations for dwellings with basements. Large stones are a limitation for lawns and landscaping. Removing the stones will reduce the limitation.

Bice soils have few limitations for septic tank absorption fields. This unit has few limitations for local roads and streets.

417C—Bice fine sandy loam, 8 to 15 percent slopes, very stony

Map Unit Setting
Slope: strongly sloping
Landscape: hills, uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 500 acres.
Map Unit Composition
Bice and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 7 inches; fine sandy loam
Bw1-7 to 16 inches; fine sandy loam
Bw2-16 to 24 inches; gravelly fine sandy loam
C-24 to 60 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none
Interpretative Groups
Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of somewhat excessively drained Westminster, well drained Millsite and Shelburne soils, and moderately well drained Schroon soils. Schroon soils are in slight depressions and Shelburne soils have a dense substratum. Millsite soils are where bedrock is between 20 to 40 inches below the surface and Westminster soils are where bedrock is 10 to 20 inches below the surface. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland or residential development. Some areas are in pasture.

Slope is the main limitation for dwellings with basements. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Large stones are a limitation for lawns and landscaping. Removing the stones will reduce the limitation.

Slope is the main limitation for septic tank absorption fields. Placing the distribution lines on the contour increases the efficiency of the system.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

417D-Bice fine sandy loam, 15 to 25 percent slopes, very stony

Map Unit Setting

Slope: moderately steep
Landscape: uplands, hills
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Bice and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 7 inches; fine sandy loam
Bw1-7 to 16 inches; fine sandy loam
Bw2-16 to 24 inches; gravelly fine sandy loam
C-24 to 60 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of somewhat excessively drained Westminster, well drained Millsite and Shelburne soils, and moderately well drained Schroon soils. Schroon soils are in slight depressions and Shelburne soils have a dense substratum. Millsite soils are where bedrock is between 20 to 40 inches below the surface and Westminster soils are where bedrock is 10 to 20 inches below the surface. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in residential development.
Slope is the main limitations for dwellings with basements and lawns and landscaping. Erosion is a severe hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slope is the main limitation for septic tank absorption fields. Placing the distribution lines on the contour increases the efficiency of the system.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

418C—Schroon fine sandy loam, 2 to 15 percent slopes, very stony

Map Unit Setting

Slope: nearly level to strongly sloping
Landscape: hills on uplands

Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Schroon and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
Oe-1 to 2 inches; moderately decomposed plant material
Oa-2 to 3 inches; highly decomposed plant material
A-3 to 9 inches; fine sandy loam
Bw1-9 to 14 inches; fine sandy loam
Bw2-14 to 23 inches; fine sandy loam
Bw3-23 to 30 inches; sandy loam
C - 30 to 60 inches; sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: extremely acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none
Interpretative Groups
Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of well drained Bice soils, moderately well drained Ashfield, and poorly drained Brayton soils and very poorly drained Loonmeadow soils. Brayton and Loonmeadow soils are in depressions and drainageways. Ashfield soils have a dense substrata and Bice soils are in higher positions on the landscape. Also included are small areas of lesser slopes. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development and pasture.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Large stones and slope are also limitations for lawns and landscaping. Removing the stones and designing lawns to conform to the slope of the land will reduce these limitations. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill usually will allow on site sewage disposal.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

420A—Schroon fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: hills on uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Schroon and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
Oe-1 to 2 inches; moderately decomposed plant material
Oa-2 to 3 inches; highly decomposed plant material
A-3 to 9 inches; fine sandy loam
Bw1-9 to 14 inches; fine sandy loam
Bw2-14 to 23 inches; fine sandy loam
Bw3-23 to 30 inches; sandy loam
C-30 to 60 inches; sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: moderately well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: extremely acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 w
Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of well drained Bice soils, moderately well drained Ashfield, and poorly drained Brayton soils and very poorly drained Loonmeadow soils. Brayton and Loonmeadow soils are in depressions and drainageways. Ashfield soils have a dense substrata and Bice soils are in higher positions on the landscape. Also included are small areas of lesser slopes. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development and pasture.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Slope is also a limitation for lawns and landscaping. Designing lawns to conform to the slope of the land will reduce this limitation. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill usually will allow on site sewage disposal.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

420B—Schroon fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: hills on uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Schroon and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
Oe-1 to 2 inches; moderately decomposed plant material
Oa-2 to 3 inches; highly decomposed plant material
A-3 to 9 inches; fine sandy loam
Bw1-9 to 14 inches; fine sandy loam
Bw2-14 to 23 inches; fine sandy loam
Bw3-23 to 30 inches; sandy loam
C-30 to 60 inches; sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy melt-out till derived from granite and/or schist and/or gneiss
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: extremely acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2w

Hydrologic group: B

Minor Components

Included with these soils in mapping are areas of well drained Bice soils, moderately well drained Ashfield, and poorly drained Brayton soils and very poorly drained Loonmeadow soils. Brayton and Loonmeadow soils are in depressions and drainageways. Ashfield soils have a dense substrata and Bice soils are in higher positions on the landscape. Also included are small areas of lesser slopes. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development and pasture.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Slope is also a limitation for lawns and landscaping. Designing lawns to conform to the slope of the land will reduce this limitation. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill usually will allow on site sewage disposal.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

421A—Ninigret fine sandy loam, cold, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: terraces on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Ninigret and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 16 inches; fine sandy loam
Bw2-16 to 26 inches; fine sandy loam
2C-26 to 65 inches; stratified very gravelly coarse sand to loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss

Permeability: moderate to very rapid
Available water capacity: high
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 30 inches
Flooding: none
Interpretative Groups
Land capability classification (non-irrigated): 2w Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Boscawen soils, and cold phases of somewhat excessively drained Merrimac and well drained Agawam soils that are higher on the landscape. Also included are cold phases of moderately well drained Sudbury soils. Small areas of poorly drained Moosilauke soils and cold phases of very poorly drained Scarboro soils are included in shallow depressions and drainageways. Minor componets make up about 15 percent of this map unit.

Use and Management

Most areas are cleared and in cultivated crops, hay, pasture, or brushland. Some areas are in woodland or community development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce the wetness.

Poor filtering and the seasonal high water table are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal. There is also a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

423A—Sudbury sandy loam, cold, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: terraces on valleys, outwash plains on valleys
Size of map unit: Areas range from 3 to 40 acres.

Map Unit Composition

Sudbury and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 5 inches; sandy loam

Bw1-5 to 17 inches; gravelly sandy loam
Bw2-17 to 25 inches; sandy loam
2C-25 to 60 inches; stratified gravel to sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 18 to 36 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2w
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Boscawen soils, cold phases of somewhat excessively drained Merrimac and well drained Agawam soils that are higher on the landscape. Also included are cold phases of moderately well drained Ninigret soils. Small areas of poorly drained Moosilauke soils and cold phases of very poorly drained Scarboro soils are included in shallow depressions and drainageways. Minor componets make up about 15 percent of this map unit.

Use and Management

Most areas are in cultivated cropland, hay, or pasture. Some areas are in woodland or community development.

The seasonal high water table is the main limitation for dwellings with basements. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and poor filtering are the main limitations for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Modifying a conventional septic system by extending the length of distribution lines and adding fill usually will allow on site sewage disposal. Specially designed septic systems are necessary in some areas of Sudbury soils.

The seasonal high water table and frost action are the main limitations for local roads and streets. Constructing roads on raised fill materials and installing a drainage system will reduce the wetness limitation. Providing a coarse grained subgrade to frost depth will reduce the limitation.

424B—Shelburne fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: hills on uplands, drumlins on uplands
Size of map unit: Areas commonly range from 3 to 200 acres.

Map Unit Composition

Shelburne and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 2 inches; fine sandy loam
Bw1-2 to 7 inches; fine sandy loam
Bw2-7 to 21 inches; gravelly fine sandy loam
Bw3-21 to 27 inches; bouldery fine sandy loam
Cd1-27 to 32 inches; gravelly fine sandy loam
Cd2-32 to 43 inches; fine sandy loam
Cd3-43 to 55 inches; fine sandy loam
Cd4-55 to 80 inches; fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 30 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 s
Hydrologic group: C

Minor Components

Included with these soils in mapping are areas of well drained Bice soils, moderately well drained Ashfield soils, poorly drained brayton soils and very poorly drained Loonmeadow soils. Bice soils have a more permeable substratum. Ashfield soils are in slightly lower areas and Brayton and Loonmeadow soils are in depressions and drainageways. Also included are small areas of steeper slopes. Minor componets make up about 15 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or hay and pasture.

The seasonal high water table is the main limitation for dwellings with basements. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials and installing a drainage system will reduce wetness. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation.

424C-Shelburne fine sandy loam, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: hills on uplands, drumlins on uplands
Size of map unit: Areas commonly range from 3 to 75 acres.

Map Unit Composition

Shelburne and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 2 inches; fine sandy loam
Bw1-2 to 7 inches; fine sandy loam
Bw2-7 to 21 inches; gravelly fine sandy loam
Bw3-21 to 27 inches; bouldery fine sandy loam
Cd1-27 to 32 inches; gravelly fine sandy loam
Cd2-32 to 43 inches; fine sandy loam
Cd3-43 to 55 inches; fine sandy loam
Cd4-55 to 80 inches; fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 30 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3e
Hydrologic group: C

Minor Components

Included with these soils in mapping are areas of well drained Bice soils, moderately well drained Ashfield soils, poorly drained brayton soils and very poorly drained Loonmeadow soils. Bice soils have a more permeable substratum. Ashfield soils are in slightly lower areas and Brayton and Loonmeadow soils are in depressions and drainageways. Also included are small areas of steeper slopes. Minor componets make up about 15 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or hay and pasture.

The seasonal high water table is the main limitation for dwellings with basements. Locating dwellings in the highest part of the unit with foundation drains backfilled with
gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials and installing a drainage system will reduce wetness. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation.

424D—Shelburne fine sandy loam, 15 to 25 percent slopes

Map Unit Setting

Slope: moderately steep
Landscape: drumlins on uplands, hills on uplands
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Shelburne and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 2 inches; fine sandy loam
Bw1-2 to 7 inches; fine sandy loam
Bw2-7 to 21 inches; gravelly fine sandy loam
Bw3-21 to 27 inches; bouldery fine sandy loam
Cd1-27 to 32 inches; gravelly fine sandy loam
Cd2-32 to 43 inches; fine sandy loam
Cd3-43 to 55 inches; fine sandy loam
Cd4-55 to 80 inches; fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 30 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4 e
Hydrologic group: C

Minor Components

Included with these soils in mapping are areas of well drained Bice soils, moderately well drained Ashfield soils, poorly drained brayton soils and very poorly drained Loonmeadow soils. Bice soils have a more permeable substratum. Ashfield soils are in slightly lower areas and Brayton and Loonmeadow soils are in depressions and drainageways. Also included are small areas of steeper slopes. Minor componets make up about 15 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or hay and pasture.

The seasonal high water table is the main limitation for dwellings with basements. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials and installing a drainage system will reduce wetness. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation.

425B—Shelburne fine sandy loam, 3 to 8 percent slopes, very stony

Map Unit Setting

Slope: gently sloping
Landscape: drumlins on uplands, hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 200 acres.

Map Unit Composition

Shelburne and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 2 inches; fine sandy loam
Bw1-2 to 7 inches; fine sandy loam
Bw2- 7 to 21 inches; gravelly fine sandy loam
Bw3-21 to 27 inches; bouldery fine sandy loam
Cd1-27 to 32 inches; gravelly fine sandy loam
Cd2-32 to 43 inches; fine sandy loam
Cd3-43 to 55 inches; fine sandy loam
Cd4-55 to 80 inches; fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained

Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 30 inches to densic material Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: C

Minor Components

Included with these soils in mapping are areas of well drained Bice soils, moderately well drained Ashfield soils, poorly drained brayton soils and very poorly drained Loonmeadow soils. Bice soils have a more permeable substratum. Ashfield soils are in slightly lower areas and Brayton and Loonmeadow soils are in depressions and drainageways. Also included are small areas of steeper slopes. Minor componets make up about 15 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or pasture.

The seasonal high water table is the main limitation for dwellings with basements. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Small and large stones are the main limitation for lawns and landscaping. Removing the stones will reduce the limitation.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials and installing a drainage system will reduce wetness. Providing a coarse grained subgrade to frost depth will reduce the frost action limitation.

425C-Shelburne fine sandy loam, 8 to 15 percent slopes, very stony

Map Unit Setting

Slope: strongly sloping
Landscape: hills on uplands, drumlins on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 75 acres.
Map Unit Composition
Shelburne and similar soils: 85 percent
Minor components: 15 percent

Majr Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 2 inches; fine sandy loam
Bw1-2 to 7 inches; fine sandy loam
Bw2- 7 to 21 inches; gravelly fine sandy loam
Bw3-21 to 27 inches; bouldery fine sandy loam
Cd1-27 to 32 inches; gravelly fine sandy loam
Cd2-32 to 43 inches; fine sandy loam
Cd3-43 to 55 inches; fine sandy loam
Cd4-55 to 80 inches; fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 30 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s Hydrologic group: C

Minor Components

Included with these soils in mapping are areas of well drained Bice soils, moderately well drained Ashfield soils, poorly drained brayton soils and very poorly drained Loonmeadow soils. Bice soils have a more permeable substratum. Ashfield soils are in slightly lower areas and Brayton and Loonmeadow soils are in depressions and drainageways. Also included are small areas of steeper slopes. Minor componets make up about 15 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or pasture.

The seasonal high water table is the main limitation for dwellings with basements. Slope is also a limitation in areas of Paxton soil. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness. Erosion is a moderate hazard during construction. Designing dwellings to conform to the slope of the land will reduce the slope limitation.

Large stones and slope are the main limitations for lawns and landscaping. Removing the stones will reduce the limitation.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places.

The seasonal high water table, slope, and frost action are the main limitations for local roads and streets. Construction on raised fill materials and installing a drainage system will reduce wetness. Providing a coarse grained subgrade to frost depth will
reduce the frost action limitation. Constructing roads on the contour will reduce the slope limitation.

426D—Shelburne fine sandy loam, 15 to 35 percent slopes, extremely stony

Map Unit Setting

Slope: moderately steep to steep
Landscape: hills on uplands, drumlins on uplands
Surface cover: 3 to 15 percent stones
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Shelburne and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{Oi}-0$ to 1 inch; slightly decomposed plant material
A-1 to 2 inches; fine sandy loam
Bw1-2 to 7 inches; fine sandy loam
Bw2-7 to 21 inches; gravelly fine sandy loam
Bw3-21 to 27 inches; bouldery fine sandy loam
Cd1- 27 to 32 inches; gravelly fine sandy loam
Cd2-32 to 43 inches; fine sandy loam
Cd3-43 to 55 inches; fine sandy loam
Cd4-55 to 80 inches; fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderately rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: 20 to 30 inches to densic material
Depth to seasonal water table: 18 to 30 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 7s
Hydrologic group: C

Minor Components

Included with these soils in mapping are areas of well drained Bice soils and moderately well drained Ashfield soils. Bice soils have a more permeable substratum and Ashfield soils are in slightly lower areas. Also included are areas of lesser slopes. Minor componets make up about 15 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in community development.
Slope is the main limitation for dwellings with basements. Erosion is a severe hazard during construction. Designing dwellings to conform to the slope of the land will reduce the slope limitation. A site should be selected on a less sloping portion of the unit or nearby soil.

Slope is the main limitation for lawns and landscaping.
Slow percolation and slope are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum will allow on site sewage disposal in most places. Placing the distribution lines on the contour increases the efficiency of the system. A more suitable site should be considered in a less dense inclusion or nearby soil.

Slope is the main limitations for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

427B—Ashfield fine sandy loam, 2 to 8 percent slopes, very stony

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: drumlins on uplands, hills on uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Ashfield and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
$\mathrm{Oi}-0$ to 1 inch; slightly decomposed plant material
Oe-1 to 2 inches; moderately decomposed plant material
Oa-2 to 3 inches; highly decomposed plant material
A1-3 to 7 inches; fine sandy loam
A2-7 to 12 inches; fine sandy loam
Bw1-12 to 18 inches; fine sandy loam
Bw2-18 to 24 inches; fine sandy loam
BC-24 to 29 inches; fine sandy loam
Cd1-29 to 44 inches; fine sandy loam
Cd2-44 to 58 inches; sandy loam
Cd3—58 to 80 inches; fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderately rapid
Available water capacity: high
Reaction: extremely acid to slightly acid

Depth to restrictive feature: 20 to 33 inches to densic material Depth to seasonal water table: 12 to 24 inches Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of well drained Shelburne soils, moderately well drained Schroon soils, poorly drained Brayton soils and very poorly drained Loonmeadow soils. Shelburne soils are higher on the landscape. Schroon soils lack a dense substratum. Brayton and Loonmeadow soils are in depressions and along drainageways. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or pasture.

The seasonal high water table is the main limitation if this map unit is used as a site for dwellings with basements or lawns and landscaping. Large stones are also a limitation for lawns and landscaping. Removing the stones will reduce the limitation. Locating dwellings in the highest part of the map unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Wetness and slow percolation are the main limitations if this map unit is used as a site for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil.

Frost action is the main limitation if this map unit is used as a site for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

427C—Ashfield fine sandy loam, 8 to 15 percent slopes, very stony

Map Unit Setting

Slope: strongly sloping
Landscape: hills, uplands, drumlins
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Ashfield and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
Oe-1 to 2 inches; moderately decomposed plant material

Oa-2 to 3 inches; highly decomposed plant material
A1-3 to 7 inches; fine sandy loam
A2- 7 to 12 inches; fine sandy loam
Bw1-12 to 18 inches; fine sandy loam
Bw2-18 to 24 inches; fine sandy loam
BC-24 to 29 inches; fine sandy loam
Cd1-29 to 44 inches; fine sandy loam
Cd2-44 to 58 inches; sandy loam
Cd3-58 to 80 inches; fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep

Drainage class: moderately well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderately rapid
Available water capacity: moderate
Reaction: extremely acid to slightly acid
Depth to restrictive feature: 20 to 33 inches to densic material
Depth to seasonal water table: 12 to 24 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of well drained Shelburne soils, moderately well drained Schroon soils, poorly drained Brayton soils and very poorly drained Loonmeadow soils. Shelburne soils are higher on the landscape. Schroon soils lack a dense substratum. Brayton and Loonmeadow soils are in depressions and along drainageways. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or pasture.

The seasonal high water table is the main limitation if this map unit is used as a site for dwellings with basements or lawns and landscaping. Slope and large stones are also limitations for lawns and landscaping. Removing the stones will reduce the limitation. Locating dwellings in the highest part of the map unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Wetness and slow percolation are the main limitations if this map unit is used as a site for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil.

Frost action is the main limitation if this map unit is used as a site for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

428A—Ashfield fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: uplands, drumlins, hills
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Ashfield and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
Oe-1 to 2 inches; moderately decomposed plant material
Oa-2 to 3 inches; highly decomposed plant material
A1-3 to 7 inches; fine sandy loam
A2-7 to 12 inches; fine sandy loam
Bw1-12 to 18 inches; fine sandy loam
Bw2-18 to 24 inches; fine sandy loam
BC-24 to 29 inches; fine sandy loam
Cd1-29 to 44 inches; fine sandy loam
Cd2-44 to 58 inches; sandy loam
Cd3-58 to 80 inches; fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderately rapid
Available water capacity: moderate
Reaction: extremely acid to slightly acid
Depth to restrictive feature: 20 to 33 inches to densic material
Depth to seasonal water table: 12 to 24 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 1
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of well drained Shelburne soils, moderately well drained Schroon soils, poorly drained Brayton soils and very poorly drained Loonmeadow soils. Shelburne soils are higher on the landscape. Schroon soils lack a dense substratum. Brayton and Loonmeadow soils are in depressions and along drainageways. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or hay and pasture.

The seasonal high water table is the main limitation if this map unit is used as a site for dwellings with basements or lawns and landscaping.

Locating dwellings in the highest part of the map unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Wetness and slow percolation are the main limitations if this map unit is used as a site for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil.

Frost action is the main limitation if this map unit is used as a site for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

428B—Ashfield fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: drumlins, hills, uplands
Size of map unit: Areas commonly range from 3 to 50 acres.
Map Unit Composition
Ashfield and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as

follows-

Oi- 0 to 1 inch; slightly decomposed plant material
Oe-1 to 2 inches; moderately decomposed plant material
Oa-2 to 3 inches; highly decomposed plant material
A1-3 to 7 inches; fine sandy loam
A2-7 to 12 inches; fine sandy loam
Bw1-12 to 18 inches; fine sandy loam
Bw2-18 to 24 inches; fine sandy loam
BC-24 to 29 inches; fine sandy loam
Cd1-29 to 44 inches; fine sandy loam
Cd2-44 to 58 inches; sandy loam
Cd3-58 to 80 inches; fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderately rapid
Available water capacity: moderate
Reaction: extremely acid to slightly acid
Depth to restrictive feature: 20 to 33 inches to densic material
Depth to seasonal water table: 12 to 24 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2e
Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of well drained Shelburne soils, moderately well drained Schroon soils, poorly drained Brayton soils and very poorly drained Loonmeadow soils. Shelburne soils are higher on the landscape. Schroon soils lack a dense substratum. Brayton and Loonmeadow soils are in depressions and along drainageways. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or hay and pasture.

The seasonal high water table is the main limitation if this map unit is used as a site for dwellings with basements or lawns and landscaping.

Locating dwellings in the highest part of the map unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Wetness and slow percolation are the main limitations if this map unit is used as a site for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil.

Frost action is the main limitation if this map unit is used as a site for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

428C—Ashfield fine sandy loam, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: hills, drumlins, uplands
Size of map unit: Areas commonly range from 3 to 60 acres.

Map Unit Composition

Ashfield and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
Oe-1 to 2 inches; moderately decomposed plant material
Oa-2 to 3 inches; highly decomposed plant material
A1-3 to 7 inches; fine sandy loam
A2-7 to 12 inches; fine sandy loam
Bw1-12 to 18 inches; fine sandy loam
Bw2-18 to 24 inches; fine sandy loam
BC-24 to 29 inches; fine sandy loam
Cd1-29 to 44 inches; fine sandy loam

Cd2-44 to 58 inches; sandy loam
Cd3-58 to 80 inches; fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderately rapid
Available water capacity: moderate
Reaction: extremely acid to slightly acid
Depth to restrictive feature: 20 to 33 inches to densic material
Depth to seasonal water table: 12 to 24 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3e Hydrologic group: C

Minor Components

Included with this soil in mapping are areas of well drained Shelburne soils, moderately well drained Schroon soils, poorly drained Brayton soils and very poorly drained Loonmeadow soils. Shelburne soils are higher on the landscape. Schroon soils lack a dense substratum. Brayton and Loonmeadow soils are in depressions and along drainageways. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas are in woodland. Some areas are in community development or hay and pasture.

The seasonal high water table is the main limitation if this map unit is used as a site for dwellings with basements or lawns and landscaping. Slope is also a limitation for lawns and landscaping. Locating dwellings in the highest part of the map unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

Wetness and slow percolation are the main limitations if this map unit is used as a site for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill above the impermeable substratum may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil.

Frost action is the main limitation if this map unit is used as a site for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

429A—Agawam fine sandy loam, cold, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: terraces on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Agawam and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 14 inches; fine sandy loam
Bw2-14 to 24 inches; fine sandy loam
2C- 24 to 60 inches; stratified very gravelly coarse sand to fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 1 Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Boscawen soils and cold phases of somewhat excessively drained Merrimac, soils. Boscawen Soils are sandy and gravelly through out; cold phases of Merrimac soils are sandy throughout. Also included are cold phases of moderately well drained Sudbury soils that are sandy and gravelly throughout and cold phases of moderately well drained Ninigret soils that are loamy over sandy and gravelly. Small areas poorly drained Moosilauke soils and cold phases of very poorly drained Scarboro soils are included in shallow depressions and drainageways. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in pasture hayland or woodland. Some areas are in community development or cropland.

This soil has few limitations for dwellings with basements and lawns and landscaping.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

This soil has few limitations for local roads and streets.

429B—Agawam fine sandy loam, cold, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: outwash plains on valleys, terraces on valleys
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Agawam and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 14 inches; fine sandy loam
Bw2-14 to 24 inches; fine sandy loam
2C-24 to 60 inches; stratified very gravelly coarse sand to fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
 Drainage class: well drained
 Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial
 deposits derived from granite and/or schist and/or gneiss
 Permeability: moderately rapid to very rapid
 Available water capacity: moderate
 Reaction: very strongly acid to slightly acid
 Depth to restrictive feature: greater than 72 inches
 Depth to seasonal water table: greater than 6 feet
 Flooding: none
 Interpretative Groups

Land capability classification (non-irrigated): 2 e
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Boscawen soils and cold phases of somewhat excessively drained Merrimac soils. Boscawen Soils are sandy and gravelly through out; cold phases of Merrimac soils are sandy throughout. Also included are cold phases of moderately well drained Sudbury soils that are sandy and gravelly throughout and cold phases of moderately well drained Ninigret soils that are loamy over sandy and gravelly. Small areas poorly drained Moosilauke soils and cold phases of very poorly drained Scarboro soils are included in shallow depressions and drainageways. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in pasture hayland or woodland. Some areas are in community development or cropland.

This soil has few limitations for dwellings with basements and lawns and landscaping. Droughtiness can make establishment and maintenance of lawns difficult.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

This soil has few limitations for local roads and streets.

429C—Agawam fine sandy loam, cold, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: terraces on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Agawam and similar soils: 80 percent
Minor components: 20 percent
Major Components
The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 8 inches; fine sandy loam
Bw1-8 to 14 inches; fine sandy loam
Bw2-14 to 24 inches; fine sandy loam
2C-24 to 60 inches; stratified very gravelly coarse sand to fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3e Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Boscawen soils and cold phases of somewhat excessively drained Merrimac soils. Boscawen Soils are sandy and gravelly through out; cold phases of Merrimac soils are sandy throughout. Also included are cold phases of moderately well drained Sudbury soils that are sandy and gravelly throughout and cold phases of moderately well drained Ninigret soils that are loamy over sandy and gravelly. Small areas poorly drained Moosilauke soils and cold phases of very poorly drained Scarboro soils are included in shallow depressions and drainageways. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in pasture hayland or woodland. Some areas are in community development or cropland.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a moderate hazard during construction.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

433-Moosilauke sandy loam

Map Unit Setting

Slope: nearly level
Landscape: valleys, depressions on outwash plains, drainageways on outwash plains, depressions on terraces, drainageways on terraces
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Moosilauke and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa-0 to 1 inch; slightly decomposed plant material
A-1 to 6 inches; loam
$\mathrm{Bg}-6$ to 16 inches; fine sandy loam
Bw-16 to 24 inches; gravelly fine sandy loam
C1-24 to 39 inches; loamy fine sand
C2-39 to 65 inches; fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 0 to 12 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4w
Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of excessively drained Boscawen soils, and cold phases of somewhat excessively drained Merrimac, moderately well drained

Sudbury and Ninigret soils on slightly higher areas. Also included are cold phases of very poorly drained Scarboro soils, and very poorly drained Bucksport and Wonsqeak soils in the depressions. Cold phases of poorly drained Fredon soils are in areas that have a silty surface and subsoil with a higher pH . Minor componets make up about 20 percent of the unit.

Use and Management

Most areas are in woodland or shrubland. Cleared areas are in pasture.
The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank adsorption fields. Poor filtering is also a limitation for septic tank adsorption fields. There is a hazard of groundwater pollution because of the rapidly permeable substratum does not adequately filter effluent. A more suitable site should be considered on a drier inclusion or a nearby soil.

Frost action and seasonal highwater table are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarser grained subgrade to frost depth will reduce these limitations.

434A-Merrimac sandy loam, cold, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: kames on valleys, outwash plains on valleys, terraces on valleys Size of map unit: Areas commonly range from 5 to 75 acres.

Map Unit Composition

Merrimac and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 9 inches; sandy loam
Bw1-9 to 16 inches; sandy loam
Bw2-16 to 24 inches; gravelly sandy loam
2C-24 to 60 inches; stratified very gravelly coarse sand to gravelly sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: somewhat excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 1
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Boscawen soils, and cold phases of well drained Agawam soils, moderately well drained Sudbury and Ninigret soils. Small areas poorly drained Moosilauke soils and cold phases of very poorly drained Scarboro soils are included in shallow depressions and drainageways. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in pasture hayland or woodland. Some areas are in community development or cropland.

This soil has few limitations for dwellings with basements, lawns and landscaping, and local roads and streets.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

434B—Merrimac sandy loam, cold, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: outwash plains on valleys, kames on valleys, terraces on valleys Size of map unit: Areas commonly range from 5 to 50 acres.

Map Unit Composition

Merrimac and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 9 inches; sandy loam
Bw1-9 to 16 inches; sandy loam
Bw2-16 to 24 inches; gravelly sandy loam
2C-24 to 60 inches; stratified very gravelly coarse sand to gravelly sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: somewhat excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 e
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Boscawen soils and cold phases of well drained Agawam, moderately well drained Sudbury and Ninigret soils. Small areas of poorly drained Moosilauke soils and cold phases of very poorly drained Scarboro soils are included in shallow depressions and drainageways. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in pasture hayland or woodland. Some areas are in community development or cropland.

This soil has few limitations for dwellings with basements, lawns and landscaping, and local roads and streets.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

434C-Merrimac sandy loam, cold, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: kames on valleys, outwash plains on valleys, terraces on valleys Size of map unit: Areas commonly range from 5 to 40 acres.

Map Unit Composition

Merrimac and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 9 inches; sandy loam
Bw1-9 to 16 inches; sandy loam
Bw2-16 to 24 inches; gravelly sandy loam
2C-24 to 60 inches; stratified very gravelly coarse sand to gravelly sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: somewhat excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3e
Hydrologic group: B

Minor Components

Included with this soil in mapping are areas of excessively drained Boscawen soils and cold phases of well drained Agawam, moderately well drained Sudbury and Ninigret soils. Small areas poorly drained Moosilauke soils and cold phases of very poorly drained Scarboro soils are included in shallow depressions and drainageways. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in pasture hayland or woodland. Some areas are in community development or cropland.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a moderate hazard during construction. Designing dwellings to conform to the slope of the land will reduce the slope limitation.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

435-Scarboro muck, cold

Map Unit Setting

Slope: nearly level
Landscape: drainageways on outwash plains, terraces on outwash plains, depressions on outwash plains
Size of map unit: Areas commonly range from 3 to 100 acres.

Map Unit Composition

Scarboro and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa-0 to 12 inches; muck
A-12 to 17 inches; loamy sand
Cg1-17 to 31 inches; stratified sand to loamy fine sand Cg2-31 to 72 inches; stratified very gravelly coarse sand to loamy fine sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: very poorly drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: moderate
Reaction: very strongly acid to neutral
Depth to restrictive feature: greater than 72 inches
Ponding depth: 0 to 6 inches above surface
Depth to seasonal water table: 0 to 6 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 5w Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of excessively drained Boscawen soils, and cold phases of somewhat excessively drained Merrimac, moderately well drained Sudbury and Ninigret soils in higher areas. Also included are very poorly drained Bucksport and Wonsqeak in the depressions. Cold phases of poorly drained Fredon soils are in areas that have a silty surface and subsoil with a higher pH . Minor componets make up about 20 percent of the unit.

Use and Management

Most areas are in woodland. Some areas are brushland reverting to woodland.
Ponding is the main limitation for dwellings with basements and lawns and landscaping. Ponding and Poor filtering are the main limitations for septic tank adsorption fields. There is a hazard of groundwater pollution because of the rapidly permeable substratum does not adequately filter effluent. A more suitable site should be considered on a drier inclusion or a nearby soil.

Ponding and Frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarser grained subgrade to frost depth will reduce these limitations.

436-Halsey silt loam, cold

Map Unit Setting

Slope: nearly level
Landscape: terraces on outwash plains, drainageways on outwash plains, depressions on outwash plains
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Halsey and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 1 inch; moderately decomposed plant material
A-1 to 8 inches; silt loam
Bg1-8 to 16 inches; silt loam
Bg2-16 to 28 inches; fine sandy loam
2Cg1-28 to 38 inches; loamy sand
2Cg2—38 to 60 inches; sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: very poorly drained
Parent material: coarse-loamy over sandy and gravelly glaciofluvial deposits derived
from limestone and dolomite and/or schist
Permeability: moderate to very rapid
Available water capacity: high

Reaction: moderately acid to moderately alkaline Depth to restrictive feature: greater than 72 inches Ponding depth: 0 to 6 inches above surface Depth to seasonal water table: 0 to 6 inches Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 5w Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of excessively drained Boscawen soils and cold phases of well drained Agawam and moderately well drained Ninigret soils in slightly higher areas. Cold phases of poorly drained Fredon soils are also included. Very poorly drained Bucksport and Wonsqueak soils are included in depressions and along drainageways. Minor componets make up about 15 percent of this map unit.

Use and Management

Most areas are in woodland or marshland.
The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank adsorption fields. Poor filtering is also a limitation for septic tank adsorption fields. There is a hazard of groundwater pollution because of the rapidly permeable substratum does not adequately filter effluent. A more suitable site should be considered on a drier inclusion or a nearby soil.

Frost action and seasonal highwater table are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarser grained subgrade to frost depth will reduce these limitations.

437-Wonsqueak mucky peat

Map Unit Setting

Slope: nearly level
Landscape: depressions
Size of map unit: Areas commonly range from 3 to 150 acres.

Map Unit Composition

Wonsqueak and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 2 inches; mucky peat
Oa1-2 to 11 inches; muck
Oa2-11 to 22 inches; muck
2Cg1-22 to 25 inches; mucky silt loam
2Cg2-25 to 45 inches; gravelly fine sandy loam
2Cg3-45 to 60 inches; fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: very poorly drained

Parent material: woody organic material over loamy drift
Permeability: moderately slow to very rapid
Available water capacity: high
Reaction: extremely acid to neutral
Depth to restrictive feature: greater than 72 inches
Ponding depth: 0 to 12 inches above surface
Depth to seasonal water table: 0 to 12 inches
Flooding: rare

Interpretative Groups

Land capability classification (non-irrigated): 5w
Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of poorly drained Brayton soils and very poorly drained Bucksport and Loonmeadow soils. Bucksport soils are where the muck is more than 51 inches thick over mineral substratum. Brayton and Loonmeadow soils formed in coarse-loamy glacial till. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas of this soil are in woodland or wildlife habitat.
Ponding and subsidence are the main limitations for dwellings with basements, septic tank absorption fields, local roads and streets. Excess humus is a limitation for lawns and landscaping. Slow percolation is also a limitation for septic tank absorption fields. Frost action is also a limitation for local roads and streets. A more suitable site for all these uses should be selected on a drier soil.

438-Bucksport muck

Map Unit Setting

Slope: nearly level
Landscape: depressions
Size of map unit: Areas commonly range from 3 to 150 acres.

Map Unit Composition

Bucksport and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oa1-0 to 9 inches; muck
Oa2-9 to 33 inches; muck
Oa3-33 to 50 inches; muck
Oa4-50 to 59 inches; muck
$2 \mathrm{Cg}-59$ to 63 inches; gravelly sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: very poorly drained
Parent material: woody organic material

Permeability: moderately slow to very rapid
Available water capacity: very high
Reaction: extremely acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Ponding depth: 0 to 12 inches above surface Depth to seasonal water table: 0 to 12 inches Flooding: rare

Interpretative Groups

Land capability classification (non-irrigated): 5w
Hydrologic group: D

Minor Components

Included with this soil in mapping are areas of poorly drained Brayton soils, very poorly drained Loonmeadow and Wonsqueak soils. Wonsqueak soils are where the muck is between 16 to 51 inches thick over loamy substratum. Brayton and Loonmeadow soils formed in coarse-loamy glacial till. Minor componets make up about 15 percent of the map unit.

Use and Management

Most areas of this soil are in woodland or wildlife habitat.
Ponding and subsidence are the main limitations for dwellings with basements, septic tank absorption fields, local roads and streets. Low strength is also a limitation for dwellings with basements. Excess humus is a limitation for lawns and landscaping. Slow percolation is also a limitation for septic tank absorption fields. Frost action is also a limitation for local roads and streets. A more suitable site for all these uses should be selected on a drier soil.

440A-Boscawen gravelly sandy loam, 0 to 3 percent slopes

Map Unit Setting

Slope: nearly level
Landscape: outwash plains on valleys, kames on valleys, eskers on valleys, terraces on valleys
Size of map unit: Areas commonly range from 3 to 30 acres.

Map Unit Composition

Boscawen and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 2 inches; gravelly sandy loam
Bw-2 to 9 inches; very gravelly sandy loam
BC-9 to 16 inches; very gravelly loamy sand
C1-16 to 29 inches; stratified fine sand to extremely gravelly coarse sand
C2-29 to 34 inches; stratified fine sand to extremely gravelly coarse sand
C3-34 to 40 inches; stratified fine sand to extremely gravelly coarse sand
C4-40 to 44 inches; stratified fine sand to extremely gravelly coarse sand
C5-44 to 67 inches; stratified fine sand to extremely gravelly coarse sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: very low
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3s
Hydrologic group: A

Minor Components

Included in mapping are cold phases of somewhat excessively drained Merrimac soils and cold phases of well drained Agawam soils. Cold phases of Merrimac soils are sandy throughout and cold phases of Agawam soils are loamy over sand and gravel. Small areas of cold phases of moderately well drained Sudbury soils are included in slightly lower areas. Poorly drained Moosilauke soils and very poorly drained Bucksport, Wonsqueak and cold phases Scarboro soils are included in shallow depressions and drainageways. Minor componets make up about 15 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in pasture or hayland. Some areas are mined for sand and gravel.

This soil has few limitations for dwellings with basements and local roads and streets. Droughtiness and slope are the main limitations for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

440C—Boscawen gravelly sandy loam, 3 to 15 percent slopes

Map Unit Setting

Slope: gently sloping to strongly sloping
Landscape: terraces on valleys, outwash plains on valleys, kames on valleys, eskers on valleys
Size of map unit: Areas commonly range from 3 to 200 acres.

Map Unit Composition

Boscawen and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 2 inches; gravelly sandy loam
Bw-2 to 9 inches; very gravelly sandy loam
$B C-9$ to 16 inches; very gravelly loamy sand
C1-16 to 29 inches; stratified fine sand to extremely gravelly coarse sand
C2—29 to 34 inches; stratified fine sand to extremely gravelly coarse sand
C3-34 to 40 inches; stratified fine sand to extremely gravelly coarse sand
C4-40 to 44 inches; stratified fine sand to extremely gravelly coarse sand
C5-44 to 67 inches; stratified fine sand to extremely gravelly coarse sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid to very rapid
Available water capacity: very low
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4e Hydrologic group: A

Minor Components

Included in mapping are cold phases of somewhat excessively drained Merrimac and well drained Agawam soils. Cold phases of Merrimac soils are sandy throughout and cold phases of Agawam soils are loamy over sand and gravel. Small areas of cold phases of moderately well drained Sudbury soils are included in slightly lower areas. Poorly drained Moosilauke soils and very poorly drained Bucksport, Wonsqueak and cold phases of Scarboro soils are included in shallow depressions and drainageways. Minor componets make up about 15 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in pasture or hayland. Some areas are mined for sand and gravel.

Slope is the main limitation for dwellings with basements. Erosion is a hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Droughtiness and slope are the main limitations for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Poor filtering is the main limitation for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

440E—Boscawen gravelly sandy loam, 15 to 45 percent slopes

Map Unit Setting

Slope: moderately steep to steep
Landscape: terraces on valleys, eskers on valleys, kames on valleys, outwash plains on valleys
Size of map unit: Areas commonly range from 3 to 200 acres.

Map Unit Composition

Boscawen and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
A-1 to 2 inches; gravelly sandy loam
Bw-2 to 9 inches; very gravelly sandy loam
BC-9 to 16 inches; very gravelly loamy sand
C1-16 to 29 inches; stratified fine sand to extremely gravelly coarse sand
C2-29 to 34 inches; stratified fine sand to extremely gravelly coarse sand
C3-34 to 40 inches; stratified fine sand to extremely gravelly coarse sand
C4-40 to 44 inches; stratified fine sand to extremely gravelly coarse sand
C5-44 to 67 inches; stratified fine sand to extremely gravelly coarse sand

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: excessively drained
Parent material: sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss
Permeability: moderately rapid or very rapid
Available water capacity: very low
Reaction: very strongly acid to moderately acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6e Hydrologic group: A

Minor Components

Included in mapping are cold phases of somewhat excessively drained Merrimac soils and well drained Agawam soils. Cold phases of Merrimac soils are sandy throughout and cold phase of Agawam soils are loamy over sand and gravel. Small areas of cold phases of moderately well drained Sudbury soils are included in slightly lower areas. Poorly drained Moosilauke soils and very poorly drained Bucksport, Wonsqueak and cold phases of Scarboro soils are included in shallow depressions and drainageways. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in pasture or hayland. Some areas are mined for sand and gravel.

Slope is the main limitation for dwellings with basements. Erosion is a hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation. Droughtiness and slope are the main limitations for lawns and landscaping. Planting early in spring reduces the impact of summer droughtiness and reduces seedling mortality. Lawns need watering in the summer.

Slope and poor filtering are the main limitations for septic tank absorption fields. There is a hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. Specially designed septic systems are necessary in some areas. Locating the septic tank absorption fields in a less sloping inclusion is preferable.

Slope is the main limitation for local roads and streets. Constructing roads on the contour will reduce the slope limitation.

442-Brayton loam

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: depressions on uplands, drainageways on uplands
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Brayton and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 2 inches; moderately decomposed plant material
A-2 to 10 inches; loam
Bg1-10 to 17 inches; gravelly sandy loam
Bg2-17 to 22 inches; gravelly sandy loam
Bg3-22 to 27 inches; sandy loam
Cd1-27 to 42 inches; gravelly sandy loam
Cd2—42 to 65 inches; gravelly sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderately rapid
Available water capacity: moderate
Reaction: extremely acid to neutral
Depth to restrictive feature: 20 to 27 inches to densic material
Depth to seasonal water table: 0 to 12 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4w Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of moderately well drained Fullam soils and very poorly drained Wonsqueak and Bucksport soils. Fullam soils are in slightly higher areas above Brayton soils. Wonsqueak and Bucksport soils are organic soils in depressions. Minor componets make up about 15 percent of the map unit.

Use and Management

This soil is mostly in woodland. Some areas are in community development or pasture.

The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Slow percolation is also a limitation for septic tank absorption fields. A more suitable site should be selected for these uses in a drier inclusion or nearby soil. The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarse grained subgrade to frost depth will reduce these limitations.

443-Brayton-Loonmeadow complex, extremely stony

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: drainageways on uplands, depressions on uplands
Surface cover: 3 to 15 percent stones
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Brayton and similar soils: 50 percent
Loonmeadow and similar soils: 35 percent
Minor components: 15 percent

Major Components

Brayton and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oe-0 to 2 inches; moderately decomposed plant material
A-2 to 10 inches; loam
Bg1-10 to 17 inches; gravelly sandy loam
Bg2-17 to 22 inches; gravelly sandy loam
Bg3-22 to 27 inches; sandy loam
Cd1-27 to 42 inches; gravelly sandy loam
Cd2—42 to 65 inches; gravelly sandy loam

Loonmeadow and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 2 inches; slightly decomposed plant material

A-2 to 9 inches; mucky fine sandy loam
$\mathrm{Bg}-9$ to 18 inches; sandy loam
Cg1-18 to 35 inches; gravelly sandy loam
Cg2-35 to 80 inches; gravelly sandy loam

Major Component Properties and Qualities

Brayton and similar soils

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-loamy lodgment till derived from granite and/or schist and/or gneiss
Permeability: very slow to moderately rapid
Available water capacity: moderate
Reaction: extremely acid to neutral
Depth to restrictive feature: 20 to 27 inches to densic material
Depth to seasonal water table: 0 to 12 inches
Flooding: none
Loonmeadow and similar soils
Depth to bedrock: very deep
Drainage class: very poorly drained
Parent material: coarse-loamy till derived from granite and/or schist and/or gneiss and/or dolomite
Permeability: slow to very rapid
Available water capacity: high
Reaction: strongly acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Ponding depth: 0 to 12 inches above surface
Depth to seasonal water table: 0 to 12 inches
Flooding: none

Interpretative Groups

Brayton and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: D

Loonmeadow and similar soils

Land capability classification (non-irrigated): 7s
Hydrologic group: D

Minor Components

Included with these soils in mapping are areas of moderately well drained Fullam and Ashfield soils and very poorly drained Wonsqueak and Bucksport soils. Fullam soils are in slightly higher areas above Brayton soils. Wonsqueak and Bucksport soils are organic soils in depressions. Minor componets make up about 15 percent of the map unit.

Use and Management

This soil is mostly in woodland. Some areas are in community development.
The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Slow percolation is also a limitation for septic tank absorption fields. A more suitable site should be selected for these uses in a drier inclusion or nearby soil. The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised fill materials, installing a drainage system, and providing a coarse grained subgrade to frost depth will reduce these limitations.

448B—Hogansburg loam, 3 to 8 percent slopes

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: hills, uplands
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Hogansburg and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 12 inches; loam
Bw1-12 to 20 inches; loam
Bw2-20 to 29 inches; loam
Bw3-29 to 43 inches; loam
Cd1-43 to 50 inches; loam
Cd2-50 to 70 inches; loam
Cd3-70 to 84 inches; loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
Permeability: very slow to moderate
Available water capacity: high
Reaction: strongly acid to moderately alkaline
Depth to restrictive feature: 20 to 43 inches to densic material Depth to seasonal water table: 18 to 36 inches
Flooding: none
Interpretative Groups
Land capability classification (non-irrigated): 2e
Hydrologic group: B

Minor Components

Included with this unit in mapping are well drained Pyrites soils in higher areas and cold phases of poorly drained Mudgepond soils. Very poorly drained Loonmeadow soils are in depressions and along drainageways. Also included are well drained Shelburne soils and moderately well drained Ashfield soils in areas where the soil is more acid. Minor componets make up about 15 percent of the unit.

Use and Management

Most areas are in woodland or hayland. Some areas are in community development or cropland.

The slow percolation is the main limitations for septic tank absorption fields.
Modifying a conventional system by extending the length of the distribution lines may allow on site sewage disposal.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

449B—Hogansburg loam, 3 to 8 percent slopes, very stony

Map Unit Setting

Slope: gently sloping
Landscape: hills, uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Hogansburg and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 12 inches; loam
Bw1-12 to 20 inches; loam
Bw2-20 to 29 inches; loam
Bw3-29 to 43 inches; loam
Cd1-43 to 50 inches; loam
Cd2—50 to 70 inches; loam
Cd3-70 to 84 inches; loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist Permeability: very slow to moderate
Available water capacity: high
Reaction: strongly acid to moderately alkaline
Depth to restrictive feature: 20 to 43 inches to densic material
Depth to seasonal water table: 18 to 36 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with this unit in mapping are well drained Pyrites soils in higher areas. Cold phases of poorly drained Mudgepond soils are included. Very poorly drained Loonmeadow soils are in depressions and along drainageways. Also included are well drained Shelburne soils and moderately well drained Ashfield soils in areas where the soil is more acid. Minor componets make up about 15 percent of the unit.

Use and Management

Most areas are in woodland. Some areas are in community development or pasture.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Large and small stones are also a limitation for lawns and landscaping. Removing the stones will reduce the limitation. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable
outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

449C—Hogansburg loam, 8 to 15 percent slopes, very stony

Map Unit Setting

Slope: strongly sloping
Landscape: uplands, hills
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Hogansburg and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Ap-0 to 12 inches; loam
Bw1-12 to 20 inches; loam
Bw2-20 to 29 inches; loam
Bw3-29 to 43 inches; loam
Cd1-43 to 50 inches; loam
Cd2—50 to 70 inches; loam
Cd3-70 to 84 inches; loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: moderately well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
Permeability: very slow to moderate
Available water capacity: high
Reaction: strongly acid to moderately alkaline
Depth to restrictive feature: 20 to 43 inches to densic material
Depth to seasonal water table: 18 to 36 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with this unit in mapping are well drained Pyrites soils in higher areas. Cold phases of poorly drained Mudgepond soils are included. Very poorly drained

Loonmeadow soils are in depressions and along drainageways. Also included are well drained Shelburne soils and moderately well drained Ashfield soils in areas where the soil is more acid. Minor componets make up about 15 percent of the unit.

Use and Management

Most areas are in woodland. Some areas are in pasture. Other areas are in community development.

The seasonal high water table is the main limitation for dwellings with basements and lawns and landscaping. Slope and large and small stones are also a limitation for lawns and landscaping. Removing the stones will reduce the limitation. Locating dwellings in the highest part of the unit with foundation drains backfilled with gravel to a suitable outlet, waterproofing the outside of basement walls, and diverting runoff from higher areas will reduce wetness.

The seasonal high water table and slow percolation are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines may allow on site sewage disposal. A more suitable site should be considered in a less dense inclusion or nearby soil.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

450B—Pyrities loam, 3 to 8 percent slopes

Map Unit Setting

Slope: gently sloping
Landscape: uplands, hills
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Pyrities and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
Ap-1 to 8 inches; loam
Bw1-8 to 13 inches; loam
Bw2-13 to 26 inches; loam
BC-26 to 45 inches; loam
C-45 to 65 inches; fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
Permeability: slow or moderate
Available water capacity: high
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 2 e

Hydrologic group: B

Minor Components

Included with this unit in mapping are moderately well drained Hogansburg soils in lower areas. Cold phases of poorly drained Mudgepond soils are included. Very poorly drained Loonmeadow soils are in depressions and along drainageways. Also included are well drained Shelburne soils and moderately well drained Ashfield soils in areas where the soil is more acid. Minor componets make up about 15 percent of the unit.

Use and Management

Most areas are in woodland. Other areas are in cropland, pasture or community development.

This soil has few limitations for dwellings with basements and lawns and landscaping.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

450C—Pyrities loam, 8 to 15 percent slopes

Map Unit Setting

Slope: strongly sloping
Landscape: uplands, hills
Size of map unit: Areas commonly range from 3 to 40 acres.

Map Unit Composition

Pyrities and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
Ap-1 to 8 inches; loam
Bw1-8 to 13 inches; loam
Bw2-13 to 26 inches; loam
BC-26 to 45 inches; loam
C-45 to 65 inches; fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist Permeability: slow or moderate
Available water capacity: high
Reaction: moderately acid to moderately alkaline

Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 3e Hydrologic group: B

Minor Components

Included with this unit in mapping are moderately well drained Hogansburg soils in lower areas. Cold phases of poorly drained Mudgepond soils are included. Very poorly drained Loonmeadow soils are in depressions and along drainageways. Also included are well drained Shelburne soils and moderately well drained Ashfield soils in areas where the soil is more acid. Minor componets make up about 15 percent of the unit.

Use and Management

Most areas are in woodland. Other areas are in cropland, pasture or community development.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal.

Frost action and slope are the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation. Constructing roads on the contour will reduce the slope limitation.

450D—Pyrities loam, 15 to 25 percent slopes

Map Unit Setting

Slope: moderately steep
Landscape: uplands, hills
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Pyrities and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
Ap-1 to 8 inches; loam
Bw1-8 to 13 inches; loam
Bw2-13 to 26 inches; loam
BC-26 to 45 inches; loam
C-45 to 65 inches; fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
Permeability: slow to moderate
Available water capacity: high
Reaction: moderately acid to moderately alkaline Depth to restrictive feature: greater than 72 inches Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4e Hydrologic group: B

Minor Components

Included with this unit in mapping are moderately well drained Hogansburg soils in lower areas. Cold phases of poorly drained Mudgepond soils are included. Very poorly drained Loonmeadow soils are in depressions and along drainageways. Also included are well drained Shelburne soils and moderately well drained Ashfield soils in areas where the soil is more acid. Minor componets make up about 15 percent of the unit.

Use and Management

Most areas are in woodland. Other areas are in pasture or community development.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a severe hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slow percolation and slope are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal. Placing the distribution lines on the contour increases the efficiency of the system. A more suitable site should be considered in a less sloping, less dense inclusion or nearby soil.

Frost action and slope are the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation. Constructing roads on the contour or locating them on less sloping inclusions will reduce the slope limitation.

451B—Pyrities loam, 3 to 8 percent slopes, very stony

Map Unit Setting

Slope: gently sloping
Landscape: uplands, hills
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 40 acres.
Map Unit Composition
Pyrities and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
Ap-1 to 8 inches; loam
Bw1-8 to 13 inches; loam
Bw2-13 to 26 inches; loam
BC—26 to 45 inches; loam
C-45 to 65 inches; fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
Permeability: slow to moderate
Available water capacity: high
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s
Hydrologic group: B

Minor Components

Included with this unit in mapping are moderately well drained Hogansburg soils in lower areas. Cold phase of poorly drained Mudgepond soils are included. Very poorly drained Loonmeadow soils are in depressions and along drainageways. Also included are well drained Shelburne soils and moderately well drained Ashfield soils in areas where the soil is more acid. Minor componets make up about 15 percent of the unit.

Use and Management

Most areas are in woodland or pasture. Other areas are in community development.

This soil has few limitations for dwellings with basements and lawns and landscaping. Large stones are the main limitation for lawns and landscaping. Removing the stones will reduce the limitation.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal.

Frost action is the main limitation for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation.

451C—Pyrities loam, 8 to 15 percent slopes, very stony

Map Unit Setting

[^4]
Map Unit Composition

Pyrities and similar soils: 80 percent Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material
Ap-1 to 8 inches; loam
Bw1-8 to 13 inches; loam
Bw2-13 to 26 inches; loam
BC—26 to 45 inches; loam
C-45 to 65 inches; fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist Permeability: slow to moderate
Available water capacity: high
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 6s Hydrologic group: B

Minor Components

Included with this unit in mapping are moderately well drained Hogansburg soils in lower areas. Cold phases of poorly drained Mudgepond soils are included. Very poorly drained Loonmeadow soils are in depressions and along drainageways. Also included are well drained Shelburne soils and moderately well drained Ashfield soils in areas where the soil is more acid. Minor componets make up about 15 percent of the unit.

Use and Management

Most areas are in woodland or pasture. Other areas are in community development.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Large stones are also a limitation for lawns and landscaping. Removing the stones will reduce this limitation. Erosion is a moderate hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slow percolation is the main limitation for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution lines and adding fill will allow on site sewage disposal.

Frost action and slope are the main limitations for local roads and streets. Providing a coarse grained subgrade to frost depth will reduce this limitation. Constructing roads on the contour will reduce the slope limitation.

451D—Pyrities loam, 15 to 25 percent slopes, very stony

Map Unit Setting

Slope: moderately steep to steep
Landscape: hills, uplands
Surface cover: 0 to 3 percent stones
Size of map unit: Areas commonly range from 3 to 50 acres.

Map Unit Composition

Pyrities and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inches; slightly decomposed plant material
Ap-1 to 8 inches; loam
Bw1-8 to 13 inches; loam
Bw2-13 to 26 inches; loam
BC-26 to 45 inches; loam
C-45 to 65 inches; fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist Permeability: slow or moderate
Available water capacity: high
Reaction: moderately acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: greater than 6 feet Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 7s
Hydrologic group: B

Minor Components

Included with this unit in mapping are moderately well drained Hogansburg soils in lower areas. Cold phases of poorly drained Mudgepond soils are included. Very poorly drained Loonmeadow soils are in depressions and along drainageways. Also included are well drained Shelburne soils and moderately well drained Ashfield soils in areas where the soil is more acid. Minor componets make up about 15 percent of the unit.

Use and Management

Most areas are in woodland or pasture. Other areas are in community development.

Slope is the main limitation for dwellings with basements and lawns and landscaping. Erosion is a severe hazard during construction. Designing dwellings to conform to the natural slope of the land will reduce the slope limitation.

Slow percolation and slope are the main limitations for septic tank absorption fields. Modifying a conventional system by extending the length of the distribution
lines and adding fill will allow on site sewage disposal. Placing the distribution lines on the contour increases the efficiency of the system. A more suitable site should be considered in a less sloping, less dense inclusion or nearby soil.

Slope is the main limitation for local roads and streets. Constructing roads on the contour or locating them on less sloping inclusions will reduce the slope limitation.

457-Mudgepond silt loam, cold

Map Unit Setting

Slope: nearly level to gently sloping Landscape: depressions on uplands, drainageways on uplands Size of map unit: Areas range from 3 to 50 acres.

Map Unit Composition

Mudgepond and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 11 inches; silt loam
$\mathrm{Bg}-11$ to 16 inches; loam
Bw1-16 to 26 inches; fine sandy loam
Bw2-26 to 35 inches; gravelly fine sandy loam
C-35 to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: neutral to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 0 to 12 inches
Flooding: none

Interpretative Groups

Land capability classification (non-irrigated): 4w Hydrologic group: D

Minor Components

Included with this soil in mapping are moderately well drained Hogansburg and Ashfield soils upslope from cold phases of poorly drained Mudgepond soils. Also included are cold phases of very poorly drained Alden soils in depressions. Minor componets make up about 20 percent of this map unit.

Use and Management

This soil is mostly in woodland. Other areas are in pasture or cropland.
The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Slow percolation is also a
limitation for septic tank absorption fields. A more suitable site should be selected for these uses in a drier inclusion or nearby soil.

The seasonal high water table and frost action are the main limitations for local roads and streets. Construction on raised filled materials, installing a drainage system, and providing a coarse grained subgrade to frost depth will reduce these limitations.

458-Mudgepond and Alden soils, extremely stony, cold

Map Unit Setting

Slope: nearly level to gently sloping
Landscape: depressions on uplands, drainageways on uplands
Surface cover: 3 to 15 percent stones
Size of map unit: Areas range from 3 to 50 acres.

Map Unit Composition

Mudgepond and similar soils: 55 percent
Alden and similar soils: 35 percent
Minor components: 10 percent

Major Components

Mudgepond and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 11 inches; silt loam
$\mathrm{Bg}-11$ to 16 inches; loam
Bw1-16 to 26 inches; fine sandy loam
Bw2-26 to 35 inches; gravelly fine sandy loam
C-35 to 65 inches; gravelly fine sandy loam

Alden and similar soils

The typical sequence, depth, and composition of the layers of the soil are as follows-
A1-0 to 4 inches; mucky silt loam
A2—4 to 13 inches; silt loam
Bg1-13 to 23 inches; silt loam
Bg2-23 to 29 inches; silt loam
Cg1-29 to 43 inches; gravelly loam
Cg2—43 to 60 inches; loam

Major Component Properties and Qualities

Mudgepond and similar soils

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-loamy till derived from limestone and dolomite and/or schist
Permeability: moderate or moderately rapid
Available water capacity: high
Reaction: neutral to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 0 to 12 inches
Flooding: none

Alden and similar soils
Depth to bedrock: very deep
Drainage class: very poorly drained
Parent material: fine-loamy till derived from limestone and dolomite and/or schist
Permeability: moderately slow or moderate
Available water capacity: high
Reaction: strongly acid to moderately alkaline
Depth to restrictive feature: greater than 72 inches
Ponding depth: 0 to 6 inches above surface
Depth to seasonal water table: 0 to 12 inches
Flooding: none

Interpretative Groups

Mudgepond and similar soils
Land capability classification (non-irrigated): 7s
Hydrologic group: D

Alden and similar soils
 Land capability classification (non-irrigated): 7s
 Hydrologic group: D

Minor Components

Included with this soil in mapping are moderately well drained Hogansburg and Ashfield soils upslope from cold phases of poorly drained Mudgepond and very poorly drained Alden soils. Also included are very poorly Bucksport and Wonsqueak soils in depressions. Minor componets make up about 10 percent of this map unit.

Use and Management

This soil is mostly in woodland.
The seasonal high water table is the main limitation for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Ponding is a limitation in areas of Alden soils. Slow percolation is also a limitation for septic tank absorption fields. A more suitable site should be selected for these uses in a drier inclusion or nearby soil.

The seasonal high water table and frost action are the main limitations for local roads and streets. Ponding is also a limitation in areas of Alden soils. Construction on raised filled materials, installing a drainage system, and providing a coarse grained subgrade to frost depth will reduce these limitations.

501-Ondawa fine sandy loam

Map Unit Setting

Slope: nearly level
Landscape: flood plains
Size of map unit: Areas commonly range from 3 to 30 acres.

Map Unit Composition

Ondawa and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
Oi-0 to 1 inch; slightly decomposed plant material

Oa-1 to 2 inches; highly decomposed plant material
Ap-2 to 14 inches; loam
Bw1-14 to 30 inches; loam
C1-30 to 33 inches; loam
C2-33 to 60 inches; fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: well drained
Parent material: coarse-loamy alluvium
Permeability: slow to moderate
Available water capacity: high
Reaction: very strongly acid to slightly acid
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 60 to 72 inches
Flooding: occasional

Interpretative Groups

Land capability classification (non-irrigated): 1
Hydrologic group: B

Minor Components

Included with this soil in mapping are excessively drained to poorly drained Udifluvents and Fluvaquents on the flood plain. Cold phases of well drained Agawam soils are on nearby outwash plains and terraces. Areas of poorly drained Rumney soils and very poorly drained Medomak soils are included in depressions and channel scars on the flood plain. Minor componets make up about 15 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in pasture or hayland.
Flooding is the main limitation for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Poor filtering is also a limitation for septic tank absorption fields. There is the hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. A more suitable site for these uses should be selected on a soil that does not flood.

Flooding is the main limitation for local roads and streets. Providing drainage and building on raised fill will reduce this limitation. A more suitable site should be considered on a soil that does not flood.

503-Rumney fine sandy loam

Map Unit Setting

Slope: nearly level
Landscape: depressions on flood plains
Size of map unit: Areas commonly range from 3 to 100 acres.
Map Unit Composition
Rumney and similar soils: 80 percent
Minor components: 20 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A—0 to 7 inches; silt loam
Bg1-7 to 22 inches; sandy loam
Bg2-22 to 38 inches; sandy loam
Ab-38 to 42 inches; sandy loam
2Cg-42 to 44 inches; extremely gravelly coarse sand
$3 \mathrm{Cg}-44$ to 65 inches; gravelly fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: poorly drained
Parent material: coarse-loamy alluvium
Permeability: moderate to very rapid
Available water capacity: high
Reaction: moderately acid to slightly alkaline
Depth to restrictive feature: greater than 72 inches
Depth to seasonal water table: 0 to 18 inches
Flooding: frequent

Interpretative Groups

Land capability classification (non-irrigated): 4w
Hydrologic group: D

Minor Components

Included with this soil in mapping are excessively drained to poorly drained Udifluvents and Fluvaquents on the flood plain. Well drained Ondawa soils are on higher portions of the flood plain. Areas of very poorly drained Medomak soils are included in depressions and channel scars on the flood plain. Minor componets make up about 20 percent of this map unit.

Use and Management

Most areas are in woodland. Some areas are in pasture or hayland.
Flooding and the seasonal high water table are the main limitations for dwellings with basements, lawns and landscaping, and septic tank absorption fields. Poor filtering is also a limitation for septic tank absorption fields. There is the hazard of groundwater pollution because the rapidly permeable substratum does not adequately filter effluent. A more suitable site for these uses should be selected on a soil that does not flood.

Flooding, wetness, and potential frost action are the main limitations for local roads and streets. Providing drainage and building on raised fill with a coarse grained subgrade to frost depth will reduce these limitations. A more suitable site should be considered on a soil that does not flood.

508-Medomak silt loam

Map Unit Setting

Slope: nearly level
Landscape: flood plains
Size of map unit: Areas commonly range from 3 to 150 acres.

Map Unit Composition

Medomak and similar soils: 85 percent
Minor components: 15 percent

Major Components

The typical sequence, depth, and composition of the layers of the soil are as follows-
A-0 to 7 inches; mucky silt loam
BG—7 to 24 inches; silt loam
Ab-24 to 33 inches; mucky silt loam
$2 \mathrm{Cg}-33$ to 46 inches; very gravelly coarse sand
3C-46 to 79 inches; very fine sandy loam

Major Component Properties and Qualities

Depth to bedrock: very deep
Drainage class: very poorly drained
Parent material: coarse-loamy alluvium; over sandy and gravelly alluvium
Permeability: moderate to very rapid
Available water capacity: very high
Reaction: strongly acid to slightly alkaline
Depth to restrictive feature: greater than 72 inches
Ponding depth: 0 to 18 inches above surface
Depth to seasonal water table: 0 to 6 inches
Flooding: frequent

Interpretative Groups

Land capability classification (non-irrigated): not specified Hydrologic group: D

Minor Components

Included with this soil in mapping are excessively drained to poorly drained Udifluvents and Fluvaquents on the flood plain. Udifluvents and Well drained Ondawa soils are on higher portions of the flood plain. Areas of poorly drained Rumney soils and Fluvaquents are included in depressions and channel scars on the flood plain. Minor componets make up about 15 percent of this map unit.

Use and Management

Most areas are in woodland or marsh, and are wetland wildlife habitat.
Flooding and the seasonal high water table are the main limitations for dwellings with basements, lawns and landscaping, and septic tank absorption fields. A more suitable site should be selected on a drier soil that does not flood.

Flooding, potential frost action, and the seasonal high water table are the main limitations for local roads and streets. Providing drainage and building on raised fill with a coarse grained subgrade to frost depth will reduce these limitations. A more suitable site should be considered on a soil that does not flood.

Prime Farmland

Prime farmland is one of several kinds of important farmland defined by the U.S. Department of Agriculture. It is of major importance in meeting the Nation's short- and long-range needs for food and fiber. Because the supply of high-quality farmland is limited, the U.S. Department of Agriculture recognizes that responsible levels of government, as well as individuals, should encourage and facilitate the wise use of our Nation's prime farmland.

Prime farmland, as defined by the U.S. Department of Agriculture, is land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops and is available for these uses. It could be cultivated land, pastureland, forestland, or other land, but it is not urban or built-up land or water areas. The soil qualities, growing season, and moisture supply are those needed for the soil to economically produce sustained high yields of crops when proper management, including water management, and acceptable farming methods are applied. In general, prime farmland has an adequate and dependable supply of moisture from precipitation or irrigation, a favorable temperature and growing season, acceptable acidity or alkalinity, an acceptable salt and sodium content, and few or no rocks. It is permeable to water and air. It is not excessively erodible or saturated with water for long periods, and it either is not frequently flooded during the growing season or is protected from flooding. Slope ranges mainly from 0 to 6 percent. More detailed information about the criteria for prime farmland is available at the local offices of the Natural Resources Conservation Service.

The U.S. Department of Agriculture defines additional farmland of statewide importance as land, in addition to prime farmland, that is of statewide importance for the production of food, feed, fiber, forage, and oilseed crops. Generally, additional farmlands of statewide importance include those that are nearly prime farmland and that economically produce high yields of crops when treated and managed according to modern farming methods. Some may produce as high a yield as prime farmland if conditions are favorable.

A recent trend in land use in some parts of the survey area has been the loss of some prime farmland to industrial and urban uses. The loss of prime farmland to other uses puts pressure on marginal lands, which generally are more erodible, droughty, and less productive and cannot be easily cultivated.

The map units in the survey area that are considered prime farmland or additional farmland of statewide importance are listed in table 5 . These lists do not constitute a recommendation for a particular land use. On some soils included in the lists, measures that overcome a hazard or limitation, such as flooding, wetness, and droughtiness, are needed. Onsite evaluation is needed to determine whether or not the hazard or limitation has been overcome by corrective measures.

The extent of each listed map unit is shown in table 4. The location is shown on the detailed soil maps. The soil qualities that affect use and management are described under the heading "Detailed Soil Map Units."

Use and Management of the Soils

This soil survey is an inventory and evaluation of the soils in the survey area. It can be used to adjust land uses to the limitations and potentials of natural resources and the environment. Also, it can help to prevent soil-related failures in land uses.

In preparing a soil survey, soil scientists, conservationists, engineers, and others collect extensive field data about the nature and behavioral characteristics of the soils. They collect data on erosion, droughtiness, flooding, and other factors that affect various soil uses and management. Field experience and collected data on soil properties and performance are used as a basis in predicting soil behavior.

Information in this section can be used to plan the use and management of soils for crops and pasture; as rangeland and forestland; as sites for buildings, sanitary facilities, highways and other transportation systems, and parks and other recreational facilities; and as wildlife habitat. It can be used to identify the potentials and limitations of each soil for specific land uses and to help prevent construction failures caused by unfavorable soil properties.

Planners and others using soil survey information can evaluate the effect of specific land uses on productivity and on the environment in all or part of the survey area. The survey can help planners to maintain or create a land use pattern in harmony with the natural soil.

Contractors can use this survey to locate sources of sand and gravel, roadfill, and topsoil. They can use it to identify areas where bedrock, wetness, or very firm soil layers can cause difficulty in excavation.

Health officials, highway officials, engineers, and others may also find this survey useful. The survey can help them plan the safe disposal of wastes and locate sites for pavements, sidewalks, campgrounds, playgrounds, lawns, and trees and shrubs.

Interpretive Ratings

The interpretive tables in this survey rate the soils in the survey area for various uses. Many of the tables identify the limitations that affect specified uses and indicate the severity of those limitations. The ratings in these tables are both verbal and numerical.

Rating Class Terms

Rating classes are expressed in the tables in terms that indicate the extent to which the soils are limited by all of the soil features that affect a specified use or in terms that indicate the suitability of the soils for the use. Thus, the tables may show limitation classes or suitability classes. Terms for the limitation classes are not limited, slightly limited, somewhat limited, and very limited. The suitability ratings are expressed as well suited, moderately well suited, poorly suited, and unsuited or as good, fair, and poor.

Numerical Ratings

Numerical ratings in the tables indicate the relative severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.00 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact
on the use and the point at which the soil feature is not a limitation. The limitations appear in order from the most limiting to the least limiting. Thus, if more than one limitation is identified, the most severe limitation is listed first and the least severe one is listed last.

Crops and Pasture

According to the 1997 Natural Resources Inventory, approximately 8,100 acres of cultivated crops and 112,000 acres of pasture were in Connecticut (US Department of Agriculture, 2000). The total acreage used for cultivated crops and pasture has been decreasing. The trend is toward the conversion of cropland to urban development, especially in the southern and central parts of the state.

The main crops in northwestern and eastern Connecticut are forage crops and corn for silage. Specialty crops are fruits, vegetables, and nursery stock. The main crops in the Connecticut Valley are nursery stock, tobacco, and vegetables. Specialty crops grown in the Connecticut Valley are fruits, flowers, and turf grass.

Soil erosion is a management concern on about 27 percent of the cropland in Connecticut (1997 NRI, USDA). In areas where the slope is more than 3 percent, erosion is a potential hazard. Stockbridge, Wethersfield, and Paxton are some of the sloping soils that are presently cultivated that are subject to erosion.

Soil erosion can reduce productivity and can result in the pollution of streams. Productivity is reduced as the surface layer of the soil erodes and more of the subsoil is incorporated into the plow layer. Loss of the surface layer is especially damaging on soils that have a silty or clayey subsoil such as Elmridge, Brancroft, or Berlin, or on soils that are shallow over bedrock, such as Hollis, Farmington, Holyoke, or Brimfield. Controlling erosion on farmland minimizes the pollution of streams and improves the quality of water for municipal uses, for recreational uses, and for fish and wildlife.

Erosion control practices provide a protective plant cover, increase the rate of water infiltration, and help to control runoff. A cropping system that keeps plant cover and crop residue on the surface for extended periods can hold soil losses to amounts that will not reduce the productive capacity of the soils. Including grasses and legumes in the cropping system helps to control erosion in sloping areas and improves tilth for the crops that follow in the rotation. The legumes also increase the nitrogen level in the soils.

Applying a system of conservation tillage and leaving crop residue on the surface increase the rate of water infiltration and help to control runoff and erosion. Using a no-till method of planting reduces the hazard of erosion in sloping areas, and this practice is suitable on most of the soils in the state.

The use of buffer strips is effective in controlling erosion on soils with very a slow rate of water infiltration such as Brancroft, Elmridge, and Shaker. Contour farming and strip cropping are very effective erosion control methods in cultivated areas. However, the small size of many fields in the state limits their use. They are best suited to soils that have smooth, uniform slopes, such as Stockbridge and Paxton.

Soil blowing can be a management concern in early spring in areas of Windsor and Berlin soils.

Connecticut has an adequate amount of rainfall for the crops commonly grown. Prolonged periods of drought are rare, but the distribution of rainfall during spring and summer generally results in droughty periods during the growing season in many years. Irrigation may be needed during these periods to reduce drought stress. Soils such as Windsor, Hartford, Hinckley, and Penwood commonly need to be irrigated.

Most of the soils of eastern and western Connecticut have a surface layer of fine sandy loam which is brown in color. Regular additions of crop residue, manure, and other organic material can improve the soil structure and reduce crust formation, thus improving the rate of water infiltration. Some of the soils in the Connecticut Valley
have a loamy sand surface; others have a silt loam surface. Regular additions of crop residue, manure, and other organic material can improve the soil structure and improve the water holding capacity of the sandy soils.

The use of heavy equipment during tillage results in soil compaction in most areas. The compacted areas, sometimes called plowpans, are generally 4 to 10 inches below the soil surface. They restrict the rate of water infiltration and limit the growth of plant roots.

Most of the soils in Connecticut require applications of agricultural limestone to neutralize soil acidity. Some of the soils of northwestern Connecticut, such as Nellis, Stockbridge, Amenia, and Georgia are higher in natural lime content and may not require additional amounts. Crops grown in Connecticut respond well to applications of lime and fertilizer. The level of available phosphorus or potassium is generally low in most of the soils; however, some fields may have a buildup of phosphorus or potassium because of past applications of commercial fertilizer. Therefore, all applications of lime or fertilizer should be based on the results of a soil test. Leaching is a concern in areas of sandy soils, such as Windsor, Hinckley, and Penwood. The Agriculture Experiment Stations or Cooperative Extension can help in determining the kinds and amounts of fertilizer and lime to apply.

Soil wetness is a management concern in areas of Ridgebury, Mudgepond, Walpole, Wilbraham, Leicester, Raypol, Shaker, Scitico, Rippowam, Raynham, Limerick and Lim soils. A drainage system may be needed to minimize the harmful effects of excess wetness. Flooding during the growing season is a concern in areas of Rippowam, Limerick, and Lim soils. Planting dates may be delayed and crops are damaged in some years because of flooding.

Proper stocking rates, control of weeds, proper fertilization, rotation grazing, and proper manure spreading are concerns on land that is used for pasture or hay production. Overgrazing, low rates of fertilization, and acid soils are the main concerns for pasture management. They can result in weak plants and poor stands that are quickly infested with weeds. Maintaining a good, dense cover that has the desired pasture species will prevent weeds from becoming established.

Nursery crops and tobacco grow best in well drained sandy loam soils such as Windsor (fig. 16). These soils promote rapid root development of nursery stock.

General management needed for crops and pasture is suggested in this section. The estimated yields of the main crops and pasture plants are listed, the system of land capability classification used by the Natural Resources Conservation Service is explained, and prime farmland is described.

Planners of management systems for individual fields or farms should consider the detailed information given in the description of each soil under the heading "Detailed Soil Map Units." Specific information can be obtained from the local offices of the Natural Resources Conservation Service or the Cooperative Extension Service.

Yields per Acre

The average yields per acre that can be expected of the principal crops under a high level of management are shown in table 6 . In any given year, yields may be higher or lower than those indicated in the table because of variations in rainfall and other climatic factors. The land capability classification of map units in the survey area also is shown in the table.

The yields are based mainly on the experience and records of farmers, conservationists, and extension agents. Available yield data from nearby counties and results of field trials and demonstrations also are considered.

The management needed to obtain the indicated yields of the various crops depends on the kind of soil and the crop. Management can include drainage, erosion control, and protection from flooding; the proper planting and seeding rates; suitable high-yielding crop varieties; appropriate and timely tillage; control of weeds, plant

Figure 16.-Tobacco grown on Windsor loamy sand.
diseases, and harmful insects; favorable soil reaction and optimum levels of nitrogen, phosphorus, potassium, and trace elements for each crop; effective use of crop residue, barnyard manure, and green manure crops; and harvesting that ensures the smallest possible loss.

The estimated yields reflect the productive capacity of each soil for each of the principal crops. Yields are likely to increase as new production technology is developed. The productivity of a given soil compared with that of other soils, however, is not likely to change.

Crops other than those shown in table 6 are grown in the survey area, but estimated yields are not listed because the acreage of such crops is small. The local offices of the Natural Resources Conservation Service or of the Cooperative Extension Service can provide information about the management and productivity of the soils for those crops.

Land Capability Classification

Land capability classification shows, in a general way, the suitability of soils for most kinds of field crops. Crops that require special management are excluded. The soils are grouped according to their limitations for field crops, the risk of damage if they are used for crops, and the way they respond to management. The criteria used in grouping the soils do not include major and generally expensive landforming that would change slope, depth, or other characteristics of the soils, nor do they include possible but unlikely major reclamation projects. Capability classification is not a substitute for interpretations designed to show suitability and limitations of groups of soils for rangeland, for forestland, or for engineering purposes.

In the capability system, soils are generally grouped at three levels-capability class, subclass, and unit.

Capability classes, the broadest groups, are designated by the numbers 1 through 8. The numbers indicate progressively greater limitations and narrower choices for practical use. The classes are defined as follows:

Class 1 soils have slight limitations that restrict their use.
Class 2 soils have moderate limitations that restrict the choice of plants or that require moderate conservation practices.

Class 3 soils have severe limitations that restrict the choice of plants or that require special conservation practices, or both.

Class 4 soils have very severe limitations that restrict the choice of plants or that require very careful management, or both.

Class 5 soils are subject to little or no erosion but have other limitations, impractical to remove, that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.

Class 6 soils have severe limitations that make them generally unsuitable for cultivation and that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.

Class 7 soils have very severe limitations that make them unsuitable for cultivation and that restrict their use mainly to grazing, forestland, or wildlife habitat.

Class 8 soils and miscellaneous areas have limitations that preclude commercial plant production and that restrict their use to recreational purposes, wildlife habitat, watershed, or esthetic purposes.

Capability subclasses are soil groups within one class. They are designated by adding a small letter, e, w, s, or c, to the class numeral, for example, 2e. The letter e shows that the main hazard is the risk of erosion unless close-growing plant cover is maintained; w shows that water in or on the soil interferes with plant growth or cultivation (in some soils the wetness can be partly corrected by artificial drainage); s shows that the soil is limited mainly because it is shallow, droughty, or stony; and c, used in only some parts of the United States, shows that the chief limitation is climate that is very cold or very dry.

In class 1 there are no subclasses because the soils of this class have few limitations. Class 5 contains only the subclasses indicated by w, s, or c because the soils in class 5 are subject to little or no erosion. They have other limitations that restrict their use to pasture, rangeland, forestland, wildlife habitat, or recreation.

The acreage of soils in each capability class or subclass is shown in table 7. The capability classification of map units in this survey area is given in the section "Detailed Soil Map Units" and in the yields table.

Forest Productivity and Management

Stephen Broderick, Extension Forester, University of Connecticut, helped to prepare this section.
Connecticut lies almost entirely within the lower New England section of the eastern broadleaf forest ecological province. A small portion of upper Litchfield County falls within the Berkshire Mountain section of the New England-Adirondack province (Keys, et al, 1995). Forest is the natural vegetative cover in these regions, and despite nearly 400 years since European settlement, about 1.9 million acres of Connecticut (60 percent) was forested in 1998 (USDA Forest Service, 1998). Over 85 percent of that forest belongs to private individuals, families or non-profit organizations.

Connecticut's forest is overwhelmingly deciduous. The oak/hickory forest type occupies just over half of our forestland (51 percent), while northern hardwoods occupy another 29 percent. Forests dominated by conifers (mainly eastern white pine, eastern hemlock, and red pine) represent less than 10 percent of Connecticut's forests.

Prior to European colonization about 95 percent of Connecticut was forested. By the Civil War nearly three-quarters of the state had been cleared for agricultural use. Between the Civil War and the World War I, Connecticut's forests were clearcut repeatedly for charcoal, fuel wood, tanning bark, pine "boxwood" and other products.

With the advent of fossil fuels in the 1920s and 1930s this era of heavy cutting ended abruptly.

Today, the size and age of our forest reflects that land use history. Sawtimber stands, where trees 11 inches in diameter or greater make up at least half the volume, occupy 69 percent of our forest. Poletimber stands occupy 25 percent, while seedling and sapling forests account for only 6 percent of the total.

Trees in the red oak group are Connecticut's most valuable timber resource. Northern red oak represents almost 20 percent of Connecticut's standing sawtimber volume, and high quality lumber finds a worldwide market. These oaks, along with sugar maple, white ash, and Connecticut's other valuable hardwoods, make their best growth on moderately well drained sandy loams, including Paxton and Woodbridge soils which have dense subsurface layers. In general, Connecticut's prime farm soils represent the most productive hardwood forest soils as well. In addition, however, soils in those classes that are too steep or stony to be rated as prime farm soils are often productive forest soils worthy of hardwood timber management investments.

Eastern white pine is Connecticut's most valuable softwood timber species, and its volume of both sawtimber and overall growing stock is increasing. While it also makes its best growth on moist, moderately well drained sandy loams, its ability to tolerate lower moisture and pH levels allows it to compete best on excessively drained soils such as Hinckley.

The fragmentation and parcelization of forests is perhaps the key forest resource issue facing Connecticut today. While the acreage of timberland in Connecticut decreased 5 percent between 1985 and 1998, the amount of urban forests grew by 74,000 acres, or 165 percent (USDA Forest Service). In a densely populated state such as Connecticut, the changes in the spatial pattern of forest cover present new challenges for timber harvest and derivation of other products from the forest.

The tables in this section can help forest owners or managers plan the use of soils for wood crops. They show the potential productivity of the soils for wood crops and rate the soils according to the limitations that affect various aspects of forest management.

Forest Productivity

In table 8, the potential productivity of merchantable or common trees on a soil is expressed as a site index and as a volume number. The site index is the average height, in feet, that dominant and codominant trees of a given species attain in a specified number of years. The site index applies to fully stocked, even-aged, unmanaged stands. Commonly grown trees are those that forest managers generally favor in intermediate or improvement cuttings. They are selected on the basis of growth rate, quality, value, and marketability. More detailed information regarding site index is available in the "National Forestry Manual," which is available in local offices of the Natural Resources Conservation Service or on the Internet.

The volume of wood fiber, a number, is the yield likely to be produced by the most important tree species. This number, expressed as cubic feet per acre per year and calculated at the age of culmination of the mean annual increment (CMAI), indicates the amount of fiber produced in a fully stocked, even-aged, unmanaged stand.

Trees to manage are those that are preferred for planting, seeding, or natural regeneration and those that remain in the stand after thinning or partial harvest.

Forest Management

In tables 9, 10, and 11 interpretive ratings are given for various aspects of forest management. The ratings are both verbal and numerical.

Some rating class terms indicate the degree to which the soils are suited to a specified forest management practice. Well suited indicates that the soil has features that are favorable for the specified practice and has no limitations. Good performance
can be expected, and little or no maintenance is needed. Moderately well suited indicates that the soil has features that are moderately favorable for the specified practice. One or more soil properties are less than desirable, and fair performance can be expected. Some maintenance is needed. Poorly suited indicates that the soil has one or more properties that are unfavorable for the specified practice. Overcoming the unfavorable properties requires special design, extra maintenance, and costly alteration. Unsuited indicates that the expected performance of the soil is unacceptable for the specified practice or that extreme measures are needed to overcome the undesirable soil properties.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.00 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the specified forest management practice (1.00) and the point at which the soil feature is not a limitation (0.00).

Rating class terms for fire damage and seedling mortality are expressed as low, moderate, and high. Where these terms are used, the numerical ratings indicate gradations between the point at which the potential for fire damage or seedling mortality is highest (1.00) and the point at which the potential is lowest (0.00).

The paragraphs that follow indicate the soil properties considered in rating the soils for forest management practices. More detailed information about the criteria used in the ratings is available in the "National Forestry Manual," which is available in local offices of the Natural Resources Conservation Service (NRCS) or the NRCS website.

For limitations affecting construction of haul roads and log landings, the ratings are based on slope, flooding, permafrost, plasticity index, the hazard of soil slippage, content of sand, the Unified classification, rock fragments on or below the surface, depth to a restrictive layer that is indurated, depth to a water table, and ponding. The limitations are described as slight, moderate, or severe. A rating of slight indicates that no significant limitations affect construction activities, moderate indicates that one or more limitations can cause some difficulty in construction, and severe indicates that one or more limitations can make construction very difficult or very costly.

The ratings of suitability for log landings are based on slope, rock fragments on the surface, plasticity index, content of sand, the Unified classification, depth to a water table, ponding, flooding, and the hazard of soil slippage. The soils are described as well suited, moderately suited, or poorly suited to use as log landings.

Ratings in the column soil rutting hazard are based on depth to a water table, rock fragments on or below the surface, the Unified classification, depth to a restrictive layer, and slope. Ruts form as a result of the operation of forest equipment. The hazard is described as slight, moderate, or severe. A rating of slight indicates that the soil is subject to little or no rutting, moderate indicates that rutting is likely, and severe indicates that ruts form readily.

Ratings in the column hazard of off-road or off-trail erosion are based on slope and on soil erodibility factor K. The soil loss is caused by sheet or rill erosion in off-road or off-trail areas where 50 to 75 percent of the surface has been exposed by logging, grazing, mining, or other kinds of disturbance. The hazard is described as slight, moderate, severe, or very severe. A rating of slight indicates that erosion is unlikely under ordinary climatic conditions; moderate indicates that some erosion is likely and that erosion-control measures may be needed; severe indicates that erosion is very likely and that erosion-control measures, including revegetation of bare areas, are advised; and very severe indicates that significant erosion is expected, loss of soil productivity and off-site damage are likely, and erosion-control measures are costly and generally impractical.

Ratings in the column hazard of erosion on roads and trails are based on the soil erodibility factor K, slope, and content of rock fragments. The ratings apply to unsurfaced roads and trails. The hazard is described as slight, moderate, or severe. A
rating of slight indicates that little or no erosion is likely; moderate indicates that some erosion is likely, that the roads or trails may require occasional maintenance; and that simple erosion-control measures are needed; and severe indicates that significant erosion is expected, that the roads or trails require frequent maintenance, and that costly erosion-control measures are needed.

Ratings in the column suitability for roads (natural surface) are based on slope, rock fragments on the surface, plasticity index, content of sand, the Unified classification, depth to a water table, ponding, flooding, and the hazard of soil slippage. The ratings indicate the suitability for using the natural surface of the soil for roads. The soils are described as well suited, moderately well suited, or poorly suited to this use.

Ratings in the column potential for damage to soil by fire are based on texture of the surface layer, content of rock fragments and organic matter in the surface layer, thickness of the surface layer, and slope. The soils are described as having a low, moderate, or high potential for this kind of damage. The ratings indicate an evaluation of the potential impact of prescribed fires or wildfires that are intense enough to remove the duff layer and consume organic matter in the surface layer.

Ratings in the column potential for seedling mortality are based on flooding, ponding, depth to a water table, content of lime, reaction, salinity, available water capacity, soil moisture regime, soil temperature regime, aspect, and slope. The soils are described as having a low, moderate, or high potential for seedling mortality.

Conservation and Environmental Plantings

Conservation and environmental plantings help to beautify and screen houses and other buildings and to abate noise. The plants, mostly evergreen shrubs and trees, are closely spaced. To ensure plant survival, a healthy planting stock of suitable species should be planted properly on a well prepared site and maintained in good condition.

Table 12 shows the height that locally grown trees and shrubs are expected to reach in 20 years on various soils. The estimates in table 12 are based on measurements and observation of established plantings that have been given adequate care. Additional information on plantings screens and caring for trees and shrubs can be obtained from the local offices of the Natural Resources Conservation Service or the Cooperative Extension Service or from a commercial nursery.

Recreation

The soils of the survey area are rated in tables 13 and 14 according to limitations that affect their suitability for recreation. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect the recreational uses. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Slightly limited indicates that the soil has features that are favorable for the specified use. The limitations are minor and can be easily overcome. Good performance and low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.00 to 1.00 . They indicate
gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

The ratings in the tables are based on restrictive soil features, such as wetness, slope, and texture of the surface layer. Susceptibility to flooding is considered. Not considered in the ratings, but important in evaluating a site, are the location and accessibility of the area, the size and shape of the area and its scenic quality, vegetation, access to water, potential water impoundment sites, and access to public sewer lines. The capacity of the soil to absorb septic tank effluent and the ability of the soil to support vegetation also are important. Soils that are subject to flooding are limited for recreational uses by the duration and intensity of flooding and the season when flooding occurs. In planning recreational facilities, onsite assessment of the height, duration, intensity, and frequency of flooding is essential.

The information in tables 13 and 14 can be supplemented by other information in this survey, for example, interpretations for building site development, construction materials, sanitary facilities, and water management.

Camp areas require site preparation, such as shaping and leveling the tent and parking areas, stabilizing roads and intensively used areas, and installing sanitary facilities and utility lines. Camp areas are subject to heavy foot traffic and some vehicular traffic. The ratings are based on the soil properties that affect the ease of developing camp areas and the performance of the areas after development. Slope, stoniness, and depth to bedrock or a cemented pan are the main concerns affecting the development of camp areas.

The soil properties that affect the performance of the areas after development are those that influence trafficability and promote the growth of vegetation, especially in heavily used areas. For good trafficability, the surface of camp areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Picnic areas are subject to heavy foot traffic. Most vehicular traffic is confined to access roads and parking areas. The ratings are based on the soil properties that affect the ease of developing picnic areas and that influence trafficability and the growth of vegetation after development. Slope and stoniness are the main concerns affecting the development of picnic areas. For good trafficability, the surface of picnic areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Playgrounds require soils that are nearly level, are free of stones, and can withstand intensive foot traffic. The ratings are based on the soil properties that affect the ease of developing playgrounds and that influence trafficability and the growth of vegetation after development. Slope and stoniness are the main concerns affecting the development of playgrounds. For good trafficability, the surface of the playgrounds should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Paths and trails for hiking and horseback riding should require little or no slope modification through cutting and filling. The ratings are based on the soil properties that affect trafficability and erodibility. These properties are stoniness, depth to a water table, ponding, flooding, slope, and texture of the surface layer.

Off-road motorcycle trails require little or no site preparation. They are not covered with surfacing material or vegetation. Considerable compaction of the soil material is likely. The ratings are based on the soil properties that influence erodibility, trafficability, dustiness, and the ease of revegetation. These properties are stoniness, slope, depth to a water table, ponding, flooding, and texture of the surface layer.

Golf fairways are subject to heavy foot traffic and some light vehicular traffic. Cutting or filling may be required. Irrigation is not considered in the ratings. The ratings are based on the soil properties that affect plant growth and trafficability after vegetation is established. The properties that affect plant growth are reaction; depth to a water table; ponding; depth to bedrock or a cemented pan; the available water capacity in the upper 40 inches; the content of salts, sodium, or calcium carbonate; and sulfidic materials. The properties that affect trafficability are flooding, depth to a water table, ponding, slope, stoniness, and the amount of sand, clay, or organic matter in the surface layer. The suitability of the soil for traps, tees, roughs, and greens is not considered in the ratings.

Wildlife Habitat

Peter Picone, Wildlife Biologist, Connecticut Department of Environmental Protection, helped to prepare this section.

Although Connecticut is the fifth most densely populated state in the United States, a diversity of wildlife may be found throughout the varying landscapes of the Northwest Highlands, the Eastern and Western Uplands, the Central Valley, and the Coastal Slope. With white-tailed deer numbering over 70,000 and wild turkey over 25,000 as of 2002, Connecticut is a state with many wildlife-related recreational opportunities (Kilpatrick et al, 2001). Just over two hundred years ago, the whitetailed deer population was barely a dozen and wild turkeys were extirpated. Land use plays a major role in determining where different species of wildlife live. Today, the fragmentation of forest, grasslands, and other habitat types that has resulted from exurban development is creating problems for wildlife. Fragmentation reduces the size of wildlife habitat patches, making forests and grasslands inhospitable to species that require large areas. The interspersion of new housing developments within wildlife habitat may result in unwanted human/pet interactions with wildlife. Further, pet cats that are allowed to hunt outside take a tremendous toll on native songbird populations in the vicinity of houses.

Soils affect the kind and amount of vegetation that is available to wildlife as food and cover. Soils also affect the construction of water impoundments. The kind and abundance of wildlife depend largely on the amount and distribution of food, cover, and water. Wildlife habitat can be created or improved by planting appropriate vegetation, by maintaining the existing plant cover, or by promoting the natural establishment of desirable plants.

The better the soil, the better growing conditions for the wildlife habitat. However, even a droughty soil may offer habitat for some of the less abundant wildlife species such as the Eastern spadefoot toad. An area of soils which are seasonally too wet for farming, may have good habitat potential for the declining American woodcock.

As Connecticut's landscape continues to urbanize, the more adaptable wildlife species will persist and the less adaptable species will decline. Bobcats are currently found mostly in northwest and northeast Connecticut. The future of this secretive animal will depend, in a large part, by the degree to which land uses change in those parts of the state. Some animals, such as the highly adaptable Eastern Coyote can be found in every town, including all of the major urban centers.

Wildlife enhancements may be made on a smaller scale on urban and suburban lots and on a larger scale on more rural parcels of land. Landowners may enhance properties for wildlife by discouraging non-native invasive vegetation and by planting
native trees, shrubs, wildflowers, and grasses. Landowners with larger acreages may manipulate forest age and size classes to benefit early successional bird species such as the Eastern Towhee, Chestnut-sided Warbler, and Blue-winged Warbler. Landowners with larger agricultural fields can manage for declining grassland birds such as Bobolink, Eastern Meadowlark and Grasshopper Sparrow.

Wetlands tend to have more diverse vegetative communities and a wider variety of dependent wildlife species. Wetlands serve multiple functions in the life history of some wildlife species. For the less mobile reptiles and amphibians, wetlands serve as breeding habitat, foraging sites, and travel corridors. Even for upland wildlife species, wetlands are utilized for seasonal habitat requirements. Connecticut's wetlands provide habitat for not only resident wildlife species, but also interstate migrants. Vegetation in and adjacent to ponded or flowing water provides migratory songbirds nesting habitat during the breeding season and resting and foraging locations during the migration season.

In table 15, the soils in the survey area are rated according to their potential for providing habitat for various kinds of wildlife. This information can be used in planning parks, wildlife refuges, nature study areas, and other developments for wildlife; in selecting soils that are suitable for establishing, improving, or maintaining specific elements of wildlife habitat; and in determining the intensity of management needed for each element of the habitat.

The potential of the soil is rated good, fair, poor, or very poor. A rating of good indicates that the element or kind of habitat is easily established, improved, or maintained. Few or no limitations affect management, and satisfactory results can be expected. A rating of fair indicates that the element or kind of habitat can be established, improved, or maintained in most places. Moderately intensive management is required for satisfactory results. A rating of poor indicates that limitations are severe for the designated element or kind of habitat. Habitat can be created, improved, or maintained in most places, but management is difficult and must be intensive. A rating of very poor indicates that restrictions for the element or kind of habitat are very severe and that unsatisfactory results can be expected. Creating, improving, or maintaining habitat is impractical or impossible.

The elements of wildlife habitat are described in the following paragraphs.
Grain and seed crops are domestic grains and seed-producing herbaceous plants. Soil properties and features that affect the growth of grain and seed crops are depth of the root zone, texture of the surface layer, available water capacity, wetness, slope, surface stoniness, and flooding. Soil temperature and soil moisture also are considerations. Examples of grain and seed crops are corn, wheat, oats, and barley.

Grasses and legumes are domestic perennial grasses and herbaceous legumes. Soil properties and features that affect the growth of grasses and legumes are depth of the root zone, texture of the surface layer, available water capacity, wetness, surface stoniness, flooding, and slope. Soil temperature and soil moisture also are considerations. Examples of grasses and legumes are fescue, lovegrass, bromegrass, clover, and alfalfa.

Wild herbaceous plants are native or naturally established grasses and forbs, including weeds. Soil properties and features that affect the growth of these plants are depth of the root zone, texture of the surface layer, available water capacity, wetness, surface stoniness, and flooding. Soil temperature and soil moisture also are considerations. Examples of wild herbaceous plants are bluestem, goldenrod, beggarweed, wheatgrass, and grama.

Hardwood trees and woody understory produce nuts or other fruit, buds, catkins, twigs, bark, and foliage. Soil properties and features that affect the growth of hardwood trees and shrubs are depth of the root zone, available water capacity, and wetness. Examples of these plants are oak, poplar, cherry, sweetgum, apple, hawthorn, dogwood, hickory, blackberry, and blueberry. Examples of fruit-producing
shrubs that are suitable for planting on soils rated good are Russian-olive, autumnolive, and crabapple.

Coniferous plants furnish browse and seeds. Soil properties and features that affect the growth of coniferous trees, shrubs, and ground cover are depth of the root zone, available water capacity, and wetness. Examples of coniferous plants are pine, spruce, fir, cedar, and juniper.

Wetland plants are annual and perennial wild herbaceous plants that grow on moist or wet sites. Submerged or floating aquatic plants are excluded. Soil properties and features affecting wetland plants are texture of the surface layer, wetness, reaction, salinity, slope, and surface stoniness. Examples of wetland plants are smartweed, wild millet, wildrice, saltgrass, cordgrass, rushes, sedges, and reeds.

Shallow water areas have an average depth of less than 5 feet. Some are naturally wet areas. Others are created by dams, levees, or other water-control structures. Soil properties and features affecting shallow water areas are depth to bedrock, wetness, surface stoniness, slope, and permeability. Examples of shallow water areas are marshes, waterfowl feeding areas, and ponds

The habitat for various kinds of wildlife is described in the following paragraphs.
Habitat for openland wildlife consists of cropland, pasture, meadows, and areas that are overgrown with grasses, herbs, shrubs, and vines. These areas produce grain and seed crops, grasses and legumes, and wild herbaceous plants. Wildlife attracted to these areas include bobwhite quail, pheasant, meadowlark, field sparrow, cottontail, and red fox.

Habitat for woodland wildlife consists of areas of deciduous and/or coniferous plants and associated grasses, legumes, and wild herbaceous plants. Wildlife attracted to these areas include wild turkey, ruffed grouse, woodcock, thrushes, woodpeckers, squirrels, gray fox, raccoon, deer, and bear.

Habitat for wetland wildlife consists of open, marshy or swampy shallow water areas. Some of the wildlife attracted to such areas are ducks, geese, herons, shore birds, muskrat, mink, and beaver.

Hydric Soils

In this section, hydric soils are defined and described and the hydric soils in the survey area are listed.

The three essential characteristics of wetlands are hydrophytic vegetation, hydric soils, and wetland hydrology (Cowardin and others, 1979; U.S. Army Corps of Engineers, 1987; National Research Council, 1995; Tiner, 1985). Criteria for each of the characteristics must be met for areas to be identified as wetlands. Undrained hydric soils that have natural vegetation should support a dominant population of ecological wetland plant species. Hydric soils that have been converted to other uses should be capable of being restored to wetlands.

Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). These soils are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.

The NTCHS definition identifies general soil properties that are associated with wetness. In order to determine whether a specific soil is a hydric soil or nonhydric soil, however, more specific information, such as information about the depth and duration of the water table, is needed. Thus, criteria that identify those estimated soil properties unique to hydric soils have been established (Federal Register, 1995). These criteria are used to identify a phase of a soil series that normally is associated with wetlands. The criteria used are selected estimated soil properties that are
described in "Soil Taxonomy" (USDA, 1999) and "Keys to Soil Taxonomy" (USDA, 1998) and in the "Soil Survey Manual" (USDA, 1993).

If soils are wet enough for a long enough period to be considered hydric, they should exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils in this survey area are specified in "Field Indicators of Hydric Soils in the United States" (Hurt and others, 1996).

Hydric soils are identified by examining and describing the soil to a depth of about 20 inches. This depth may be greater if determination of an appropriate indicator so requires. It is always recommended that soils be excavated and described to the depth necessary for an understanding of the redoximorphic processes. Then, using the completed soil descriptions, soil scientists can compare the soil features required by each indicator and specify which indicators have been matched with the conditions observed in the soil. The soil can be identified as a hydric soil if at least one of the approved indicators is present.

The following map units are dominated by soils that meet the definition of hydric soils and, in addition, have at least one of the hydric soil indicators. This list can help in planning land uses; however, onsite investigation is recommended to determine the hydric soils on a specific site (National Research Council, 1995; Hurt and others, 1996). The complete list with each map unit component, hydric status, and specific hydric soils criteria status may be accessed through the eFOTG (Electronic Field Office Technical Guide) at the Connecticut NRCS website (www.ct.nrcs.usda.gov).

2 Ridgebury fine sandy loam
3 Ridgebury, Leicester, and Whitman soils, extremely stony
4 Leicester fine sandy loam
5 Wilbraham silt loam
$6 \quad$ Wilbraham and Menlo soils, extremely stony
7 Mudgepond silt loam
8 Mudgepond and Alden soils, extremely stony
9 Scitico, Shaker, and Maybid soils
10 Raynham silt loam
12 Raypol silt loam
13 Walpole sandy loam
14 Fredon silt loam
15 Scarboro muck
16 Halsey silt loam
17 Timakwa and Natchaug soils
18 Catden and Freetown soils
96 Ipswich mucky peat
97 Pawcatuck mucky peat
98 Westbrook mucky peat
99 Westbrook mucky peat, low salt
103 Rippowam fine sandy loam
104 Bash silt loam
107 Limerick and Lim soils
108 Saco silt loam
109 Fluvaquents-Udifluvents complex, frequently flooded (Fluvaquents are hydric; Udifluvents are not hydric)
409 Brayton mucky silt loam, 0 to 8 percent slopes, very stony
414 Fredon silt loam, cold
433 Moosilauke sandy loam
435 Scarboro muck, cold
436 Halsey silt loam, cold

437	Wonsqueak peat
438	Bucksport muck
442	Brayton loam
443	Brayton-Loonmeadow complex, extremely stony
457	Mudgepond silt loam, cold
458	Mudgepond and Alden soils, extremely stony, cold
503	Rumney fine sandy loam
508	Medomak silt loam

Map units that are made up of hydric soils may have small areas, or inclusions, of nonhydric soils in the higher positions on the landform, and map units made up of nonhydric soils may have inclusions of hydric soils in the lower positions on the landform.

Map units that are not listed do not meet the definition of hydric soils because the dominant soil component does not have one of the hydric soil indicators. A portion of these map units, however, may include hydric soils. Onsite investigation is recommended to determine whether hydric soils occur and the location of the included hydric soils.

Connecticut Inland Wetland Soils

The state of Connecticut defines inland wetlands based on soils. The Connecticut Inland Wetlands and Watercourses Act defines wetland soils to include "any of the soil types designated as poorly drained, very poorly drained, alluvial, and floodplain by the National Cooperative Soil Survey, as may be amended from time to time, of the Natural Resources Conservation Service of the United States Department of Agriculture."

Map units may be dominated by Connecticut inland wetland soils, but have inclusions of non-wetland soils. Non-wetland map units may contain inclusions of Connecticut inland wetland soils. Onsite investigation is necessary to determine the presence or absence of wetland soils in a particular area.

The map units in Connecticut that are dominated by inland wetland are listed in table 16.

Engineering

This section provides information for planning land uses related to urban development and to water management. Soils are rated for various uses, and the most limiting features are identified. Ratings are given for building site development, sanitary facilities, construction materials, and water management. The ratings are based on observed performance of the soils and on the estimated data and test data in the "Soil Properties" section.

Information in this section is intended for land use planning, for evaluating land use alternatives, and for planning site investigations prior to design and construction. The information, however, has limitations. For example, estimates and other data generally apply only to that part of the soil between the surface and a depth of 5 to 7 feet. Because of the map scale, small areas of different soils may be included within the mapped areas of a specific soil.

The information is not site specific and does not eliminate the need for onsite investigation of the soils or for testing and analysis by personnel experienced in the design and construction of engineering works.

Government ordinances and regulations that restrict certain land uses or impose specific design criteria were not considered in preparing the information in this section. Local ordinances and regulations should be considered in planning, in site selection, and in design.

Soil properties, site features, and observed performance were considered in determining the ratings in this section. During the fieldwork for this soil survey, determinations were made about particle-size distribution, liquid limit, plasticity index, soil reaction, depth to bedrock, hardness of bedrock within 5 to 7 feet of the surface, soil wetness, depth to a water table, ponding, slope, likelihood of flooding, natural soil structure aggregation, and soil density. Data were collected about kinds of clay minerals, mineralogy of the sand and silt fractions, and the kinds of adsorbed cations. Estimates were made for erodibility, permeability, corrosivity, shrink-swell potential, available water capacity, and other behavioral characteristics affecting engineering uses.

This information can be used to evaluate the potential of areas for residential, commercial, industrial, and recreational uses; make preliminary estimates of construction conditions; evaluate alternative routes for roads, streets, highways, pipelines, and underground cables; evaluate alternative sites for septic tank absorption fields and sewage lagoons; plan detailed onsite investigations of soils and geology; locate potential sources of gravel, sand, earthfill, and topsoil; plan drainage systems, irrigation systems, ponds, terraces, and other structures for soil and water conservation; and predict performance of proposed small structures and pavements by comparing the performance of existing similar structures on the same or similar soils.

The information in the tables, along with the soil maps, the soil descriptions, and other data provided in this survey, can be used to make additional interpretations.

Some of the terms used in this soil survey have a special meaning in soil science and are defined in the Glossary.

Building Site Development

Soil properties influence the development of building sites, including the selection of the site, the design of the structure, construction, performance after construction, and maintenance. Tables 17 and 18 show the degree and kind of soil limitations that affect dwellings with and without basements, small commercial buildings, local roads and streets, shallow excavations, and lawns and landscaping.

The ratings in the tables are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect building site development. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Slightly limited indicates that the soil has features that are favorable for the specified use. The limitations are minor and can be easily overcome. Good performance and low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.00 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Dwellings are single-family houses of three stories or less. For dwellings without basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost penetration, whichever is deeper. For dwellings with basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of about 7 feet. The ratings for dwellings are based on the soil properties
that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include depth to a water table, ponding, flooding, subsidence, linear extensibility (shrink-swell potential), and compressibility. Compressibility is inferred from the Unified classification. The properties that affect the ease and amount of excavation include depth to a water table, ponding, flooding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount and size of rock fragments.

Small commercial buildings are structures that are less than three stories high and do not have basements. The foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost penetration, whichever is deeper. The ratings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include depth to a water table, ponding, flooding, subsidence, linear extensibility (shrink-swell potential), and compressibility (which is inferred from the Unified classification). The properties that affect the ease and amount of excavation include flooding, depth to a water table, ponding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount and size of rock fragments.

Local roads and streets have an all-weather surface and carry automobile and light truck traffic all year. They have a subgrade of cut or fill soil material; a base of gravel, crushed rock, or soil material stabilized by lime or cement; and a surface of flexible material (asphalt), rigid material (concrete), or gravel with a binder. The ratings are based on the soil properties that affect the ease of excavation and grading and the traffic-supporting capacity. The properties that affect the ease of excavation and grading are depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, depth to a water table, ponding, flooding, the amount of large stones, and slope. The properties that affect the traffic-supporting capacity are soil strength (as inferred from the AASHTO group index number), subsidence, linear extensibility (shrink-swell potential), the potential for frost action, depth to a water table, and ponding.

Shallow excavations are trenches or holes dug to a maximum depth of 5 or 6 feet for graves, utility lines, open ditches, or other purposes. The ratings are based on the soil properties that influence the ease of digging and the resistance to sloughing. Depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, the amount of large stones, and dense layers influence the ease of digging, filling, and compacting. Depth to the seasonal high water table, flooding, and ponding may restrict the period when excavations can be made. Slope influences the ease of using machinery. Soil texture, depth to the water table, and linear extensibility (shrink-swell potential) influence the resistance to sloughing.

Lawns and landscaping require soils on which turf and ornamental trees and shrubs can be established and maintained. Irrigation is not considered in the ratings. The ratings are based on the soil properties that affect plant growth and trafficability after vegetation is established. The properties that affect plant growth are reaction; depth to a water table; ponding; depth to bedrock or a cemented pan; the available water capacity in the upper 40 inches; the content of salts, sodium, or calcium carbonate; and sulfidic materials. The properties that affect trafficability are flooding, depth to a water table, ponding, slope, stoniness, and the amount of sand, clay, or organic matter in the surface layer.

Sanitary Facilities

Table 19 shows the degree and kind of soil limitations that affect septic tank absorption fields and sewage lagoons. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil
features that affect these uses. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Slightly limited indicates that the soil has features that are favorable for the specified use. The limitations are minor and can be easily overcome. Good performance and low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.00 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Septic tank absorption fields are areas in which effluent from a septic tank is distributed into the soil through subsurface tiles or perforated pipe. Only that part of the soil between depths of 24 and 60 inches is evaluated. The ratings are based on the soil properties that affect absorption of the effluent, construction and maintenance of the system, and public health. Permeability, depth to a water table, ponding, depth to bedrock or a cemented pan, and flooding affect absorption of the effluent. Stones and boulders, ice, and bedrock or a cemented pan interfere with installation. Subsidence interferes with installation and maintenance. Excessive slope may cause lateral seepage and surfacing of the effluent in downslope areas.

Some soils are underlain by loose sand and gravel or fractured bedrock at a depth of less than 4 feet below the distribution lines. In these soils the absorption field may not adequately filter the effluent, particularly when the system is new. As a result, the ground water may become contaminated.

Soil potential ratings for septic tank absorption fields for single family residences are provided at www.ct.nrcs.usda.gov/soils.html. Soil potential ratings are interpretive ratings that stress the suitability of use.

Sewage lagoons are shallow ponds constructed to hold sewage while aerobic bacteria decompose the solid and liquid wastes. Lagoons should have a nearly level floor surrounded by cut slopes or embankments of compacted soil. Nearly impervious soil material for the lagoon floor and sides is required to minimize seepage and contamination of ground water. Considered in the ratings are slope, permeability, depth to a water table, ponding, depth to bedrock or a cemented pan, flooding, large stones, and content of organic matter.

Soil permeability is a critical property affecting the suitability for sewage lagoons. Most porous soils eventually become sealed when they are used as sites for sewage lagoons. Until sealing occurs, however, the hazard of pollution is severe. Soils that have a permeability rate of more than 2 inches per hour are too porous for the proper functioning of sewage lagoons. In these soils, seepage of the effluent can result in contamination of the ground water. Ground-water contamination is also a hazard if fractured bedrock is within a depth of 40 inches, if the water table is high enough to raise the level of sewage in the lagoon, or if floodwater overtops the lagoon.

A high content of organic matter is detrimental to proper functioning of the lagoon because it inhibits aerobic activity. Slope, bedrock, and cemented pans can cause construction problems, and large stones can hinder compaction of the lagoon floor. If the lagoon is to be uniformly deep throughout, the slope must be gentle enough and the soil material must be thick enough over bedrock or a cemented pan to make land smoothing practical.

Construction Materials

Tables 20 and 21 give information about the soils as potential sources of gravel, sand, roadfill, and topsoil. Normal compaction, minor processing, and other standard construction practices are assumed.

Sand and gravel are natural aggregates suitable for commercial use with a minimum of processing. They are used in many kinds of construction. Specifications for each use vary widely. In table 20, only the likelihood of finding material in suitable quantity is evaluated. The suitability of the material for specific purposes is not evaluated, nor are factors that affect excavation of the material. The properties used to evaluate the soil as a source of sand or gravel are gradation of grain sizes (as indicated by the Unified classification of the soil), the thickness of suitable material, and the content of rock fragments. If the bottom layer of the soil contains sand or gravel, the soil is considered a likely source regardless of thickness. The assumption is that the sand or gravel layer below the depth of observation exceeds the minimum thickness.

The soils are rated good, fair, or poor as potential sources of sand and gravel. A rating of good or fair means that the source material is likely to be in or below the soil. The bottom layer and the thickest layer of the soils are assigned numerical ratings. These ratings indicate the likelihood that the layer is a source of sand or gravel. The number 0.00 indicates that the layer is a poor source. The number 0.99 indicates that the layer is a good source. A number between 0.00 and 0.99 indicates the degree to which the layer is a likely source.

The soils are rated good, fair, or poor as potential sources of roadfill and topsoil. The features that limit the soils as sources of these materials are specified in the tables. The numerical ratings given after the specified features indicate the degree to which the features limit the soils as sources of roadfill or topsoil. The numbers in the value columns range from 0.00 to 0.99 . The smaller the value, the greater the limitation.

Roadfill is soil material that is excavated in one place and used in road embankments in another place. In this table, the soils are rated as a source of roadfill for low embankments, generally less than 6 feet high and less exacting in design than higher embankments.

The ratings are for the whole soil, from the surface to a depth of about 5 feet. It is assumed that soil layers will be mixed when the soil material is excavated and spread.

The ratings are based on the amount of suitable material and on soil properties that affect the ease of excavation and the performance of the material after it is in place. The thickness of the suitable material is a major consideration. The ease of excavation is affected by large stones, depth to a water table, and slope. How well the soil performs in place after it has been compacted and drained is determined by its strength (as inferred from the AASHTO classification of the soil) and linear extensibility (shrink-swell potential).

Topsoil is used to cover an area so that vegetation can be established and maintained. The upper 40 inches of a soil is evaluated for use as topsoil. Also evaluated is the reclamation potential of the borrow area. The ratings are based on the soil properties that affect plant growth; the ease of excavating, loading, and spreading the material; and reclamation of the borrow area. Toxic substances, soil reaction, and the properties that are inferred from soil texture, such as available water capacity and fertility, affect plant growth. The ease of excavating, loading, and spreading is affected by rock fragments, slope, depth to a water table, soil texture, and thickness of suitable material. Reclamation of the borrow area is affected by slope, depth to a water table, rock fragments, depth to bedrock or a cemented pan, and toxic material.

The surface layer of most soils is generally preferred for topsoil because of its organic matter content. Organic matter greatly increases the absorption and retention of moisture and nutrients for plant growth.

Water Management

Table 22 gives information on the soil properties and site features that affect water management. The degree and kind of soil limitations are given for pond reservoir areas; embankments, dikes, and levees; and aquifer-fed excavated ponds.

The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect these uses. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Slightly limited indicates that the soil has features that are favorable for the specified use. The limitations are minor and can be easily overcome. Good performance and low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.00 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Pond reservoir areas hold water behind a dam or embankment. Soils best suited to this use have low seepage potential in the upper 60 inches. The seepage potential is determined by the permeability of the soil and the depth to fractured bedrock or other permeable material. Excessive slope can affect the storage capacity of the reservoir area.

Embankments, dikes, and levees are raised structures of soil material, generally less than 20 feet high, constructed to impound water or to protect land against overflow. In this table, the soils are rated as a source of material for embankment fill. The ratings apply to the soil material below the surface layer to a depth of about 5 feet. It is assumed that soil layers will be uniformly mixed and compacted during construction.

The ratings do not indicate the ability of the natural soil to support an embankment. Soil properties to a depth even greater than the height of the embankment can affect performance and safety of the embankment. Generally, deeper onsite investigation is needed to determine these properties.

Soil material in embankments must be resistant to seepage, piping, and erosion and have favorable compaction characteristics. Unfavorable features include less than 5 feet of suitable material and a high content of stones or boulders, organic matter, or salts or sodium. A high water table affects the amount of usable material. It also affects trafficability.

Aquifer-fed excavated ponds are pits or dugouts that extend to a ground-water aquifer or to a depth below a permanent water table. Excluded are ponds that are fed only by surface runoff and embankment ponds that impound water 3 feet or more above the original surface. Excavated ponds are affected by depth to a permanent water table, permeability of the aquifer, and quality of the water as inferred from the salinity of the soil. Depth to bedrock and the content of large stones affect the ease of excavation.

Soil Properties

Data relating to soil properties are collected during the course of the soil survey.
Soil properties are ascertained by field examination of the soils and by laboratory index testing of some benchmark soils. Established standard procedures are followed. During the survey, many shallow borings are made and examined to identify and classify the soils and to delineate them on the soil maps. Samples are taken from some typical profiles and tested in the laboratory to determine particle-size distribution, plasticity, and compaction characteristics.

Estimates of soil properties are based on field examinations, on laboratory tests of samples from the survey area, and on laboratory tests of samples of similar soils in nearby areas. Tests verify field observations, verify properties that cannot be estimated accurately by field observation, and help to characterize key soils.

The estimates of soil properties are shown in tables. They include engineering index properties, physical and chemical properties, and pertinent soil and water features.

Engineering Index Properties

Table 23 gives the engineering classifications and the range of index properties for the layers of each soil in the survey area.

Depth to the upper and lower boundaries of each layer is indicated.
Texture is given in the standard terms used by the U.S. Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is 15 percent or more, an appropriate modifier is added, for example, "gravelly." Textural terms are defined in the Glossary.

Classification of the soils is determined according to the Unified soil classification system (ASTM, 1998) and the system adopted by the American Association of State Highway and Transportation Officials (AASHTO, 1998).

The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to particle-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC; silty and clayey soils as ML, CL, OL, MH, CH, and OH; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification, for example, CL-ML.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil that is less than 3 inches in diameter is classified in one of seven groups from A-1 through A-7 on the basis of particle-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

If laboratory data are available, the A-1, A-2, and A-7 groups are further classified as A-1-a, A-1-b, A-2-4, A-2-5, A-2-6, A-2-7, A-7-5, or A-7-6. As an additional
refinement, the suitability of a soil as subgrade material can be indicated by a group index number. Group index numbers range from 0 for the best subgrade material to 20 or higher for the poorest. The AASHTO classification for soils tested, with group index numbers in parentheses, is given in table 23.

Rock fragments larger than 10 inches in diameter and 3 to 10 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages are estimates determined mainly by converting volume percentage in the field to weight percentage.

Percentage (of soil particles) passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of 4.76, 2.00, 0.420 , and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area and in nearby areas and on estimates made in the field.

Liquid limit and plasticity index (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination.

The estimates of particle-size distribution, liquid limit, and plasticity index are generally rounded to the nearest 5 percent. Thus, if the ranges of gradation and Atterberg limits extend a marginal amount (1 or 2 percentage points) across classification boundaries, the classification in the marginal zone is generally omitted in the table.

Physical Properties

Table 24 shows estimates of some physical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.
Particle size is the effective diameter of a soil particle as measured by sedimentation, sieving, or micrometric methods. Particle sizes are expressed as classes with specific effective diameter class limits. The broad classes are sand, silt, and clay, ranging from the larger to the smaller.

Sand as a soil separate consists of mineral soil particles that are 0.05 millimeter to 2 millimeters in diameter. In table 24, the estimated sand content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Silt as a soil separate consists of mineral soil particles that are 0.002 to 0.05 millimeter in diameter. In table 24, the estimated silt content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In table 24, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of sand, silt, and clay affects the physical behavior of a soil. Particle size is important for engineering and agronomic interpretations, for determination of soil hydrologic qualities, and for soil classification.

The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. They influence shrinkswell potential, permeability, plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Moist bulk density is the weight of soil (ovendry) per unit volume. Volume is measured when the soil is at field moisture capacity, that is, the moisture content at $1 / 3-$ or $1 / 10-\mathrm{bar}(33 \mathrm{kPa}$ or 10 kPa) moisture tension. Weight is determined after the soil is dried at 105 degrees C . In the table, the estimated moist bulk density of each soil horizon is expressed in grams per cubic centimeter of soil material that is less than 2 millimeters in diameter. Bulk density data are used to compute shrink-swell potential, available water capacity, total pore space, and other soil properties. The moist bulk density of a soil indicates the pore space available for water and roots. Depending on soil texture, a bulk density of more than 1.4 can restrict water storage and root penetration. Moist bulk density is influenced by texture, kind of clay, content of organic matter, and soil structure.

Permeability ($K_{\text {sat }}$) refers to the ability of a soil to transmit water or air. The term "permeability," as used in soil surveys, indicates saturated hydraulic conductivity ($\mathrm{K}_{\text {sat }}$). The estimates in the table indicate the rate of water movement, in both inches per hour and micrometers per second (um/sec), when the soil is saturated. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Permeability is considered in the design of soil drainage systems and septic tank absorption fields.

Available water capacity refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in inches of water per inch of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. Available water capacity is not an estimate of the quantity of water actually available to plants at any given time.

Linear extensibility refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. It is an expression of the volume change between the water content of the clod at $1 / 3$ - or $1 / 10$-bar tension (33 kPa or 10 kPa tension) and oven dryness. The volume change is reported in the table as percent change for the whole soil. Volume change is influenced by the amount and type of clay minerals in the soil.

Linear extensibility is used to determine the shrink-swell potential of soils. The shrink-swell potential is low if the soil has a linear extensibility of less than 3 percent; moderate if 3 to 6 percent; high if 6 to 9 percent; and very high if more than 9 percent. If the linear extensibility is more than 3 , shrinking and swelling can cause damage to buildings, roads, and other structures and to plant roots. Special design commonly is needed.

Organic matter is the plant and animal residue in the soil at various stages of decomposition. In table 24, the estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of organic matter in a soil can be maintained by returning crop residue to the soil. Organic matter has a positive effect on available water capacity, water infiltration, soil organism activity, and tilth. It is a source of nitrogen and other nutrients for crops and soil organisms.

Erosion factors are shown in table 24 as the K factor (Kw and Kf) and the T factor. Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of several factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and permeability. Values of K range from 0.02 to 0.69 . Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

Erosion factor $K w$ indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

Erosion factor Kf indicates the erodibility of the fine-earth fraction, or the material less than 2 millimeters in size.

Erosion factor T is an estimate of the maximum average annual rate of soil erosion by wind or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.

Chemical Properties

Table 25 shows estimates of some chemical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.
Cation-exchange capacity is the total amount of extractable bases that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality (pH 7.0) or at some other stated pH value. Soils having a low cation-exchange capacity hold fewer cations and may require more frequent applications of fertilizer than soils having a high cation-exchange capacity. The ability to retain cations reduces the hazard of ground-water pollution.

Effective cation-exchange capacity refers to the sum of extractable bases plus aluminum expressed in terms of milliequivalents per 100 grams of soil. It is determined for soils that have pH of less than 5.5 .

Soil reaction is a measure of acidity or alkalinity. The pH of each soil horizon is based on many field tests. For many soils, values have been verified by laboratory analyses. Soil reaction is important in selecting crops and other plants, in evaluating soil amendments for fertility and stabilization, and in determining the risk of corrosion.

Calcium carbonate equivalent is the percent of carbonates, by weight, in the fraction of the soil less than 2 millimeters in size. The availability of plant nutrients is influenced by the amount of carbonates in the soil. Incorporating nitrogen fertilizer into calcareous soils helps to prevent nitrite accumulation and ammonium-N volatilization.

Extractable aluminum is a measure of the active acidity present in soils. It is important for soil classification and for certain evaluations of soil nutrient availability and of toxicities. It may be a useful measurement for assessing potential lime needs for acid soils.

Salinity is a measure of soluble salts in the soil at saturation. It is expressed as the electrical conductivity of the saturation extract, in millimhos per centimeter at 25 degrees \mathbf{C}. Estimates are based on field and laboratory measurements at representative sites of nonirrigated soils. The salinity of irrigated soils is affected by the quality of the irrigation water and by the frequency of water application. Hence, the salinity of soils in individual fields can differ greatly from the value given in the table. Salinity affects the suitability of a soil for crop production, the stability of soil if used as construction material, and the potential of the soil to corrode metal and concrete.

Water Features

Table 26 gives estimates of various water features. The estimates are used in land use planning that involves engineering considerations.

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The four hydrologic soil groups are:
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

The months in the table indicate the portion of the year in which the feature is most likely to be a concern.

Water table refers to a saturated zone in the soil. Table 26 indicates, by month, depth to the top (upper limit) and base (lower limit) of the saturated zone in most years. Estimates of the upper and lower limits are based mainly on observations of the water table at selected sites and on evidence of a saturated zone, namely grayish colors or mottles (redoximorphic features) in the soil. A saturated zone that lasts for less than a month is not considered a water table.

Ponding is standing water in a closed depression. Unless a drainage system is installed, the water is removed only by percolation, transpiration, or evaporation. Table 26 indicates surface water depth and the duration and frequency of ponding. Duration is expressed as very brief if less than 2 days, brief if 2 to 7 days, long if 7 to 30 days, and very long if more than 30 days. Frequency is expressed as none, rare, occasional, and frequent. None means that ponding is not probable; rare that it is unlikely but possible under unusual weather conditions (the chance of ponding is nearly 0 percent to 5 percent in any year); occasional that it occurs, on the average, once or less in 2 years (the chance of ponding is 5 to 50 percent in any year); and frequent that it occurs, on the average, more than once in 2 years (the chance of ponding is more than 50 percent in any year).

Flooding is the temporary inundation of an area caused by overflowing streams, by runoff from adjacent slopes, or by tides. Water standing for short periods after rainfall or snowmelt is not considered flooding, and water standing in swamps and marshes is considered ponding rather than flooding.

Duration and frequency are estimated. Duration is expressed as extremely brief if 0.1 hour to 4 hours, very brief if 4 hours to 2 days, brief if 2 to 7 days, long if 7 to 30 days, and very long if more than 30 days. Frequency is expressed as none, very rare, rare, occasional, frequent, and very frequent. None means that flooding is not probable; very rare that it is very unlikely but possible under extremely unusual weather conditions (the chance of flooding is less than 1 percent in any year); rare that it is unlikely but possible under unusual weather conditions (the chance of flooding is 1 to 5 percent in any year); occasional that it occurs infrequently under normal weather conditions (the chance of flooding is 5 to 50 percent in any year); frequent that it is likely to occur often under normal weather conditions (the chance of flooding is more than 50 percent in any year but is less than 50 percent in all months in any year); and very frequent that it is likely to occur very often under normal weather conditions (the chance of flooding is more than 50 percent in all months of any year).

The information is based on evidence in the soil profile, namely thin strata of gravel, sand, silt, or clay deposited by floodwater; irregular decrease in organic matter content with increasing depth; and little or no horizon development.

Also considered are local information about the extent and levels of flooding and the relation of each soil on the landscape to historic floods. Information on the extent of flooding based on soil data is less specific than that provided by detailed engineering surveys that delineate flood-prone areas at specific flood frequency levels.

Soil Features

Table 27 gives estimates of various soil features. The estimates are used in land use planning that involves engineering considerations.

A restrictive layer is a nearly continuous layer that has one or more physical, chemical, or thermal properties that significantly impede the movement of water and air through the soil or that restrict roots or otherwise provide an unfavorable root environment. Examples are bedrock, cemented layers, dense layers, and frozen layers. The table indicates the hardness and thickness of the restrictive layer, both of which significantly affect the ease of excavation. Depth to top is the vertical distance from the soil surface to the upper boundary of the restrictive layer. If there is no restrictive layer identified, it is assumed that the depth to bedrock is greater than 6 feet.

Subsidence is the settlement of organic soils or of saturated mineral soils of very low density. Subsidence generally results from either desiccation and shrinkage or oxidation of organic material, or both, following drainage. Subsidence takes place gradually, usually over a period of several years. The table shows the expected initial subsidence, which usually is a result of drainage, and total subsidence, which results from a combination of factors.

Potential for frost action is the likelihood of upward or lateral expansion of the soil caused by the formation of segregated ice lenses (frost heave) and the subsequent collapse of the soil and loss of strength on thawing. Frost action occurs when moisture moves into the freezing zone of the soil. Temperature, texture, density, permeability, content of organic matter, and depth to the water table are the most important factors considered in evaluating the potential for frost action. It is assumed that the soil is not insulated by vegetation or snow and is not artificially drained. Silty and highly structured, clayey soils that have a high water table in winter are the most susceptible to frost action. Well drained, very gravelly, or very sandy soils are the least susceptible. Frost heave and low soil strength during thawing cause damage to pavements and other rigid structures.

Risk of corrosion pertains to potential soil-induced electrochemical or chemical action that corrodes or weakens uncoated steel or concrete. The rate of corrosion of uncoated steel is related to such factors as soil moisture, particle-size distribution, acidity, and electrical conductivity of the soil. The rate of corrosion of concrete is based mainly on the sulfate and sodium content, texture, moisture content, and acidity of the soil. Special site examination and design may be needed if the combination of factors results in a severe hazard of corrosion. The steel or concrete in installations that intersect soil boundaries or soil layers is more susceptible to corrosion than the steel or concrete in installations that are entirely within one kind of soil or within one soil layer.

For uncoated steel, the risk of corrosion, expressed as low, moderate, or high, is based on soil drainage class, total acidity, electrical resistivity near field capacity, and electrical conductivity of the saturation extract.

For concrete, the risk of corrosion also is expressed as low, moderate, or high. It is based on soil texture, acidity, and amount of sulfates in the saturation extract.

Storm Water Runoff Management Systems

Soil properties influence storm water runoff management, including the design, installation, and maintenance of the system, and especially the selection of the site and type of system to be used. Table 28 shows the degree of limitation and limiting soil factors for four commonly used storm water runoff management systems. The practices are detention basin type, infiltration systems, perennial water type, and intermittent water type.

This interpretation was developed using criteria in the NRCS Connecticut/Rhode Island Runoff Management System Standard number 570. These ratings apply to storm water runoff from residential and commercial areas including driveways, roads, roofs, parking areas, and lawns. They are not intended for the placement of treatment systems for animal waste, domestic or industrial wastewater, or other highly concentrated waste material. The information in this table indicates interpretation of the dominant soil condition but does not eliminate the need for onsite investigation.

The table includes rating classes and numerical ratings. Rating classes indicate the extent to which the soils are limited by the soil properties that affect the management system. Unlimited indicates that the soil is very favorable for the specified system. Good performance and relatively low installation and maintenance costs can be expected. Somewhat limited indicates that the soil is moderately favorable for the system. The limitations can be overcome by or minimized by special planning, design, installation, and maintenance. Increased installation costs and maintenance will be required to sustain performance. Very limited indicates that one or more soil feature is unfavorable for the specified system. The limitation generally cannot be overcome. Sometimes expensive design, installation, and maintenance may be employed, but performance may still be poor.

Numerical ratings in the table indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.00 to 1.00 . They indicate gradations between the point at which the soil is not a limitation (0.00) and at which the soil feature(s) has the greatest negative impact (1.00). The larger the value, the greater the limitation.

Detention basins are the most commonly used system for storm water management and include retention basins. Runoff from each rain event is directed into a basin or pond, where it is detained and treated until it infiltrates into the ground or is displaced by runoff from the next storm. These basins detain the storm water runoff to allow particles and associated pollutants to settle. They may reduce peak flows, remove particulate pollutants, allow groundwater recharge, and provide flood control. Of all the practices evaluated, detention/retention basins are practical on the widest range of soils. Only soils with shallow bedrock, ponding, or very steep slopes cannot be used. Soil properties that influence performance and were used to develop this interpretation are: depth to bedrock, hydrologic soil group, flooding, and slope.

Infiltration systems receive storm water runoff and allow it to seep into the soil below. Runoff is stored in either void space between the stones in a stone filled trench or stored in underground chambers made of plastic or concrete. The stored runoff infiltrates through the bottom and sides of these systems into the soil matrix. An advantage of these systems is that they provide ground water recharge as well as pollutant control. The primary pollutant removal mechanism of these systems is filtering through the soil. Infiltration systems are used to remove suspended solids, particulate pollutants, coliform bacteria, organics, and some soluble forms of metals and nutrients. Runoff should be clean or pretreated for infiltration systems in soils with permeability greater than six inches per hour in the substratum.

Specific practices included in this interpretation are infiltration trenches, which are excavated trenches at or below grade that are backfilled with stone and lined with filter fabric; and underground galleries (or galleys or leaching galleys), which are
similar to infiltration trenches except that underground chambers made of plastic and concrete are used to store runoff and allow infiltration. Infiltration systems perform best in deep, permeable soils, with a deep or absent water table on a level area. Properties that influence performance and were used to develop this interpretation are depth to restrictive layer (bedrock, dense till), depth to seasonal high water table and ponding, saturated hydraulic conductivity in the top 40 inches or above a restrictive layer, bulk density, flooding, and slope.

Perennial water systems include ponds, shallow marsh systems, and constructed wetlands. Storm water runoff flows into the system and is held there for long periods. Sedimentation processes remove particulates, organic matter, and metals, while dissolved metals and nutrients are removed through biological uptake. These systems require deep soils with slow hydraulic conductivity, permanent water tables and a level site. Soil properties that influence performance and were used to develop this interpretation are: seasonal high water table, saturated hydraulic conductivity, hydrologic soil group, and slope.

Intermittent water systems are similar to perennial systems except that they may dry out for short periods during the year. These systems include pond/wetland systems, extended detention wetlands, and pocket wetlands. Soils may have slightly more rapid hydraulic conductivity or lower water tables than those required for perennial systems. Soil properties that influence performance and were used to develop this interpretation are: seasonal high water table, saturated hydraulic conductivity, hydrologic soil group, and slope.

Low Impact Development (LID) Management Practices are designed to maintain or replicate predevelopment hydrology through the use of small-scale controls integrated throughout the site. These systems are generally designed to accept runoff from a single or part of a single residential lot. LID practices that depend on site and soil conditions include vegetated swales, buffers, and filter strips; rain gardens; dry wells and leaching trenches; and the incorporation of pervious constructing materials such as porous pavers for driveways, walkways, and parking areas.

Use the interpretation in table 28 that best addresses these practices for small residential scale systems. For vegetated swales, buffers, filter strips, and rain gardens* use the ratings for detention/retention basins. For dry wells, leaching trenches, and pervious constructing materials for driveways, walkways, and parking areas use the ratings for infiltration systems.
*For large scale bio-retention systems ("rain gardens") use the ratings for infiltration systems.

Classification of the Soils

The system of soil classification used by the National Cooperative Soil Survey has six categories (USDA, 1998 and 1999). Beginning with the broadest, these categories are the order, suborder, great group, subgroup, family, and series. Classification is based on soil properties observed in the field or inferred from those observations or from laboratory measurements. Table 29 shows the classification of the soils in the survey area. The categories are defined in the following paragraphs.

ORDER. Twelve soil orders are recognized. The differences among orders reflect the dominant soil-forming processes and the degree of soil formation. Each order is identified by a word ending in sol. An example is Inceptisol.

SUBORDER. Each order is divided into suborders primarily on the basis of properties that influence soil genesis and are important to plant growth or properties that reflect the most important variables within the orders. The last syllable in the name of a suborder indicates the order. An example is Udept (Ud, meaning humid, plus ept, from Inceptisol).

GREAT GROUP. Each suborder is divided into great groups on the basis of close similarities in kind, arrangement, and degree of development of pedogenic horizons; soil moisture and temperature regimes; type of saturation; and base status. Each great group is identified by the name of a suborder and by a prefix that indicates a property of the soil. An example is Dystrudepts (Dystr, meaning low base saturation, plus udept, the suborder of the Inceptisols that has an udic moisture regime).

SUBGROUP. Each great group has a typic subgroup. Other subgroups are intergrades or extragrades. The typic subgroup is the central concept of the great group; it is not necessarily the most extensive. Intergrades are transitions to other orders, suborders, or great groups. Extragrades have some properties that are not representative of the great group but do not indicate transitions to any other taxonomic class. Each subgroup is identified by one or more adjectives preceding the name of the great group. The adjective Typic identifies the subgroup that typifies the great group. An example is Typic Dystrudepts.

FAMILY. Families are established within a subgroup on the basis of physical and chemical properties and other characteristics that affect management. Generally, the properties are those of horizons below plow depth where there is much biological activity. Among the properties and characteristics considered are particle size, mineral content, soil temperature regime, soil depth, and reaction. A family name consists of the name of a subgroup preceded by terms that indicate soil properties. An example is coarse-loamy, mixed, mesic Typic Dystrudepts.

SERIES. The series consists of soils within a family that have horizons similar in color, texture, structure, reaction, consistence, mineral and chemical composition, and arrangement in the profile.

Soil Series and Their Morphology

In this section, each soil series recognized in the survey area is described. Characteristics of the soil and the material in which it formed are identified for each series. A pedon, a small three-dimensional area of soil that is typical of the series in
the survey area is described. The detailed description of each soil horizon follows standards in the "Soil Survey Manual" (USDA, 1993). Many of the technical terms used in the descriptions are defined in "Soil Taxonomy" (USDA, 1999) and in "Keys to Soil Taxonomy" (USDA, 1998). Unless otherwise indicated, colors in the descriptions are for moist soil. Following the pedon description is the range of important characteristics of the soils in the series.

Agawam Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderately rapid in the surface layer and subsoil, and rapid or very rapid in the substratum
Landform: Outwash plains and terraces
Parent material: Eolian deposits over glaciofluvial deposits derived from schist, granite, and gneiss
Slope range: 0 to 15 percent
Associated soils in a drainage sequence:
Ninigret (moderately well drained)
Walpole (poorly drained)
Scarboro (very poorly drained)
Associated soils:
Enfield (coarse-silty over sandy or sandy-skeletal)
Haven (finer texture in the subsoil)
Hinckley (excessively drained, sandy-skeletal)
Merrimac (somewhat excessively drained, sandy)
Windsor (excessively drained, sandy)
Taxonomic class: Coarse-loamy over sandy or sandy-skeletal, mixed, active, mesic Typic Dystrudepts

Typical Pedon

Agawam fine sandy loam, 3 to 8 percent slopes, located in the town of Essex, 1,900 feet northeast of the intersection of Bokum Road and Plains Road, on the Essex USGS topographic quadrangle, lat. 41 degrees 20 minutes 36 seconds N., long. 72 degrees 24 minutes 29 seconds W., NAD 27:

Ap-0 to 8 inches; dark brown (10YR 3/3) fine sandy loam, pale brown (10YR 6/3) dry; weak medium granular structure; friable; common fine roots; neutral; clear smooth boundary.
Bw1-8 to 14 inches; brown (7.5YR 4/4) fine sandy loam; weak, medium subangular blocky structure; friable; few fine roots; moderately acid; gradual wavy boundary.
Bw2-14 to 24 inches; strong brown (7.5YR 5/6) fine sandy loam; weak, medium subangular blocky structure; friable; moderately acid; clear wavy boundary.
2C-24 to 60 inches; brown (7.5YR 4/4) and grayish brown (10YR 5/2) stratified fine sand to very gravelly coarse sand; single grain; loose; 5 percent rock fragments; moderately acid.

Range in Characteristics

Solum thickness: 15 to 35 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to slightly acid
Ap horizon:
Hue-7.5YR to 2.5 Y
Value-3 or 4 (6 or more dry) (If A horizon is present instead of $A p$, value is 2 or 3)

Chroma-2 to 4 (If A horizon is present instead of Ap, chroma is 1 to 3)
Content of rock fragments- 0 to 10 percent
Bw1 horizon:
Hue-5YR to 10YR
Value-4 to 7
Chroma-3 to 8
Texture of the fine earth fraction-fine sandy loam, very fine sandy loam, or loam
Content of rock fragments- 0 to 10 percent
Bw2 horizon:
Hue-7.5YR to 5 Y
Value-4 to 7
Chroma-3 to 8
Texture of the fine earth fraction-fine sandy loam or very fine sandy loam
Content of rock fragments-0 to 14 percent
BC horizon (where present)
Hue-7.5YR to 5 Y
Value-4 to 7
Chroma-3 to 8
Texture of the fine earth fraction-sandy loam or loamy sand
Content of rock fragments- 0 to 14 percent
2C horizon:
Hue-7.5YR to 5 Y
Value-3 to 7
Chroma-1 to 4
Texture-stratified fine sand to very gravelly coarse sand
Content of rock fragments- 0 to 30 percent above a depth of 40 inches, 0 to 60 percent below

Some of the Agawam soils in this survey area have a mean annual soil temperature which is colder than typical of the series. These map units (429A, 429B, and 429C) are identified as cold phases of the Agawam series.

Alden Series

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderate in the surface layer and subsoil, and moderately slow in the substratum
Landform: Depressions and drainageways on hills
Parent material: Till derived from limestone, dolomite, and schist
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Amenia (moderately well drained, coarse-loamy)
Georgia (moderately well drained, coarse-loamy)
Mudgepond (poorly drained, coarse-loamy)
Associated other soil:
Natchaug (16 to 51 inches of organic materials, over loamy deposits)
Taxonomic class: Fine-loamy, mixed, active, nonacid, mesic Mollic Endoaquepts

Typical Pedon

Alden mucky silt loam, in an area of Mudgepond and Alden soils, extremely stony, located in the town of Sharon, 1.5 miles northeast on Indian Mountain Road from the
intersection of Indian Mountain Road and Route 4, 200 feet east of Indian Mountain Road, on the Ellsworth USGS topographic quadrangle, lat. 41 degrees 54 minutes 42 seconds N., long. 73 degrees 28 minutes 18 seconds W., NAD 27, in a swamp:

A1-0 to 4 inches; very dark grayish brown (2.5Y 3/2) mucky silt loam, grayish brown (2.5Y 5/2) dry; weak fine granular structure; very friable; many fine to medium roots; neutral; clear wavy boundary.
A2—4 to 13 inches; very dark gray ($2.5 \mathrm{Y} 3 / 1$) silt loam; weak medium granular structure; friable; many fine to medium roots; neutral; clear wavy boundary.
Bg1—13 to 23 inches; dark gray (5Y 4/1) silt loam; massive; friable; common fine to medium roots; common very fine prominent yellowish red (5YR 5/8) soft masses of iron accumulation; 5 percent rock fragments; neutral; clear wavy boundary.
Bg2—23 to 29 inches; gray (5Y 5/1) silt loam; massive; friable; common fine roots; few medium prominent gray (10YR 6/1) iron depletions and many fine prominent brownish yellow (10YR 6/8) soft masses of iron accumulation; 5 percent rock fragments; neutral; clear wavy boundary.
Cg1-29 to 43 inches; olive gray (5Y 4/2) gravelly loam; massive; friable; few fine roots; few medium prominent brownish yellow (10YR 6/8) soft masses of iron accumulation; 18 percent rock fragments; neutral; clear wavy boundary.
Cg2-43 to 60 inches; dark olive gray (5Y 3/2) loam; massive; friable; few fine roots; common medium distinct pale olive ($5 \mathrm{Y} 6 / 3$) iron depletions and many medium prominent very dark brown (7.5YR 2.5/2) soft masses of iron accumulation; 8 percent rock fragments; neutral.

Range in Characteristics

Solum thickness: 19 to 48 inches
Depth to bedrock: More than 80 inches
Reaction: Strongly acid to neutral in the surface layer, moderately acid to neutral in the subsoil, slightly acid to neutral to a depth of 40 inches, and slightly acid to moderately alkaline at depths greater than 40 inches

A horizons:
Hue-10YR or 2.5Y
Value-2 or 3
Chroma-0 to 2
Content of rock fragments- 0 to 14 percent
Bg horizons:
Hue-5YR to 5Y or 5GY, or neutral
Value-4 to 6
Chroma-0 to 2
Texture of the fine earth fraction-very fine sandy loam or silt loam
Content of rock fragments-0 to 14 percent
Cg horizons:
Hue-5YR to 5Y
Value-3 to 6
Chroma-0 to 2
Texture of the fine earth fraction-loam or silt loam
Content of rock fragments- 5 to 34 percent
Some of the Alden soils in this survey area have a mean annual soil temperature which is colder than typical of the series. This map unit (458) is identified as a cold phase of the Alden series.

Amenia Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface layer and subsoil, moderately slow in the substratum
Landform: Hills
Parent material: Till derived from limestone, dolomite and schist
Slope range: 2 to 15 percent
Associated soils in a drainage sequence:
Nellis (well drained)
Mudgepond (poorly drained)
Alden (very poorly drained, fine-loamy)
Associated similar soil:
Georgia (carbonates at greater depth)
Associated other soils:
Farmington (shallow, well drained)
Stockbridge (well drained, carbonates at greater depth)
Taxonomic class: Coarse-loamy, mixed, active, mesic Aquic Eutrudepts
Typical Pedon
Amenia silt loam, in an area of Georgia and Amenia silt loams, 2 to 8 percent slopes, located in the town of Salisbury, 2,300 feet east/southeast of the intersection of Long Pond Road and Indian Mountain Road, on the Sharon USGS topographic quadrangle, lat. 41 degrees 55 minutes 35 seconds N., long. 73 degrees 27 minutes 40 seconds W., NAD 27, in a cultivated field:

Ap-0 to 9 inches; brown (10YR 4/3) silt loam, light brownish gray (10YR 6/2) dry; weak medium granular structure; very friable; many fine and very fine roots; 10 percent gravel, 2 percent cobbles; neutral; clear smooth boundary.
Bw1-9 to 16 inches; olive brown (2.5Y 4/4) silt loam; weak medium subangular blocky structure; friable; common fine and very fine roots; few fine faint light olive brown (2.5Y 5/4) soft masses of iron accumulation; 10 percent gravel, 2 percent cobbles; neutral; gradual wavy boundary.
Bw2—16 to 25 inches; light olive brown (2.5Y 5/4) silt loam; weak medium subangular blocky structure; friable; few fine and very fine roots; common fine faint dark yellowish brown (10YR 4/4), distinct (10YR 4/6) soft masses of iron accumulation and distinct grayish brown (2.5Y 5/2) iron depletions; 10 percent gravel, 2 percent cobbles; neutral; clear smooth boundary.
C-25 to 60 inches; olive (5Y 4/3) gravelly loam; massive; firm; few fine distinct gray (5Y 5/1) iron depletions, distinct dark yellowish brown (10YR 4/4 and 10YR 4/6), faint olive brown (2.5Y4/4), and prominent red ($2.5 \mathrm{YR} 4 / 6$) soft masses of iron accumulation; 20 percent gravel, 5 percent cobbles; slight effervescence; slightly alkaline.

Range in Characteristics

Solum thickness: 18 to 36 inches
Depth to bedrock: More than 80 inches
Reaction: Moderately acid to slightly alkaline in the surface layer and subsoil, slightly alkaline or moderately alkaline in the substratum
Depth to carbonates: 10 to 34 inches
Ap horizon:
Hue-or 2.5 Y
Value-3 or 4

Chroma-2 or 3 (If A horizon present instead of Ap, chroma 2)
Content of rock fragments- 5 to 14 percent
Bw horizons:
Hue-10YR or 2.5Y
Value-4 to 6
Chroma-2 to 6
Texture of the fine earth fraction-loam or silt loam
Content of rock fragments- 5 to 30 percent
C horizon:
Hue-10YR to 5 Y
Value-4 or 5
Chrom-1 to 3
Texture of the fine earth fraction-loam or silt loam
Content of rock fragments-5 to 30 percent

Ashfield Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderately rapid in the surface layer, moderate to moderately rapid in the subsoil, and very slow or slow in the substratum
Landform: Hills and drumlins
Parent material: Lodgement till derived from granite, schist, and gneiss
Slope range: 0 to 15 percent
Associated soils in a drainage sequence:
Shelburne (well drained)
Loonmeadow (very poorly drained)
Associated similar soil:
Schroon (friable substratum)
Associated other soils:
Westminster (shallow, somewhat excessively drained)
Millsite (moderately deep, well drained)
Taxonomic class: Coarse-loamy, mixed, active, frigid Aquic Dystrudepts

Typical Pedon

Ashfield fine sandy loam, 2 to 8 percent slopes, very stony, located 2,000 feet north along a private gravel road from the intersection with Loon Meadow Drive and 1,400 feet southwest of Doolittle Lake, on the South Sandisfield USGS topographic quadrangle, lat. 42 degrees 00 minutes 35 seconds N., long. 73 degrees 09 minutes 53 seconds W., NAD 27, in a wooded area:

Oi-0 to 1 inch; slightly decomposed plant material
Oe-1 to 2 inches; moderately decomposed plant material
Oa-2 to 3 inches; highly decomposed plant material
A1-3 to 7 inches; very dark grayish brown (10YR 3/2) fine sandy loam, brown (10YR
$5 / 3$) dry; weak very fine and fine granular structure; very friable; many fine and very fine roots; 4 percent gravel, 1 percent cobbles; extremely acid; clear smooth boundary.
A2—7 to 12 inches; brown (10YR 4/3) fine sandy loam, brown (10YR 5/3) dry; weak fine and medium granular structure; very friable; many medium and very coarse roots; 5 percent gravel, 1 percent cobbles; very strongly acid; clear smooth boundary.
Bw1-12 to 18 inches; dark yellowish brown (10YR 4/4) fine sandy loam; weak fine and medium subangular blocky structure; friable; many fine to medium roots; few
fine faint brown (10YR 5/3) soft masses of iron accumulation and few fine distinct grayish brown (10YR 5/2) iron depletions; 7 percent gravel, 1 percent cobbles; very strongly acid; abrupt wavy boundary.
Bw2-18 to 24 inches; yellowish brown (10YR 5/4) fine sandy loam; moderate medium subangular blocky structure; friable; common fine to medium roots; few fine and medium faint brown (10YR $5 / 3$) and common coarse and very coarse distinct strong brown (7.5YR 4/6) soft masses of iron accumulation and few fine and medium distinct grayish brown (10YR $5 / 2$) iron depletions; 10 percent gravel, 5 percent cobbles; very strongly acid; clear wavy boundary.
BC—24 to 29 inches; brown (10YR 5/3) fine sandy loam; weak fine and medium subangular blocky structure; friable to firm; few very fine and fine roots and common medium roots in cracks; common medium and coarse distinct strong brown (7.5YR 4/6) soft masses of iron accumulation and few fine and medium faint grayish brown (2.5Y 5/2) iron depletions; 8 percent gravel, 5 percent cobbles; strongly acid; clear wavy boundary.
Cd1-29 to 44 inches; brown (10YR 5/3) fine sandy loam; massive; firm to very firm; few fine and medium roots; many medium prominent strong brown (7.5YR 4/6) soft masses of iron accumulation, common medium faint light brownish gray (2.5Y 6/2) iron depletions, and few fine prominent dark reddish brown (5YR 2.5/1) soft masses of iron and manganese accumulation; 12 percent gravel, 1 percent cobbles; strongly acid; gradual smooth boundary.
Cd2-44 to 58 inches; light olive brown (2.5Y 5/3) sandy loam; massive; very firm to firm; few fine and medium roots in cracks; common medium prominent strong brown (7.5YR 4/6) soft masses of iron accumulation and few medium distinct gray ($2.5 \mathrm{Y} 6 / 1$) and common medium and coarse faint light brownish gray ($2.5 \mathrm{Y} 6 / 2$) iron depletions; 4 percent gravel, 5 percent cobbles; moderately acid; gradual smooth boundary.
Cd3—58 to 80 inches; olive brown (2.5Y 4/3) fine sandy loam; pockets of loamy sand; massive; friable; few fine faint olive brown (2.5Y 4/4) and few fine distinct brown (7.5YR 4/4) soft masses of iron accumulation; 8 percent gravel, 5 percent cobbles; slightly acid.

Range in Characteristics

Solum thickness: 20 to 33 inches
Depth to bedrock: More than 80 inches
Reaction: Extremely acid to strongly acid in the surface layer and subsoil, strongly acid to slightly acid in the substratum

A horizons:
Hue-10YR
Value-2 or 3
Chroma-1 to 4
Content of rock fragments-5 to 14 percent
Bw horizons:
Hue-10YR to 5 Y
Value-3 to 5
Chroma-2 to 4
Texture of the fine earth fraction-fine sandy loam, silt loam, or loam Content of rock fragments- 5 to 25 percent

BC horizon:
Hue-10YR to 5 Y
Value-3 to 5
Chroma-2 to 4

Texture of the fine earth fraction-fine sandy loam, silt loam or loam
Content of rock fragments-5 to 25 percent
Cd horizons:
Hue-2.5Y or 5 Y
Value-3 to 5
Chroma-1 to 3
Texture of the fine earth fraction—fine sandy loam, sandy loam, or loam (pockets of loamy sand possible in lower substratum)
Content of rock fragments- 5 to 25 percent

Bash Series

Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderate in the surface layer and subsoil, and moderate or moderately slow in the substratum
Landform: Flood plains
Parent material: Alluvium derived from sandstone and shale
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Hadley (well drained)
Winooski (moderately well drained)
Lim (poorly drained)
Limerick (coarse-silty, poorly drained)
Saco (very poorly drained)
Associated similar soil:
Pootatuck (moderately well drained, browner)
Taxonomic class: Coarse-loamy, mixed, semiactive, mesic Fluvaquentic Dystrudepts

Typical Pedon

Bash silt loam, located in the town of Middlefield, 1,800 feet southeast along Route 147 from the intersection with Miller Road, 100 feet south of Route 147 and 200 feet west of Coginchaug River, on the Durham USGS topographic quadrangle, lat. 41 degrees 29 minutes 42 seconds N., long. 71 degrees 42 minutes 18 seconds W., NAD 27, in a grass field:

Ap-0 to 11 inches; brown (7.5YR 4/2) silt loam, light brown (7.5 YR 6/3) dry; weak fine granular structure; very friable; few very fine and fine roots; moderately acid; abrupt smooth boundary.
Bw1-11 to 21 inches; reddish brown (5YR 4/3) silt loam; weak medium subangular blocky structure; friable; few fine roots; common, medium distinct yellowish red (5 YR $5 / 6$) soft masses of iron accumulation and common medium distinct grayish brown (10YR 5/2) iron depletions; strongly acid; clear wavy boundary.
Bw2-21 to 28 inches; reddish brown (5YR 4/3) silt loam; weak medium subangular blocky structure; friable; common fine prominent strong brown (7.5 YR 5/6) and few fine prominent dark red (2.5YR 3/6) soft masses of iron accumulation; strongly acid; clear wavy boundary.
C—28 to 60 inches; reddish brown (5YR 4/3) silt loam; massive; friable; common medium distinct yellowish red (5YR 4/6) soft masses of iron accumulation and common medium prominent gray ($5 \mathrm{Y} 5 / 1$) iron depletions; strongly acid.

Range in Characteristics

Solum thickness: 16 to 40 inches
Depth to bedrock: More than 80 inches

Reaction: Very strongly acid to moderately acid
Ap horizon:
Hue-2.5 YR to 10 YR
Value-3 or 4
Chroma-2 to 4
Content of rock fragments-0 to 14 percent
Bw horizons:
Hue-2.5 YR to 7.5 YR
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-fine sandy loam, silt loam, or loam
Content of rock fragments- 0 to 34 percent
C horizon:
Hue-5 YR to 10YR
Value-3 to 5
Chroma-1 to 4
Texture of the fine earth fraction-fine sandy loam, silt loam, or loam
Content of rock fragments-0 to 34 percent

Belgrade Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate
Landform: Terraces on lake plains
Parent material: Glaciolacustrine deposits
Slope range: 0 to 5 percent
Associated soil in a drainage sequence:
Raynham (poorly drained)
Associated similar soils:
Berlin (fine-silty)
Brancroft (fine-silty)
Elmridge (coarse-loamy over clayey)
Associated other soils:
Scitico (poorly drained, fine)
Shaker (poorly drained, coarse-loamy over clayey)
Maybid (very poorly drained, fine)
Taxonomic class: Coarse-silty, mixed, active, mesic Aquic Dystric Eutrudepts

Typical Pedon

Belgrade silt loam, 0 to 5 percent slopes, located in the town of Suffield, 1,000 feet west northwest of the junction of Hill Street and Connecticut Route 190, on the Windsor Locks USGS topographic quadrangle, lat. 41 degrees 58 minutes 50 seconds N. , long. 72 degrees 40 minutes 01 seconds W., NAD 27, in a wooded area:
Ap-0 to 8 inches; dark brown (10YR 3/3) silt loam, pale brown (10YR 6/3) dry; moderate medium granular structure; very friable; few very fine, fine and medium roots; strongly acid; clear smooth boundary.
Bw1-8 to 16 inches; dark yellowish brown (10YR 4/4) silt loam; weak fine and medium subangular blocky structure; friable; few fine medium and coarse roots; moderately acid; gradual wavy boundary.
Bw2—16 to 27 inches; yellowish brown (10YR 5/4) silt loam; weak fine and medium subangular blocky structure; friable; few fine, medium and coarse roots; common
fine faint pale brown (10YR 6/3) and distinct grayish brown (10YR 5/2) iron depletions; moderately acid; clear smooth boundary.
C1-27 to 45 inches; light olive brown (2.5Y 5/4) varved silt loam and very fine sandy loam; massive parting to thin platy structure; friable; few fine medium and coarse roots that decease with depth; common fine and medium distinct light brownish gray (2.5Y 6/2) iron depletions and distinct yellowish brown (10YR 5/6) and prominent strong brown (7.5YR 5/6) soft masses of iron accumulations; moderately acid; clear smooth boundary.
C2—45 to 60 inches; olive brown (2.5Y 4/4) varved silt loam and very fine sandy loam (few thin varves of silty clay loam); massive parting to thin platy structure; friable; few fine and medium distinct light brownish gray ($2.5 \mathrm{Y} 6 / 2$) iron depletions and distinct yellowish brown (10YR 5/6) and prominent strong brown (7.5YR 5/6) soft masses of iron accumulations; moderately acid.

Range in Characteristics

Solum thickness: 20 to 44 inches.
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to neutral in the surface layer and subsoil, and moderately acid to neutral in the substratum (some subhorizon between depths of 10 and 30 inches moderately acid to neutral)

Ap horizon:
Hue-10YR
Value-3 or 4 (dry value 6 or more)
Chroma-2 to 4
Content of rock fragments-less than 1 percent
Bw1 horizon:
Hue-10YR to 5 Y
Value-4 or 5
Chroma-4 to 6
Texture of the fine earth fraction-silt loam or very fine sandy loam
Content of rock fragments-less than 1 percent
Bw2 horizon:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-2 to 6
Texture of the fine earth fraction-silt loam or very fine sandy loam
Content of rock fragments-less than 1 percent
C horizons:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-1 to 4
Texture of the fine earth fraction-very fine sandy loam or silt loam
Content of rock fragments-less than 1 percent

Berlin Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface layer, moderately slow or moderate in the upper subsoil, slow or very slow in the lower subsoil, and very slow in the substratum Landform: Terraces on lake plains
Parent material: Glaciolacustrine deposits

Slope range: 0 to 8 percent
Associated similar soils:
Belgrade (coarse-silty)
Brancroft (7.5YR or yellower in subsoil and substratum)
Elmridge (coarse-loamy over clayey)
Ludlow (coarse-loamy)
Associated other soils:
Wethersfield (well drained, coarse-loamy)
Scitico (poorly drained, fine)
Maybid (very poorly drained, fine)
Taxonomic class: Fine-silty, mixed, semiactive, mesic Aquic Dystric Eutrudepts

Typical Pedon

Berlin silt loam, 3 to 8 percent slopes, located in the town of Rocky Hill, 450 feet northwest of the intersection of Orchard Street and Raymond Road, 50 feet west of Interstate 91, on the Hartford South USGS topographic quadrangle, lat. 41 degrees 40 minutes 37 seconds N., long. 72 degrees 39 minutes 30 seconds W., NAD 27, in a wooded area:

Ap-0 to 6 inches; dark reddish brown (5YR 3/2) silt loam, light brownish gray (10YR $6 / 2$) dry; weak medium granular structure; friable; many very fine and fine roots; 5 percent fine gravel; strongly acid; abrupt smooth boundary.
Bw1-6 to 12 inches; reddish brown (5YR 4/3) silt loam; weak medium subangular blocky structure; friable; common very fine and fine roots; 5 percent fine gravel; strongly acid; clear wavy boundary.
Bw2-12 to 20 inches; reddish brown (5YR 4/4) silty clay loam; weak coarse subangular blocky structure; friable; few fine roots; 3 percent gravel; strongly acid; clear wavy boundary.
Bw3-20 to 34 inches; dark reddish brown (5YR 3/4) silty clay loam; weak very coarse prismatic structure parting to moderate coarse subangular blocky structure; firm; few fine roots along prism faces; discontinuous black coatings on ped faces; common fine and medium distinct pinkish gray (5YR 6/2), prominent pale brown (10YR 6/3) and distinct light reddish brown (5YR 6/3) iron depletions; 2 percent fine gravel; moderately acid; gradual wavy boundary.
C1—34 to 48 inches; dark reddish brown (5YR 3/4) silty clay loam; weak very coarse prismatic structure parting to thin platy structure along varve bedding planes; firm; discontinuous black coatings on plate surfaces; few fine prominent reddish yellow (7.5YR 6/6, 6/8) soft masses of iron accumulations and distinct reddish gray (5YR $5 / 2$) iron depletions; slightly acid; clear wavy boundary.
C2—48 to 65 inches; dark reddish brown (5YR 3/3) varved silt and clay; silty clay loam weighted average texture; massive separating into thin platy structure along varve bedding planes; very firm; few thin strata of very fine sand; slightly acid.

Range in Characteristics

Solum thickness 24 to 45 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to neutral in the surface layer, strongly acid to neutral in the subsoil, and moderately acid to neutral in the substratum

Ap horizon:
Hue-5YR or 7.5YR
Value-3 or 4 (Dry value 6 or more) (If A horizon present instead of Ap, value 2 or 3) Chroma-2 or 3 (If A horizon present instead of Ap, chroma 1 to 3)
Content of rock fragments-0 to 10 percent

Upper Bw horizons:
Hue-5YR or 2.5YR
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-silt loam or silty clay loam
Content of rock fragments-0 to 10 percent
Lower Bw horizons:
Hue-5YR or 2.5YR
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-silt loam, silty clay loam, or silty clay
Content of rock fragments-0 to 10 percent
C horizons:
Hue-5YR or 2.5YR
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-silt loam to silty clay (very fine sand to clay in individual varves)
Content of rock fragments- 0 to 5 percent

Bernardston Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface layer and subsoil, slow or very slow in the substratum
Landform: Hills
Parent material: Lodgement till derived from phyllite or schist
Slope range: 3 to 25 percent
Associated similar soils:
Dummerston (friable substratum, higher elevations)
Fullam (moderately well drained, higher elevations)
Lanesboro (higher elevations)
Paxton (less silty)
Associated other soils:
Taconic (shallow, somewhat excessively drained, higher elevations)
Macomber (moderately deep, higher elevations)
Woodbridge (moderately well drained)
Taxonomic class: Coarse-loamy, mixed, active, mesic Oxyaquic Dystrudepts
Typical Pedon
Bernardston silt loam, 3 to 8 percent slopes, located in the town of Salisbury, 50 feet north of Sellick Hill Road, 0.25 miles east of the intersection of Sellick Hill Road and Lincoln City Road, on the Sharon USGS topographic quadrangle, lat. 41 degrees 58 minutes 49 seconds N., long. 73 degrees 26 minutes 47 seconds W., NAD 27, in a hayfield:
Ap-0 to 8 inches, dark brown (10YR 3/3) silt loam, pale brown (10 YR 6/3) dry; weak fine granular structure; friable; many fine roots; 13 percent rock fragments; moderately acid; clear smooth boundary.
Bw1-8 to 14 inches, yellowish brown (10YR 5/4) channery silt loam; weak medium subangular blocky structure; friable; few fine roots; 15 percent rock fragments; strongly acid; gradual wavy boundary.

Bw2-14 to 24 inches, light olive brown (2.5Y 5/4) channery silt loam; weak medium subangular blocky structure; friable; few fine roots; 25 percent rock fragments; very strongly acid; gradual wavy boundary.
BC-24 to 26 inches, light olive brown ($2.5 \mathrm{Y} 5 / 4$) to olive ($5 \mathrm{Y} 5 / 3$) channery silt loam; weak thick platy structure; firm; 25 percent rock fragments; very strongly acid; clear wavy boundary.
Cd-26 to 60 inches, olive brown (2.5Y 4/4) to light olive brown (2.5Y 5/4) channery silt loam; weak thick platy structure; very firm; 30 percent rock fragments, primarily schist; very strongly acid.

Range in Characteristics

Solum thickness: 20 to 30 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
Ap or A horizon:
Hue-7.5YR to 2.5Y
Value-3 or 4
Chroma-2 or 3
Content of rock fragments-0 to 14 percent
Bw1 horizon:
Hue-7.5YR to 2.5 Y
Value-4 or 5
Chroma-2 to 6
Texture of the fine earth fraction-silt loam, loam, or very fine sandy loam Content of rock fragments- 5 to 25 percent
Bw2 horizon:
Hue-10YR or 2.5 Y
Value-4 or 5
Chroma-2 to 6
Texture of the fine earth fraction-silt loam, loam, or very fine sandy loam Content of rock fragments- 5 to 25 percent
BC horizon:
Hue-10YR or 2.5 Y
Value-4 or 5
Chroma-2 to 6
Texture of the fine earth fraction-silt loam, loam, or very fine sandy loam
Content of rock fragments- 5 to 25 percent
Cd horizon:
Hue-2.5Y or 5 Y
Value-4 or 5
Chroma-2 to 4
Texture of the fine earth fraction-silt loam, loam, or very fine sandy loam Content of rock fragments- 5 to 30 percent

Bice Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Landform: Hills
Parent material: Melt-out till derived from granite, schist, and/or gneiss
Slope range: 3 to 45 percent

Associated soils in a drainage sequence:
Schroon (moderately well drained)
Loonmeadow (very poorly drained)
Associated other soils:
Westminster (shallow, somewhat excessively drained)
Millsite (moderately deep)
Shelburne (dense substratum)
Taxonomic class: Coarse-loamy, mixed, active, frigid Typic Dystrudepts
Typical Pedon
Bice fine sandy loam, 3 to 8 percent slopes, very stony, located in the town of Norfolk, 2,000 feet north of the intersection of Barry Hill Road and Wheeler Street, 30 feet East of Barry Hill Road, on the South Sandisfield USGS topographic quadrangle, lat. 42 degrees 02 minutes 18 seconds N., long. 73 degrees 10 minutes 33 seconds W. NAD 27, in a wooded area:

Oi-0 to 1 inch; slightly decomposed plant materials derived from leaf and twig litter matted with roots.
Ap-1 to 7 inches, dark brown (10YR 3/3) fine sandy loam, brown (10YR 5/3) dry; weak fine granular structure; very friable; common fine to coarse roots; 5 percent rock fragments; strongly acid; clear smooth boundary.
Bw1-7 to 16 inches, dark yellowish brown (10Y 4/6) fine sandy loam; weak medium subangular blocky structure; very friable; common fine to coarse roots; 10 percent rock fragments; strongly acid; gradual smooth boundary.
Bw2—16 to 24 inches, dark yellowish brown (10Y 4/4) gravelly fine sandy loam; weak medium subangular blocky structure; very friable; common fine to coarse roots; 25 percent rock fragments; moderately acid; clear smooth boundary.
C-24 to 60 inches; light olive brown (2.5Y 5/3) gravelly sandy loam; massive; friable; few fine roots in the upper part; 25 percent rock fragments; moderately acid.

Range in Characteristics

Solum thickness: 20 to 36 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
Ap horizon:
Hue-7.5YR or 10YR
Value-3 or 4 (If A horizon present instead of Ap, value 2 or 3)
Chroma-2 to 4 (If A horizon present instead of Ap, chroma 1 or 2)
Content of rock fragments-5 to 14 percent
Bw1 horizon:
Hue-7.5YR or 10YR
Value-3 to 6
Chroma-3 to 6
Texture of the fine earth fraction-coarse sandy loam, sandy loam, fine sandy loam, or silt loam
Content of rock fragments-5 to 25 percent
Bw2 horizon:
Hue-2.5Y or 10YR
Value-4 to 6
Chroma-3 to 6
Texture of the fine earth fraction-fine sandy loam, sandy loam, or loam
Content of rock fragments-5 to 25 percent

C horizon:
Hue-2.5Y or 10YR
Value-4 to 6
Chroma-2 to 4
Texture of the fine earth fraction-fine sandy loam, sandy loam or loam
Content of rock fragments-5 to 25 percent

Boscawen Series

Depth class: Very deep
Drainage class: Excessively drained
Permeability: Moderately rapid or rapid in the surface layer and subsoil, and rapid or very rapid in the substratum
Landform: Outwash plains, terraces, kames, and eskers
Parent material: Glaciofluvial deposits derived from granite, schist, and/or gneiss
Slope range: 0 to 45 percent
Associated soils in a drainage sequence:
Merrimac, cold (somewhat excessively drained)
Sudbury, cold (moderately well drained)
Moosilauke (poorly drained)
Associated similar soils:
Agawam, cold (coarse-loamy over sandy or sandy-skeletal)
Taxonomic class: Sandy-skeletal, mixed, frigid Typic Udorthents

Typical Pedon

Boscawen gravelly sandy loam, 3 to 15 percent slopes, located in the town of Norfolk, 800 feet west along Windrow Road from the intersection with Westside Road, and 1,000 feet north of Windrow Road, on the Norfolk USGS topographic quadrangle, lat. 41 degrees 58 minutes 46 seconds N., long. 73 degrees 12 minutes 50 seconds W., NAD 27, in a wooded area:

Oi-0 to 1 inch; slightly decomposed plant materials
A-1 to 2 inches; very dark brown (10YR 2/2) gravelly sandy loam; weak fine granular structure; friable; many very fine and medium roots, common coarse and very coarse roots; 20 percent gravel; very strongly acid; abrupt wavy boundary.
Bw-2 to 9 inches; brown (7.5YR 4/4) very gravelly sandy loam; weak, medium subangular blocky structure; friable; common very fine, fine and medium roots, few coarse and very coarse roots; 40 percent gravel, 5 percent cobbles; strongly acid; clear wavy boundary.
BC-9 to 16 inches; dark yellowish brown (10YR 4/6) very gravelly loamy sand; single grain; loose; few very fine, fine, and medium roots, few coarse and very coarse roots; 50 percent gravel, 5 percent cobbles; strongly acid; clear wavy boundary.
C1-16 to 29 inches; dark yellowish brown (10YR 4/6) extremely gravelly sand; single grain; loose; few very fine, fine and medium roots; 60 percent gravel, 10 percent cobbles; strongly acid; clear wavy boundary.
C2—29 to 34 inches; yellowish brown (10YR 5/6) very gravelly coarse sand; single grain; loose; 40 percent gravel, 10 percent cobbles; strongly acid; clear smooth boundary.
C3-34 to 40 inches; yellowish brown (10YR 5/6) and light olive brown (2.5Y 5/6) gravelly sand; single grain; loose; 20 percent gravel; moderately acid; clear smooth boundary.
C4—40 to 44 inches; light olive brown (2.5Y 5/6) fine sand; single grain; loose; 5 percent gravel; moderately acid; clear smooth boundary.

C5—44 to 67 inches; light olive brown (2.5Y 5/6) and yellowish brown (10YR 5/6) sand; single grain; loose; 10 percent gravel; moderately acid.

Range in Characteristics

Solum thickness: 6 to 24 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to strongly acid in the surface layer and subsoil, and very strongly acid to moderately acid in the substratum
A horizon:
Hue-7.5YR or 10YR
Value-2 to 4
Chroma-2 to 4
Content of rock fragments-15 to 20 percent
Bw horizon:
Hue-7.5YR or 10YR
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-loamy sand or sandy loam
Content of rock fragments-20 to 50 percent
BC horizon (where present)
Hue-7.5YR or 10YR
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-loamy sand
Content of rock fragments- 35 to 60 percent
C horizon:
Hue-7.5YR to 2.5 Y
Value-4 or 5
Chroma-4 to 6
Texture-stratified fine sand to very gravelly coarse sand
Content of rock fragments- 40 to 75 percent (weighted average, individual subhorizons may be lower)

Brancroft Series

Depth class: Very deep

Drainage class: Moderately well drained
Permeability: Moderate in the surface layer, moderate or moderately slow in the upper subsoil, slow or very slow in the lower subsoil, and very slow in the substratum
Landform: Terraces on lake plains
Parent material: Glaciolacustrine deposits
Slope range: 0 to 15 percent
Associated soils in a drainage sequence:
Scitico (poorly drained)
Maybid (very poorly drained)
Associated similar soils:
Belgrade (coarse-silty)
Berlin (redder in the subsoil and substratum)
Elmridge (coarse-loamy over clayey)
Taxonomic class: Fine-silty, mixed, active, mesic Aquic Dystric Eutrudepts

Typical Pedon

Brancroft silt loam, 3 to 8 percent slopes, located in the town of Suffield, 1,800 feet west along Halladay Avenue from the intersection of Mapleton Avenue and Halladay Avenue, 600 feet north of Halladay Avenue, on the West Springfield USGS topographic quadrangle, lat. 42 degrees 00 minutes 35 seconds N ., long. 72 degrees 38 minutes 08 seconds W., NAD 27, in a grassy field:
Ap-0 to 6 inches; dark grayish brown (10YR 4/2) silt loam; light brownish gray (2.5Y $6 / 2$) dry; moderate fine and medium granular structure; friable; many fine and very fine roots; strongly acid; clear smooth boundary.
Bw1-6 to 17 inches; brown (10YR 4/3) silt loam; moderate medium subangular blocky structure; friable; few fine and very fine roots; strongly acid; clear smooth boundary.
Bw2-17 to 22 inches; brown (10YR 4/3) silty clay loam; weak very coarse prismatic structure parting to weak, thin platy structure; firm; few fine roots along prism faces; common fine and medium prominent strong brown (7.5YR $5 / 6,5 / 8$) soft masses of iron accumulations and faint grayish brown (10YR $5 / 2$) iron depletions on prism faces and plate surfaces; strongly acid; clear smooth boundary.
Bw3-22 to 32 inches; light olive brown ($2.5 \mathrm{Y} 5 / 4$) silt loam; weak very coarse prismatic structure parting to weak, thin platy structure; firm; few fine roots along prism faces; common light olive gray ($5 \mathrm{Y} 6 / 2$) coatings on prism faces; many fine to coarse prominent strong brown (7.5YR 5/6) soft masses of iron accumulations and faint light olive gray ($5 \mathrm{Y} 6 / 2$) iron depletions on prism faces and plate surfaces; strongly acid; clear smooth boundary.
C1-32 to 43 inches; olive ($5 \mathrm{Y} 5 / 3$) silty clay loam; massive; firm; many light olive gray ($5 \mathrm{Y} 6 / 2$) coatings on prism faces; many fine to coarse prominent strong brown (7.5YR 5/6) soft masses of iron accumulations and faint light olive gray ($5 \mathrm{Y} 6 / 2$) iron depletions on prism faces and plate surfaces; moderately acid; clear smooth boundary.
C2-43 to 66 inches; olive (5 Y $5 / 3$) varved silt and clay (silt loam weighted average); massive; firm; few fine and medium prominent strong brown (7.5YR 5/6) soft masses of iron accumulations and faint light olive gray ($5 \mathrm{Y} 6 / 2$) depletions on varve surfaces; neutral.

Range in Characteristics

Solum thickness: 24 to 45 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to slightly acid in the surface layer, strongly acid to neutral in the subsoil, and moderately acid to neutral in the substratum

Ap horizon:
Hue-10YR or 2.5 Y
Value-2 to 4 (dry value 6 or more) (If A horizon is present instead of Ap, value is 2 or 3)
Chroma-2 or 3 (If A horizon is present instead of Ap, chroma is 1 to 3)
Content of rock fragments-0 to 3 percent
Bw1 horizon:
Hue-7.5YR to 5 Y
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-silt loam or silty clay loam
Content of rock fragments-0 to 3 percent
Lower Bw horizons:
Hue-10YR to 5 Y

Value-3 to 6
Chroma-3 or 4
Texture of the fine earth fraction-silt loam or silty clay loam
Content of rock fragments-0 to 3 percent
C horizons:
Hue-7.5YR to 5 Y
Value-3 to 6
Chroma-2 to 4
Texture of the fine earth fraction-silt loam or silty clay loam (silt loam, silty clay loam, or silty clay in individual varves)
Content of rock fragments-0 to 3 percent

Branford Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid in the surface layer and subsoil, rapid or very rapid in the substratum
Landform: Outwash plains and terraces
Parent material: Eolian deposits over glaciofluvial deposits derived from sandstone, shale, and basalt
Slope range: 0 to 15 percent
Associated soil in a drainage sequence:
Ellington (moderately well drained)
Associated similar soils:
Manchester (excessively drained, sandy and gravelly)
Penwood (excessively drained, sandy)
Hartford (somewhat excessively drained, sandy)
Associated other soils:
Raypol (poorly drained)
Walpole (poorly drained, sandy)
Taxonomic class: Coarse-loamy over sandy or sandy-skeletal, mixed, active, mesic Typic Dystrudepts

Typical Pedon
Branford silt loam, 0 to 3 percent slopes, located in the town of Branford, 600 feet west of the intersection of Connecticut Route 139 and the New Haven Trap Rock Company railroad, on the Branford USGS topographic quadrangle, lat. 41 degrees 18 minutes 07 seconds N., long. 72 degrees 46 minutes 42 seconds W., NAD 27:

Ap-0 to 8 inches; dark reddish brown (5YR 3/3) silt loam, light reddish brown (5YR $6 / 3$) dry; weak medium granular structure; friable; common very fine and fine roots; 10 percent gravel; moderately acid; clear smooth boundary.
Bw1-8 to 18 inches; reddish brown (5YR 4/4) loam; weak medium subangular blocky structure; friable; few fine roots; common earthworm holes and worm casts; 10 percent gravel; strongly acid; gradual wavy boundary.
Bw2-to 24 inches; reddish brown (5YR 4/4) gravelly loam; weak coarse subangular blocky structure; very friable; few fine roots; 15 percent gravel; strongly acid; clear wavy boundary.
2C-24 to 65 inches; reddish brown (5YR 4/3) stratified loamy fine sand to very gravelly coarse sand; single grain; loose; 25 percent gravel; strongly acid.

Range in Characteristics

Solum thickness: 20 to 40 inches
Depth to bedrock: More than 80 inches

Reaction: Very strongly acid to moderately acid
Ap horizon:
Hue-5YR to 10YR
Value-3 or 4 (dry value 6 or more) (If A horizon is present instead of Ap, value is 2 or 3)
Chroma-2 to 4 (If A horizon present instead of Ap, chroma 1 to 3)
Content of rock fragments- 0 to 14 percent
Bw1 horizon:
Hue-5YR
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-silt loam, very fine sandy loam, loam, or fine sandy loam
Content of rock fragments-0 to 30 percent
Bw2 horizon:
Hue-5YR
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-silt loam, very fine sandy loam, loam, or fine sandy loam
Content of rock fragments-0 to 30 percent
2C horizon:
Hue-2.5YR or 5YR
Value-3 to 6
Chroma-3 to 6
Texture of the fine earth fraction-stratified loamy fine sand to coarse sand Content of rock fragments-10 to 50 percent

Brayton Series Taxadjunct

This taxonomic description is for the Brayton loam of map units 442 and 443 .
Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderate or moderately rapid in the surface layer and subsoil, and slow or very slow in the substratum
Landform: Depressions and drainageways on hills
Parent material: Lodgement till derived from granite, schist and gneiss
Slope range: 0 to 8 percent
Associated soils in a drainage sequence:
Shelburne (well drained)
Ashfield (moderately well drained)
Associated other soils:
Loonmeadow (very poorly drained, fine-loamy)
Bucksport (very poorly drained, more than 51 inches of organic material)
Wonsqueak (very poorly drained, 16 to 51 inches of organic material over loamy deposits)
Taxonomic class: Coarse-loamy, mixed, active, nonacid, frigid Typic Humaquepts

Typical Pedon

Brayton loam, in an area of Brayton-Loonmeadow complex, extremely stony, located in the town of Norfolk, 600 feet east along North Colebrook Road from the
intersection with State Line Hill Road, and 300 feet North of North Colebrook Road, on the South Sandisfield USGS topographic quadrangle, lat. 42 degrees 01 minutes 41 seconds N., long. 73 degrees 08 minutes 17 seconds W., NAD 27, in a wooded area:

Oe-0 to 2 inches; very dark gray ($2.5 \mathrm{Y} 3 / 1$) moderately decomposed plant materials; many very fine to medium roots, few coarse and very coarse roots; very strongly acid; clear wavy boundary.
A-2 to 10 inches; very dark grayish brown (10YR 3/2) loam, grayish brown (10 YR 5/2) dry; moderate medium granular structure; very friable, slightly sticky, non-plastic; many very fine to medium roots, few coarse and very coarse roots; common medium distinct brown (7.5 YR 4/4) masses of iron accumulation, few fine faint dark grayish brown ($2.5 \mathrm{Y} 4 / 2$) iron depletions; 10 percent gravel, 1 percent cobbles; strongly acid; clear wavy boundary.
Bg1-10 to 17 inches; dark grayish brown (2.5Y 4/2) gravelly sandy loam; weak medium subangular blocky structure; very friable, non-sticky, non-plastic; few very fine to coarse roots; few medium faint grayish brown (2.5Y 5/2) iron depletions, common fine prominent brown (7.5YR 4/4) masses of iron accumulation; 12 percent gravel, 2 percent cobbles, 1 percent stones; moderately acid; gradual smooth boundary.
Bg2—17 to 22 inches; grayish brown (2.5Y 5/2) gravelly sandy loam; weak coarse subangular blocky structure; very friable, non-sticky, non-plastic; few fine faint gray ($2.5 \mathrm{Y} 5 / 1$) iron depletions and common medium prominent brown (7.5YR 4/4) masses of iron accumulation; 12 percent gravel, 2 percent cobbles, 1 percent stones; moderately acid; clear smooth boundary.
Bg3—22 to 28 inches; olive gray (5Y5/2) sandy loam; weak coarse subangular blocky structure; friable, non-sticky, non-plastic; few fine faint gray (5Y 5/1) iron depletions, common medium distinct olive brown (2.5Y 4/4) masses of iron accumulation; 10 percent gravel, 2 percent cobbles, 1 percent stones; neutral; clear smooth boundary.
Cd1-28 to 42 inches; olive brown (2.5Y 4/3) gravelly sandy loam; massive; firm, nonsticky, non-plastic; common medium faint grayish brown (2.5Y 5/2) iron depletions, common medium prominent yellowish brown (10 YR 5/6) masses of iron accumulation; 15 percent gravel, 2 percent cobbles, 2 percent stones; neutral; gradual smooth boundary.
Cd2—42 to 65 inches; olive (5Y 5/3) gravelly sandy loam; massive; firm, non-sticky, non-plastic; 15 percent gravel, 2 percent cobbles, 2 percent stones; neutral.

Range in Characteristics

Solum thickness: 20 to 28 inches
Depth to bedrock: More than 80 inches
Reaction: Extremely acid to moderately acid in the surface layers, strongly acid to slightly acid in the upper subsoil, strongly acid to neutral in the lower subsoil, and moderately acid to neutral in the substratum (some subhorizon has a pH value greater than 5.5)

A horizon:
Hue-10YR to 5 Y
Value-2 or 3 (dry value is 5 or less)
Chroma-1 to 3
Content of rock fragments-5 to 14 percent
Bg horizons:
Hue-10YR to 5 Y
Value-4 to 6

Chroma-1 or 2
Texture of the fine earth fraction-silt loam, loam, very fine sandy loam, fine sandy loam, or sandy loam
Content of rock fragments-5 to 34 percent
Cd horizons:
Hue-10YR to 5 Y
Value-3 to 6
Chroma-1 to 4
Texture of the fine earth fraction- loam, fine sandy loam, or sandy loam
Content of rock fragments- 5 to 34 percent
The Brayton soils in eastern Litchfield County are taxadjuncts because the soils are very deep and the surface layers are thicker and darker in color than the range for the series. This difference, however, does not significantly affect the use, management, or interpretation of the soils. In the eastern area of Litchfield County, the Brayton soils are coarse-loamy, mixed, active, nonacid frigid Typic Humaquepts.

Brayton Series Taxadjunct

This taxonomic description is for the Brayton mucky silt loam of map unit 409B.

Depth class: Very deep

Drainage class: Poorly drained
Permeability: Moderate in the surface layer, moderate or moderately rapid in the subsoil, and slow or very slow in the substratum
Landform: Depressions and drainageways on hills
Parent material: Lodgement till derived from phyllite or schist
Slope range: 0 to 8 percent
Associated soils in a drainage sequence:
Lanesboro (well drained)
Fullam (moderately well drained)
Associated other soils:
Taconic (shallow, somewhat excessively drained)
Dummerston (well drained, friable substratum)
Macomber (moderately deep, well drained)
Bucksport (very poorly drained, more than 51 inches of organic material)
Wonsqueak (very poorly drained, 16 to 51 inches of organic material over loamy deposits)

Taxonomic class: Coarse-loamy, mixed, active, nonacid, frigid shallow Typic Endoaquepts

Typical Pedon

Brayton mucky silt loam, 0 to 8 percent slopes, very stony, located in the town of Salisbury, 6,000 feet south of the Connecticut/Massachusetts state line on Mt. Washington Road, 2500 feet northwest following the jeep trail, 1250 feet northeast of jeep trail and stream crossing, on the Bash Bish USGS topographic quadrangle, lat. 42 degrees 02 minutes 30 seconds N., long. 73 degrees 28 minutes 29 seconds W., NAD 27, in a wooded area:

Oe-0 to 3 inches; moderately decomposed plant materials derived from hemlock needles; many very fine to very coarse roots; abrupt smooth boundary.
Oa-3 to 6 inches; highly decomposed plant materials derived from hemlock needles; many very fine to very coarse roots; extremely acid; abrupt smooth boundary.
A-6 to 7 inches; black (10YR 2/1) mucky silt loam, dark gray (10 YR 4/1) dry; weak fine granular structure; very friable; many very fine to very coarse roots; many
very fine irregular pores; 10 percent gravel; extremely acid; very abrupt wavy boundary.
Bg1-7 to 9 inches; light brownish gray ($2.5 \mathrm{Y} 6 / 2$) silt loam; weak medium subangular blocky structure; friable; few very fine roots; few medium faint light gray (2.5Y 7/1) iron depletions; 10 percent gravel; very strongly acid; abrupt wavy boundary.
$\mathrm{Bg} 2-9$ to 13 inches; olive gray (5Y5/2) gravelly loam; weak medium subangular blocky structure; friable; few very fine to fine roots; common fine to medium distinct gray ($2.5 \mathrm{Y} 6 / 1$) iron depletions and many fine to medium prominent brownish yellow (10YR 6/8) soft masses of iron accumulation; 15 percent gravel, 2 percent cobbles; slightly acid; clear smooth boundary.
Cd1-13 to 18 inches; olive brown (2.5Y 4/3) gravelly fine sandy loam; weak coarse platy structure; very firm; common fine to medium faint light brownish gray (2.5Y $6 / 2$) iron depletions and common fine to medium prominent yellowish brown (10YR 5/8) soft masses of iron accumulation; 20 percent gravel, 5 percent cobbles; slightly acid; gradual smooth boundary.
Cd2-18 to 23 inches; olive brown (2.5Y 4/3) gravelly fine sandy loam; massive; firm; few fine to medium distinct light olive gray ($5 \mathrm{Y} 6 / 2$) iron depletions and few fine to medium prominent yellowish brown (10YR $5 / 8$) soft masses of iron accumulation; 20 percent gravel, 5 percent cobbles; slightly acid; gradual smooth boundary.
Cd3-23 to 60 inches; olive brown (2.5Y 4/4) gravelly fine sandy loam; massive; firm; few fine to medium distinct light olive gray ($5 \mathrm{Y} 6 / 2$) iron depletions and few fine to medium prominent yellowish brown (10YR $5 / 8$) soft masses of iron accumulation; 20 percent gravel, 5 percent cobbles; neutral.

Range in Characteristics

Solum thickness: 10 to 20 inches
Depth to bedrock: More than 80 inches
Reaction: Extremely acid to moderately acid in the surface layers, strongly acid to slightly acid in the subsoil, and moderately acid to neutral in the substratum (some subhorizon has a pH value greater than 5.5)
A horizon:
Hue-10YR to 5 Y
Value-2 to 4
Chroma-1 to 4
Content of rock fragments- 5 to 14 percent
Bg1 horizon:
Hue-10YR to 5 Y
Value-5 or 6
Chroma-1 or 2
Texture of the fine earth fraction-silt loam or loam
Content of rock fragments- 5 to 34 percent
Bg2 horizon:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-2 or less
Texture of the fine earth fraction-loam or fine sandy loam
Content of rock fragments- 5 to 34 percent
Cd horizons:
Hue-10YR to 5 Y
Value-3 to 6
Chroma-1 to 4
Texture of the fine earth fraction-loam or fine sandy loam
Content of rock fragments- 5 to 34 percent

The Brayton soils in western Litchfield County are taxadjuncts because the surface layers are darker in color than the range for the series. This difference, however, does not significantly affect the use, management, or interpretation of the soils. In the western area of Litchfield County, the Brayton soils are coarse-loamy, mixed, active, nonacid frigid shallow Typic Endoaquepts.

Brimfield Series

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderate or moderately rapid
Landform: Bedrock-controlled hills and ridges
Parent material: Melt-out till derived from schist
Slope range: 3 to 45 percent
Associated soil in a drainage sequence:
Brookfield (very deep, well drained, coarse-loamy)
Associated similar soil:
Hollis (shallow over schist, granite, and gneiss)
Associated other soils:
Leicester (very deep, poorly drained, coarse-loamy)
Whitman (very deep, very poorly drained, coarse-loamy)
Taxonomic class: Loamy, mixed, active, mesic Lithic Dystrudepts

Typical Pedon

Brimfield fine sandy loam, in an area of Brookfield-Brimfield-Rock outcrop complex, 3 to 15 percent slopes, very rocky, located in the town of Stafford, 50 feet north of the intersection of Connecticut Route 190 and Collette Road, on the Stafford Springs USGS topographic quadrangle, lat. 41 degrees 57 minutes 47 seconds N., long. 72 degrees 15 minutes 05 seconds W., NAD 27, in a wooded area:
Oe-0 to 1 inch; black (10YR 2/1) moderately decomposed plant materials
A-1 to 3 inches; very dark grayish brown (10YR $3 / 2$) fine sandy loam, grayish brown (10 YR 5/2) dry; weak fine granular structure; very friable; many fine and medium roots; 5 percent gravel and channers; very strongly acid; abrupt smooth boundary.
Bw1-3 to 6 inches; dark reddish brown (5YR 3/4) fine sandy loam; weak medium subangular blocky structure; very friable; many fine and medium roots; 10 percent gravel and channers; very strongly acid, clear wavy boundary.
Bw2-6 to 17 inches; yellowish red (5YR 5/6) gravelly fine sandy loam; weak coarse subangular blocky structure; few fine, medium and coarse roots; 20 percent gravel and channers; strongly acid; abrupt wavy boundary.
2R-17 inches; brown mica schist bedrock.

Range in Characteristics

Solum thickness: 10 to 20 inches
Depth to bedrock: 10 to 20 inches
Reaction:Very strongly acid to moderately acid
In some pedons, the Oe horizon is absent.
A horizon:
Hue-5YR to 10YR
Value-2 to 4
Chroma-1 to 3
Content of rock fragments-5 to 14 percent

Bw1 horizon:
Hue-2.5 YR to 7.5YR
Value-3 to 6
Chroma-4 to 8
Texture of the fine earth fraction-fine sandy loam, loam or sandy loam
Content of rock fragments-5 to 14 percent
Bw2 horizon:
Hue-2.5YR to 7.5YR (7.5YR cannot be in both Bw1 and Bw2 horizons)
Value-3 to 6
Chroma-4 to 8
Texture of the fine earth fraction-fine sandy loam, sandy loam, or loam
Content of rock fragments-5 to 34 percent

Broadbrook Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface layer and subsoil, and slow or very slow in the substratum
Landform: Hills, drumlins and till plains
Parent material: Eolian deposits over lodgement till derived from gneiss, basalt, schist, and shale
Slope range: 0 to 25 percent
Associated soil in a drainage sequence:
Rainbow (moderately well drained)
Associated similar soil:
Narragansett (coarse loamy over sandy or sandy-skeletal)
Taxonomic class: Coarse-loamy, mixed, active, mesic Oxyaquic Dystrudepts

Typical Pedon

Broadbrook silt loam, 3 to 8 percent slopes, located in the town of Ledyard, 2,500 feet east northeast of the junction of Connecticut Route 117 and Thomas Road, 1,000 feet north of Thomas Road, on the Uncasville USGS topographic quadrangle, lat. 41 degrees 28 minutes 24 seconds N., long. 72 degrees 01 minutes 09 seconds W., NAD 27, in a cultivated field:

Ap-0 to 8 inches; very dark brown (10YR 2/2) silt loam, pale brown (10YR 6/3) dry; moderate medium granular structure; very friable; few fine roots; 5 percent gravel; moderately acid; clear wavy boundary.
Bw1-8 to 14 inches; dark yellowish brown (10YR 4/6) silt loam; moderate medium subangular blocky structure; very friable; few fine roots; 5 percent gravel; moderately acid; clear wavy boundary.
Bw2-14 to 25 inches; dark yellowish brown (10YR 4/4) silt loam; moderate medium subangular blocky structure; very friable; 5 percent gravel; moderately acid; gradual wavy boundary.
2Cd—25 to 65 inches; olive brown (2.5Y 4/4) gravelly fine sandy loam; weak medium platy structure; very firm, brittle; 15 percent gravel and cobbles; moderately acid.

Range in Characteristics

Solum thickness: 20 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid

Ap horizon:
Hue-7.5YR or 10YR
Value-2 to 4 (Dry value is 6 or more) (If A horizon present instead of Ap, value 2 or 3)
Chroma-2 to 4 (If A horizon present instead of Ap, chroma 1 to 3)
Content of rock fragments- 0 to 14 percent
Bw1 horizon:
Hue-7.5YR or 10YR
Value-4 or 5
Chroma-4 to 6
Texture of the fine earth fraction-silt loam, very fine sandy loam or loam
Content of rock fragments-0 to 20 percent
Bw2 horizon:
Hue-7.5YR to 2.5 Y
Value-4 or 5
Chroma-3 to 6
Texture of the fine earth fraction-silt loam, very fine sandy loam or loam
Content of rock fragments-0 to 20 percent
2Cd horizon:
Hue--. 5 YR to 5 Y
Value-4 to 6
Chroma-2 to 6
Texture of the fine earth fraction-fine sandy loam or sandy loam
Content of rock fragments-5 to 34 percent

Brookfield Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Landform: Bedrock-controlled hills and ridges
Parent material: Melt-out till derived from schist
Slope range: 3 to 45 percent
Associated soil in a drainage sequence:
Brimfield (shallow, somewhat excessively drained, loamy)
Associated similar soils:
Canton (yellower, coarse-loamy over sandy or sandy-skeletal)
Charlton (yellower)
Taxonomic class: Coarse-loamy, mixed, active, mesic Typic Dystrudepts

Typical Pedon

Brookfield fine sandy loam, in an area of Brookfield-Brimfield-Rock outcrop complex, 3 to 15 percent slopes, very rocky, located in the town of Union, 50 feet east along Szych Road from the intersection with Route 190, 200 feet north of Szych Road, and 200 feet south of Buckley Pond, on the Westford USGS topographic quadrangle, lat. 41 degrees 59 minutes 19 seconds N., long. 72 degrees 10 minutes 05 seconds W., NAD 27, in a wooded area:

Oe-0 to 1 inch; black (10YR 2/1) moderately decomposed plant materials
A-1 to 3 inches; dark brown (10YR 3/3) fine sandy loam, brown (10 YR 5/3) dry; weak fine granular structure; very friable; many fine roots; 5 percent gravel; very strongly acid; abrupt smooth boundary.

Bw1-3 to 13 inches; yellowish red (5YR 4/6) gravelly fine sandy loam; weak medium granular structure; very friable; common fine and medium roots; common mica flakes; 15 percent gravel and cobbles; very strongly acid; gradual wavy boundary.
Bw2-13 to 27 inches; strong brown (7.5YR 5/8) gravelly fine sandy loam; massive; very friable; few fine and medium roots; common mica flakes; 15 percent gravel and cobbles; strongly acid; clear wavy boundary.
C-27 to 60 inches; strong brown (7.5YR 5/6) gravelly sandy loam; grayish brown (2.5Y 5/2) streaks; massive; very friable; few large roots; many mica flakes; 25 percent gravel and cobbles; strongly acid; clear wavy boundary.

Range in Characteristics
Solum thickness: 20 to 38 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
A horizon:
Hue-7.5YR or 10YR
Value-2 or 3 (If Ap horizon is present instead of A, value is 3 or 4)
Chroma-1 to 3 (If Ap horizon is present instead of A, chroma is 2 to 4)
Content of rock fragments-5 to 14 percent
Bw1 horizon:
Hue-2.5YR or 5YR
Value-3 to 6
Chroma-4 to 8
Texture of the fine earth fraction-sandy loam or fine sandy loam
Content of rock fragments- 15 to 34 percent
Bw2 horizon:
Hue-5YR to 10YR
Value-4 or 5
Chroma-4 to 8
Texture of fine earth fraction-sandy loam or fine sandy loam
Content of rock fragments- 15 to 34 percent
C horizon:
Hue-7.5YR to 2.5Y
Value-4 to 6
Chroma-2 to 6
Texture of the fine earth fraction-sandy loam or fine sandy loam
Content of rock fragments- 5 to 34 percent

Bucksport Series

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderately slow to moderately rapid (may range to very rapid in the underlying mineral soil)
Landform: Depressions
Parent material: Organic materials
Slope range: 0 to 2 percent
Associated similar soil:
Wonsqueak (16 to 51 inches of organic material over loamy deposits)
Associated other soils:
Brayton (poorly drained, coarse-loamy)
Loonmeadow (very poorly drained, coarse-loamy)

Taxonomic class: Euic, frigid Typic Haplosaprists

Typical Pedon

Bucksport muck, located in the town of Norfolk, 3,000 feet northwest along Wheeler Street from the intersection with Barry Hill Rd and 1,000 feet west of Wheeler Street, on the South Sandisfield USGS topographic quadrangle, lat. 42 degrees 02 minutes 08 seconds N., long. 73 degrees 11 minutes 18 seconds W., NAD 27, in a bog:
Oa1-0 to 9 inches; very dark brown (7.5YR 2.5/2) muck; 15 percent fiber, 5 percent rubbed; massive; 50 percent woody and 50 percent herbaceous fibers; strongly acid; clear smooth boundary.
Oa2-9 to 33 inches; black (7.5YR 2.5/1) muck; 20 percent fiber, 10 percent rubbed; massive; 60 percent woody and 40 percent herbaceous fibers; moderately acid; clear smooth boundary.
Oa3-33 to 50 inches; black (7.5YR 2.5/1) muck; 10 percent fiber, 2 percent rubbed; massive; 80 percent woody and 20 percent herbaceous fibers; moderately acid; clear smooth boundary.
Oa4-50 to 59 inches; black (10YR 2/1) muck; 2 percent fiber, 0 percent rubbed; massive; 80 percent woody and 20 percent herbaceous fibers; very strongly acid; gradual smooth boundary.
2Cg—59 to 63 inches; olive gray (5Y4/2) gravelly sand; single grain; loose; 25 percent gravel; slightly acid.

Range in Characteristics

Organic material thickness: More than 51 inches
Depth to bedrock: More than 80 inches
Reaction: Extremely acid to strongly acid in the surface tier, very strongly acid to slightly acid in the subsurface tier and bottom tiers, and very strongly acid to neutral in the mineral substratum.

Surface tier:
Hue-neutral or 2.5YR to 10YR
Value-2 to 4
Chroma-0 to 2
Subsurface and bottom tiers:
Hue-2.5YR to 10YR
Value-2 to 4
Chroma-1 to 3
2 Cg horizon: (present in some pedons)
Hue-neutral or 5YR to 5GY
Value-3 to 6
Chroma-0 to 4
Texture of the fine earth fraction-sand, sandy loam, fine sandy loam, or loam Content of rock fragments-0 to 25 percent

Canton Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderately rapid in the surface layer and subsoil, and rapid in the substratum
Landform: Hills
Parent material: Melt-out till derived from granite, gneiss, and schist
Slope range: 3 to 35 percent

Associated soils in a drainage sequence:
Sutton (moderately well drained)
Leicester (poorly drained)
Associated similar soils:
Charlton (coarse-loamy)
Cheshire (redder, coarse-loamy)
Montauk (dense substratum, coarse-loamy)
Narragansett (finer texture in the surface layer and subsoil)
Paxton (dense substratum, coarse-loamy)
Taxonomic class: Coarse-loamy over sandy or sandy-skeletal, mixed, semi-active, mesic Typic Dystrudepts

Typical Pedon

Canton fine sandy loam, in an area of Canton and Charlton fine sandy loams, 3 to 8 percent slopes, very stony, located in the town of Chester, in Cockaponset State Forest, 6,000 feet west of the intersection of Connecticut Route 148 and Connecticut Route 145 and 2800 feet north, on the Haddam USGS topographic quadrangle, lat. 41 degrees 24 minutes 14 seconds N., long. 72 degrees 31 minutes 24 seconds W., NAD 27, in a wooded area:
Oe-0 to 1 inch, very dark brown (10YR 2/2) moderately decomposed plant materials; weak fine granular structure; very friable; many fine roots; extremely acid; abrupt smooth boundary.
A-1 to 3 inches, dark brown (10YR 3/3) gravelly fine sandy loam, pale brown (10 YR $6 / 3$) dry; weak fine granular structure; very friable, many fine and few medium and coarse roots; 10 percent gravel, 5 percent cobbles, 2 percent stones; very strongly acid; abrupt smooth boundary.
Bw1-3 to 15 inches, strong brown (7.5YR 5/6) gravelly loam; weak fine subangular blocky structure; very friable; many fine and few medium and coarse roots; 10 percent gravel, 5 percent cobbles, 2 percent stones; very strongly acid; gradual wavy boundary.
Bw2-15 to 24 inches, yellowish brown (10YR 5/6) gravelly loam; weak fine subangular blocky structure; very friable; few fine medium and coarse roots; 10 percent gravel, 5 percent cobbles, 2 percent stones; very strongly acid; gradual wavy boundary.
Bw3-24 to 30 inches, brownish yellow (10YR 6/6) gravelly loam; weak fine subangular blocky structure; very friable; few fine and medium roots; 10 percent gravel, 5 percent cobbles, 2 percent stones; very strongly acid; abrupt smooth boundary.
$2 \mathrm{C}-30$ to 60 inches, light brownish gray ($2.5 \mathrm{Y} 6 / 2$) and olive ($5 \mathrm{Y} 5 / 3$) very gravelly loamy sand; massive; very friable; few fine roots to 40 inches; 30 percent gravel, 15 percent cobbles; strongly acid.

Range in Characteristics

Solum thickness: 18 to 36 inches
Depth to bedrock: More than 80 inches
Reaction: Extremely acid to moderately acid
In some pedons, the Oe horizon may be absent.
A horizon:
Hue-10YR
Value-2 or 3
Chroma-1 to 3
Content of rock fragments- 15 to 25 percent

Bw1 horizon:
Hue-7.5YR or 10YR
Value-4 or 5
Chroma-4 to 6
Texture of the fine earth fraction- loam, very fine sandy loam, or fine sandy loam
Content of rock fragments-5 to 25 percent
Lower Bw horizons:
Hue-10YR or 2.5Y
Value-4 to 7
Chroma-4 to 6
Texture of the fine earth fraction- loam, very fine sandy loam, or fine sandy loam
Content of rock fragments- 5 to 25 percent
C horizon:
Hue-2.5Y or 5 Y (10YR with chroma of 4 to 6 is allowed)
Value-5 to 7
Chroma-2 or 3 (if hue is 10 YR , chroma is 4 to 6)
Texture of the fine earth fraction-loamy sand, loamy fine sand, or loamy coarse sand
Content of rock fragments-15 to 50 percent

Catden Series

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderate or moderately rapid
Landform: Depressions
Parent Material: Organic materials
Slope range: 0 to 2 percent
Associated similar soils:
Freetown (dysic reaction class)
Natchaug (16 to 51 inches of organic materials, over loamy deposits)
Timakwa (16 to 51 inches of organic materials, over sandy or sandy-skeletal)
Taxonomic class: Euic, mesic Typic Haplosaprists
Typical Pedon
Catden muck, in an area of Catden and Freetown soils, located in the town of Ashford, 3,500 feet west on Horse Hill Road from the intersection of North Road and Horse Hill Road, 75 feet north of Horse Hill Road, on the Westford USGS topographic quadrangle, lat. 41 degrees 54 minutes 05 seconds N., long. 72 degrees 08 minutes 41 seconds W., NAD 27, in a swamp:

Oa1-0 to 2 inches; black (10YR 2/1) muck; 25 percent fibers, 15 percent rubbed; massive; soft, very friable, nonsticky and nonplastic; many very fine to medium roots; 10 percent woody fragments; less than 5 percent mineral material; very strongly acid (pH 4.6 in 0.01 M calcium chloride); clear smooth boundary.
Oa2-2 to 18 inches; black (7.5YR 2.5/1) muck; 15 percent fibers, 10 percent rubbed; massive; soft, very friable, nonsticky and nonplastic; many very fine to fine roots; less than 5 percent mineral material; very strongly acid (pH 4.7 in 0.01 M calcium chloride); clear smooth boundary.
Oa3-18 to 47 inches; black (7.5YR 2.5/1) muck; 40 percent fibers, 10 percent rubbed; massive; soft, very friable, nonsticky and nonplastic; less than 5 percent mineral material; very strongly acid (pH 4.8 in 0.01 M calcium chloride); clear smooth boundary. Oa4-47 to 49 inches; very dark brown (7.5YR 2.5/2) muck; 5
percent fibers, 0 percent rubbed; massive; soft, very friable, nonsticky and nonplastic; less than 5 percent mineral material; very strongly acid (pH 4.9 in 0.01 M calcium chloride); clear smooth boundary.
Oa5-49 to 61 inches; very dark brown (10YR 2/2) muck; 2 percent fibers, 0 percent rubbed; massive; soft, very friable, nonsticky and nonplastic; less than 5 percent mineral material; very strongly acid (pH 4.8 in 0.01 M calcium chloride).

Range in Characteristics

Solum thickness: Organic layers more than 51 inches thick Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to neutral (in 0.01 M calcium chloride); some layers may range to extremely acid
Woody fragments: 0 to 30 percent
Mineral material: Less than 5 percent
Oa1 horizon:
Hue-5YR to 2.5 Y , or is neutral
Value-1 to 4
Chroma-0 to 6
Lower Oa horizons:
Hue-5YR to 2.5 Y , or is neutral
Value-2 or 3
Chroma-0 to 4

Charlton Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Landform: Hills
Parent material: Melt-out till derived from granite, gneiss and/or schist
Slope range: 3 to 45 percent
Associated soils in a drainage sequence:
Sutton (moderately well drained)
Leicester (poorly drained)
Associated similar soils:
Canton (coarse-loamy over sandy or sandy-skeletal)
Cheshire (redder)
Montauk (dense substratum)
Narragansett (coarse loamy over sandy or sandy-skeletal)
Paxton (dense substratum)
Taxonomic class: Coarse-loamy, mixed, active, mesic Typic Dystrudepts
Typical Pedon
Charlton fine sandy loam, in an area of Charlton-Chatfield complex, 3 to 15 percent slopes, very rocky, located in the town of Middlebury, 3,800 feet along Long Meadow Road from the intersection with South Street, 450 feet southeast along a gravel road, 50 feet west of gravel road, 400 feet northeast of Long Meadow Pond and 700 feet east of power transmission line, on the Naugatuck USGS topographic quadrangle, lat. 41 degrees 29 minutes 50 seconds N., long. 73 degrees 06 minutes 29 seconds W., NAD 27, in a wooded area:

Oe-0 to 1 inch; black (10YR 2/1) moderately decomposed plant materials A-1 to 4 inches; dark brown (10YR 3/3) fine sandy loam, pale brown (10 YR 6/3);
weak fine granular structure; very friable; many fine roots; 5 percent gravel; very strongly acid; clear wavy boundary.
Bw1-4 to 7 inches; brown (7.5YR 4/4) fine sandy loam; weak coarse granular structure; very friable; many fine and medium roots; 5 percent gravel; very strongly acid; clear wavy boundary.
Bw2—7 to 19 inches; yellowish brown (10YR 5/6) fine sandy loam; weak medium subangular blocky structure; very friable; common fine and medium roots; 10 percent gravel and cobbles; very strongly acid; abrupt wavy boundary.
Bw3-19 to 27 inches; light olive brown (2.5Y 5/4) gravelly fine sandy loam; massive; very friable; few medium roots; 15 percent gravel and cobbles; very strongly acid; abrupt wavy boundary.
C-27 to 65 inches; grayish brown (2.5Y5/2) gravelly fine sandy loam, thin lenses of loamy sand; massive; friable, some lenses firm; few medium roots; 25 percent gravel and cobbles; strongly acid.

Range in Characteristics

Solum thickness: 20 to 38 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
In some pedons, the Oe horizon may be absent.
A horizon
Hue-7.5YR or 10YR
Value-2 or 3 (If Ap horizon is present instead of A, value is 3 or 4) Chroma-1 to 3 (If Ap horizon is present instead of A, chroma is 2 to 4)
Content of rock fragments-5 to 14 percent
Bw1 and Bw2 horizons:
Hue-7.5YR or 10YR
Value-4 to 6
Chroma-4 to 6
Texture of the fine earth fraction-sandy loam or fine sandy loam
Content of rock fragments-5 to 34 percent
Bw3 horizon:
Hue-10YR or 2.5Y
Value-4 to 6
Chroma-4 to 6
Texture of the fine earth fraction-sandy loam or fine sandy loam
Content of rock fragments-5 to 34 percent
C horizon:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-2 to 6
Texture of the fine earth fraction-sandy loam or fine sandy loam
Content of rock fragments-5 to 34 percent

Chatfield Series

Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Landform: Bedrock controlled hills and ridges
Parent material: Melt-out till derived from granite, gneiss and schist

Slope range: 3 to 45 percent
Associated other soils:
Canton (very deep, coarse-loamy over sandy or sandy-skeletal)
Charlton (very deep)
Hollis (shallow, loamy)
Taxonomic class: Coarse-loamy, mixed, superactive, mesic Typic Dystrudepts
Typical Pedon
Chatfield gravelly fine sandy loam, in an area of Charlton-Chatfield complex, 3 to 15 percent slopes, very rocky, located in the town of East Hampton, 1,450 feet west of the intersection of Connecticut Route 196 and Connecticut Route 151, and 3000 feet north of Connecticut Route 151, on the Moodus USGS topographic quadrangle, lat. 41 degrees 31 minutes 01 seconds N., long. 72 degrees 29 minutes 24 seconds W., NAD 27, in a wooded area:

Oa-0 to 1 inch; very dark brown (10YR 2/2) highly decomposed plant material; weak fine granular structure; very friable; many fine and very fine roots; very strongly acid; abrupt smooth boundary.
A-1 to 6 inches; very dark grayish brown (10YR 3/2) gravelly fine sandy loam, light brownish gray (10YR 6/2) dry; weak fine and medium granular structure; very friable; common fine, very fine and medium roots, few coarse roots; 10 percent gravel, 5 percent channers, 2 percent stones; very strongly acid; clear smooth boundary.
Bw1-6 to 15 inches; dark yellowish brown (10YR 4/6) gravelly fine sandy loam; moderate medium subangular blocky structure; friable; few very fine and fine roots, common medium roots; 10 percent gravel, 5 percent channers, 2 percent stones; strongly acid; clear smooth boundary.
Bw2-15 to 29 inches; yellowish brown (10YR 5/6) gravelly fine sandy loam; moderate medium and coarse subangular blocky structure; friable; few fine and very fine roots; 10 percent gravel, 5 percent channers, 2 percent stones; strongly acid; abrupt smooth boundary.
2R—29+ inches; schist bedrock

Range in Characteristics

Solum thickness: 16 to 36 inches
Depth to bedrock: 20 to 40 inches
Reaction: Very strongly acid to moderately acid
In some pedons, the Oe horizon may be absent.
A horizon:
Hue-7.5YR to 2.5 Y
Value-2 to 4
Chroma-1 to 4
Content of rock fragments-15 to 34 percent
Bw horizons:
Hue-7.5YR to 2.5 Y
Value-4 to 6
Chroma-4 or 6
Texture of the fine earth fraction-fine sandy loam, sandy loam, or loam
Content of rock fragments-5 to 30 percent
BC horizon:
Some pedons have a BC horizon with color and texture similar to the C horizon.

C horizon (where present):
Hue-7.5YR to 5 Y
Value-4 or 5
Chroma-2 to 4
Texture of the fine earth fraction-fine sandy loam or sandy loam
Content of rock fragments-5 to 30 percent

Cheshire Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Landform: Hills or till plains
Parent material: Melt-out till derived from sandstone, shale, and basalt
Slope range: 3 to 35 percent
Associated soil in a drainage sequence:
Watchaug (moderately well drained)
Associated similar soils:
Canton (yellower, coarse-loamy over sandy or sandy-skeletal)
Charlton (yellower)
Wethersfield (dense substratum)
Yalesville (moderately deep)
Taxonomic class: Coarse-loamy, mixed, semiactive, mesic Typic Dystrudepts

Typical Pedon

Cheshire fine sandy loam, 3 to 8 percent slopes, located in the town of Wallingford, 50 feet east of Northford Road and 500 feet north of the junction of Northford and Anderson Roads, on the Wallingford USGS topographic quadrangle, lat. 41 degrees 24 minutes 57 seconds N., long. 72 degrees 46 minutes 23 seconds W., NAD 27, in a cultivated field:

Ap-0 to 8 inches; dark brown (7.5YR 3/2) fine sandy loam, pinkish gray (7.5YR 6/2) dry; weak medium granular structure; friable; common fine roots; 5 percent gravel; strongly acid; clear wavy boundary.
Bw1-8 to 16 inches; reddish brown (5YR 4/4) fine sandy loam; weak medium subangular blocky structure; friable; few fine roots; 10 percent gravel; strongly acid; gradual wavy boundary
Bw2—16 to 26 inches; reddish brown (5YR 5/4) fine sandy loam, weak medium subangular blocky structure; very friable; few fine roots; 10 percent gravel; strongly acid; clear wavy boundary.
C—26 to 65 inches; reddish brown (2.5YR 4/4) gravelly sandy loam; massive; very friable with firm lenses; 20 percent gravel and cobbles; strongly acid.

Range in Characteristics
Solum thickness: 20 to 38 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
Ap horizon:
Hue-5YR to 10YR
Value-3 or 4 (Dry value is 6 or more) (If Ap horizon present instead of A, value 2 or 3)
Chroma-2 to 4 (If Ap horizon present instead of A, chroma 1 to 3)
Content of rock fragments-5 to 14 percent

Bw horizons:
Hue-2.5YR or 5YR
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-fine sandy loam, silt loam or sandy loam
Content of rock fragments- 5 to 34 percent
C horizon:
Hue-10R to 5YR
Value-3 or 4
Chroma-3 to 6
Texture of the fine earth fraction-sandy loam, fine sandy loam
Content of rock fragments- 5 to 34 percent

Copake Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderately rapid in the surface layer, moderate or moderately rapid in the subsoil, and rapid or very rapid in the substratum
Landform: Outwash plains, terraces, and kames
Parent material: Glaciofluvial deposits derived from schist, limestone, and dolomite
Slope range: 0 to 15 percent
Associated soils in a drainage sequence:
Hero (moderately well drained)
Fredon (poorly drained)
Halsey (very poorly drained)
Associated similar soil:
Groton (excessively drained, sandy skeletal)
Associated other soil:
Farmington (shallow, loamy)
Taxonomic class: Coarse-loamy over sandy or sandy-skeletal, mixed, semiactive, mesic Dystric Eutrudepts

Typical Pedon

Copake fine sandy loam, 0 to 3 percent slopes, located in the town of Salisbury, 1.5 miles north along Route 41 from the New York state line at Amenia Union, NY, 500 feet northeast of Bollen District Cemetery, and 150 feet east of Route 41, on the Ellsworth USGS topographic quadrangle, lat. 41 degrees 50 minutes 31 seconds N., long. 73 degrees 29 minutes 27 seconds W., NAD 27, in a corn field:
Ap-0 to 6 inches, dark brown (10YR 3/3) fine sandy loam, pale brown (10YR 6/3) dry; weak fine granular structure; friable; common very fine and fine roots; 10 percent gravel; neutral; gradual wavy boundary.
AB-6 to 13 inches, dark olive brown ($2.5 \mathrm{Y} 3 / 3$) gravelly fine sandy loam, pale brown (10 YR 6/3) dry; weak medium subangular blocky structure; friable; common fine and very fine roots; 15 percent gravel; slightly acid; clear smooth boundary.
Bw1-13 to 21 inches, dark yellowish brown (10YR 4/4) gravelly fine sandy loam; weak medium subangular blocky structure; friable; common very fine and fine roots; 25 percent gravel; slightly acid; clear smooth boundary.
Bw2-21 to 31 inches, dark yellowish brown (10YR 4/4) gravelly fine sandy loam; weak medium subangular blocky structure; friable; few very fine and fine roots; 20 percent gravel; neutral; clear wavy boundary.
2C1-31 to 56 inches, dark brown (10 YR 3/3) very gravelly coarse sand; single grain; loose; 40 percent fine gravel; neutral; abrupt smooth boundary

2C2—56 to 65 inches, light olive brown (2.5 Y 5/3) fine sand; single grain; loose; 5 percent gravel; slight effervescence; slightly alkaline; abrupt smooth boundary 2C3-65 to 75 inches, olive brown (2.5 Y 4/3) gravelly sand; single grain; loose; 15 percent gravel; slight effervescence; slightly alkaline; abrupt smooth boundary. 2C4-75 to 80 inches, olive brown (2.5Y 4/3) gravelly sand; single grain; loose; 15 percent gravel; slight effervescence; moderately alkaline.

Range in Characteristics

Solum thickness: 20 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Strongly acid to neutral in the surface layer, strongly acid to neutral in the subsoil, and slightly acid to moderately alkaline in the substratum

Ap horizon:
Hue-7.5YR to 2.5 Y
Value-3 to 5 (Dry value is 6 or more)
Chroma-2 to 4
Content of rock fragments-5 to 14 percent
A horizon (where present)
Hue-7.5 YR to 2.5Y
Value-2 or 3 (Dry value is 6 or more)
Chroma-1 to 3
Content of rock fragments-5 to 25 percent
AB horizon (where present)
Hue-7.5 YR to 2.5 Y
Value-3
Chroma-2 to 4
Content of rock fragments-5 to 25 percent
Bw horizons:
Hue-7.5YR to 5 Y
Value-4 to 6
Chroma-3 to 8
Texture of the fine earth fraction-silt loam, loam, or fine sandy loam
Content of rock fragments- 5 to 34 percent
2C horizons:
Hue-7.5YR to 5 Y
Value-3 to 6
Chroma-3 to 6
Texture of the fine earth fraction-loamy fine sand to coarse sand
Content of rock fragments-5 to 70 percent (substratum average more than 20 percent)

Deerfield Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Rapid in the surface layer and subsoil, and rapid or very rapid in the substratum
Landform: Outwash plains and terraces
Parent material: Glaciofluvial deposits derived from granite, gneiss, and/or schist Slope range: 0 to 3 percent

Associated soils in a drainage sequence:
Windsor (excessively drained)
Scarboro (very poorly drained)
Associated similar soils:
Ellington (coarse-silty over sandy or sandy-skeletal, redder in the subsoil and substratum)
Ninigret (coarse-loamy over sandy or sandy-skeletal)
Sudbury (sandy)
Tisbury (coarse-silty over sandy or sandy-skeletal)
Taxonomic class: mixed, mesic Aquic Udipsamments

Typical Pedon

Deerfield loamy fine sand, 0 to 3 percent slopes, located in the town of North Haven, 100 feet west of Manor Drive, 600 feet north of the intersection of Montowese Avenue and Fitch Street, on the Branford USGS topographic quadrangle, lat. 41 degrees 21 minutes 10 seconds N., long. 72 degrees 51 minutes 29 seconds W., NAD 27:

Ap-0 to 8 inches; very dark grayish brown (10YR 3/2) loamy fine sand, light brownish gray (10 YR 6/2) dry; weak medium granular structure; very friable; common fine roots; very strongly acid; clear smooth boundary.
Bw1-8 to 16 inches; dark yellowish brown (10YR 4/4) loamy sand; massive; very friable; few fine roots; strongly acid; gradual wavy boundary.
Bw2-16 to 28 inches; yellowish brown (10YR 5/4) loamy sand; single grain; loose; few fine roots; common fine prominent yellowish red ($5 \mathrm{YR} 5 / 8$) soft masses of iron accumulations and distinct pinkish gray (7.5YR 6/2) iron depletions; strongly acid; gradual wavy boundary.
C1-28 to 34 inches; brown (7.5YR 4/4) fine sand; single grain; loose; few fine prominent yellowish red (5YR 5/8) soft masses of iron accumulations and distinct pinkish gray (7.5YR 6/2) iron depletions; moderately acid.
C2-34 to 60 inches; brown (7.5YR 5/4) fine sand; single grain; loose; few fine distinct pinkish gray (7.5YR 6/2) iron depletions; moderately acid.

Range in Characteristics

Solum thickness: 15 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to slightly acid
Ap horizon:
Hue-10YR
Value-2 to 4
Chroma-1 to 3
Content of rock fragments-0 to 14 percent
Bw horizons:
Hue-7.5YR to 2.5Y
Value-4 to 6
Chroma-3 to 6
Texture of the fine earth fraction-loamy fine sand, loamy sand or fine sand Content of rock fragments-0 to 14 percent

C1 horizon:
Hue-7.5YR to 5 Y
Value-4 to 6
Chroma-1 to 4
Texture of the fine earth fraction-loamy sand, fine sand or sand Content of rock fragments-0 to 14 percent

C2 horizon:

Hue-7.5YR to 5 Y
Value-4 to 6
Chroma-1 to 4
Texture of the fine earth fraction-loamy sand, fine sand or coarse sand
Content of rock fragments-0 to 14 percent

Dummerston Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate
Landform: Hills
Parent material: Melt-out till derived from phyllite, and/or schist
Slope range: 3 to 45 percent
Associated soils in a drainage sequence:
Fullam (moderately well drained)
Brayton (poorly drained)
Associated similar soil:
Lanesboro (dense substratum)
Associated other soils:
Taconic (shallow, somewhat excessively drained)
Macomber (moderately deep, well drained)
Taxonomic class: Coarse-loamy, mixed, active, frigid Typic Dystrudepts

Typical Pedon

Dummerston gravelly loam, 3 to 15 percent slopes, very stony, located in the town of Salisbury, 6,000 feet south of the Massachusetts/Connecticut state line on Mt. Washington Road, 25 feet northwest following jeep trail, 10 feet on the northwest side of jeep trail, on the Bash Bish USGS topographic quadrangle, lat. 42 degrees 02 minutes 03 seconds N., long. 73 degrees 28 minutes 20 seconds W., NAD 27, in an old dug pit, in a wooded area:
Oe-0 to 1 inch; moderately decomposed plant materials derived from leaf litter; many very fine to medium roots; extremely acid; abrupt smooth boundary.
A—1 to 2 inches; black (7.5YR 2.5/1) gravelly loam, dark gray (7.5 YR 4/1) dry; weak fine granular structure; very friable; many very fine to medium roots; 20 percent gravel; very strongly acid; abrupt broken boundary.
E-2 to 3 inches; brown (7.5YR 4/2) gravelly loam; weak fine granular structure; very friable; many very fine to medium roots; 20 percent gravel; very strongly acid; abrupt broken boundary.
Bs-3 to 4 inches; dark brown (7.5YR 3/4) gravelly loam; weak medium subangular blocky structure; very friable; many very fine to medium roots; 20 percent gravel; very strongly acid; abrupt wavy boundary.
Bw1-4 to 6 inches; yellowish brown (10YR 5/6) gravelly loam; weak medium subangular blocky structure; very friable; common fine to very coarse roots; 20 percent gravel; very strongly acid; abrupt wavy boundary.
Bw2-6 to 11 inches; light olive brown (2.5Y 5/4) gravelly loam; weak medium subangular blocky structure; very friable; common fine to very coarse roots; 20 percent gravel; very strongly acid; abrupt wavy boundary.
Bw3-11 to 22 inches; light olive brown (2.5Y5/4) gravelly loam; weak medium subangular blocky structure; very friable; common fine to very coarse roots; 25 percent gravel; strongly acid; clear smooth boundary.

BC—22 to 27 inches; light olive brown (2.5Y 5/4) gravelly loam; weak medium subangular blocky structure; very friable; common fine to very coarse roots; 37 percent gravel; strongly acid; clear smooth boundary.
C1-27 to 40 inches; olive brown (2.5Y 4/3) very gravelly loam; massive; firm; few fine to medium roots; 40 percent gravel; strongly acid; clear wavy boundary.
C2—40 to 64 inches; olive brown (2.5Y 4/3) very stony loam; massive; firm; 20 percent gravel, 20 percent stones; strongly acid.

Range in Characteristics

Solum thickness: 20 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
Content of rock fragments: 15 to 40 percent, but averages less than 35 percent
A horizon:
Hue-10YR or 2.5Y
Value-2 to 4
Chroma-1 to 3
E horizon (if present)
Hue-2.5YR to 10YR
Value-4 to 6
Chroma-0 to 2
Bs horizon (if present):
Hue-7.5YR to 10YR
Value-3 to 5
Chroma-4 to 6
Bw horizons:
Hue-7.5YR to 2.5 Y
Value-3 to 5
Chroma-2 to 6
Texture of the fine earth fraction-silt loam or loam
Content of rock fragments-15 to 40 percent
BC horizon:
Hue-10YR to 5 Y
Value-3 to 6
Chroma-2 to 6
Texture of the fine earth fraction-silt loam or loam
Content of rock fragments- 15 to 40 percent
C horizons:
Hue-10YR to 5Y
Value-3 to 5
Chroma-2 to 4
Texture of the fine earth fraction-loam or fine sandy loam

Ellington Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate or moderately rapid in the surface layer and subsoil, and rapid or very rapid in the substratum
Landform: Outwash plains and terraces

Parent material: Eolian deposits over glaciofluvial deposits derived from sandstone, shale, and/or basalt
Slope range: 0 to 5 percent
Associated soil in a drainage sequence:
Branford (well drained)
Associated similar soils:
Deerfield (sandy)
Ninigret (yellower)
Sudbury (sandy)
Tisbury (coarse-silty over sandy or sandy-skeletal)
Taxonomic class: Coarse-loamy over sandy or sandy-skeletal, mixed, subactive, mesic Aquic Dystrudepts

Typical Pedon

Ellington silt loam, 0 to 5 percent slopes, located in the town of Cheshire, 0.5 miles south on Cheshire Street from the intersection of Cheshire Street and East Johnson Avenue, 75 feet west of Cheshire Street, on the Meriden USGS topographic quadrangle, lat. 41 degrees 32 minutes 32 seconds N., long. 72 degrees 52 minutes 06 seconds W., NAD 27, in a cultivated field (limed):
Ap-0 to 8 inches; dark reddish brown (5YR 3/2) silt loam; pinkish gray (5YR 6/2) dry; weak medium granular structure; friable; few fine roots; 5 percent gravel; slightly acid; clear smooth boundary.
Bw1-8 to 18 inches; reddish brown (5YR 4/4) silt loam; weak medium subangular blocky structure; friable; few fine roots; 5 percent gravel; moderately acid; gradual wavy boundary.
Bw2-18 to 26 inches; reddish brown (5YR 4/4) very fine sandy loam; massive; friable; common medium distinct reddish gray (5YR $5 / 2$) iron depletions and common medium distinct dark red (2.5YR $3 / 6$) soft masses of iron accumulation; 10 percent gravel; strongly acid; abrupt smooth boundary.
2C-26 to 65 inches; dark reddish brown (5YR 3/4) stratified sand and gravel with a few thin lenses of sandy loam; single grain; loose; few fine faint reddish gray (5YR $5 / 2$) iron depletions and few fine distinct yellowish red (5YR 4/6) soft masses of iron accumulation; 50 percent gravel; strongly acid.

Range in Characteristics

Solum thickness: 18 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
Ap horizon:
Hue-5YR to 10YR
Value-3 or 4 (If A horizon present instead of Ap, value 2 or 3)
Chroma-2 to 4 (If A horizon present instead of Ap, chroma 1 to 3)
Content of rock fragments- 0 to 14 percent
Bw horizons:
Hue-2.5YR or 5YR
Value-4 or 5
Chroma-3 to 6
Texture of the fine earth fraction-silt loam, very fine sandy loam or fine sandy loam
Content of rock fragments-0 to 30 percent
2C horizon:
Hue-2.5YR or 5YR

```
Value-3 to 6
Chroma-3 to 6
Texture of the fine earth fraction-stratified loamy fine sand to coarse sand
Content of rock fragments-0 to 50 percent
```


Elmridge Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderately rapid in the surface layer and subsoil, and very slow in the substratum
Landform: Terraces on lake plains
Parent material: Eolian deposits over glaciolacustrine deposits
Slope range: 0 to 8 percent
Associated soil in a drainage sequence:
Shaker (poorly drained)
Associated similar soils:
Belgrade (coarse-silty)
Berlin (fine-silty)
Brancroft (fine-silty)
Ninigret (coarse-loamy over sandy or sandy skeletal)
Sudbury (sandy)
Taxonomic class: Coarse-loamy over clayey, mixed, semiactive, mesic Aquic Dystric Eutrudepts

Typical Pedon

Elmridge fine sandy loam, 0 to 3 percent slopes, located in the town of Windsor Locks, 300 feet south of Connecticut Route 140 and 500 feet west of South Street, on the Windsor Locks USGS topographic quadrangle, lat. 41 degrees 55 minutes 30 seconds N., long. 72 degrees 38 minutes 07 seconds W., NAD 27:

Ap-0 to 6 inches; very dark grayish brown (10YR 3/2) fine sandy loam, grayish brown (10 YR 5/2) dry; weak medium granular structure; friable; many fine roots; moderately acid; clear wavy boundary.
Bw1-6 to 10 inches; dark yellowish brown (10YR 4/4) fine sandy loam; weak medium subangular blocky structure; friable; many fine roots; moderately acid; clear wavy boundary.
Bw2-10 to 18 inches; brown (10YR 4/3) fine sandy loam; weak medium subangular blocky structure; friable; common fine roots; slightly acid; gradual wavy boundary.
Bw3-18 to 25 inches; yellowish brown (10YR 5/4) sandy loam; weak medium subangular blocky structure; very friable; few fine roots; common medium distinct grayish brown (2.5Y5/2) iron depletions and common medium prominent strong brown (7.5YR 5/8) soft masses of iron accumulation; slightly acid; clear wavy boundary.
$2 \mathrm{C}-25$ to 65 inches; olive brown (2.5Y 4/4) varved silt and clay (silty clay weighted average texture); massive parting to weak thick plates along varved bedding planes; firm, very sticky, plastic; common medium distinct grayish brown (10YR $5 / 2$) iron depletions and yellowish brown (10YR 5/6) soft masses of iron accumulation; slightly acid.

Range in Characteristics

Solum thickness: 18 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to neutral in the surface layer, strongly acid to neutral in
the subsoil, (at least one subhorizon is moderately acid, slightly acid, or neutral), and moderately acid to slightly alkaline in the substratum

Ap horizon:
Hue-7.5YR or 10YR
Value-2 to 4 (Dry value 6 or more) (If A horizon present instead of Ap, value 2 or 3)

Chroma-1 to 3
Content of rock fragments-0 to 5 percent
Upper Bw horizons:
Hue-7.5YR to 2.5 Y
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-sandy loam, fine sandy loam, or loam
Content of rock fragments- 0 to 5 percent
Lower Bw horizons:
Hue-7.5YR to 5 Y
Value-3 to 6
Chroma-2 to 6
Texture of the fine earth fraction-sandy loam, fine sandy loam, or loam
Content of rock fragments- 0 to 5 percent
2C horizon:
Hue-7.5YR to 5 Y
Value-4 to 6
Chroma-2 to 4
Texture of the fine earth fraction-silty clay, silty clay loam, or clay
Content of rock fragments-0 to 2 percent

Enfield Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid in the surface layer and subsoil, and rapid or very rapid in the substratum
Landform: Outwash plains and terraces
Parent material: Eolian deposits over glaciofluvial deposits derived from granite, gneiss, and/or schist
Slope range: 0 to 15 percent
Associated soils in a drainage sequence:
Tisbury (moderately well drained)
Raypol (poorly drained)
Associated similar soils:
Agawam (coarse-loamy over sandy or sandy-skeletal)
Haven (coarse-loamy over sandy or sandy skeletal)
Taxonomic class: Coarse-silty over sandy or sandy-skeletal, mixed, active, mesic Typic Dystrudepts

Typical Pedon

Enfield silt loam, in an area of Haven and Enfield silt loams, 3 to 8 percent slopes, located in the town of North Stonington, 2,800 feet southeast along Route 2 from the intersection with Route 201, 1400 feet northwest along an unnamed gravel road, 45 feet south of old cemetery, and 200 feet west of Shunock River, on the Old Mystic

USGS topographic quadrangle, lat. 41 degrees 26 minutes 23 seconds N., long. 71 degrees 54 minutes 07 seconds W., NAD 27, in a wooded area.

Oi-0 to 3 inches slightly decomposed plant material
Oe-3 to 4 inches moderately decomposed plant material
Ap-4 to 12 inches, dark yellowish brown (10YR 3/4) silt loam, pale brown (10YR 6/3) dry; weak medium granular structure; very friable; common fine and medium roots; 2 percent gravel; very strongly acid; abrupt wavy boundary.
Bw1-12 to 20 inches, yellowish brown (10YR 5/6) silt loam; weak medium subangular blocky structure; friable; few fine roots; 1 percent gravel; strongly acid, clear smooth boundary.
Bw2-20 to 26 inches, yellowish brown (10YR 5/6) silt loam; weak medium subangular blocky structure; friable; few fine roots; lenses of very fine sandy loam in the lower part; moderately acid; clear wavy boundary.
Bw3-26 to 30 inches, light olive brown (2.5Y 5/4) silt loam; massive; friable; few fine roots; 2 percent gravel; moderately acid; clear wavy boundary.
$2 \mathrm{C}-30$ to 37 inches, light olive brown (2.5Y 5/4) very gravelly loamy sand; single grain; loose; 35 percent gravel, 5 percent cobbles; moderately acid; gradual wavy boundary.
$3 C-37$ to 65 inches, olive gray ($5 \mathrm{Y} 5 / 2$) very gravelly coarse sand; single grain; loose; 50 percent gravel, 7 percent cobbles; moderately acid.

Range in Characteristics

Solum thickness: 16 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
Ap horizon:
Hue-7.5YR or 10YR
Value-3 or 4 (Dry value is 6 or more) (If A horizon is present instead of Ap, value is 2 or 3)
Chroma-2 to 4 (If A horizon is present instead of Ap, chroma is 1 through 3) Content of rock fragments-0 to 5 percent
Bw1 and Bw2 horizons:
Hue-7.5YR or 10YR
Value-4 or 5
Chroma-3 to 8
Texture of the fine earth fraction-silt loam or very fine sandy loam
Content of rock fragments-0 to 5 percent
Bw3 horizon:
Hue-7.5YR to 2.5 Y
Value-4 to 6
Chroma-3 to 6
Texture of the fine earth fraction-silt loam or very fine sandy loam
Content of rock fragments-0 to 5 percent
2C horizons:
Hue-2.5YR to 2.5 Y
Value-4 to 6
Chroma-0 to 6
Texture of the fine earth fraction-stratified loamy sand to coarse sand
Content of rock fragments-0 to 59 percent

Farmington Series

Depth class: Shallow
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Landform: Bedrock-controlled hills and ridges
Parent material: Melt-out till derived from limestone, dolomite, and schist
Slope range: 3 to 45 percent
Associated similar soil:
Hollis (somewhat excessively drained, over schist, granite, or gneiss bedrock)
Associated other soils:
Copake (very deep, coarse-loamy over sandy or sandy-skeletal)
Nellis (very deep)
Stockbridge (very deep)
Amenia (very deep, moderately well drained)
Georgia (very deep, moderately well drained)
Mudgepond (very deep, poorly drained)
Alden (very deep, very poorly drained)
Taxonomic class: Loamy, mixed, active, mesic Lithic Eutrudepts
Typical Pedon
Farmington fine sandy loam, in an area of Farmington-Rock outcrop complex, 3 to 15 percent slopes, located in the town of North Canaan, 0.6 miles south on US Route 7 from the junction of Route 7 and Sand Road, 150 feet east of Route 7, on the Ashley Falls USGS topographic quadrangle, lat. 42 degrees 00 minutes 33 seconds N., long. 73 degrees 19 minutes 47 seconds W., in a wooded area:

A-0 to 3 inches, very dark grayish brown (10YR 3/2) fine sandy loam, light brownish gray (10 YR 6/2) dry; weak fine and medium granular structure; very friable; common very fine, fine, and medium roots, few coarse roots; 7 percent gravel; neutral; clear smooth boundary.
Bw1-3 to 8 inches, dark yellowish brown (10YR 4/4) fine sandy loam; weak medium subangular blocky structure; friable; common very fine, fine, and medium roots, few coarse roots; 7 percent gravel; neutral; gradual wavy boundary.
Bw2-8 to 17 inches, yellowish brown (10YR 5/4) fine sandy loam; weak medium subangular blocky structure; friable; common fine and medium roots, few coarse roots; 10 percent gravel; neutral; abrupt smooth boundary.
2R-17 inches, siliceous limestone bedrock, weathered in the first inch.

Range in Characteristics

Solum thickness: 10 to 20 inches
Depth to bedrock: 10 to 20 inches
Reaction: Strongly acid to neutral in the surface layer, moderately acid to slightly alkaline in the subsoil

A horizon:
Hue-10YR
Value-3 to 5 (Dry value is 6 or more)
Chroma-1 to 3
Content of rock fragments-5 to 14 percent
Bw horizons:
Hue-7.5YR to 2.5 Y
Value-4 or 5
Chroma-2 to 6

Texture of the fine earth fraction-fine sandy loam, very fine sandy loam, loam, or silt loam
Content of rock fragments-5 to 34 percent

Fluvaquents

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderate to very rapid
Landform: Flood plains
Parent material: Alluvium
Slope range: 0 to 3 percent
Associated soil in a drainage sequence:
Udifluvents (moderately well drained to somewhat excessively drained)
Associated similar soils:
Occum (well drained)
Pootatuck (moderately well drained)
Rippowam (poorly drained, coarse loamy)
Saco (very poorly drained, thick dark surface layer)
Taxonomic class: Fluvaquents

Sample Pedon

Fluvaquents, in an area of Fluvaquents-Udifluvents complex, frequently flooded, located in the town of Cornwall, 3,000 feet southwest of the intersection of Dawn Hill Road and River Road, and 50 feet west of the Housatonic River, on the USGS Ellsworth topographic quadrangle, lat. 41 degrees 48 minutes 05 seconds N., long. 73 degrees 23 minutes 54 seconds W., NAD 27, in a wooded area:

A-0 to 4 inches; black (2.5Y 2.5/1) silt loam, light brownish gray (2.5Y 6/2) dry; weak fine to medium granular structure; very friable; many fine to coarse roots; slightly alkaline; abrupt wavy boundary.
Cg1—4 to 14 inches; dark grayish brown (2.5Y 4/2) fine sand; single grain; loose; many fine to coarse roots; 10 percent light olive gray (5Y 6/2) lenses of stratified loamy fine sand to sand; common fine to coarse prominent strong brown (7.5YR $5 / 8$) soft masses of iron accumulation and few fine to coarse faint gray (2.5Y 5/1) iron depletions; slightly alkaline; gradual wavy boundary.
Cg2—14 to 21 inches; very dark grayish brown (2.5Y 4/2) very fine sand; single grain; loose; common fine to medium roots; many fine to coarse prominent strong brown (7.5YR 5/8) soft masses of iron accumulation; slightly alkaline; abrupt wavy boundary.
Ab1-21 to 38 inches; very dark gray (2.5Y 3/1) silt loam; massive; very friable; few fine to medium roots; 1 inch thick lense of medium sand; common partially decomposed wood fragments; common fine prominent yellowish red (5YR 4/6) soft masses of iron accumulation; slightly alkaline; clear wavy boundary.
Ab2—38 to 45 inches; very dark gray (10YR 3/1) fine sandy loam; massive; very friable; many charcoal fragments; common fine prominent yellowish red (5YR 4/6) soft masses of iron accumulation; slightly alkaline; clear smooth boundary.
Cgb—45 to 55 inches; very dark gray (10YR 3/1) sand; single grain; loose; slightly alkaline; clear smooth boundary.
A'b—55 to 60 inches; black (2.5Y 2.5/1) fine sandy loam; massive; very friable; neutral.

Range in Characteristics

Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to slightly alkaline

Content of rock fragments: 0 to 59 percent

A or Ab horizons:
Hue-5YR to 2.5 Y
Value-2 to 4
Chroma-1 to 3
Texture of the fine earth fraction-loamy sand, loamy fine sand, loamy very fine sand, sandy loam, fine sandy loam, very fine sandy loam, loam, or silt loam
C horizons:
Hue-5 YR to 5Y
Value-3 to 6
Chroma-1 or 2
Texture of the fine earth fraction-coarse sand, sand, fine sand, very fine sand, loamy fine sand, loamy very fine sand, sandy loam, fine sandy loam, very fine sandy loam, loam, or silt loam

Fredon Series

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderate in the surface layer and subsoil, and moderately rapid to very rapid in the substratum
Landform: Depressions and drainageways on outwash plains and terraces
Parent material: Glaciofluvial deposits derived from limestone, dolomite, and schist
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Copake (well drained)
Halsey (very poorly drained)
Hero (moderately well drained)
Associated other soil:
Groton (excessively drained, sandy-skeletal)
Taxonomic class: Coarse-loamy over sandy or sandy skeletal, mixed, active, nonacid, mesic Aeric Endoaquepts

Typical Pedon

Fredon silt loam, located in the town of Canaan, 1,600 feet northeast of the intersection of Sand Road and Belden Street, on the South Canaan USGS topographic quadrangle, lat. 41 degrees 58 minutes 43 seconds N., long. 73 degrees 21 minutes 07 seconds W., NAD 27:
Ap-0 to 8 inches; very dark grayish brown (2.5Y 3/2) silt loam, light brownish gray (2.5Y6/2) dry; moderate medium granular structure; friable; few very fine and fine roots; neutral; clear smooth boundary.
$\mathrm{Bg}-8$ to 17 inches; olive gray (5Y5/2) fine sandy loam; weak medium subangular blocky structure; friable; few very fine roots; few fine and medium prominent yellowish brown (10YR $5 / 6,5 / 8$) and dark yellowish brown (10YR 4/4, 4/6) soft masses of iron accumulation; neutral; clear smooth boundary.
Bw-17 to 24 inches; olive brown (2.5Y 4/4) fine sandy loam; weak coarse subangular blocky structure; friable; many coarse faint yellowish brown (10YR 4/4) and distinct yellowish brown (10 YR 4/6) soft masses of iron accumulation and many coarse distinct light brownish gray ($2.5 \mathrm{Y} 6 / 2$) iron depletions; neutral; abrupt smooth boundary.
2Cg1-24 to 29 inches; light olive gray (5Y 6/2) loamy sand; single grain; loose; few fine prominent yellowish brown (10YR 5/8) and dark yellowish brown (10YR 4/4) soft masses of iron accumulation; neutral; abrupt smooth boundary.

2C-29 to 48 inches; olive (5Y 5/3) loamy sand; single grain; loose; many coarse faint light olive brown (2.5Y 5/4) and distinct dark yellowish brown (10YR 4/4) and prominent light olive brown ($2.5 \mathrm{Y} 5 / 6$) soft masses of iron accumulation and many coarse distinct gray (5Y5/1) iron depletions; 10 percent fine gravel; neutral; clear smooth boundary.
2Cg2—48 to 60 inches; light olive gray (5Y 6/2) sand; single grain; loose; 10 percent fine gravel; neutral.

Range in Characteristics

Solum thickness: 22 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Slightly acid to neutral in the surface layer and subsoil, and moderately acid to moderately alkaline in the substratum

Ap horizon:
Hue-10YR or 2.5Y
Value-2 to 4
Chroma-1 or 2
Content of rock fragments-0 to 14 percent
Bg horizon:
Hue-7.5YR to 5 Y
Value-4 to 6
Chroma-1 or 2
Texture of the fine earth fraction-loam, fine sandy loam, very fine sandy loam or silt loam
Content of rock fragments- 0 to 14 percent
Bw horizon:
Hue-7.5YR to 5 Y
Value-4 to 6
Chroma-3 or 4
Texture of the fine earth fraction-loam, fine sandy loam, very fine sandy loam or silt loam
Content of rock fragments- 0 to 14 percent
2Cg horizons:
Hue-5YR to 5Y
Value-2 to 4
Chroma-0 to 2
Texture of the fine earth fraction-sand, loamy fine sand, or loamy sand
Content of rock fragments-10 to 30 percent
2C horizons:
Hue-5YR to 5Y
Value-3 to 6
Chroma-3 or 4
Texture of the fine earth fraction-sand, loamy fine sand, or loamy sand
Content of rock fragments-10 to 30 percent
Some of the Fredon soils in this survey area have a mean annual soil temperature which is colder than typical of the series. This map unit (414) is identified as a cold phase of the Fredon series.

Freetown Series

Depth class: Very deep
Drainage class: Very poorly drained

Permeability: Moderate or moderately rapid
Landform: Depressions
Parent Material: Organic materials
Slope range: 0 to 2 percent
Associated similar soils:
Catden (euic reaction class)
Natchaug (16 to 51 inches of organic materials, over loamy)
Timakwa (16 to 51 inches of organic materials, over sandy or sandy-skeletal)
Taxonomic class: Dysic, mesic Typic Haplosaprists

Typical Pedon

Freetown peat, in an area of Catden and Freetown soils, located in the town of Eastford, 500 feet west of the intersection of Pilfershire Road and Fayette Wright Road, on the Hampton USGS topographic quadrangle, lat. 41 degrees 50 minutes 37 seconds N., long. 72 degrees 03 minutes 13 seconds W., NAD 27, in Catden Swamp:

Oi1-0 to 4 inches; dark yellowish brown (10YR 4/6) peat; 95 percent fibers, 90 percent rubbed; massive; soft, friable; ultra acid; abrupt smooth boundary.
Oi2—4 to 10 inches; dark yellowish brown (10YR 3/4) peat; 90 percent fibers, 85 percent rubbed; massive; soft, friable; extremely acid; abrupt smooth boundary.
Oa1-10 to 22 inches; very dark brown (7.5YR 2.5/2) muck; 10 percent fibers, 3 percent rubbed; massive; soft, friable; extremely acid; clear smooth boundary.
Oa2-22 to 35 inches; black (10YR 2/1) muck; 5 percent fibers, 0 percent rubbed; massive; soft, friable; extremely acid; clear smooth boundary.
Oa3-35 to 41 inches; black (7.5YR 2.5/1) muck; 5 percent fibers, 0 percent rubbed; massive; soft, friable; extremely acid; clear smooth boundary.
Oa4-41 to 55 inches; black (10YR 2/1) muck; 15 percent fibers, 7 percent rubbed; massive; soft, friable; extremely acid; clear smooth boundary.
Oa5-55 to 71 inches; black (10YR 2/1) muck; 5 percent fibers, 0 percent rubbed; massive; soft, friable; extremely acid; clear smooth boundary.
Oa6-71 to 91 inches; black (7.5YR 2.5/1) muck; 5 percent fibers, 0 percent rubbed; massive; soft, friable; extremely acid.

Range in Characteristics

Solum thickness: Organic layers more than 51 inches thick Depth to bedrock: More than 80 inches
Reaction: Ultra acid to extremely acid (in 0.01 M calcium chloride)
Woody fragments: 0 to 25 percent
Mineral material: Less than 5 percent
Oi horizons:
Hue-5YR to 10YR
Value-2 to 4
Chroma-0 to 6
Oa horizons:
Hue-5YR to 10YR, or is neutral
Value-2 or 3
Chroma-0 to 4

Fullam Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface layer and subsoil, and slow or very slow in the substratum

Landform: Hills

Parent material: Lodgement till derived from schist and phyllite
Slope range: 3 to 15 percent
Associated soils in a drainage sequence:
Lanesboro (well drained)
Brayton (poorly drained)
Associated other soils:
Taconic (shallow, somewhat excessively drained)
Dummerston (well drained, friable substratum)
Macomber (moderately deep, well drained)
Taxonomic class: Coarse-loamy, mixed, active, frigid Aquic Dystrudepts

Typical Pedon

Fullam silt loam, 3 to 15 percent slopes, located in the town of Salisbury, 1,800 feet east along Mt. Riga Road from the intersection with Mt. Washington Road, and 600 feet south of Mt. Riga Road, on the Bash Bish Falls USGS topographic quadrangle, lat. 42 degrees 00 minutes 10 seconds and long. 73 degrees 27 minutes 45 seconds, NAD 27, in a wooded area:

Oe-0 to 2 inches; dusky red (2.5YR 3/2); moderately decomposed plant materials derived from leaf litter; many very fine and fine roots.
A-2 to 4 inches; very dark grayish brown (10YR 3/2) silt loam, light brownish gray (10 YR 6/2) dry; weak medium subangular blocky structure parting to weak fine granular structure; very friable; many very fine and medium roots; 8 percent gravel; very strongly acid; abrupt smooth boundary.
Bw1-4 to 10 inches; light olive brown (2.5Y 5/3) silt loam; weak fine and medium subangular blocky structure; friable; common very fine to very coarse roots; 6 percent gravel; very strongly acid; clear smooth boundary.
Bw2-10 to 20 inches; light yellowish brown (2.5Y 6/3) gravelly loam; weak fine to medium subangular blocky structure; friable; few very fine to coarse roots; few coarse faint light olive gray ($5 \mathrm{Y} 6 / 2$) iron depletions and few coarse prominent strong brown (7.5YR 5/8) soft masses of iron accumulation; 15 percent gravel, 2 percent cobbles, 5 percent stones; strongly acid; gradual wavy boundary.
Cd1-20 to 49 inches; light olive brown (2.5Y 5/3) very channery loam; massive; firm; few very fine roots; few fine distinct gray (5Y5/1) iron depletions and few fine prominent strong brown (7.5YR 5/8) soft masses of iron accumulation; 20 percent gravel, 20 percent channers; strongly acid.
Cd2-49 to 60 inches; olive brown (2.5Y 4/3) very channery fine sandy loam; massive; firm; 20 percent gravel, 20 percent channers; strongly acid.

Range in Characteristics

Solum thickness: 20 to 30 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
A horizon:
Hue-10YR or 2.5 Y
Value-2 to 4
Chroma-2 or 3
Content of rock fragments-0 to 14 percent
Bw1 horizon:
Hue-7.5YR to 2.5 Y
Value-3 to 5
Chroma-2 to 6

Texture of the fine earth fraction-silt loam or loam Content of rock fragments- 5 to 30 percent

Bw2 horizon:

Hue-2.5Y or 5 Y
Value-3 to 5
Chroma-2 to 4
Texture of the fine earth fraction-silt loam or loam
Content of rock fragments- 15 to 30 percent
Cd horizon:
Hue-2.5Y or 5 Y
Value-3 to 5
Chroma-2 to 4
Texture of the fine earth fraction-loam or fine sandy loam
Content of rock fragments- 15 to 40 percent

Georgia Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface layer and subsoil, moderately slow in the substratum
Landform: Hills
Parent material: Till derived from limestone, dolomite, and schist
Slope range: 2 to 15 percent
Associated soils in a drainage sequence:
Stockbridge (well drained)
Mudgepond (poorly drained)
Alden (very poorly drained, fine-loamy)
Associated similar soil:
Amenia (carbonates within 40 inches)
Associated other soils:
Farmington (well drained, shallow, loamy)
Nellis (well drained, carbonates within 40 inches)
Taxonomic class: Coarse-loamy, mixed, semiactive, mesic Aquic Dystric Eutrudepts

Typical Pedon

Georgia silt loam, in an area of Georgia and Amenia silt loams, 2 to 8 percent slopes, located in the town of Ridgefield, 1600 feet west of the intersection of George
Washington Highway and North Ridgebury Road, on the Peach Lake USGS topographic quadrangle, lat. 41 degrees 21 minutes 39 seconds N., long. 73 degrees 31 minutes 48 seconds W., NAD 27:
Ap-0 to 8 inches; very dark grayish brown (10YR 3/2) silt loam, light brownish gray (10 YR 6/2) dry; weak medium granular structure; friable; common fine and medium roots; 5 percent rock fragments; strongly acid; clear smooth boundary.
Bw1-8 to 14 inches; yellowish brown (10YR 5/4) loam; weak medium subangular blocky structure; friable; few fine and medium roots; 5 percent rock fragments; strongly acid; gradual wavy boundary.
Bw2-14 to 24 inches; olive brown (2.5Y 4/4) loam; moderate medium subangular blocky structure; firm; few fine roots; common medium distinct light olive gray (5Y $6 / 2$) iron depletions and prominent strong brown (7.5YR 5/6) soft masses of iron accumulation; 5 percent rock fragments; moderately acid; gradual wavy boundary.

C-24 to 60 inches, dark grayish brown (2.5Y 4/2) gravelly fine sandy loam; moderate thick platy structure; firm; common medium prominent strong brown (7.5YR 5/6) soft masses of iron accumulations and faint olive gray (5Y 5/2) iron depletions; 15 percent rock fragments; slightly acid.

Range in Characteristics
Solum thickness: 16 to 32 inches
Depth to bedrock: More than 80 inches
Reaction: Strongly acid to neutral
Ap horizon:
Hue-10YR or 2.5Y
Value-3 or 4
Chroma-2 or 3
Content of rock fragments-5 to 14 percent
Bw horizons:
Hue-10YR or 2.5Y
Value-4 or 5
Chroma-3 to 6
Texture of the fine earth fraction-fine sandy loam, silt loam or loam
Content of rock fragments- 5 to 30 percent
C horizon:
Hue-10YR to 5 Y
Value-3 to 5
Chroma-1 to 4
Texture of the fine earth fraction-fine sandy loam, silt loam, or loam
Content of rock fragments- 5 to 30 percent

Gloucester Series

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Rapid
Landform: Hills
Parent material: Melt-out till derived from granite, gneiss, and schist
Slope range: 3 to 35 percent
Associated similar soils:
Canton (coarse-loamy over sandy or sandy-skeletal, well drained)
Charlton (coarse-loamy, well drained)
Hinckley (outwash)
Merrimac (sandy, well drained, outwash)
Paxton (coarse-loamy, well drained, dense substratum)
Associated other soils:
Sutton (moderately well drained)
Woodbridge (moderately well drained, dense substratum)
Taxonomic class: Sandy-skeletal, mixed, mesic Typic Dystrudepts
Typical Pedon
Gloucester gravelly sandy loam, 8 to 15 percent slopes, located in the town of Sterling, 2,000 feet south along Gibson Hill Road from the intersection with River Road, 1,200 feet west of Gibson Hill Road, on the Oneco USGS topographic quadrangle, lat. 41 degrees 43 minutes 33 seconds N., long. 71 degrees 48 minutes 14 seconds W., NAD 27, in a wooded area:

A-0 to 4 inches, very dark grayish brown (10YR 3/2) gravelly sandy loam, light brownish gray (10 YR 6/2) dry; weak fine granular structure; very friable; many fine and medium roots; 15 percent rock fragments; strongly acid; abrupt smooth boundary.
Bw1-4 to 12 inches, dark yellowish brown (10YR 4/6) gravelly sandy loam; weak medium granular structure; very friable; common fine and medium roots; 20 percent rock fragments; strongly acid; clear wavy boundary.
Bw2-12 to 25 inches, yellowish brown (10YR 5/6) very gravelly loamy sand; weak medium granular structure; very friable; few fine and medium roots; 35 percent rock fragments; strongly acid; clear wavy boundary.
C1-25 to 35 inches, light olive brown (2.5Y 5/4) very gravelly loamy coarse sand; single grain; loose; few medium roots; 35 percent rock fragments; strongly acid; gradual wavy boundary.
C2—35 to 60 inches, light brownish gray (2.5Y 6/2) very gravelly loamy coarse sand; single grain; loose; 50 percent rock fragments: strongly acid.

Range in Characteristics

Solum thickness: 20 to 30 inches
Depth to bedrock: More than 80 inches
Reaction: Extremely acid to moderately acid in the surface, very strongly acid to moderately acid in the subsoil and substratum
A horizon:
Hue-10YR
Value-2 to 4
Chroma-1 to 3
Content of rock fragments-15 to 30 percent
Bw1 horizon:
Hue-7.5YR or 10YR
Value-4 to 6
Chroma-3 to 8
Texture of the fine earth fraction-sandy loam or fine sandy loam
Content of rock fragments-20 to 34 percent
Bw2 horizon:
Hue-10YR or 2.5 Y
Value-4 to 6
Chroma-3 to 6
Texture of the fine earth fraction-loamy sand, loamy coarse sand or loamy fine sand
Content of rock fragments-35 to 59 percent
C horizons:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-1 to 4
Texture of the fine earth fraction-loamy coarse sand, loamy sand, or loamy fine sand
Content of rock fragments-35 to 59 percent

Groton Series

Depth class: Very deep
Drainage class: Excessively drained
Permeability: Moderately rapid in the surface layer and upper subsoil, moderately
rapid or rapid in the middle subsoil, rapid in the lower subsoil, and rapid or very rapid in the substratum
Landform: Outwash plains, terraces, kames, and eskers
Parent material: Glaciofluvial deposits derived from limestone, dolomite, and schist
Slope range: 0 to 45 percent
Associated soils in a drainage sequence:
Hero (moderately well drained)
Fredon (poorly drained)
Halsey (very poorly drained)
Associated similar soil:
Copake (well drained, coarse-loamy over sandy or sandy skeletal)
Taxonomic class: Sandy-skeletal, mixed, mesic Typic Eutrudepts

Typical Pedon

Groton gravelly sandy loam, 3 to 15 percent slopes, located in the town of Canaan, 2,600 feet northwest along Connecticut Route 63 from the intersection with Connecticut Route 126, 800 feet southwest of Route 63, on the South Canaan USGS topographic quadrangle, lat. 41 degrees 51 minutes 00 seconds N., long. 73 degrees 19 minutes 36 seconds W., NAD 27, in a hayfield:

Ap-0 to 8 inches, brown (10YR 4/3) gravelly sandy loam, pale brown (10 YR 6/3) dry; weak fine granular structure; very friable; many very fine and very fine roots; 30 percent gravel; neutral; abrupt smooth boundary.
Bw1-8 to 18 inches, dark yellowish brown (10YR 4/6) very gravelly sandy loam; weak fine and medium granular structure; very friable; common very fine and fine, and few medium roots; 40 percent gravel; neutral; clear wavy boundary.
Bw2-18 to 24 inches, light olive brown (2.5Y 5/4) very gravelly loamy sand; very weak fine granular structure; very friable; few very fine and fine roots; 50 percent gravel; neutral; gradual wavy boundary.
Bw3-24 to 30 inches, olive brown (2.5Y 4/4) very gravelly loamy sand; single grain; loose; few very fine roots; 50 percent gravel; neutral; abrupt wavy boundary.
C1- 30 to 52 inches, light olive gray ($5 \mathrm{Y} 6 / 2$) extremely gravelly sand; single grain; loose; very few very fine roots; 65 percent gravel; slightly effervescent; slightly alkaline; abrupt wavy boundary.
C2-52 to 72 inches, pale olive ($5 \mathrm{Y} 6 / 3$) gravelly sand; single grain; loose; 30 percent gravel; slightly effervescent; slightly alkaline.

Range in Characteristics

Solum thickness: 12 to 36 inches
Depth to bedrock: More than 80 inches
Reaction: Moderately acid to neutral in the surface layer and upper subsoil, moderately acid to slightly alkaline in the lower subsoil, and neutral to moderately alkaline in the substratum (calcareous within 40 inches)
Ap horizon:
Hue-7.5YR to 2.5 Y
Value- 3 or 4 (If A is horizon present instead of Ap, value is 2 or 3)
Chroma-2 to 4 (If A is horizon present instead of $A p$, chroma is 1 to 3)
Content of rock fragments- 15 to 34 percent
Upper Bw horizons:
Hue-7.5YR to 2.5Y
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-fine sandy loam or sandy loam
Content of rock fragments-20 to 59 percent

Lower Bw horizons:
Hue-7.5YR to 2.5 Y
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-sandy loam, loamy fine sand, or loamy sand Content of rock fragments-20 to 59 percent
C horizons:
Hue-7.5YR to 5 Y
Value-3 to 6
Chroma-2 to 6
Texture of the fine earth fraction-stratified loamy fine sand to coarse sand
Content of rock fragments-25 to 70 percent

Hadley Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface layer, moderate or moderately rapid in the upper substratum, and moderate to rapid in the lower substratum
Landform: Flood plains
Parent material: Alluvium
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Winooski (moderately well drained)
Bash (somewhat poorly drained, coarse-loamy)
Lim (poorly drained, coarse-loamy)
Limerick (poorly drained)
Saco (very poorly drained)
Taxonomic class: Coarse-silty, mixed, superactive, nonacid, mesic, Typic Udifluvents
Typical Pedon
Hadley silt loam, located in the town of Windsor, 4,200 feet east-southeast of the intersection of Connecticut routes 178 and 159, 3,600 feet southeast of the Island Road railroad crossing, on the Hartford North USGS topographic quadrangle, lat. 41 degrees 50 minutes 06 seconds N., long. 72 degrees 38 minutes 20 seconds W., NAD 27:

Ap-0 to 12 inches, very dark grayish brown (10YR 3/2) silt loam; light brownish gray (10YR 6/2) dry; moderate fine and medium granular structure; friable; few very fine, fine and medium roots; slightly acid; clear smooth boundary.
C1-12 to 29 inches, dark brown (10YR 3/3) and very dark grayish brown (10YR 3/2) silt loam; massive; friable; few very fine and fine roots; slightly acid; clear smooth boundary.
C2—29 to 40 inches, dark brown (10YR 3/3) silt loam; massive; friable; slightly acid; abrupt smooth boundary.
C3-40 to 45 inches, very dark grayish brown (2.5Y 3/2) silt loam; massive; friable; slightly acid; clear smooth boundary.
C4—45 to 60 inches, dark brown (10YR 3/3) silt loam; massive; friable; slightly acid.

Range in Characteristics

Solum thickness: 6 to 14 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to neutral to a depth of 40 inches and moderately acid to slightly alkaline below a depth of 40 inches

Ap horizon:
Hue-10YR to 5Y
Value-3 or 4 (Dry value 6 or 7)
Chroma-2 to 4
Content of rock fragments-less than 1 percent
C1 and C2 horizons:
Hue-10YR to 5 Y
Value-3 to 6
Chroma-2 to 6
Texture of the fine earth fraction—stratified silt loam to very fine sand
Content of rock fragments-less than 1 percent
C3 and C4 horizons:
Hue-10YR to 5 Y
Value-3 to 6
Chroma-2 to 6
Texture of the fine earth fraction-stratified silt loam to sand
Content of rock fragments-less than 1 percent

Halsey Series

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderate in the surface layer and upper subsoil, moderately rapid in the lower subsoil, and rapid or very rapid in the substratum
Landform: Depressions and drainageways on outwash plains and terraces
Parent material: Glaciofluvial deposits derived from limestone, dolomite, and schist
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Groton (excessively drained, sandy-skeletal)
Copake (well drained)
Hero (moderately well drained)
Fredon (poorly drained)
Associated similar soil:
Timakwa (16 to 51 inches of organic materials, over sandy deposits)
Taxonomic class: Coarse-loamy over sandy or sandy skeletal, mixed, active, nonacid, mesic Typic Humaquepts

Typical Pedon

Halsey silt loam, located in the town of Canaan, 2,100 feet northeast of the intersection of Sand Road and Belden Street, on the South Canaan USGS topographic quadrangle, lat. 41 degrees 58 minutes 53 seconds N., long. 73 degrees 21 minutes 09 seconds W., NAD 27:
Oe—0 to 1 inch; black (5YR 2.5/1) moderately decomposed plant materials; moderate medium granular structure; friable; slightly acid; abrupt smooth boundary.
A—1 to 8 inches; very dark brown (10YR 2/2) silt loam, grayish brown (10YR 5/2) dry; moderate fine and medium granular structure; friable; common very fine, fine, and medium roots; slightly acid; clear smooth boundary.
Bg1-8 to 16 inches; dark gray (10YR 4/1) silt loam; weak medium subangular blocky structure; friable; few very fine, fine, and medium roots; neutral; clear smooth boundary.
Bg2—16 to 28 inches; gray (5Y 5/1) and olive gray ($5 \mathrm{Y} 5 / 2$) fine sandy loam; weak coarse subangular blocky structure; friable; slightly plastic and slightly sticky; few
very fine and fine roots in upper part; few fine prominent yellowish brown (10YR $5 / 6$) and dark yellowish brown (10YR 4/4, 4/6) soft masses of iron accumulation; neutral; abrupt smooth boundary.
2Cg1-28 to 38 inches; gray (5Y 5/1) loamy sand; single grain; loose; nonplastic, nonsticky; neutral; clear smooth boundary.
2Cg2-38 to 60 inches; gray (5Y 5/1) sand; single grain; loose; nonplastic, nonsticky; 10 percent fine gravel; neutral.

Range in Characteristics

Solum thickness: 20 to 39 inches
Depth to bedrock: More than 80 inches
Reaction: Moderately acid to neutral in the surface layer and subsoil, and slightly acid to moderately alkaline in the substratum

A horizon:
Hue-10YR or 2.5 Y
Value-2 or 3
Chroma-0 to 2
Content of rock fragments-0 to 14 percent
Bg1 horizon:
Hue-10YR to 5 Y or 5 BG
Value-4 to 6
Chroma-0 to 2
Texture of the fine earth fraction-very fine sandy loam, loam, or silt loam
Content of rock fragments-0 to 20 percent
Bg2 horizon:
Hue-10YR to 5Y or 5BG
Value-4 to 6
Chroma-0 to 2
Texture of the fine earth fraction-fine sandy loam or very fine sandy loam
Content of rock fragments- 0 to 20 percent
2 Cg horizons
Hue-2.5Y or 5 Y
Value-3 to 6
Chroma-0 to 2
Texture of the fine earth fraction-loamy sand or sand
Content of rock fragments-10 to 50 percent
2C horizons (where present, below 30 inch depth)
Hue-2.5 Y or 5 Y
Value-3 to 6
Chroma-3 or 4
Texture of the fine earth fraction-loamy sand or sand
Content of rock fragments-10 to 50 percent
Some of the Halsey soils in this survey area have a mean annual soil temperature which is colder than typical of the series. This map unit (436) is identified as a cold phase of the Halsey series.

Hartford Series

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid in the surface layer and subsoil, and rapid or very rapid in the substratum

Landform: Outwash plains and terraces
Parent material: Glaciofluvial deposits derived from sandstone and basalt
Slope range: 0 to 8 percent
Associated soil in a drainage sequence:
Manchester (excessively drained)
Associated similar soils:
Branford (coarse-loamy over sandy or sandy-skeletal)
Penwood (loamy fine sand or coarser in the surface layer and subsoil)
Taxonomic class: Sandy, mixed, mesic Typic Dystrudepts

Typical Pedon

Hartford sandy loam, 0 to 3 percent slopes, located in the town of Rocky Hill, 0.95 miles west of the intersection of Brook Street and Connecticut Route 9, and 150 feet south of Brook Street, on the Hartford South USGS topographic quadrangle, lat. 41 degrees 38 minutes 34 seconds N., long. 72 degrees 39 minutes 53 seconds W., NAD 27:

Ap-0 to 8 inches; dark reddish brown (5YR 3/4) sandy loam, reddish brown (5 YR 5/ 4) dry; weak coarse granular structure; very friable; many fine roots; 5 percent gravel; strongly acid; clear smooth boundary.
Bw1-8 to 20 inches; yellowish red (5YR 4/6) sandy loam; weak fine granular structure; very friable; few fine roots; 5 percent gravel; strongly acid; clear wavy boundary.
Bw2—20 to 26 inches; reddish brown (5YR 4/4) loamy sand; single grain; loose; 10 percent gravel; strongly acid; clear wavy boundary.
2C-26 to 65 inches; reddish brown (5YR 4/4) stratified very gravelly coarse sand to loamy fine sand; single grain; loose; 35 percent gravel; strongly acid.

Range in Characteristics

Solum thickness: 18 to 30 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
Ap horizon:
Hue-5YR to 10YR
Value-3 or 4 (If A horizon is present instead of $A p$, value is 2 or 3)
Chroma-2 to 4 (If A horizon is present instead of Ap, chroma is 1 to 3)
Content of rock fragments- 5 to 14 percent
Bw1 horizon:
Hue-5YR or 2.5YR
Value-3 to 5
Chroma-3 to 8
Texture of the fine earth fraction-sandy loam
Content of rock fragments- 5 to 30 percent
Bw2 horizon:
Hue-5YR or 2.5YR
Value-3 to 5
Chroma-3 to 8
Texture of the fine earth fraction-loamy sand or sandy loam
Content of rock fragments-5 to 30 percent
2C horizon:
Hue-2.5YR or 5YR
Value-3 to 6

Chroma-3 to 6
Texture of the fine earth fraction-stratified loamy fine sand to coarse sand Content of rock fragments-10 to 50 percent

Haven Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface layer and subsoil, and very rapid in the substratum
Landform: Outwash plains and terraces
Parent material: Eolian deposits over glaciofluvial deposits derived from granite, gneiss, and/or schist
Slope range: 0 to 15 percent
Associated soils in a drainage sequence:
Tisbury (moderately well drained, coarse-silty over sandy or sandy-skeletal)
Raypol (poorly drained)
Associated similar soils:
Agawam (coarser texture in subsoil)
Enfield (coarse-silty over sandy or sandy-skeletal)
Taxonomic class: Coarse-loamy over sandy or sandy-skeletal, mixed, active, mesic, Typic Dystrudepts

Typical Pedon

Haven silt loam, in an area of Haven and Enfield silt loams, 0 to 3 percent slopes, located in the town of Fairfield, 300 feet north along Orchard Hill Lane from the intersection with Ross Hill Road, and 100 feet west of Orchard Hill Lane, on the Westport USGS topographic quadrangle, lat. 41 degrees 10 minutes 16 seconds N., long. 73 degrees 15 minutes 52 seconds W., NAD 27, in a lawn:

Ap-0 to 7 inches, very dark grayish brown (10YR 3/2) silt loam, light brownish gray (10 YR 6/2) dry; weak fine granular structure; very friable; many fine roots; 5 percent rock fragments; very strongly acid; clear smooth boundary.
Bw1-7 to 14 inches, brown (7.5YR 4/4) silt loam; weak medium subangular blocky structure; friable; common fine roots; 5 percent rock fragments; very strongly acid; gradual wavy boundary.
Bw2-14 to 20 inches, dark yellowish brown (10YR 4/4) silt loam; weak medium subangular blocky structure; very strongly acid; gradual wavy boundary.
BC—20 to 24 inches, strong brown (7.5YR 5/6) fine sandy loam; weak medium subangular blocky structure; very friable; few fine roots; 10 percent rock fragments; strongly acid; abrupt smooth boundary.
2C-24 to 60 inches, yellowish brown (10YR 5/4) gravelly sand; single grain; loose; 30 percent rock fragments; moderately acid.

Range in Characteristics
Solum thickness: 18 to 36 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
A horizon:
Hue-7.5YR or 10YR
Value-2 to 4 (If Ap horizon is present instead of A, value is 3 or 4)
Chroma-1 to 3 (if Ap horizon is present instead of A, chroma is 2 or 3)
Content of rock fragments-0 to 14 percent

Bw horizons:
Hue-5YR to 2.5 Y
Value-4 to 6
Chroma-3 to 8
Texture of the fine earth fraction-silt loam or very fine sandy loam
Content of rock fragments-0 to 14 percent
BC horizon (where present):
Color and rock fragment content-similar to Bw horizons
Texture of the fine earth fraction-fine sandy loam or very fine sandy loam
2C horizon:
Hue-7.5YR to 2.5 Y
Value-4 to 6
Chroma-2 to 6
Texture of the fine earth fraction-stratified sand and fine sand
Content of rock fragments-15 to 59 percent

Hero Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate or moderately rapid in the surface layer and subsoil, and rapid or very rapid in the substratum
Landform: Outwash plains and terraces
Parent material: Glaciofluvial deposits derived from limestone, schist, and dolomite
Slope range: 0 to 8 percent
Associated soils in a drainage sequence:
Groton (excessively drained, sandy-skeletal)
Copake (well drained)
Fredon (poorly drained)
Halsey (very poorly drained)
Taxonomic class: Coarse-loamy over sandy or sandy-skeletal, mixed, semiactive, mesic Aquic Eutrudepts

Typical Pedon
Hero gravelly loam, 0 to 3 percent slopes, located in the town of Sharon, 500 feet southwest of the intersection of Connecticut Route 361 and Indian Mountain Road, on the Sharon USGS topographic quadrangle, lat. 41 degrees 53 minutes 25 seconds N., long. 73 degrees 28 minutes 56 seconds W., in a pasture:

Ap-0 to 9 inches; very dark grayish brown (10YR 3/2) gravelly loam, pale brown (10YR 6/3) dry; weak medium granular structure; very friable; many very fine and fine roots; 15 percent gravel; slightly acid; clear smooth boundary.
Bw1-9 to 18 inches; olive brown (2.5Y 4/4) gravelly silt loam; weak medium subangular blocky structure; friable; few fine and very fine roots; 20 percent gravel; neutral; gradual wavy boundary.
Bw2-18 to 24 inches; olive brown (2.5Y 4/4) gravelly silt loam; weak medium subangular blocky structure; friable; few medium and fine distinct grayish brown (2.5Y $5 / 2$) and distinct olive gray ($5 \mathrm{Y} 5 / 2$) iron depletions and few fine and medium faint brown (7.5YR 4/4) soft masses of iron accumulation; 25 percent gravel; neutral; clear wavy boundary.
Bw3-24 to 27 inches; dark grayish brown (2.5Y 4/2) gravelly sandy loam; massive; very friable; common fine and medium distinct dark yellowish brown (10YR 4/4) soft masses of iron accumulation and common fine and medium faint grayish
brown (2.5Y5/2) iron depletions; 30 percent gravel; slightly alkaline; slightly effervescent; clear smooth boundary.
2C-27 to 60 inches; grayish brown (2.5Y5/2) and dark grayish brown (2.5Y 4/2)
very gravelly sand; single grain; loose; few thin lenses of gravelly sandy loam; few fine and medium prominent light olive brown (2.5Y 5/6) soft masses of iron accumulation; few strong brown (7.5YR 5/6) and gray (N6/) weathered limestone pebbles; 50 percent gravel, 10 percent cobbles; slightly effervescent; slightly alkaline.

Range in Characteristics

Solum thickness: 18 to 36 inches
Depth to bedrock: More than 80 inches
Reaction: Moderately acid to neutral in the surface layer, moderately acid to slightly
alkaline in the subsoil, and neutral to moderately alkaline in the substratum
A horizon:
Hue-10YR or 2.5 Y
Value-2 to 4 (dry value 6 or more)
Chroma-1 to 3
Content of rock fragments-15 to 34 percent
Bw1 horizon:
Hue-10YR or 2.5Y
Value-3 to 6
Chroma-3 to 6
Texture of the fine earth fraction-fine sandy loam, loam, or silt loam
Content of rock fragments-5 to 34 percent
Bw2 horizon:
Hue-10YR or 2.5 Y
Value-3 to 6
Chroma-2 to 6
Texture of the fine earth fraction-fine sandy loam, loam, or silt loam
Content of rock fragments-5 to 34 percent
Bw3 horizon:
Hue-10YR or 2.5 Y
Value-3 to 6
Chroma-2 to 6
Texture of the fine earth fraction-sandy loam, fine sandy loam, loam, or silt loam
Content of rock fragments- 5 to 34 percent
2C horizon:
Hue-10YR to 5 Y
Value-3 to 6
Chroma-2 to 4
Texture of the fine earth fraction-stratified loamy fine sand to coarse sand
Content of rock fragments-15 to 65 percent

Hinckley Series

Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid in the surface layer and subsoil, and very rapid in the substratum
Landform: Outwash plains, terraces, kames, and eskers
Parent material: Glaciofluvial deposits derived from granite, gneiss, and schist Slope range: 0 to 45 percent

Associated soils in a drainage sequence:
Merrimac (somewhat excessively drained, sandy)
Sudbury (moderately well drained, sandy)
Walpole (poorly drained, sandy)
Associated similar soils:
Agawam (coarse-loamy over sandy or sandy-skeletal)
Windsor (sandy)
Taxonomic class: Sandy-skeletal, mixed, mesic Typic Udorthents

Typical Pedon

Hinckley gravelly sandy loam, 0 to 3 percent slopes, located in the town of East Haddam, 600 feet west southwest of the intersection of Connecticut Routes 151 and 149, 200 feet north of Dykas Brook, on the Deep River USGS topographic quadrangle, lat. 41 degrees 29 minutes 39 seconds N., long. 72 degrees 27 minutes 41 seconds W., NAD 27:

Ap-0 to 8 inches, dark grayish brown (10YR 4/2) gravelly sandy loam, light brownish gray (10 YR 6/2) dry; weak coarse granular structure; friable; many fine and medium roots; 20 percent rock fragments; strongly acid; abrupt smooth boundary.
Bw1-8 to 20 inches, brown (7.5YR 5/4) very gravelly loamy sand; weak fine granular structure; very friable; common fine and medium roots; 40 percent rock fragments; strongly acid; clear wavy boundary.
Bw2-20 to 27 inches, yellowish brown (10YR 5/4) very gravelly sand; single grain; loose; few fine roots; 45 percent rock fragments; strongly acid; clear wavy boundary.
C1-27 to 42 inches, brown (10YR 5/3) very gravelly sand; single grain; loose; 50 percent rock fragments; strongly acid; clear wavy boundary.
C2-42 to 60 inches, light brownish gray (10YR 6/2) extremely gravelly sand; single grain; loose; 60 percent rock fragments; strongly acid.

Range in Characteristics
Solum thickness: 12 to 30 inches
Depth to bedrock: More than 80 inches
Reaction: Extremely acid to moderately acid
Rock fragments: Overall, more than 35 percent
Ap horizon:
Hue-10YR
Value-2 to 4 (If A horizon is present instead of Ap, value is 2)
Chroma-1 to 3
Content of rock fragments-15 to 34 percent
Bw1 horizon:
Hue-7.5YR or 10YR
Value-3 to 5
Chroma-4 to 8
Texture of the fine earth fraction-loamy sand, loamy coarse sand, or loamy fine sand
Content of rock fragments- 15 to 50 percent
Bw2 horizon:
Hue-7.5YR to 2.5 Y
Value-3 to 6
Chroma-4 to 8
Texture of the fine earth fraction-sand
Content of rock fragments- 15 to 50 percent

C horizon:
Hue-7.5YR to 5 Y
Value-4 to 7
Chroma-2 to 8
Texture of the fine earth fraction-stratified sand or coarse sand
Content of rock fragments- 30 to 70

Hogansburg Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface layer and subsoil, slow or very slow in the substratum
Landform: Hills
Parent material: Till derived from limestone, dolomite, and schist
Slope range: 2 to 15 percent
Associated soils in a drainage sequence:
Pyrities (well drained)
Mudgepond, cold (poorly drained)
Loonmeadow (very poorly drained, fine-loamy)
Taxonomic class: Coarse-loamy, mixed, semiactive, frigid Aquic Eutrudepts

Typical Pedon

Hogansburg loam, located in the town of Canaan, 2,500 feet southwest of the south end of Wangum Lake, on the South Canaan USGS topographic quadrangle, lat. 41 degrees 58 minutes 19 seconds N., long. 73 degrees 16 minutes 25 seconds W., in an old field:

Ap-0 to 12 inches; very dark grayish brown (10YR 3/2) loam, light brownish gray (10YR 6/2 dry); weak very fine and medium subangular blocky structure; very friable; common very fine to coarse roots; 5 percent gravel; neutral; clear wavy boundary.
Bw1-12 to 20 inches; dark yellowish brown (10YR 4/4) loam; weak very fine and medium subangular blocky structure; very friable; common very fine and fine roots; 10 percent gravel; slightly alkaline; clear wavy boundary.
Bw2—20 to 29 inches; olive brown (2.5Y 4/4) loam; weak coarse subangular blocky structure; very friable; common very fine and fine roots; 13 percent gravel; common medium and coarse distinct grayish brown (2.5Y5/2), faint light olive brown (2.5Y5/3), and distinct dark grayish brown (2.5Y 4/2) iron depletions; very slightly alkaline; gradual wavy boundary.
Bw3-29 to 43 inches; olive brown (2.5Y 4/3) loam; weak coarse subangular blocky structure; friable; common fine roots; 13 percent gravel; common coarse faint grayish brown (2.5Y5/2) iron depletions; neutral; very slightly effervescent; clear wavy boundary.
Cd1-43 to 50 inches; olive brown (2.5Y 4/3) loam; massive; firm; 10 percent gravel; common coarse faint grayish brown (2.5Y 5/2) iron depletions and few medium prominent strong brown (7.5YR 4/6) masses of iron accumulation; slightly alkaline; slightly effervescent; gradual wavy boundary.
Cd2—50 to 70 inches; olive brown (2.5Y 4/3) fine sandy loam; massive; firm; 9 percent gravel, 1 percent cobbles; many coarse faint grayish brown (2.5Y5/2) iron depletions; slightly alkaline; slightly effervescent; gradual wavy boundary.
Cd3-70 to 84 inches; olive brown (2.5Y 4/3) loam; massive; firm; 13 percent gravel; common coarse faint grayish brown (2.5Y 5/2), common coarse faint dark grayish brown (2.5Y 4/2) iron depletions and few fine prominent strong brown (7.5YR 4/6) masses of iron accumulation; slightly alkaline; slightly effervescent.

Range in Characteristics

Solum thickness: 20 to 43 inches
Depth to bedrock: More than 80 inches
Reaction: Strongly acid to neutral in the surface layer, strongly acid to slightly alkaline in the subsoil, and slightly alkaline or moderately alkaline in the substratum (depth to carbonates 10 to 33 inches)
Ap horizon:
Hue-7.5YR or 10YR
Value-3 or 4
Chroma-2 or 3
Content of rock fragments-3 to 14 percent
Bw horizons:
Hue-5YR to 2.5 Y
Value-4 or 5
Chroma-3 or 4
Texture of the fine earth fraction-fine sandy loam, silt loam or loam
Content of rock fragments-5 to 34 percent
Cd horizon:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-2 to 4
Texture of the fine earth fraction-fine sandy loam, very fine sandy loam, or loam
Content of rock fragments- 5 to 40 percent

Hollis Series

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderate or moderately rapid
Landform: Bedrock-controlled hills and ridges
Parent material: Melt-out till derived from granite, gneiss, and schist
Slope range: 3 to 60 percent
Associated similar soils:
Brimfield (redder subsoil)
Farmington (well drained, over limestone bedrock)
Holyoke (well drained, over basalt or sandstone)
Associated other soils:
Canton (well drained, very deep, coarse-loamy over sandy or sandy-skeletal)
Charlton (well drained, very deep, coarse-loamy)
Chatfield (well drained, moderately deep, coarse-loamy)
Taxonomic class: Loamy, mixed, active, mesic Lithic Dystrudepts
Typical Pedon
Hollis gravelly fine sandy loam, extremely stony, in an area of Hollis-Chatfield Rock outcrop complex, 3 to 15 percent slopes, located in the town of East Hampton, 1,000 feet west of CT Route 196 and 3,200 feet north of CT Route 151, on the Moodus USGS topographic quadrangle, lat. 41 degrees 31 minutes 28 seconds N., long. 72 degrees 29 minutes 48 seconds W., NAD 27, in a wooded area:

Oa-0 to 1 inch; black (10YR 2/1) highly decomposed plant materials; moderate fine granular structure; very friable; many fine and very fine roots; abrupt smooth boundary.

A-1 to 6 inches; very dark grayish brown (10YR 3/2) gravelly fine sandy loam, light brownish gray (10YR 6/2) dry; weak fine granular structure; very friable; common fine, very fine, medium and coarse roots; 10 percent gravel; 5 percent channers; very strongly acid; clear smooth boundary.
Bw1-6 to 9 inches; dark yellowish brown (10YR 4/4) channery fine sandy loam; weak medium subangular blocky structure; friable; few very fine and fine roots, common medium roots; 10 percent gravel, 10 percent channers; strongly acid; clear wavy boundary.
Bw2—9 to 15 inches; yellowish brown (10YR 5/6) gravelly fine sandy loam; weak medium and coarse subangular blocky structure; friable; few fine and very fine roots, common medium roots; 10 percent gravel, 5 percent channers; strongly acid; abrupt smooth boundary.
2R—15+ inches; schist bedrock.

Range in Characteristics

Solum thickness: 10 to 20 inches
Depth to bedrock: 10 to 20 inches
Reaction: Very strongly acid to moderately acid
A horizon:
Hue-7.5YR or 10YR
Value-2 to 4
Chroma-1 to 3
Content of rock fragments-15 to 34 percent
Bw horizons:
Hue-7.5YR to 2.5 Y
Value-4 or 5
Chroma-4 to 8
Texture of the fine earth fraction-fine sandy loam
Content of rock fragments- 5 to 34 percent
$B C$ or C horizon (where present):
Hue-7.5YR to 5 Y
Value-4 or 5
Chroma-4 to 8
Texture of the fine earth fraction-fine sandy loam
Content of rock fragments-5 to 34 percent

Holyoke Series

Depth class: Shallow
Drainage class: Well drained
Permeability: Moderate
Landform: Bedrock-controlled hills and ridges
Parent material: Melt-out till or eolian deposits over basalt, sandstone or shale Slope range: 3 to 45 percent
Associated similar soils:
Brimfield (somewhat excessively drained, dominantly mica schist rock fragments)
Hollis (somewhat excessively drained, 5YR or yellower in B horizon)
Associated other soils:
Cheshire (very deep)
Wethersfield (very deep, dense substratum)
Yalesville (moderately deep)
Taxonomic class: Loamy, mixed, superactive, mesic Lithic Dystrudepts

Typical Pedon

Holyoke silt loam, in an area of Holyoke-Rock outcrop complex, 3 to 15 percent slopes, located in the town of West Hartford just east of Ely Pond, 200 feet south of Route 44, on the Avon USGS topographic quadrangle, lat. 41 degrees 47 minutes 44 seconds W., long. 72 degrees 47 minutes 55 seconds W., NAD 27, in a wooded area:

Oe-0 to 1 inch; black (10YR 2/1) moderately decomposed plant materials
A-1 to 3 inches; dark brown (10YR 3/3) silt loam, pale brown (10 YR 6/3) dry; weak medium granular structure; very friable; many fine roots; 10 percent rock fragments; very strongly acid; abrupt wavy boundary.
Bw1-3 to 8 inches; brown (7.5YR 4/4) silt loam; weak coarse granular structure; very friable; many fine roots; 10 percent rock fragments; very strongly acid; clear wavy boundary.
Bw2-8 to 18 inches; yellowish red (5YR 4/6) gravelly silt loam; weak medium subangular blocky structure; friable; common fine roots; 15 percent rock fragments; very strongly acid; abrupt wavy boundary.
2R-18 inches; basalt bedrock.
Range in Characteristics
Solum thickness: 10 to 20 inches
Depth to bedrock: 10 to 20 inches
Reaction: Extremely acid to moderately acid
A horizon:
Hue-5YR to 10YR
Value-3 or 4
Chroma-1 to 3
Content of rock fragments-5 to 14 percent
Bw horizons:
Hue-2.5YR to 7.5YR
Value-3 to 6
Chroma-4 to 6
Texture of the fine earth fraction-silt loam, loam, very fine sandy loam, or fine sandy loam
Content of rock fragments-5 to 34 percent
BC or C horizon (where present)—Similar to Bw horizons

Ipswich Series

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderate to rapid
Landform: Tidal marshes and salt marshes
Parent material: Grassy organic materials
Slope range: 0 to 2 percent
Associated similar soils:
Pawcatuck (16 to 51 inches organic materials over sandy deposits)
Westbrook (16 to 51 inches organic materials over loamy deposits)
Taxonomic class: Euic, mesic Typic Sulfihemists
Typical Pedon
Ipswich mucky peat, located in the town of Old Lyme, 1,000 feet west-northwest of the junction of Connecticut Route 156 and Button Ball Road, on the Old Lyme USGS
topographic quadrangle, lat. 41 degrees 17 minutes 19 seconds N., long. 72 degrees 18 minutes 38 seconds W., NAD 27, in a tidal marsh:

Oe1-0 to 16 inches; very dark grayish brown (10YR 3/2) mucky peat; 85 percent fiber, 35 percent rubbed; massive; friable; many fine and medium roots; 5 percent mineral content; slightly acid; moderately saline; clear wavy boundary.
Oe2-16 to 23 inches; very dark brown (10YR 2/2) mucky peat; 75 percent fiber, 30 percent rubbed; massive; friable; few fine and medium roots; 5 percent mineral content; neutral; moderately saline; clear wavy boundary.
Oe3-23 to 64 inches; very dark grayish brown (10YR 3/2) and very dark gray (10YR 3/1) mucky peat (crushed); 70 percent fiber, 25 percent rubbed; massive; friable; 10 percent mineral content; neutral; strongly saline; clear wavy boundary.
Oa-64 to 80 inches; very dark grayish brown (10YR 3/2) muck; 35 percent fiber, 10 percent rubbed; massive; friable; 15 percent mineral content; neutral; strongly saline.

Range in Characteristics

Thickness of organic materials: More than 51 inches
Depth to bedrock: More than 80 inches
Reaction: Strongly acid to slightly alkaline
Salinity: Moderately saline in the surface tier, moderately saline to strongly saline in the upper subsurface and bottom tiers

Surface tier:

Hue-7.5YR to 5 Y
Value-2 to 5
Chroma-0 to 3
Content of rock fragments-none
Subsurface tiers:
Hue-5YR to 5Y
Value-2 to 5
Chroma-0 to 3
Texture of the fine earth fraction-mucky peat
Content of rock fragments-none
Bottom tier:
Hue-5YR to $5 Y$
Value-2 to 4
Chroma-0 to 3
Texture of the fine earth fraction-muck
Content of rock fragments-none

Lanesboro Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface layer and subsoil, slow or very slow in the substratum
Landform: Hills
Parent material: Lodgement till derived from phyllite and schist
Slope range: 3 to 45 percent
Associated soils in a drainage sequence:
Fullam (moderately well drained)
Brayton (poorly drained)

Associated similar soil:
Dummerston (well drained, friable substratum)
Associated other soils:
Taconic (shallow, somewhat excessively drained)
Macomber (moderately deep, well drained)
Taxonomic class: Coarse-loamy, mixed, active, frigid Oxyaquic Dystrudepts
Typical Pedon
Lanesboro loam, 15 to 45 percent slopes, located in the town of Salisbury, 3,500 feet east along Mt. Riga Road from the intersection of Mt. Washington Road and Mt. Riga Road, 50 feet southeast of Mt. Riga Road, on the Bash Bish Falls USGS topographic quadrangle, lat. 42 degrees, 00 minutes, 25 seconds N., long. 73 degrees, 27 minutes, 10 seconds W., NAD 27, in a wooded area:

Oa-0 to 3 inches; highly decomposed plant materials derived from leaf litter; many fine to medium roots; very strongly acid; clear wavy boundary.
A-3 to 6 inches; black (10YR 2/1) loam, grayish brown (10 YR 5/2) dry; weak medium granular structure; very friable; many fine to medium roots; 5 percent channers, 2 percent cobbles; very strongly acid; abrupt wavy boundary.
Bw1-6 to 8 inches; dark yellowish brown (10YR 4/6) loam; weak medium subangular blocky structure; friable; many fine to medium roots; 10 percent channers, 2 percent cobbles; very strongly acid; clear wavy boundary.
Bw2-8 to 16 inches; olive brown (2.5Y 4/4) channery loam; weak medium subangular blocky structure; friable; many fine to very coarse roots; 20 percent channers, 5 percent stones; strongly acid; clear wavy boundary.
Bw3-16 to 22 inches; light olive brown (2.5Y 5/4) channery loam; weak medium subangular blocky structure; friable; common fine to coarse roots; 25 percent channers, 5 percent stones; strongly acid; gradual wavy boundary.
BC-22 to 30 inches; olive brown ($2.5 \mathrm{Y} 4 / 3$) channery loam; massive; friable; few fine roots; few medium prominent dark reddish brown (5YR 3/4) soft masses of iron accumulation; 25 percent channers, 5 percent stones; strongly acid; clear smooth boundary.
Cd-30 to 60 inches; olive brown (2.5Y 4/3) very channery loam; massive; firm; few medium prominent dark reddish brown (5YR 3/4) masses of iron accumulation; 40 percent channers, 5 percent stones; strongly acid

Range in Characteristics

Solum thickness: 20 to 35 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
A horizon:
Hue-7.5YR to 2.5 Y
Value-2 to 4
Chroma- 1 to 3
Content of rock fragments-0 to 14 percent
Bw1 horizon:
Hue-7.5YR or 10YR
Value-4 or 5
Chroma-2 to 6
Texture of the fine earth fraction-silt loam, loam, or very fine sandy loam Content of rock fragments- 10 to 34 percent

Bw2 horizon:
Hue-10YR or 2.5Y
Value-4 or 5
Chroma-2 to 6
Texture of the fine earth fraction-silt loam, loam, or very fine sandy loam
Content of rock fragments-15 to 50 percent
Bw3 horizon:
Hue-10YR or 2.5Y
Value-4 or 5
Chroma-2 to 6
Texture of the fine earth fraction-loam, silt loam, or very fine sandy loam
Content of rock fragments-15 to 50 percent
BC horizon:
Hue-10YR or 2.5Y
Value-4 or 5
Chroma-2 to 6
Texture of the fine earth fraction-loam, silt loam, or very fine sandy loam
Content of rock fragments- 15 to 50 percent
Cd horizon:
Hue-2.5Y or 5 Y
Value-4 to 6
Chroma-2 or 3
Texture of the fine earth fraction-loam or very fine sandy loam
Content of rock fragments- 15 to 50 percent

Leicester Series

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderate or moderately rapid in the surface layer and subsoil, and moderate to rapid in the substratum
Landform: Depressions and drainageways on hills and drumlins
Parent material: Melt-out till derived from granite, gneiss, and schist
Slope range: 0 to 5 percent
Associated soils in a drainage sequence:
Canton (well drained, coarse-loamy over sandy or sandy-skeletal)
Charlton (well drained)
Sutton (moderately well drained)
Associated similar soils:
Ridgebury Taxadjunct (dense substratum)
Whitman (very poorly drained, dense substratum)
Taxonomic class: Coarse-loamy, mixed, active, acid, mesic Aeric Endoaquepts
Typical Pedon
Leicester fine sandy loam, in an area of Ridgebury, Leicester, and Whitman soils, extremely stony, located in the town of Prospect, 4,500 feet north of the ProspectBethany town line and 300 feet east of Route 69, on the Mount Carmel USGS topographic quadrangle, lat. 41 degrees 28 minutes 49 seconds N., long. 72 degrees 58 minutes 49 seconds W., NAD 27, in a wooded area:

Oe-0 to 1 inch; black (10YR 2/1) moderately decomposed plant materials A-1 to 7 inches; black (10YR 2/1) fine sandy loam, gray (10 YR 5/1) dry; moderate
medium granular structure; friable; common fine and medium roots; 10 percent gravel and cobbles; strongly acid; clear wavy boundary.
Bg1-7 to 10 inches; grayish brown (2.5Y 5/2) fine sandy loam; weak medium subangular blocky structure; friable; common fine and medium roots; common medium prominent yellowish red (5YR 5/6) soft masses of iron accumulation; 10 percent gravel and cobbles; strongly acid; gradual wavy boundary.
Bg2-10 to 18 inches: light brownish gray ($2.5 \mathrm{Y} 6 / 2$) fine sandy loam; weak medium subangular blocky structure; friable; few fine and medium roots; common fine prominent yellowish brown (10YR 5/6) soft masses of iron accumulation; 10 percent gravel and cobbles; strongly acid; gradual wavy boundary.
BC-18 to 24 inches; pale brown (10YR 6/3) fine sandy loam; massive; friable; few fine roots; many medium distinct yellowish brown (10YR $5 / 6$) and prominent yellowish red (5YR 4/6) soft masses of iron accumulation; 10 percent gravel and cobbles; strongly acid; clear wavy boundary.
C1-24 to 43 inches; dark yellowish brown (10YR 4/4) gravelly fine sandy loam; massive; friable; many medium distinct yellowish brown (10YR 5/6) soft masses of iron accumulation and distinct pinkish gray (7.5YR 6/2) iron depletions; 15 percent gravel and cobbles; strongly acid; gradual wavy boundary.
C2-43 to 65 inches; dark yellowish brown (10YR 4/4) gravelly fine sandy loam; massive; friable; few fine distinct yellowish brown (10YR $5 / 6$) soft masses of iron accumulation; 15 percent gravel and cobbles; strongly acid.

Range in Characteristics

Solum thickness: 18 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid or strongly acid in the upper 40 inches and very strongly acid to moderately acid below

A horizon:
Hue-10YR
Value-2 or 3
Chroma-1 or 2 (If Ap horizon is present instead of A, chroma is 1 to 3)
Content of rock fragments- 5 to 14 percent
Bg horizons:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-1 to 4
Texture of the fine earth fraction-fine sandy loam, loam, or sandy loam
Content of rock fragments- 5 to 34 percent
BC horizon:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-3 or 4
Texture of the fine earth fraction-fine sandy loam, loam, or sandy loam
Content of rock fragments- 5 to 34 percent
C1 horizon:
Hue-7.5YR to 5 Y
Value-4 to 6
Chroma-1 to 4
Texture of the fine earth fraction-fine sandy loam or sandy loam
Content of rock fragments- 5 to 34 percent
C2 horizon:
Hue-7.5YR to 5 Y

Value-4 to 6
Chroma-1 to 4
Texture of the fine earth fraction-fine sandy loam or sandy loam
Content of rock fragments- 5 to 50 percent

Lim Series

Depth class: Very deep

Drainage class: Poorly drained
Permeability: Moderate in the loamy layers and rapid or very rapid in the underlying sandy materials
Landform: Depressions on flood plains
Parent material: Alluvium
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Hadley (well drained, coarse-silty)
Winooski (moderately well drained, coarse-silty)
Bash (somewhat poorly drained)
Saco (very poorly drained, coarse-silty)
Associated similar soils:
Limerick (coarse-silty)
Rippowam (fine sandy loam or coarser in the substratum)
Taxonomic class: Coarse-loamy, mixed, superactive, nonacid, mesic Fluvaquentic Endoaquepts

Typical Pedon

Lim very fine sandy loam, in an area of Limerick and Lim soils, located in the town of Canaan, 1,425 feet southwest of the junction of Connecticut Route 126 and Sand Road, on the east side of Hollenbeck River, on the South Canaan USGS topographic quadrangle, lat. 41 degrees 58 minutes 25 seconds N., long. 73 degrees 21 minutes 42 seconds W., NAD 27, in a brushy area:
A—0 to 6 inches; very dark grayish brown (2.5Y 3/2) very fine sandy loam; light brownish gray (10YR 6/2) dry; weak medium granular structure; very friable; many very fine and common fine and medium roots; neutral; clear smooth boundary.
Bg1-6 to 11 inches; dark grayish brown (10YR 4/2) very fine sandy loam; massive; friable; common fine and medium roots; common fine prominent yellowish brown (10YR 5/6) and distinct dark yellowish brown (10YR 4/4) soft masses of iron accumulation and prominent light olive gray (5Y 6/2) iron depletions; neutral; clear smooth boundary.
Bg2—11 to 15 inches; dark grayish brown (2.5Y 4/2) very fine sandy loam; massive; friable; few fine, medium and coarse roots; common pieces of slightly decomposed herbaceous plant materials; few fine prominent yellowish brown (10YR 5/6) and distinct dark yellowish brown (10YR 4/4) soft masses of iron accumulation and distinct light olive gray ($5 \mathrm{Y} 6 / 2$) iron depletions; neutral; clear smooth boundary.
Bg3-15 to 22 inches; dark gray (10YR 4/1) silt loam; massive; friable; few fine roots; common pieces of slightly decomposed herbaceous plant materials; common fine prominent strong brown ($7.5 \mathrm{YR} 5 / 6$) and yellowish red (5YR 4/6) soft masses of iron accumulation; neutral; abrupt smooth boundary.
Bg4-22 to 29 inches; gray (5Y 5/1) and olive gray (5Y 5/2) fine sandy loam; massive; friable; common pieces of slightly decomposed herbaceous plant materials; many coarse prominent yellowish brown (10YR $5 / 6,5 / 8$) and dark yellowish brown (10YR 4/4) soft masses of iron accumulation; neutral; clear smooth boundary.

CBg-29 to 42 inches; gray (5Y 5/1 and 5Y 6/1) loamy fine sand; massive; very friable; few pieces of slightly decomposed herbaceous plant materials; few medium prominent dark brown (7.5YR 4/4) soft masses of iron accumulation; neutral; clear smooth boundary.
Cg1-42 to 50 inches; olive gray ($5 \mathrm{Y} 5 / 2$) sand; single grain; loose; few pieces of slightly decomposed herbaceous and woody plant materials; many fine prominent strong brown (7.5YR 5/6) and yellowish brown (10YR 5/6) soft masses of iron accumulation; neutral; abrupt smooth boundary.
Cg2-50 to 57 inches; dark gray (10YR 4/1) loamy sand; single grain; loose; few thin black (10YR 2/1) silt loam lenses high in organic matter; few pieces of slightly decomposed herbaceous and woody plant materials; neutral; abrupt smooth boundary.
Cg3-57 to 65 inches; dark gray (5Y 4/1) sand; single grain; loose; few slightly decomposed pieces of herbaceous and woody plant materials; neutral.

Range in Characteristics

Solum thickness: 20 to 40 inches

Depth to bedrock: More than 80 inches
Reaction: Strongly acid to neutral (Some sub-horizon is moderately acid, slightly acid, or neutral within a depth of 40 inches)
A horizon:
Hue-2.5Y or 10YR
Value-2 to 4
Chroma-1 or 2
Content of rock fragments-0 to 5 percent
Bg horizons:
Hue-10YR to 5 Y
Value-3 to 6
Chroma-1 or 2
Texture of the fine earth fraction-very fine sandy loam, silt loam, or loam in the upper part, very fine sandy loam or silt loam in the lower part
Content of rock fragments-0 to 5 percent
$B C$ or $C B$ horizons (where present):
Hue-10YR to 5 Y
Value-3 to 6
Chroma-1 or 2
Texture of the fine earth fraction-very fine sandy loam, sandy loam, fine sandy loam, loamy fine sand, loamy sand, fine sand, sand, or coarse sand
Content of rock fragments- 0 to 14 percent
Cg horizons:
Hue-10YR to 5 Y
Value-3 to 6
Chroma-1 or 2
Texture of the fine earth fraction-stratified loamy fine sand to coarse sand
Content of rock fragments- 0 to 50 percent

Limerick Series

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderate
Landform: Depressions on flood plains

Parent material: Alluvium

Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Hadley (well drained)
Winooski (moderately well drained)
Bash (somewhat poorly drained, coarse-loamy)
Saco (very poorly drained)
Associated similar soils:
Lim (coarse-loamy)
Rippowam (coarse-loamy)
Taxonomic class: Coarse-silty, mixed, active, nonacid, mesic Fluvaquentic
Endoaquepts

Typical Pedon

Limerick silt loam, in an area of Limerick and Lim soils, located in the town of Wethersfield, 1,200 feet east on Second Lane Road from Interstate 91 underpass, 50 feet south of Second Lane Road, on the Hartford South USGS topographic quadrangle, lat. 41 degrees 41 minutes 52 seconds N., long. 72 degrees 38 minutes 24 seconds W., NAD 27, in a hayfield on the floodplain of the Connecticut River:

Ap-0 to 8 inches; dark grayish brown (10YR 4/2) silt loam, light grayish brown (10YR $6 / 2$) dry; moderate medium granular structure; friable; common very fine and fine and few medium roots; moderately acid; clear smooth boundary.
BCg1—8 to 20 inches; olive gray (5Y 4/2) silt loam; massive; friable (moist), slightly sticky (wet); few very fine and fine roots; common medium prominent dark yellowish brown (10YR 4/4) and yellowish brown (10YR 5/4, 5/6) soft masses of iron accumulation; moderately acid; clear smooth boundary.
BCg2—20 to 36 inches; olive gray (5Y 4/2) silt loam; massive; slightly sticky; slightly plastic; common medium prominent dark yellowish brown (10YR 4/4) and yellowish brown (10YR $5 / 4,5 / 6$) soft masses of iron accumulation; moderately acid; clear smooth boundary.
BCg3-36 to 54 inches; dark gray (5Y 4/1) silt loam; massive; slightly sticky; slightly plastic; common medium prominent dark yellowish brown (10YR 4/4) and yellowish brown (10YR $5 / 4,5 / 6$) soft masses of iron accumulation; moderately acid; clear smooth boundary.
Cg—54 to 65 inches; dark greenish gray (5GY 4/1) silt loam; massive; slightly sticky; slightly plastic; few, fine prominent dark yellowish brown (10YR 4/4) and yellowish brown (10YR 5/4, 5/6) soft masses of iron accumulation; neutral.

Range in Characteristics

Solum thickness: 17 to 60 inches
Depth to bedrock: More than 80 inches
Reaction: Strongly acid to neutral in the surface layer, moderately acid to neutral in the subsoil and substratum

A horizon:
Hue-10YR to 5 Y
Value-3 or 4
Chroma-1 or 2
Content of rock fragments-none
$B C g$ horizons:
Hue-2.5Y or 5Y
Value-4 to 6
Chroma-1 or 2

Texture of the fine earth fraction-silt loam or very fine sandy loam Content of rock fragments-none

Cg horizon:
Hue-2.5Y to 5GY
Value-4
Chroma-0 to 2
Texture of the fine earth fraction-silt loam or very fine sandy loam
Content of rock fragments-none

Loonmeadow series

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderately rapid in the surface layer and subsoil, moderately rapid to moderately slow in the substratum to a depth of 40 inches, and slow to rapid below 40 inches
Landform: Depressions and drainageways on hills
Parent material: Till derived from dolomite, granite, schist, and gneiss
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Bice (well drained)
Shelburne (well drained, dense substratum)
Ashfield (moderately well drained, dense substratum)
Schroon (moderately well drained)
Associated other soils:
Bucksport (organic materials greater than 51 inches deep)
Wonsqueak (16 to 51 inches of organic materials over loamy deposits)
Taxonomic class: Coarse-loamy, mixed, active, nonacid, frigid Mollic Endoaquepts

Typical Pedon

Loonmeadow mucky fine sandy loam, in an area of Brayton-Loonmeadow complex, extremely stony, located in the town of Norfolk, 1,600 feet south along Doolittle Drive from the intersection with North Colebrook Road and 50 feet east of Doolittle Drive, on the South Sandisfield USGS topographic quadrangle, lat. 42 degrees, 01 minutes, 18 seconds N., long. 73 degrees, 09 minutes, 33 seconds W. NAD 27 ; in a wooded area:

Oi-0 to 2 inches; very dusky red (2.5 YR 2.5/2) slightly decomposed plant materials derived from forest leaf litter
A-2 to 9 inches; black (10YR 2/1) mucky fine sandy loam, dark gray (2.5Y 4/1) dry; weak fine to medium granular structure; friable; many fine to coarse roots; 2 percent gravel, 1 percent cobbles, 1 percent stones; slightly acid; clear wavy boundary.
Bg-9 to 18 inches; dark grayish brown (2.5Y 4/2) sandy loam; weak fine to medium subangular blocky structure; friable; common fine to coarse roots; 8 percent gravel, 2 percent cobbles, 1 percent stones; few fine faint gray ($2.5 \mathrm{Y} 6 / 1$) iron depletions and few medium distinct dark yellowish brown (10YR 3/4) soft masses of iron accumulation; neutral; gradual smooth boundary.
Cg1-18 to 35 inches; dark grayish brown (2.5Y 4/2) gravelly sandy loam; massive; friable; few fine faint olive ($5 \mathrm{Y} 4 / 3$) soft masses of iron accumulation; 10 percent gravel, 5 percent cobbles, 5 percent stones; neutral; gradual smooth boundary.
Cg2-35 to 80 inches; gray (10 YR 5/1) gravelly sandy loam; massive; friable; few fine prominent olive ($5 \mathrm{Y} 4 / 3$) soft masses of iron accumulation; 20 percent gravel, 5 percent cobbles, 5 percent stones; neutral.

Range in Characteristics

Solum thickness: 14 to 25 inches
Depth to bedrock: More than 80 inches
Reaction: Strongly acid to neutral in the surface layer and subsoil, neutral to moderately alkaline in the substratum
Depth to carbonates: a trace may be present above a depth of 40 inches
O horizon:
Hue-2.5YR to 10YR
Value-2 or 2.5
Chroma-2 or 3
A or Ap horizon:
Hue-7.5YR or 10YR
Value-2 or 3 (5 or less dry)
Chroma-1
Content of rock fragments-0 to 14 percent
Bg horizon:
Hue-10YR or 2.5Y
Value-4 to 6
Chroma-1 or 2
Texture of the fine earth fraction-sandy loam or fine sandy loam
Content of rock fragments- 5 to 30 percent
Cg or Cdg horizons:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-1 or 2
Texture of the fine earth fraction-sandy loam or fine sandy loam (or fine sandy loam to coarse sand below a depth of 40 inches
Content of rock fragments- 5 to 30 percent

Ludlow Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface layer and subsoil, and slow or very slow in the substratum
Landform: Hills and drumlins
Parent material: Lodgement till derived from sandstone, shale and basalt
Slope range: 0 to 15 percent
Associated soils in a drainage sequence:
Wethersfield (well drained)
Wilbraham (poorly drained)
Menlo (very poorly drained)
Associated similar soils:
Rainbow (friable substratum)
Watchaug (friable substratum)
Taxonomic class: Coarse-loamy, mixed, semiactive, mesic Aquic Dystrudepts
Typical Pedon
Ludlow silt loam, 3 to 8 percent slopes, located in the town of Middletown, 400 feet southwest of the intersection of Bush Hill Road and Laurel Grove Road, on the Middletown USGS topographic quadrangle, lat. 41 degrees 30 minutes 54 seconds N., long. 72 degrees 40 minutes 42 seconds W., NAD 27, in a cultivated field:

Ap-0 to 8 inches; dark brown (7.5YR 3/2) silt loam, pinkish gray (7.5YR 6/2) dry; weak coarse granular structure; friable; many fine roots; 8 percent gravel; strongly acid; clear wavy boundary.
Bw1-8 to 20 inches; reddish brown (5YR 4/4) silt loam; weak coarse subangular blocky structure; friable; few fine roots; 10 percent gravel; strongly acid; gradual wavy boundary.
Bw2-20 to 26 inches; dark reddish brown (5YR 3/4) silt loam; weak coarse subangular blocky structure; friable; few fine roots; common medium distinct pinkish gray (5YR 6/2) iron depletions and prominent strong brown (7.5YR 5/8) soft masses of iron accumulation; 12 percent gravel; strongly acid; clear wavy boundary.
Cd—26 to 65 inches; dark reddish brown (2.5YR 3/4) gravelly loam; weak thick platy structure; very firm; brittle; thin patchy silt films and black (10YR 2/1) manganese coatings on some plates; few fine distinct reddish gray (5YR 5/2) iron depletions; 20 percent gravel and cobbles; strongly acid.

Range in Characteristics

Solum thickness: 20 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
Ap horizon:
Hue-5YR to 10R
Value-3 or 4 (Dry value 6 or more) (If A horizon is present instead of Ap, value is 2 or 3)
Chroma-2 to 4 (If A horizon is present instead of Ap, chroma is 1 to 3)
Content of rock fragments- 5 to 14 percent
Bw horizons:
Hue-2.5YR or 5YR
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-silt loam, fine sandy loam or loam
Content of rock fragments-5 to 25 percent
Cd horizon:
Hue-2.5YR or 5YR
Value-3 to 5
Chroma-2 to 6
Texture of the fine earth fraction-loam, silt loam, or fine sandy loam
Content of rock fragments-5 to 34 percent

Macomber Series

Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate
Landform: Bedrock-controlled hills and ridges
Parent material: Melt-out till derived from phyllite and schist
Slope range: 3 to 25 percent
Associated similar soil:
Taconic (shallow, somewhat excessively drained)
Associated other soils:
Dummerston (very deep, well drained)
Fullam (very deep, moderately well drained)
Brayton (very deep, poorly drained)

Taxonomic class: Loamy-skeletal, mixed, active, frigid Typic Dystrudepts

Typical Pedon

Macomber very channery loam, in an area of Macomber Taconic complex, 3 to 15 percent slopes, very rocky, located in the town of Salisbury, 2,400 feet southwest of the South Pond dam and 2,200 feet west of an old cemetery, on the Bash Bish USGS topographic quadrangle, lat. 42 degrees 00 minutes 11 seconds N., long. 73 degrees 28 minutes 40 seconds W., NAD 27, in a wooded area:

Oa-0 to 1 inch, highly decomposed plant materials derived from leaf litter
A—1 to 2 inches, dark brown (10YR 3/3) very channery loam, brown (10 YR 5/3) dry; weak fine granular structure; friable; many fine to medium roots; 30 percent channers, 5 percent gravel; very strongly acid; abrupt wavy boundary.
Bw1-2 to 10 inches, yellowish brown (10YR 5/8) very channery loam; weak very fine to medium subangular blocky structure; friable; many fine to coarse roots; 30 percent channers, 5 percent gravel; strongly acid; clear smooth boundary.
Bw2-10 to 21 inches, light olive brown (2.5Y5/4) very channery loam; weak medium subangular blocky structure; friable; common fine to coarse roots; 30 percent channers, 2 percent gravel; 3 percent cobbles; strongly acid; gradual smooth boundary.
C—21 to 30 inches, olive (5Y5/3) very channery loam; massive; friable to firm; few fine roots; 30 percent channers, 10 percent gravel; strongly acid; very abrupt irregular boundary.
2R-30 inches, phyllite bedrock

Range in Characteristics

Solum thickness: 15 to 30 inches
Depth to bedrock: 20 to 40 inches
Reaction: Very strongly acid or strongly acid
A horizon:
Hue-10YR or 2.5 Y
Value-2 to 4
Chroma-1 to 4
Content of rock fragments-10 to 34 percent
Bw horizons:
Hue-7.5YR to 2.5Y
Value-3 to 5
Chroma-3 to 8
Texture of the fine earth fraction-silt loam or loam
Content of rock fragments-30 to 59 percent
C horizon (where present)
Hue-10YR to 5 Y
Value-4 or 5
Chroma-2 to 6
Texture of the fine earth fraction-silt loam or loam
Content of rock fragments- 40 to 65 percent

Manchester Series

Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid in the surface layer, rapid or very rapid in the subsoil and substratum

Landform: Outwash plains, terraces, kames, and eskers
Parent material: Glaciofluvial deposits derived from sandstone, shale, and basalt
Slope range: 0 to 45 percent
Associated soil in a drainage sequence:
Hartford (somewhat excessively drained, sandy)
Associated similar soils:
Penwood (sandy)
Windsor (sandy)
Taxonomic class: Sandy-skeletal, mixed, mesic Typic Udorthents

Typical Pedon

Manchester gravelly sandy loam, 0 to 3 percent slopes, located in the town of Portland, 2,300 feet west-southwest of the intersection of Isinglass Hill Road and Connecticut Route 17, and 2,200 feet south of the Middlesex-Hartford County line, on the Glastonbury USGS topographic quadrangle, lat. 41 degrees 37 minutes 44 seconds N., long. 72 degrees 36 minutes 48 seconds W., NAD 27, in a cultivated field:

Ap-0 to 9 inches; dark brown (7.5YR 3/2) gravelly sandy loam, pinkish gray (7.5 YR $6 / 2$) dry; weak medium granular structure; very friable; many fine and common medium roots; 20 percent gravel; strongly acid; clear smooth boundary.
Bw-9 to 18 inches; reddish brown (5YR 4/3) gravelly loamy sand; very weak fine and medium granular structure; very friable; few fine roots; 25 percent gravel; strongly acid; clear wavy boundary.
C-18 to 65 inches; reddish brown (5YR 4/4) stratified extremely gravelly coarse sand to very gravelly loamy sand; single grain; loose; 50 percent gravel; very strongly acid.

Range in Characteristics

Solum thickness: 12 to 24 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
Ap horizon:
Hue-5YR to 10YR
Value- 3 or 4 (If A horizon is present instead of Ap, value is 2 or 3)
Chroma-2 to 4 (If A horizon is present instead of Ap, chroma is 1 to 3)
Content of rock fragments- 15 to 34 percent
Bw horizon:
Hue-5YR or 2.5YR
Value-4 or 5
Chroma-3 to 8
Texture of the fine earth fraction-loamy sand or sand
Content of rock fragments- 15 to 50 percent
C horizon:
Hue-5YR or 2.5YR
Value-3 to 6
Chroma-3 to 6
Texture of the fine earth fraction-stratified loamy sand to coarse sand
Content of rock fragments- 35 to 70 percent

Maybid Series

Depth class: Very deep
Drainage class: Very poorly drained

Permeability: Moderate in the surface layer, and slow or very slow in the subsoil and substratum
Landform: Depressions and drainageways on lake plains and terraces
Parent material: Glaciolacustrine deposits
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Brancroft (moderately well drained, fine silty)
Scitico (poorly drained)
Associated other soils:
Raynham (coarse-silty)
Shaker (coarse-loamy over clayey)
Taxonomic class: Fine, mixed, semiactive, nonacid, mesic Typic Humaquepts
Typical Pedon
Maybid silt loam, in an area of Scitico, Shaker, and Maybid soils, located in the town of East Windsor, 2,100 feet west of the intersection of Newberry and Winkler Roads, 250 feet north of Newberry Road, on the Broad Brook USGS topographic quadrangle, lat. 41 degrees 55 minutes 20 seconds N ., long. 72 degrees 35 minutes 33 seconds W., NAD 27, in a brushy area:

A-0 to 9 inches; very dark grayish brown (10YR $3 / 2$) silt loam, dark gray (10YR 4/1) dry; moderate medium granular structure; friable; slightly sticky and slightly plastic; many very fine and fine and common medium roots; strongly acid; clear smooth boundary.
Bg1-9 to 18 inches; gray (5Y 5/1) silty clay loam; weak very coarse prismatic structure parting to moderate coarse subangular blocky structure; prism surfaces are a continuous gray ($5 \mathrm{Y} 5 / 1$); firm; sticky and plastic; few very fine and fine roots along prism faces; common coarse prominent dark yellowish brown (10YR 4/4) and yellowish brown (10YR $5 / 6$ and 10YR $5 / 8$) soft masses of iron accumulation in the interior of peds; moderately acid; clear smooth boundary.
Bg2-18 to 26 inches; gray ($5 \mathrm{Y} 5 / 1$) silty clay loam; weak very coarse prismatic structure parting to moderate coarse subangular blocky; prism surfaces are a continuous gray ($5 \mathrm{Y} 5 / 1$) and dark gray ($5 \mathrm{Y} 4 / 1$); firm; sticky and plastic; common coarse prominent dark yellowish brown (10YR 4/4) and yellowish brown (10YR $5 / 6$ and 10YR 5/8) soft masses of iron accumulation in the interiors of peds; slightly acid; clear smooth boundary.
Cg1-26 to 36 inches; gray ($5 \mathrm{Y} 5 / 1$) and dark gray ($5 \mathrm{Y} 4 / 1$) varved silt loam, silty clay loam, and clay (silty clay loam weighted average texture); common light olive brown ($2.5 \mathrm{Y} 5 / 4,5 / 6$) and dark gray ($5 \mathrm{Y} 4 / 1$) variegations; weak thin platy structure; firm; sticky and plastic; neutral.
Cg2-36 to 60 inches; grayish brown ($2.5 \mathrm{Y} 5 / 2$) and olive gray ($5 \mathrm{Y} 5 / 2$) varved silt loam, silty clay loam, and clay (silty clay loam weighted average texture); common light olive brown ($2.5 \mathrm{Y} 5 / 4,5 / 6$) and dark gray ($5 \mathrm{Y} 4 / 1$) variegations; weak thin platy structure; firm; sticky and plastic; neutral.

Range in Characteristics

Solum thickness: 18 to 30 inches
Depth to bedrock: More than 80 inches
Reaction: Strongly acid to moderately acid in the surface layer and strongly acid to neutral in the subsoil and substratum

A horizon:
Hue-10YR to 5 Y
Value-2 or 3 (dry value 4 or 5)

Chroma-0 to 2
Content of rock fragments-none
Bg1 horizon:
Hue-5Y
Value-4 or 5
Chroma-1 or 2
Texture of the fine earth fraction-silty clay loam, or silty clay
Content of rock fragments-none
Bg2 horizon:
Hue-5Y
Value-4 to 6
Chroma-0 to 2
Texture of the fine earth fraction-silty clay loam, silty clay or clay
Content of rock fragments-none
Cg horizons:
Hue-2.5Y, 5Y, or 5GY
Value-4 or 5
Chroma-0 or 1
Texture of the fine earth fraction-silty clay loam, silty clay, or clay.
Content of rock fragments-none

Medomak Series Taxadjunct

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderate in the surface layer and upper substratum and rapid or very rapid in the lower substratum
Landform: Depressions and drainageways on flood plains
Parent material: Alluvium
Slope range: 0 to 2 percent
Associated other soils:
Ondawa (well drained, coarse-loamy)
Rumney (poorly drained, coarse-loamy)
Taxonomic class: Coarse-loamy over sandy or sandy-skeletal, mixed, nonacid, superactive, frigid Fluvaquentic Endoaquepts

Typical Pedon

Medomak mucky silt loam, located in the town of Canaan, 2,000 feet south along Wangum Lake Brook from the outlet of Wangum Lake and 30 feet east of the brook, on the South Canaan USGS topographic quadrangle, lat. 41 degrees 58 minutes 08 seconds N., long. 73 degrees 16 minutes 09 seconds W., NAD 27, in a brushy area:
A-0 to 7 inches; very dark grayish brown (10YR 3/2) mucky silt loam, light brownish gray (10YR 6/2) dry; moderate medium granular structure; very friable; many very fine and fine roots; 2 percent gravel; slightly acid; gradual wavy boundary.
$\mathrm{Bg}-7$ to 23 inches; dark gray ($2.5 \mathrm{Y} 4 / 1$) silt loam; massive; very friable; few very fine and fine roots; common very coarse prominent (5YR $5 / 8$) masses of iron accumulation; 2 percent gravel; neutral; clear wavy boundary.
Ab-23 to 33 inches; very dark brown (10YR 2/2) mucky silt loam; massive; very friable; few medium distinct dark gray (2.5Y 4/1) iron depletions; 2 percent gravel; neutral; abrupt smooth boundary.

2Cg-33 to 46 inches; grayish brown (2.5Y 5/2) very gravelly coarse sand; single grain; loose; common very coarse prominent strong brown (7.5YR 4/6) masses of iron accumulation; 40 percent gravel; slightly alkaline; abrupt smooth boundary.
$3 C-46$ to 78 inches; light olive brown (2.5Y5/3) very fine sandy loam; massive; firm; common medium faint grayish brown (2.5Y5/2) iron depletions; 5 percent gravel; slightly alkaline.

Range in Characteristics
Solum thickness: 6 to 15 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to neutral to a depth of about 30 inches, moderately acid to slightly alkaline below

O horizon (where present):
Hue-5YR to 10YR
Value-2 or 3
Chroma-1 or 2
A horizon:
Hue-7.5YR to 2.5 Y
Value-2 or 3
Chroma-0 to 2
Content of rock fragments- 0 to 5 percent
Cg horizons:
Hue-10YR to 5GY
Value-3 to 6
Chroma-0 to 2
Texture of the fine earth fraction between 6 and 20 inches-silt loam, very fine sandy loam, or loamy very fine sand
Texture of the fine earth fraction between 20 and 40 inches-loamy very fine sand to very gravelly coarse sand
Texture below 40 inches-very fine sandy loam to fine gravel
Content of rock fragments- 0 to 5 percent above 40 inches, 0 to 50 percent below 40 inches

The Medomak soils in this survey area are taxadjuncts because the soil is coarser textured than is defined as the range for the series. This difference, however, does not significantly affect the use, management, or interpretations of the soils. In this survey, the Medomak soils are coarse-loamy, mixed, superactive, frigid Fluvaquentic Humaquepts.

Menlo Series

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderately rapid in the organic surface layer, moderate in the mineral surface layer and subsoil, and slow or very slow in the substratum
Landform: Depressions and drainageways on hills and drumlins
Parent material: Lodgement till derived from sandstone, shale, and basalt
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Wethersfield (well drained)
Ludlow (moderately well drained)
Wilbraham (poorly drained)
Taxonomic class: Coarse-loamy, mixed, active, mesic Typic Endoaquolls

Typical Pedon

Menlo mucky silt loam, in an area of Wilbraham and Menlo soils, extremely stony, located in the town of Middletown, 700 feet northwest of the intersection of Long Hill Road and Pine Street, on the Middletown USGS topographic quadrangle, lat. 41 degrees 32 minutes 21 seconds N., long. 72 degrees 39 minutes 51 seconds W., NAD 27, in a wooded swamp:

Oa-0 to 5 inches; black (10YR 2/1) highly decomposed plant materials; 5 percent fiber; massive; very friable; many very fine and fine roots, few medium to very coarse roots; moderately acid; clear wavy boundary.
A-5 to 16 inches; black (10YR 2/1) mucky silt loam, gray (7.5 YR 5/1) dry; weak coarse subangular blocky structure; friable; common very fine and fine roots; common fine prominent strong brown (7.5 YR 4/6) soft masses of iron accumulation; 2 percent quartz and basalt gravel; neutral; clear wavy boundary.
Bg1-16 to 22 inches; gray (7.5YR 5/1) flaggy very fine sandy loam; weak coarse subangular blocky structure; friable; common medium prominent strong brown (7.5 YR 5/6) and yellowish brown (10YR 5/6) soft masses of iron accumulation; 15 percent red sandstone flagstones, 10 percent quartz and basalt gravel, 5 percent red sandstone channers; neutral; clear smooth boundary.
Bg2-22 to 27 inches; grayish brown (10YR 5/2) flaggy fine sandy loam; weak coarse subangular blocky structure; friable; many fine to coarse prominent strong brown (7.5 YR 5/6) soft masses of iron accumulation and common medium faint gray (10YR 5/1) iron depletions; 10 percent red sandstone flagstones, 10 percent red sandstone channers, 5 percent quartz and basalt gravel; neutral; abrupt smooth boundary.
Cd1—27 to 40 inches; reddish brown (5YR 4/3) fine sandy loam; massive; firm; 1 inch lenses of brown (7.5YR 4/3) loamy sand on top of the horizon; common medium prominent strong brown (7.5YR 4/6) soft masses of iron accumulation, common medium faint reddish gray (5YR 5/2) and few medium distinct pinkish gray (7.5YR $6 / 2$) iron depletions; 8 percent quartz and basalt gravel , 2 percent red sandstone channers and 2 percent red sandstone flagstones; neutral; gradual smooth boundary.
Cd2—40 to 60 inches; reddish brown (5YR 4/3) fine sandy loam; massive; firm; common fine distinct yellowish red (5YR 4/6) soft masses of iron accumulation; 8 percent quartz and red sandstone gravel, 2 percent red sandstone channers and 2 percent red sandstone flagstones; neutral.

Range in Characteristics

Solum thickness: 20 to 36 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid in the organic layers, very strongly acid to neutral in the mineral surface layers, and strongly acid to slightly alkaline in the subsoil and substratum (ranges to moderately alkaline below 40 inches)
O horizon:
Hue-5YR to 10YR
Value-2 to 3
Chroma-0 to 2
Content of rock fragments-0 to 25 percent
A horizon:
Hue-5YR to 10YR
Value-2 to 3
Chroma-1 or 2
Content of rock fragments-2 to14 percent

Bg horizons:
Hue-2.5YR to 10YR
Value-3 to 6
Chroma-1 or 2
Texture of the fine earth fraction-silt loam, loam, very fine sandy loam or fine sandy loam
Content of rock fragments-2 to 25 percent
Cd horizons:
Hue-10R to 5YR
Value-3 to 5
Chroma-2 to 6
Texture of the fine earth fraction-silt loam, loam, very fine sandy loam or fine sandy loam
Content of rock fragments-5 to 34 percent

Merrimac Series

Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid in the surface layer and subsoil, and rapid or very rapid in the substratum
Landform: Outwash plains, terraces, and kames
Parent material: Glaciofluvial deposits derived from granite, gneiss, and schist
Slope range: 0 to 15 percent
Associated soils in a drainage sequence:
Hinckley (excessively drained, sandy skeletal)
Sudbury (moderately well drained)
Walpole (poorly drained)
Associated similar soils:
Agawam (coarse-loamy over sandy or sandy-skeletal)
Enfield (coarse-silty over sandy or sandy-skeletal)
Taxonomic class: Sandy, mixed, mesic Typic Dystrudepts

Typical Pedon

Merrimac sandy loam, 3 to 8 percent slopes, located in the town of Newtown, 0.5 miles north of the intersection of Glen Road and Walnut Tree Hill Road and 0.1 miles east of Walnut Tree Road, on the Newtown USGS topographic quadrangle, lat. 41 degrees 26 minutes 37 seconds N., long. 73 degrees 16 minutes 20 seconds W., NAD 27:

Ap-0 to 9 inches; very dark grayish brown (10YR 3/2) sandy loam, light brownish gray (10 YR 6/2) dry; weak medium granular structure; very friable; common fine roots; 5 percent rock fragments; slightly acid; clear wavy boundary.
Bw1-9 to 16 inches; brown (7.5YR 4/4) sandy loam; weak medium granular structure; very friable; few fine roots; 5 percent rock fragments; moderately acid; gradual wavy boundary.
Bw2-16 to 24 inches; brown (7.5YR 4/4) gravelly sandy loam; weak medium granular structure; very friable; few fine roots; 15 percent rock fragments; moderately acid; clear wavy boundary.
2C-24 to 60 inches; yellowish brown (10YR 5/4) stratified very gravelly coarse sand to very gravelly sand; single grain; loose; 40 percent rock fragments; moderately acid.

Range in Characteristics

Solum thickness: 18 to 30 inches
Depth to bedrock: More than 80 inches
Reaction: Strongly acid to slightly acid in the surface layer, moderately acid in the subsoil and substratum.

Ap horizon:
Hue-7.5YR or 10YR
Value-3 or 4 (If A horizon is present instead of Ap, value is 2 or 3)
Chroma-2 to 4 (If A horizon is present instead of $A p$, chroma is 1 or 2)
Content of rock fragments- 5 to 14 percent
Bw1 horizon:
Hue-7.5YR or 10YR
Value-3 to 6
Chroma-3 to 8
Texture of the fine earth fraction-sandy loam or fine sandy loam,
Content of rock fragments-5 to 14 percent
Bw2 horizon:
Hue-7.5YR to 2.5 Y
Value-3 to 6
Chroma-3 to 8
Texture of the fine earth fraction-sandy loam
Content of rock fragments-5 to 30 percent
2C horizon:
Hue-10YR to 5 Y
Value-3 to 6
Chroma-1 to 6
Texture-stratified gravelly sand to very gravelly coarse sand
Content of rock fragments-25 to 45 percent gravel and 5 to 10 percent cobbles
Some of the Merrimac soils in this survey area have a mean annual soil temperature which is colder than typical of the series. These map units (434A, 434B, and 434C) are identified as cold phases of the Merrimac series.

Millsite Series

Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Landform: Bedrock-controlled hills and ridges
Parent material: Melt-out till derived from granite, gneiss, and schist
Slope range: 3 to 45 percent
Associated other soils:
Westminster (shallow, somewhat excessively drained)
Bice (very deep)
Schroon (very deep, moderately well drained)
Loonmeadow (very deep, very poorly drained)
Taxonomic class: Coarse-loamy, mixed, active, frigid Typic Dystrudepts
Typical Pedon
Millsite fine sandy loam, in an area of Bice-Millsite complex, 3 to 15 percent slopes, very rocky, located in the town of Norfolk, on Dutton Mountain, on the Norfolk USGS
topographic quadrangle, lat. 41 degrees 58 minutes 20 seconds N., long. 73 degrees 11 minutes 32 seconds W., NAD 27, in a wooded area:

Oe-0 to 1 inch moderately decomposed plant materials derived from leaf litter
A-1 to 5 inches, dark brown (7.5YR 3/2) fine sandy loam, brown (7.5 YR 4/2) dry; weak very fine and fine granular structure; friable; many fine and medium roots; very strongly acid; clear smooth boundary.
Bw1-5 to 13 inches, dark yellowish brown (10YR 3/4) stony fine sandy loam; weak medium subangular blocky structure; friable; few fine and common medium roots; 5 percent gravel, 5 percent cobbles, 10 percent stones; very strongly acid; gradual irregular boundary.
Bw2-13 to 24 inches, dark yellowish brown (10YR 4/4) fine sandy loam; weak medium subangular blocky structure; friable; few very fine, fine and medium roots; 5 percent gravel; strongly acid; clear wavy boundary.
C-24 to 31 inches, yellowish brown (10YR 5/4) sandy loam; massive; firm; 5 percent gravel; strongly acid; abrupt irregular boundary.
2R-31 inches, gneiss bedrock
Range in Characteristics
Solum thickness: 16 to 36 inches
Depth to bedrock: 20 to 40 inches
Reaction: Very strongly acid to slightly acid
Ap or A horizon:
Hue-7.5YR to 2.5 Y
Value-3 or 4
Chroma-2 to 4
Content of rock fragments-0 to 14 percent
Bw horizons:
Hue-7.5YR to 2.5 Y
Value-4 to 6
Chroma-4 to 6
Texture of the fine earth fraction-loam, fine sandy loam, or sandy loam
Content of rock fragments-5 to 34 percent
C horizon:
Hue-7.5YR to 2.5 Y
Value-4 or 5
Chroma-2 to 6
Texture of the fine earth fraction-loam, fine sandy loam, or sandy loam
Content of rock fragments-5 to 34 percent

Montauk Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid in the surface layer and subsoil, and slow or very slow in the substratum
Landform: Hills and drumlins
Parent material: Lodgement till derived from granite, gneiss, and schist
Slope range: 3 to 35 percent
Associated soils in a drainage sequence:
Woodbridge (moderately well drained)
Ridgebury taxadjunct (poorly drained)
Whitman (very poorly drained)

Associated similar soils:
Broadbrook (finer textured substratum)
Canton (coarse-loamy over sandy or sandy-skeletal, friable substratum)
Charlton (friable substratum)
Paxton (finer textured substratum)
Taxonomic class: Coarse-loamy, mixed, subactive, mesic Oxiaquic Dystrudepts
Typical Pedon
Montauk fine sandy loam, in an area of Paxton and Montauk fine sandy loams, 15 to 35 percent slopes, extremely stony, located in the town of Killingworth, Chatfield Hollow State Park, 400 feet west along Abner Lane from the crossing with Chatfield Hollow Brook, 400 feet south of Abner Lane and 600 feet west of Old Mill Pond, on the Haddam USGS topographic quadrangle, lat. 41 degrees 22 minutes 40 seconds N., long. 72 degrees 35 minutes 50 seconds W., NAD 27, in a wooded area:

A-0 to 4 inches; dark brown (10YR 3/3) fine sandy loam, pale brown (10 YR 6/3) dry; weak medium granular structure; friable; common very fine and fine roots; 5 percent gravel; strongly acid; abrupt smooth boundary.
Bw1-4 to 14 inches; dark yellowish brown (10YR 4/6) fine sandy loam; weak medium subangular blocky structure; friable; many very fine and common fine and medium roots; 5 percent gravel; strongly acid; clear smooth boundary.
Bw2-14 to 25 inches; dark yellowish brown (10YR 4/4) sandy loam; weak medium subangular blocky structure; friable; common very fine, fine, and medium roots; 10 percent gravel; strongly acid; abrupt smooth boundary.
2Cd1-25 to 39 inches; dark grayish brown (2.5Y 4/2) gravelly loamy coarse sand; massive; firm; few fine roots; 20 percent gravel; strongly acid; clear smooth boundary.
2Cd2-39 to 60 inches; dark grayish brown (2.5Y 4/2) gravelly sandy loam; massive; firm; 25 percent gravel; strongly acid.

Range in Characteristics
Solum thickness: 20 to 38 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
A horizon:
Hue-7.5YR or 10YR
Value-2 to 5
Chroma-1 to 4
Content of rock fragments-3 to 14 percent
Bw1 horizon:
Hue-7.5YR or 10YR
Value-4 or 5
Chroma-3 to 8
Texture of the fine earth fraction-loam, fine sandy loam or sandy loam
Content of rock fragments- 3 to 34 percent
Bw2 horizon:
Hue-7.5YR to 2.5 Y
Value-4 to 6
Chroma-3 to 6
Texture of the fine earth fraction-loam, fine sandy loam or sandy loam
Content of rock fragments- 3 to 34 percent

2Cd horizons:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-2 to 6
Texture of the fine earth fraction-loamy coarse sand, sandy loam, or loamy sand Content of rock fragments-5 to 34 percent

Moosilauke Series

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderately rapid in the surface layer and subsoil, and rapid or very rapid in the substratum
Landform: Depressions and drainageways on outwash plains and terraces
Parent material: Glaciofluvial deposits derived from granite, schist, and gneiss
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Boscawen (excessively drained, sandy-skeletal)
Merrimac, cold (somewhat excessively drained)
Sudbury, cold (moderately well drained)
Associated similar soils:
Scarboro, cold (very poorly drained)
Taxonomic class: Sandy, mixed, frigid Aeric Endoaquepts

Typical Pedon

Moosilauke loam, located in the town of Norfolk, 1,800 feet northwest along Gamefields Road from the intersection with Windrow Road, 50 feet east of Gamefields Road and 100 feet west of Tobey Pond, on the Norfolk USGS topographic quadrangle, lat. 41 degrees 58 minutes 33 seconds N., long. 73 degrees 13 minutes 35 seconds W., NAD 27, in a wooded area:

Oa-0 to 1 inch; very dark gray (5YR $3 / 1$) highly decomposed plant materials
A—1 to 6 inches; very dark gray (10YR 3/1) loam; moderate fine granular structure; very friable; common fine distinct brown (7.5YR 4/3) masses of iron accumulation and few medium faint dark gray (10YR 4/1) iron depletions; many fine and very fine roots, common medium roots, and few very coarse and coarse roots; strongly acid; clear wavy boundary.
Bg-6 to 16 inches; dark grayish brown (10YR 4/2) fine sandy loam; weak medium subangular blocky structure; very friable; common very fine and fine roots; common fine faint brown (7.5YR 4/3) mass of iron accumulation and common fine faint gray (7.5YR 5/1) iron depletions; 12 percent gravel; strongly acid; clear smooth boundary.
Bw-16 to 24 inches; dark yellowish brown (10YR 4/4) gravelly fine sandy loam; weak medium subangular blocky structure; friable; common medium distinct dark yellowish brown (10YR 4/6) and few fine prominent strong brown (7.5YR 5/8) soft masses of iron accumulation, few fine distinct light brownish gray (10YR 6/2) iron depletions; 20 percent gravel; strongly acid; gradual smooth boundary.
C1-24 to 39 inches; dark yellowish brown (10YR4/4) loamy fine sand; massive; very friable; common coarse prominent yellowish red (5YR 4/6) soft masses of iron accumulation; 10 percent gravel; moderately acid; gradual smooth boundary.
C2—39 to 65 inches; light olive brown (2.5Y5/4) fine sand; single grain; loose; 5 percent gravel; moderately acid.

Range in Characteristics

Solum thickness: 18 to 28 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
A horizon:
Hue-10YR or 2.5 Y
Value-2 to 4
Chroma-1 or 2
Content of rock fragments-0 to 14 percent
Bg horizon:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-1 or 2
Texture of the fine earth fraction-sandy loam or fine sandy loam
Content of rock fragments-0 to 25 percent
Bw horizon:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-3 or 4
Texture of the fine earth fraction-sandy loam or fine sandy loam
Content of rock fragments- 0 to 25 percent
C horizons:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-2 to 4
Texture of the fine earth fraction-loamy sand to sand
Content of rock fragments-0 to 50 percent

Mudgepond Series

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderate in the surface layer, moderate or moderately rapid in the subsoil, and moderate in the substratum
Landform: Depressions and drainageways on hills and plains
Parent material: Till from limestone, dolomite, and schist
Slope range: 0 to 8 percent
Associated soils in a drainage sequence:
Nellis (well drained)
Amenia (moderately well drained)
Alden (very poorly drained)
Associated other soils:
Stockbridge (well drained, carbonates at greater depth)
Georgia (moderately well drained, carbonates at greater depth)
Taxonomic class: Coarse-loamy, mixed, superactive, mesic Typic Endoaquolls

Typical Pedon

Mudgepond silt loam, located in the town of Sharon, 4,000 feet southeast along Norton Hill Road from the intersection with Race Track Road and 800 feet southwest of Norton Hill Road, on the Sharon USGS topographic quadrangle, lat. 41 degrees, 56 minutes, 29 seconds N. and 73 degrees, 24 minutes, 33 seconds W. , NAD 27, in a wooded area:

A-0 to 11 inches; very dark gray (10YR 3/1) silt loam; gray (10YR 5/1) dry; weak fine and medium granular structure; very friable; slightly sticky, slightly plastic; many very fine to very coarse roots; 5 percent subrounded gravel; slightly alkaline; clear wavy boundary.
$\mathrm{Bg}-11$ to 16 inches; olive gray (5Y 5/2) loam; weak medium subangular blocky structure; friable; slightly sticky, slightly plastic; few very fine and fine roots; common medium faint light olive brown (2.5Y 5/3) soft masses of iron accumulation and common coarse faint gray ($5 \mathrm{Y} 5 / 1$) iron depletions; 10 percent subrounded gravel; slightly alkaline; gradual smooth boundary.
Bw1-16 to 26 inches; light olive brown (2.5Y 5/3) fine sandy loam; weak medium subangular blocky structure; friable; slightly sticky, slightly plastic; few very fine and fine roots; common medium prominent olive yellow (2.5Y 6/8) soft masses of iron accumulation and common coarse faint grayish brown (2.5Y5/2) iron depletions; 10 percent subrounded gravel; slightly alkaline; gradual wavy boundary.
Bw2—26 to 35 inches; light olive brown (2.5Y5/4) gravelly fine sandy loam; weak medium subangular blocky structure; friable; non sticky, non plastic; common medium prominent yellowish brown (10 YR 5/8) soft masses of iron accumulation and common medium prominent gray (10YR 6/1) iron depletions; 15 percent subrounded gravel; slightly effervescent; slightly alkaline; gradual smooth boundary.
C-35 to 65 inches; olive brown (2.5Y 4/4) gravelly fine sandy loam; massive; firm; non sticky, non plastic; common medium distinct yellowish brown (10 YR 5/6) masses of iron accumulation and few fine distinct light olive gray (5 Y 6/2) iron depletions; 15 percent subrounded gravel; slightly effervescent; slightly alkaline.

Range in Characteristics

Solum thickness: 20 to 36 inches
Depth to bedrock: More than 80 inches
Reaction: Neutral to slightly alkaline in the surface layer and subsoil, neutral to moderately alkaline in the substratum
Depth to carbonates: Mainly from 12 to 40 inches, but may be deeper than 40 inches
A or Ap horizon:
Hue-10YR to 2.5 Y
Value-2 or 3 (5 or less dry)
Chroma-1 to 3
Content of rock fragments-5 to 14 percent
Bg horizon:
Hue-10 YR to 5 Y
Value-4 to 6
Chroma-1 or 2
Texture of the fine earth fraction-fine sandy loam, very fine sandy loam, loam, or silt loam
Content of rock fragments-5 to 34 percent
Bw Horizons:
Hue-2.5Y
Value-4 to 6
Chroma-3 or 4
Texture of the fine earth fraction-fine sandy loam, very fine sandy loam, loam or silt loam
Content of rock fragments-5 to 34 percent

C or Cg horizon:
Hue-10YR to 5Y
Value-4 or 5
Chroma-1 to 6
Texture of the fine earth fraction-sandy loam, fine sandy loam, very fine sandy loam or loam
Content of rock fragments-5 to 34 percent
Some of the Mudgepond soils in this survey area have a mean annual soil temperature which is colder than typical of the series. These map units (457 and 458) are identified as cold phases of the Mudgepond series.

Narragansett Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface layer and subsoil, and moderately rapid or rapid in the substratum
Landform: Hills or till plains
Parent material: Eolian deposits over melt-out till derived from gneiss, schist, sandstone and shale
Slope range: 2 to 25 percent
Associated soil in a drainage sequence:
Wapping (moderately well drained, coarse-loamy)
Associated similar soils:
Broadbrook (coarse-loamy, dense substratum)
Canton (coarser textured)
Charlton (coarse-loamy)
Montauk (coarse-loamy, dense substratum)
Paxton (coarse-loamy, dense substratum)
Taxonomic class: Coarse-loamy over sandy or sandy-skeletal, mixed, active, mesic Typic Dystrudepts

Typical Pedon

Narragansett silt loam, in an area of Narragansett-Hollis complex, 3 to 15 percent slopes, very rocky, located in the town of Montville, 0.6 miles north of the intersection of Cherry Lane and Raymond Hill Road and 30 feet west of Cherry Lane, on the Montville USGS topographic quadrangle, lat. 41 degrees 29 minutes 28 seconds N., long. 72 degrees 09 minutes 23 seconds W., NAD 27, in a wooded area:

Ap-0 to 6 inches; dark brown (10YR 3/3) silt loam, pale brown (10 YR 6/3) dry; weak medium granular structure; very friable; common medium roots; very strongly acid; clear wavy boundary.
Bw1-6 to 15 inches; dark yellowish brown (10YR 4/6) silt loam; weak medium subangular blocky structure; very friable; common medium roots; very strongly acid; gradual wavy boundary.
Bw2—15 to 24 inches; yellowish brown (10YR 5/6) silt loam; weak medium subangular blocky structure; very friable; common medium roots; strongly acid; clear wavy boundary.
Bw3-24 to 28 inches; yellowish brown (10YR 5/6) gravelly silt loam; weak medium subangular blocky structure; very friable; few fine roots; 15 percent gravel; strongly acid; clear wavy boundary.
2C-28 to 60 inches; light olive brown (2.5Y 5/4) very gravelly loamy coarse sand; single grain; loose; 45 percent gravel and cobbles; strongly acid.

Range in Characteristics

Solum thickness: 18 to 38 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
Ap horizon:
Hue-7.5YR or 10YR
Value-3 or 4 (Dry value 6 or more) (If A horizon is present instead of Ap, value is 2 or 3)
Chroma-2 to 4 (If A horizon is present instead of $A p$, chroma is 1 to 3)
Content of rock fragments- 0 to 14 percent
Upper Bw horizons:
Hue-7.5YR or 10YR
Value-4 or 5
Chroma-4 to 8
Texture of the fine earth fraction-silt loam, very fine sandy loam, or loam
Content of rock fragments-0 to 25 percent
Lower Bw horizons:
Hue-7.5YR to 2.5 Y
Value-4 to 7
Chroma-4 to 6
Texture of the fine earth fraction-silt loam, very fine sandy loam, or loam
Content of rock fragments- 0 to 25 percent
2C horizon:
Hue-2.5YR to 5 Y
Value-3 to 5
Chroma-2 to 6
Texture of the fine earth fraction-loamy coarse sand, loamy sand, or sand Content of rock fragments-10 to 50 percent

Natchaug Series

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderate to very rapid in the organic material and moderate or moderately slow in the loamy substratum
Landform: Depressions
Parent Material: Organic materials over alluvium, till, glaciolacustrine deposits, or glaciofluvial deposits
Slope range: 0 to 2 percent
Associated similar soils:
Catden (organic materials greater than 51 inches deep)
Freetown (dysic reaction class, organic materials greater than 51 inches deep)
Timakwa (16 to 51 inches of organic materials, over sandy or sandy-skeletal)
Taxonomic class: Loamy, mixed, euic, mesic Terric Haplosaprists

Typical Pedon

Natchaug peat, in an area of Timakwa and Natchaug soils, located in the town of Eastford, 1,500 feet west on Pilfershire Road from the intersection of Pilfershire Road and Fayette Wright Road, 500 feet south of Pilfershire Road, on the Hampton USGS topographic quadrangle, lat. 41 degrees 50 minutes 35 seconds N., long. 72 degrees 03 minutes 36 seconds W., NAD 27, in a swamp:

Oi1-0 to 2 inches; dark yellowish brown (10YR 4/6) peat; 90 percent fibers, 90 percent rubbed; massive; soft, very friable, nonsticky and nonplastic; common fine to medium roots; 5 percent coarse woody fragments; less than 5 percent mineral material; ultra acid; abrupt smooth boundary.
Oi2-2 to 4 inches; dark brown (7.5YR 3/4) peat; 80 percent fibers, 60 percent rubbed; massive; soft, very friable, nonsticky and nonplastic; common fine to medium roots; 5 percent coarse woody fragments; less than 5 percent mineral material; extremely acid; clear smooth boundary.
Oa1-4 to 6 inches; dark reddish brown (5YR 3/2) muck; 25 percent fibers, 7 percent rubbed; massive; soft, very friable, nonsticky and nonplastic; common fine to medium roots; 5 percent coarse woody fragments; less than 5 percent mineral material; extremely acid; clear smooth boundary.
Oa2-6 to 11 inches; dark reddish brown (5YR 2.5/2) muck; 20 percent fibers, 2 percent rubbed; massive; soft, very friable, nonsticky and nonplastic; few fine and medium roots; 2 percent coarse woody fragments; less than 5 percent mineral material; extremely acid; clear smooth boundary.
Oa3-11 to 18 inches; black (5YR 2.5/1) muck; 5 percent fibers, 0 percent rubbed; massive; soft, very friable, nonsticky and nonplastic; 2 percent coarse woody fragments; less than 5 percent mineral material; extremely acid; clear smooth boundary.
Oa4-18 to 24 inches; black (10YR 2/1) muck; 0 percent fibers, 0 percent rubbed; massive; soft, very friable, nonsticky and nonplastic; less than 5 percent mineral material; very strongly acid; abrupt wavy boundary.
2Cg1-24 to 33 inches; grayish brown (10YR 5/2) fine sandy loam; massive; slightly hard, friable, nonsticky and nonplastic; common medium faint gray (10YR 6/1) iron depletions, common coarse prominent strong brown (7.5YR 4/6) and common medium distinct yellowish brown (10YR 5/4) soft masses of iron accumulation; strongly acid; clear smooth boundary.
$2 \mathrm{Cg} 2-33$ to 36 inches; gray (2.5Y 6/1) fine sandy loam; massive; slightly hard, friable, nonsticky and nonplastic; common percent medium prominent yellowish brown (10YR 5/6) soft masses of iron accumulation; moderately acid; clear smooth boundary.
2Cg3-36 to 80 inches; gray (2.5Y 6/1) and yellowish brown (10YR 5/6) loam; massive; slightly hard, friable, nonsticky and nonplastic; 1 percent fine gravel; moderately acid

Range in Characteristics

Solum thickness: Organic layers 16 to 51 inches deep
Depth to bedrock: More than 80 inches
Reaction: Extremely acid to moderately acid (in 0.01 M calcium chloride) in the organic layers and strongly acid to neutral in the loamy substratum (some layers may range to ultra acid)
Woody fragments in organic soil materials: 2 to 15 percent
Oi horizons: (absent in some pedons)
Hue-10YR to 5YR, or is neutral
Value-2 to 4
Chroma-0 to 6
Oa horizons:
Hue-10YR to 5YR, or is neutral
Value-2 to 3
Chroma-0 to 4
2Cg horizons:
Hue-10YR to 5Y, or is neutral

Value-4 to 6
Chroma-1 or 2
Texture of the fine earth fraction-very fine sandy loam, fine sandy loam, sandy loam, loam, or silt loam
Content of rock fragments-0 to 20 percent

Nellis Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid
Landform: Hills or bedrock-controlled ridges
Parent material: Melt-out till derived from limestone, dolomite, and schist
Slope range: 3 to 35 percent
Associated soils in a drainage sequence:
Amenia (moderately well drained)
Mudgepond (poorly drained)
Alden (very poorly drained, fine-loamy)
Associated similar soils:
Charlton (no carbonates)
Stockbridge (deeper to carbonates)
Associated other soils:
Copake (coarse-loamy over sandy or sandy skeletal)
Farmington (shallow to limestone bedrock)
Taxonomic class: Coarse-loamy, mixed, superactive, mesic Typic Eutrudepts
Typical Pedon
Nellis fine sandy loam, 3 to 8 percent slopes, located in the town of Ridgefield, 0.2 miles south of Haviland Road and 400 feet east of Limekiln Road, on the Bethel USGS topographic quadrangle, lat. 41 degrees 18 minutes 19 seconds N., 73 degrees 28 minutes 37 seconds W., NAD 27:
Ap-0 to 8 inches, very dark grayish brown (10YR 3/2) fine sandy loam, pale brown (10 YR 6/3) dry; moderate medium granular structure; friable; many fine roots; 10 percent rock fragments; neutral, clear wavy boundary.
Bw1-8 to 14 inches, dark yellowish brown (10YR 3/4) fine sandy loam; weak medium subangular blocky structure; very friable; common fine roots; 10 percent rock fragments; neutral; gradual wavy boundary.
Bw2-14 to 25 inches, dark yellowish brown (10YR 4/4) fine sandy loam; weak medium subangular blocky structure; very friable; few fine roots; 5 percent rock fragments; neutral; gradual wavy boundary.
BC—25 to 27 inches, dark yellowish brown (10YR 4/4) loam; massive; friable; few fine roots; 5 percent rock fragments; slightly alkaline; calcareous; clear wavy boundary.
C-27 to 60 inches, very pale brown (10YR 7/4) sandy loam; massive; very friable; 10 percent rock fragments; slightly alkaline; calcareous.

Range in Characteristics

Solum thickness: 15 to 30 inches

Depth to bedrock: More than 80 inches
Reaction: Moderately acid to neutral in the surface layer and upper subsoil, moderately acid to slightly alkaline in the lower subsoil, and neutral to moderately alkaline in the substratum (calcareous within 40 inches)

Ap horizon:
Hue-10YR or 2.5 Y
Value-3 or 4
Chroma-2 to 4
Content of rock fragments-3 to 14 percent
Bw horizons:
Hue-7.5YR to 2.5 Y
Value-3 to 5
Chroma-2 to 4
Texture of the fine earth fraction-fine sandy loam, very fine sandy loam, loam, or silt loam Content of rock fragments- 5 to 34 percent
$B C$ horizon:
Hue-7.5YR to 2.5Y
Value-3 to 5
Chroma-2 to 6
Texture of the fine earth fraction-fine sandy loam, very fine sandy loam, loam, or silt loam
Content of rock fragments- 5 to 34 percent
C horizon:
Hue-10YR to 5 Y
Value-3 to 7
Chroma-2 to 6
Texture of the fine earth fraction-sandy loam, fine sandy loam, or loam
Content of rock fragments- 5 to 50 percent

Ninigret Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate or moderately rapid in the surface layer and subsoil, and rapid or very rapid in the substratum
Landform: Outwash plains and terraces
Parent material: Eolian deposits over glaciofluvial deposits derived from granite, schist, and gneiss
Slope range: 0 to 5 percent
Associated soil in a drainage sequence:
Agawam (well drained)
Associated similar soil:
Tisbury (coarse-silty over sandy or sandy-skeletal)
Associated other soils:
Enfield (well drained, coarse-silty over sandy or sandy-skeletal)
Haven (well drained)
Raypol (poorly drained)
Walpole (poorly drained, sandy)
Taxonomic class: Coarse-loamy over sandy or sandy-skeletal, mixed, active, mesic Aquic Dystrudepts

Typical Pedon

Ninigret fine sandy loam, in an area of Ninigret and Tisbury soils, 0 to 5 percent slopes, located in the town of Stonington, 1,000 feet southwest along Riverside Drive from the intersection with Green Haven Road; 300 feet east of Riverside Drive and 350 feet west of the Pawcatuck River, on the Watch Hill USGS topographic
quadrangle, lat. 41 degrees 20 minutes 03 seconds N., long. 71 degrees 50 minutes 36 seconds W., NAD 27, in a grassy field:

Ap-0 to 8 inches; very dark grayish brown (10YR 3/2) fine sandy loam; pale brown (10YR 6/3) dry; weak medium granular structure; very friable; many fine roots; strongly acid; abrupt smooth boundary.
Bw1-8 to 16 inches; yellowish brown (10YR 5/6) fine sandy loam; weak coarse granular structure; very friable; few fine roots; strongly acid; clear wavy boundary.
Bw2-16 to 26 inches; yellowish brown (10YR 5/4) fine sandy loam; very weak coarse granular structure; very friable; very few fine roots; common medium distinct light brownish gray (10YR 6/2) iron depletions and brownish yellow (10YR $6 / 6$) soft masses of iron accumulation; strongly acid; clear wavy boundary.
2C-26 to 65 inches; pale brown (10YR 6/3) loamy sand and few lenses of loamy fine sand; single grain; loose; many medium distinct light olive gray (5Y 6/2) iron depletions and prominent yellowish brown (10YR 5/8) soft masses of iron accumulation; strongly acid.

Range in Characteristics
Solum thickness: 18 to 36 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid to a depth of 30 inches and very strongly acid to slightly acid below 30 inches
Ap horizon:
Hue-7.5YR to 2.5 Y
Value-2 to 4 (dry value 6 or more) (If A horizon is present instead of Ap, value is 2 or 3)
Chroma-2 to 4 (If A horizon is present instead of Ap, chroma is 1 to 3)
Content of rock fragments-0 to 14 percent
Bw1 horizon:
Hue-7.5YR to 2.5 Y
Value-4 to 6
Chroma-4 to 8
Texture of the fine earth fraction-fine sandy loam, very fine sandy loam, or silt loam
Content of rock fragments- 0 to 14 percent
Bw2 horizon:
Hue-7.5YR to 5 Y
Value-4 to 6
Chroma-2 to 6
Texture of the fine earth fraction-fine sandy loam, very fine sandy loam, or silt loam
Content of rock fragments- 0 to 14 percent
2C horizon:
Hue-10YR to 5 Y
Value-4 to 7
Chroma-1 to 6
Texture of the fine earth fraction-stratified loamy fine sand to coarse sand
Content of rock fragments- 0 to 30 percent above a depth of 40 inches, 0 to 60 percent below

Some of the Ninigret soils in this survey area have a mean annual soil temperature which is colder than typical of the series. This map unit (421A) is identified as a cold phase of the Ninigret series.

Occum Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid in the surface layer and subsoil, and rapid or very rapid in the substratum
Landform: Flood plains
Parent material: Alluvium
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Pootatuck (moderately well drained)
Rippowam (poorly drained)
Associated similar soil:
Hadley (coarse-silty)
Associated other soils:
Suncook (excessively drained, sandy)
Agawam (doesn't flood, coarse-loamy over sandy or sandy-skeletal)
Lim (poorly drained)
Limerick (poorly drained, coarse-silty)
Saco (very poorly drained, coarse-silty)
Taxonomic class: Coarse-loamy, mixed, superactive, mesic Fluventic Dystrudepts
Typical Pedon
Occum fine sandy loam, located in the town of Granby, 1,400 feet west of the junction of Connecticut Route 10 and Mechanicsville Road, on the east side of the East Branch Salmon Brook, on the Tariffville USGS topographic quadrangle, lat. 41 degrees 58 minutes 15 seconds N ., long. 72 degrees 48 minutes 11 seconds W., NAD 27, in a hayfield:

Ap-0 to 10 inches; dark brown (10YR 3/3) fine sandy loam, pale brown (10YR 6/3) dry; weak fine and medium granular structure; very friable; many very fine and fine roots; moderately acid; clear smooth boundary.
Bw1-10 to 17 inches; dark yellowish brown (10YR 4/4) fine sandy loam; weak medium subangular blocky structure; very friable; common very fine and fine roots; moderately acid; clear smooth boundary.
Bw2-17 to 28 inches; dark yellowish brown (10YR 4/6) sandy loam; weak medium subangular blocky structure; very friable; few very fine and fine roots; moderately acid; clear smooth boundary.
C1-28 to 32 inches; yellowish brown (10YR 5/4) loamy sand; single grain; loose; moderately acid; clear smooth boundary.
C2-32 to 42 inches; brown (10YR 5/3) and light olive brown (2.5Y 5/4) sand; single grain; loose; 10 percent gravel; moderately acid; clear smooth boundary.
C3-42 to 65 inches; brown (10YR 5/3) and light olive brown ($2.5 \mathrm{Y} 5 / 4$) very gravelly coarse sand; single grain; loose; 35 percent gravel; moderately acid.

Range in Characteristics

Solum thickness: 20 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to slightly acid
Ap horizon:
Hue-10YR or 2.5 Y
Value-3 to 5
Chroma-1 to 4
Content of rock fragments-0 to 14 percent

Bw1 horizon:
Hue-7.5YR to 2.5 Y
Value-3 to 8
Chroma-3 to 6
Texture of the fine earth fraction-fine sandy loam, sandy loam, or loam
Content of rock fragments-0 to 14 percent
Bw2 horizon:
Hue-7.5YR to 2.5Y
Value-3 to 8
Chroma-3 to 6
Texture of the fine earth fraction-fine sandy loam or sandy loam
Content of rock fragments- 0 to 14 percent
C horizons:
Hue-7.5YR to 5 Y
Value-3 to 7
Chroma-2 to 6
Texture of the fine earth fraction-stratified loamy fine sand to coarse sand
Content of rock fragments-0 to 59 percent

Ondawa Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid in the surface layer and subsoil, and rapid or very rapid in the substratum
Landform: Flood plains
Parent material: Alluvium
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Rumney (poorly drained)
Associated other soils:
Medomak Taxadjunct (very poorly drained, coarse-silty)
Taxonomic class: Coarse-loamy, mixed, active, frigid Fluventic Dystrudepts
Typical Pedon
Ondawa fine sandy loam, located in the town of Colebrook, 1,000 feet northwest along Egler Road from the intersection with Connecticut Route 183 and 1,000 feet south of Egler Road, on the Tolland Center USGS topographic quadrangle, lat. 42 degrees 01 minutes 03 seconds N., long. 73 degrees 07 minutes 17 seconds W., NAD 27, in a wooded area:

Oi-0 to 1 inch; strong brown (7.5YR 4/6) slightly decomposed plant materials
Oa-1 to 2 inches; very dark brown (7.5YR 2.5/2) highly decomposed plant materials
Ap-2 to 14 inches; dark brown (10YR 3/3) fine sandy loam, pale brown (10YR 6/3) dry; weak fine granular structure; very friable; many very fine and fine roots; very strongly acid; clear smooth boundary.
Bw-14 to 30 inches; dark yellowish brown (10YR 4/6) fine sandy loam; moderate medium subangular blocky structure; very friable; common very fine to very coarse roots; strongly acid; clear smooth boundary.
C1-30 to 33 inches; light olive brown (2.5Y5/4) sandy loam; massive; very friable; few very fine to coarse roots; 5 percent gravel; strongly acid; clear smooth boundary.

C2—33 to 60 inches; light olive brown (2.5Y 5/4) gravelly sandy loam; massive; 25 percent gravel; strongly acid

Range in Characteristics
Solum thickness: 20 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to slightly acid
A horizon:
Hue-10YR or 2.5Y
Value-3 to 5 (Dry value 6 or more)
Chroma-1 to 4
Content of rock fragments-0 to 14 percent
Bw horizon:
Hue-10YR or 2.5Y
Value-3 to 8
Chroma-2 to 8
Texture of the fine earth fraction-fine sandy loam, sandy loam, or loam
Content of rock fragments-0 to 14 percent
C horizons:
Hue-10YR to 5 Y
Value-3 to 7
Chroma-2 to 6
Texture of the fine earth fraction-loamy fine sand to coarse sand (upper C horizon may be sandy loam)
Content of rock fragments- 0 to 40 percent

Pawcatuck Series

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderate to rapid in the organic layers and very rapid in the substratum
Landform: Tidal marshes and salt marshes
Parent material: Grassy organic materials over glaciofluvial deposits
Slope range: 0 to 2 percent
Associated similar soils:
Ipswich (organic material thicker than 51 inches)
Westbrook (organic over loamy)
Taxonomic class: Sandy or sandy-skeletal, mixed, euic, mesic Terric Sulfihemists

Typical Pedon

Pawcatuck mucky peat, located in the town of Stonington, Barn Island area, 2,600 feet northeast of the elevation benchmark on Barn Island, 4,000 feet north of the elevation benchmark on Pawcatuck Point, and 1,000 feet south of a gravel road, on the Watch Hill USGS topographic quadrangle, lat. 41 degrees 20 minutes 00 seconds N., long. 72 degrees 38 minutes 07 seconds W., NAD 27, in a tidal marsh:

Oe1-0 to 12 inches; very dark gray (10YR $3 / 1$) mucky peat, dark grayish brown (10YR 4/2) dry; 65 percent fiber, 30 percent rubbed; dense mat of roots; stems, and leaves; massive; slightly sticky; many very fine, fine, and medium roots; fibers herbaceous; thin lenses and coatings of silt; 57 percent organic matter; strongly saline; slightly acid; clear wavy boundary.
Oe2-12 to 40 inches; black (10YR 2/1) mucky peat, very dark grayish brown (10YR $3 / 1$) dry; 50 percent fiber, 25 percent rubbed; massive; slightly sticky; few very
fine, fine, and medium roots; fibers herbaceous; 54 percent organic matter; strongly saline; slightly acid; gradual wavy boundary.
Oe3-40 to 46 inches; black (10YR 2/1) moist and dry mucky peat; 40 percent fiber, 25 percent rubbed; massive; slightly sticky; fibers herbaceous; 27 percent organic matter; strongly saline; slightly acid; clear wavy boundary.
2C1-46 to 50 inches; gray ($\mathrm{N} 5 / 0$) very fine sandy loam, gray (10YR 5/1) dry; 10 percent organic matter; massive; slightly sticky; strongly saline; slightly acid; clear wavy boundary.
2C2-50 to 60 inches; black (10YR 2/1) loamy sand, dark gray (10YR 4/1) dry; single grain; loose; 10 percent rock fragments; strongly saline; slightly acid.

Range in Characteristics

Solum thickness: 16 to 51 inches
Depth to bedrock: More than 80 inches
Reaction: Strongly acid to slightly alkaline
Salinity: Moderately saline to strongly saline
Surface tier:
Hue-5YR to 5 Y
Value-2 to 5
Chroma-0 to 3
Content of rock fragments-none
Subsurface and Bottom tiers:
Hue-5YR to 5 Y
Value-2 to 5
Chroma-0 to 3
Organic materials-dominantly hemic, some pedons contain fibric or sapric materials
Content of rock fragments-none
2C1 horizon:
Hue-10YR to 5BG
Value-2 to 7
Chroma-0 to 3
Texture of the fine earth fraction-very fine sandy loam, silt loam or sandy loam Content of rock fragments- 0 to 14 percent

2 C 2 horizon:
Hue-10YR to 5BG
Value-2 to 7
Chroma-0 to 3
Texture of the fine earth fraction-loamy fine sand, loamy sand or sand Content of rock fragments- 0 to 25 percent

Paxton Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface layer and subsoil, and slow or very slow in the substratum
Landform: Hills and drumlins
Parent material: Lodgement till derived from granite, gneiss and schist
Slope range: 3 to 35 percent
Associated soils in a drainage sequence:
Woodbridge (moderately well drained)

Ridgebury taxadjunct (poorly drained)
Whitman (very poorly drained)
Associated similar soils:
Broadbrook (siltier in surface layer and subsoil)
Canton (coarse-loamy over sandy or sandy-skeletal)
Charlton (friable substratum)
Montauk (sandy substratum)
Narragansett (coarse-loamy over sandy or sandy-skeletal)
Wethersfield (redder)
Taxonomic class: Coarse-loamy, mixed, active, mesic Oxyaquic Dystrudepts

Typical Pedon

Paxton fine sandy loam, in an area of Paxton and Montauk fine sandy loams, 3 to 8 percent slopes, very stony, located in the town of Prospect. 0.4 miles east of Straitsville Road and 0.5 miles north of the Bethany-Prospect line, on the Mount Carmel USGS topographic quadrangle, lat. 41 degrees 28 minutes 34 seconds N., long. 72 degrees 59 minutes 16 seconds W., NAD 27, in a brushy field:
Ap-0 to 8 inches; dark brown (10YR 3/3) fine sandy loam, pale brown (10YR 6/3) dry; moderate medium granular structure; friable; many fine roots; 5 percent gravel; strongly acid; abrupt smooth boundary.
Bw1-8 to 15 inches; dark yellowish brown (10YR 4/4) fine sandy loam; weak medium subangular blocky structure; friable; common fine roots; 5 percent gravel; few earthworm casts; strongly acid; gradual wavy boundary.
Bw2-15 to 26 inches; olive brown (2.5Y 4/4) fine sandy loam; weak medium subangular blocky structure; friable; few fine roots; 10 percent gravel; strongly acid; clear wavy boundary.
Cd-26 to 65 inches; olive ($5 \mathrm{Y} 5 / 3$) gravelly fine sandy loam; moderate thick platy structure; very firm, brittle; 25 percent gravel; many dark coatings on plates; strongly acid.

Range in Characteristics

Solum thickness: 20 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to slightly acid in the surface layer, very strongly acid to moderately acid in the subsoil and substratum

Ap horizon:
Hue-10YR
Value-3 or 4 (dry value 6 or more) (If A horizon present instead of Ap, value 2 or 3)
Chroma-2 to 4 (If A horizon present instead of Ap, chroma 1 or 2)
Content of rock fragments- 5 to 14 percent
Bw1 horizon:
Hue-7.5YR or 10YR
Value-4 to 6
Chroma-4 to 8
Texture of the fine earth fraction-loam, fine sandy loam, or sandy loam
Content of rock fragments- 5 to 34 percent
Bw2 horizon:
Hue-10YR or 2.5Y
Value-4 to 6
Chroma-3 to 6
Texture of the fine earth fraction-loam, fine sandy loam, or sandy loam
Content of rock fragments- 5 to 34 percent

Cd horizon:
Hue-10YR to 5Y
Value-4 to 6
Chroma-2 to 4
Texture of the fine earth fraction-loam, fine sandy loam, or sandy loam Content of rock fragments-5 to 34 percent

Penwood Series

Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid or very rapid
Landform: Outwash plains and terraces
Parent material: Glaciofluvial deposits derived from sandstone and shale
Slope range: 0 to 8 percent
Associated similar soils:
Manchester (sandy-skeletal)
Hartford (somewhat excessively drained, sandy)
Branford (well drained, coarse-loamy over sandy or sandy-skeletal)
Windsor (browner)
Taxonomic class: Mixed, mesic Typic Udipsamments

Typical Pedon

Penwood loamy sand, 3 to 8 percent slopes, located in the town of East Haven, 1 mile north on Connecticut Route 100 from the interchange of Connecticut Route 100 and Interstate 95, and 250 feet east of Connecticut Route 100 just south of the State Rifle Range, on the Branford USGS topographic quadrangle, lat. 49 degrees 17 minutes 48 seconds N., long. 72 degrees 51 minutes 45 seconds W., NAD 27, in a brushy field:
Ap-0 to 8 inches; dark brown (7.5YR 3/2) loamy sand; pinkish gray (7.5YR 6/2) dry; weak medium granular structure; very friable; many fine roots; strongly acid; clear smooth boundary.
Bw1-8 to 18 inches; yellowish red (5YR 4/6) loamy sand; single grain, loose; common fine roots; strongly acid; gradual wavy boundary.
Bw2—18 to 30 inches; reddish brown (5YR 4/4) sand; single grain, loose; few fine roots; strongly acid; gradual wavy boundary.
C-30 to 60 inches; reddish brown (5YR 4/3) sand with thin strata of fine sand; single grain; loose; few fine roots in the upper part; strongly acid.

Range in Characteristics

Solum thickness: 20 to 36 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
Ap horizon:
Hue-10YR to 5YR
Value-3 or 4 (If A horizon is present instead of Ap, value is 2 or 3)
Chroma-2 to 4 (If A horizon is present instead of $A p$, chroma is 1 to 3
Content of rock fragments- 0 to 10 percent
Bw1 horizon:
Hue-5YR or 2.5YR
Value-4 or 5
Chroma-4 to 8

Texture of the fine earth fraction-loamy sand or loamy fine sand Content of rock fragments-0 to 10 percent
Bw2 horizon:
Hue-5YR or 2.5YR
Value-4 or 5
Chroma-4 to 8
Texture of the fine earth fraction-sand or fine sand
Content of rock fragments-0 to 10 percent
C horizon:
Hue-2.5YR to 7.5YR
Value-4 to 6
Chroma-3 to 6
Texture of the fine earth fraction-sand or fine sand
Content of rock fragments- 0 to 14 percent

Pootatuck Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate or moderately rapid in the surface layer and subsoil, and rapid or very rapid in the substratum
Landform: Flood plains
Parent material: Alluvium
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Occum (well drained)
Rippowam (poorly drained)
Associated similar soil:
Winooski (coarse-silty)
Associated other soils:
Suncook (excessively drained, sandy)
Hadley (well drained, coarse-silty)
Limerick (poorly drained, coarse-silty)
Lim (poorly drained)
Saco (very poorly drained, coarse-silty)
Taxonomic class: Coarse-loamy, mixed, active, mesic Fluvaquentic Dystrudepts

Typical Pedon

Pootatuck fine sandy loam, located in the town of Easton, 200 feet east of Connecticut Route 58, 0.1 mile north of Silver Hill Road, and 80 feet west of the Aspetuck River, on the Botsford USGS topographic quadrangle, lat. 41 degrees 16 minutes 40 seconds N., long. 73 degrees 19 minutes 32 seconds W., NAD 27, in a wooded area:

A-0 to 4 inches; very dark grayish brown (10YR 3/2) fine sandy loam, grayish brown (10 YR 5/2) dry; weak medium granular structure; friable; common fine and medium roots; strongly acid; gradual wavy boundary.
Bw1-4 to 16 inches; dark yellowish brown (10YR 4/4) fine sandy loam; weak medium subangular blocky structure; friable; common fine and medium roots; strongly acid; clear wavy boundary.
Bw2-16 to 21 inches; brown (10YR 4/3) fine sandy loam; weak medium subangular blocky structure; friable; common fine medium roots; few medium prominent
strong brown (7.5YR 5/6) soft masses of iron accumulation and faint grayish brown (10YR 5/2) iron depletions; moderately acid; gradual wavy boundary.
Bw3-21 to 29 inches; dark brown (10YR 3/3) sandy loam; weak medium subangular blocky structure; friable; common fine roots; common medium faint grayish brown (10YR 5/2) iron depletions and prominent strong brown (7.5YR 5/6) soft masses of iron accumulation; moderately acid; clear wavy boundary.
C1-29 to 35 inches; brown (10YR 4/3) sand; single grain; loose; few fine roots; common medium distinct grayish brown (10YR $5 / 2$) iron depletions and prominent strong brown (7.5YR 5/6) soft masses of iron accumulation; moderately acid; clear wavy boundary;
C2—35 to 40 inches; grayish brown (2.5Y 5/2) sand; single grain; loose; few fine faint pale brown (10YR 6/3) soft masses of iron accumulation; 5 percent gravel; moderately acid; clear wavy boundary.
C3-40 to 65 inches; grayish brown (10YR 5/2) gravelly sand; single grain; loose; 25 percent gravel; moderately acid.

Range in Characteristics

Solum thickness: 20 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to slightly acid
A horizon:
Hue-10YR or 2.5Y
Value-3 to 5
Chroma-1 to 4
Content of rock fragments-0 to 14 percent
Bw horizons:
Hue-10YR to 5 Y
Value-3 to 6
Chroma-3 to 6
Texture of the fine earth fraction-fine sandy loam or sandy loam
Content of rock fragments-0 to 14 percent
C horizons:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-1 to 6
Texture of the fine earth fraction-stratified loamy fine sand to coarse sand
Content of rock fragments-0 to 40 percent

Pyrities Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface layer and subsoil, moderately slow or slow in the substratum
Landform: Hills
Parent material: Till derived from limestone, schist, and dolomite
Slope range: 3 to 25 percent
Associated soils in a drainage sequence:
Hogansburg (moderately well drained)
Alden, cold (very poorly drained)
Mudgepond, cold (poorly drained)

Associated similar soil:
Bice (no carbonates)
Taxonomic class: Coarse-loamy, mixed, active, frigid Dystric Eutrudepts

Typical Pedon

Pyrities loam, 8 to 15 percent slopes, located in the town of Canaan, 300 feet south of Canaan Mountain Road and 1600 feet southwest of the south end of Wangum Lake, on the South Canaan USGS topographic quadrangle, lat. 41 degrees 58 minutes 22 seconds N ., long. 73 degrees 16 minutes 14 seconds W., NAD 27, in a wooded area:

Oi-0 to 1 inch, slightly decomposed plant materials
Ap-1 to 8 inches, very dark grayish brown (10YR $3 / 2$) loam, light brownish gray (10YR 6/2) dry; weak medium granular structure; very friable, slightly sticky, slightly plastic; many very fine roots, common medium to coarse roots; 5 percent gravel, 2 percent cobbles; neutral; abrupt wavy boundary.
Bw1-8 to 13 inches, brown (10 YR 4/3) loam; moderate medium subangular blocky structure; friable, slightly sticky, slightly plastic; common very fine to coarse roots; 5 percent gravel, 2 percent cobbles; neutral; clear smooth boundary.
Bw2-13 to 26 inches, dark yellowish brown (10YR 4/4) loam; weak coarse subangular blocky structure; friable, slightly sticky, slightly plastic; common very fine and fine roots, few medium and coarse roots; 5 percent gravel, 1 percent cobbles; neutral; clear smooth boundary.
BC-26 to 45 inches, light olive brown (2.5Y 5/3) loam; weak thin platy structure; friable, slightly sticky, slightly plastic; few very fine to coarse roots; 5 percent gravel, 1 percent cobbles; neutral; clear smooth boundary.
C-45 to 60 inches; light olive brown (2.5YR 4/4) fine sandy loam; massive; friable, slightly sticky, slightly plastic; 10 percent, 2 percent cobbles; slightly alkaline; slightly effervescent.

Range in Characteristics

Solum thickness: 25 to 50 inches
Depth to bedrock: More than 80 inches
Reaction: Moderately acid to neutral in the surface layer, slightly acid to slightly alkaline in the subsoil, and slightly acid to moderately alkaline in the substratum

Ap horizon:
Hue-7.5YR or 10YR
Value-5 or 6 (dry value 6 or more)
Chroma-1 to 3
Content of rock fragments-5 to 14 percent
Bw horizons:
Hue-7.5YR or 10YR
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-fine sandy loam or loam
Content of rock fragments- 5 to 34 percent
BC horizon:
Hue-7.5YR to 2.5 Y
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-fine sandy loam or loam
Content of rock fragments- 5 to 34 percent

C horizon:
Hue-7.5YR to 2.5Y
Value-3 to 5
Chroma-2 to 4
Texture of the fine earth fraction-fine sandy loam or loam
Content of rock fragments-5 to 50 percent

Rainbow Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface layer and subsoil, and slow or very slow in the substratum
Landform: Hills and drumlins
Parent material: Eolian deposits over lodgement till derived from gneiss, schist, sandstone and basalt
Slope range: 0 to 8 percent
Associated soil in a drainage sequence:
Broadbrook (well drained)
Associated similar soils:
Ludlow (redder in the subsoil)
Wapping (friable substratum)
Watchaug (friable substratum)
Taxonomic class: Coarse-loamy, mixed, active, mesic Aquic Dystrudepts
Typical Pedon
Rainbow silt loam, 2 to 8 percent slopes, very stony, located in the town of Montville, 3,000 feet west of Connecticut Route 32 and 1,000 feet north of the Montville-
Waterford town line, on the Uncasville USGS topographic quadrangle, lat. 41 degrees 25 minutes 33 seconds N., long. 72 degrees 07 minutes 08 seconds W., NAD 27, in an old field:

Ap-0 to 6 inches; dark brown (10YR 3/3) silt loam, pale brown (10YR 6/3) dry; weak fine granular structure; very friable; many fine roots; few pebbles; strongly acid; clear wavy boundary
Bw1-6 to 18 inches; yellowish brown (10YR 5/6) silt loam; weak medium subangular blocky structure; very friable; few fine roots; few pebbles; strongly acid; clear wavy boundary.
Bw2-18 to 26 inches; light yellowish brown (10YR 6/4) silt loam; weak fine and medium subangular blocky structure; very friable; few fine roots; common medium prominent light gray (5Y 7/1) iron depletions and distinct strong brown (7.5YR $5 / 6)$ soft masses of iron accumulation; few pebbles; strongly acid; clear wavy boundary.
2Cd—26 to 65 inches; pale brown (10YR 6/3) gravelly fine sandy loam; weak thick platy structure; very firm, brittle; common silt films on rock fragments; common medium faint light olive brown (2.5Y 5/4) and distinct brownish yellow (10YR 6/6) soft masses of iron accumulation; 15 percent gravel; strongly acid.

Range in Characteristics

Solum thickness: 20 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
Ap horizon:
Hue-7.5YR or 10YR

Value-2 to 4 (Dry value 6 or more) (If A horizon is present instead of Ap, value is 2 or 3)
Chroma-2 to 4 (If A horizon is present instead of Ap, chroma is 1 or 2)
Content of rock fragments- 0 to 14 percent
Bw1 Horizon:
Hue-7.5YR or 10YR
Value-4 or 5
Chroma-4 to 6
Texture of the fine earth fraction-silt loam, very fine sandy loam or loam
Content of rock fragments- 0 to 20 percent
Bw2 Horizon:
Hue-7.5YR to 2.5 Y
Value-4 to 6
Chroma-3 to 6
Texture of the fine earth fraction-silt loam, very fine sandy loam or loam Content of rock fragments- 0 to 20 percent
2Cd Horizon:
Hue-2.5 YR to 5 Y
Value-2 to 6
Chroma-2 to 6
Texture of the fine earth fraction-fine sandy loam, sandy loam or loam
Content of rock fragments- 5 to 34 percent

Raynham Series

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderate or moderately slow in the surface layer and subsoil, and moderate to slow in the substratum
Landform: Depressions and drainageways on lake plains and terraces
Parent material: Glaciolacustrine deposits
Slope range: 0 to 3 percent
Associated soil in a drainage sequence:
Belgrade (moderately well drained)
Associated similar soils:
Ellington (moderately well drained, coarse-loamy over sandy or sandy-skeletal)
Raypol (coarse-loamy over sandy or sandy-skeletal)
Scitico (fine)
Shaker (coarse-loamy over clayey)
Maybid (very poorly drained, fine)
Taxonomic class: Coarse-silty, mixed, active, nonacid, mesic Aeric Epiaquepts

Typical Pedon

Raynham silt loam, located in the town of Suffield, 2,500 feet south of the intersection of Mountain and Remington roads, 600 feet west of Remington Road, on the Windsor Locks USGS topographic quadrangle, lat. 41 degrees 58 minutes 35 seconds N., 72 degrees 40 minutes 06 seconds W., NAD 27, in a field:

Ap-0 to 10 inches; brown (10YR 4/3) silt loam, pale brown (10YR 6/3) dry; moderate medium and coarse granular structure; friable; common very fine and few fine and medium roots; slightly acid; abrupt smooth boundary.
Bg1-10 to 16 inches; variegated grayish brown (10YR 5/2), yellowish brown (10YR
$5 / 4,5 / 6$), strong brown (7.5YR 5/6), and yellowish red (5YR 4/6) silt loam, 50
percent of the horizon is chroma 2; weak thin platy structure; friable; few very fine, fine, and medium roots; moderately acid; clear smooth boundary.
Bg2-16 to 26 inches; grayish brown (10YR 5/2) silt loam; weak very coarse prismatic structure parting to weak thin platy structure; firm; few very fine and fine roots along prism faces; common medium distinct yellowish brown (10YR 5/4), prominent yellowish brown (10YR 5/6) and strong brown (7.5 YR 5/6), and distinct yellowish red (5YR 4/6) variegations and soft masses of iron accumulation; dark grayish brown (10YR 4/2) coatings on prism faces; moderately acid; clear smooth boundary.
Bw-26 to 34 inches; yellowish brown (10YR 5/4) varved silt loam and very fine sandy loam (very fine sandy loam weighted average texture); weak very coarse prismatic structure parting to weak thin platy structure; friable; few very fine and fine roots along prism faces; common medium faint strong brown (7.5YR 5/4) and distinct (7.5YR 5/6) variegations and soft masses of iron accumulation, and distinct light brownish gray (10YR 6/2) iron depletions; discontinuous dark grayish brown (10YR 4/2) coating on prism faces; moderately acid; clear smooth boundary.
Cg—34 to 47 inches; gray (10YR 5/1) and grayish brown (10YR 5/2) varved silt loam, very fine sandy loam, silt, and silty clay loam (weighted average silt loam texture); weak thin platy structure; firm; common medium distinct yellowish brown (10YR $5 / 4$), prominent yellowish brown (10YR 5/6), and prominent strong brown (7.5YR $5 / 6$) variegations and soft masses of iron accumulation; moderately acid; abrupt smooth boundary.
C—47 to 60 inches; brown (10YR 4/3) varved silt loam, very fine sandy loam, silt, and silty clay loam (weighted average silt loam texture); weak thin platy structure; firm; common medium faint grayish brown (10YR 5/2) iron depletions and faint yellowish brown (10YR 5/4) and distinct yellowish brown (10YR 5/6) soft masses of iron accumulation; moderately acid.

Range in Characteristics

Solum thickness: 16 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Strongly acid to neutral in the surface layer and subsoil, moderately acid to slightly alkaline in the substratum

Ap horizon:
Hue-10YR or 2.5 Y
Value-2 to 4
Chroma-1 to 3
Content of rock fragments-0 to 2 percent
Bg horizons:
Hue-7.5YR to 2.5 Y
Value-4 to 6
Chroma-2
Texture of the fine earth fraction-silt loam or very fine sandy loam
Content of rock fragments-0 to 2 percent
Bw horizon:
Hue-7.5YR to 2.5 Y
Value-4 to 6
Chroma-3 or 4
Texture of the fine earth fraction-silt loam or very fine sandy loam
Content of rock fragments-0 to 2 percent

Cg horizon:
Hue-7.5YR to 5 Y
Value-4 to 6
Chroma-1 or 2
Texture of the fine earth fraction-silt loam or very fine sandy loam
Content of rock fragments-0 to 2 percent
C horizon:
Hue-7.5YR to 5 Y
Value-4 to 6
Chroma-3 or 4
Texture of the fine earth fraction-silt loam or very fine sandy loam
Content of rock fragments-0 to 2 percent

Raypol Series

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderate in the surface layer and subsoil, and rapid or very rapid in the substratum
Landform: Depressions and drainageways on outwash plains and terraces
Parent material: Eolian deposits over glaciofluvial deposits
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Enfield (well drained, coarse-silty over sandy or sandy-skeletal) Haven (well drained)
Tisbury (moderately well drained)
Associated similar soil:
Walpole (sandy)
Taxonomic class: Coarse-loamy over sandy or sandy-skeletal, mixed, active, acid, mesic Aeric Endoaquepts

Typical Pedon

Raypol silt loam, located in the town of Orange, 1,800 feet north of the intersection of the Derby-Milford Road and the Wilbur Cross Parkway overpass, 800 feet east of Derby-Milford Road, on the Ansonia USGS topographic quadrangle, lat. 41 degrees 16 minutes 56 seconds N., long. 73 degrees 02 minutes 56 seconds W., NAD 27, in a grass field:

Ap-0 to 8 inches; very dark brown (10YR 2/2) silt loam, pale brown (10YR 6/3) dry; weak medium granular structure; friable; common very fine, fine, and medium roots; strongly acid; clear smooth boundary.
Bg1-8 to 12 inches; grayish brown (10YR 5/2) very fine sandy loam; weak medium subangular blocky structure; friable; common very fine, fine, and medium roots; common medium prominent yellowish brown (10YR 5/8) soft masses of iron accumulation; strongly acid; clear wavy boundary.
Bg2-12 to 20 inches; grayish brown (10YR 5/2) silt loam; weak medium subangular blocky structure; friable; common fine and medium roots; common medium prominent yellowish brown (10YR 5/8) soft masses of iron accumulation; strongly acid; clear wavy boundary.
Bw1-20 to 26 inches; dark yellowish brown (10YR 4/4) silt loam; weak medium subangular blocky structure; friable; few fine roots; common medium prominent yellowish brown (10YR 5/8) soft masses of iron accumulation and distinct light brownish gray (10YR 6/2) iron depletions; strongly acid; gradual wavy boundary.

Bw2—26 to 29 inches; olive brown (2.5Y 4/4) very fine sandy loam; massive; friable; common medium prominent yellowish brown (10YR 5/8) soft masses of iron accumulation and distinct light brownish gray (10YR 6/2) iron depletions; 5 percent gravel; strongly acid; clear wavy boundary.
2C1—29 to 52 inches; light olive brown (2.5Y 5/4) gravelly sand; single grain; loose; few medium prominent yellowish brown (10YR $5 / 8$) soft masses of iron accumulation; 25 percent gravel; strongly acid; gradual wavy boundary.
2C2—52 to 65 inches; dark grayish brown (2.5Y 4/2) very gravelly sand; single grain; loose; few medium prominent yellowish brown (10YR 5/6) masses of iron accumulation; 35 percent gravel and 5 percent cobbles; strongly acid.

Range in Characteristics

Solum thickness: 18 to 36 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid or strongly acid above 40 inches and very strongly acid to slightly acid below 40 inches

Ap hozizon:

Hue-7.5YR or 10YR
Value-2 to 4 (If A horizon is present instead of $A p$, value is 2 or 3)
Chroma-2 or 3 (If A horizon is present instead of Ap, chroma is 1 or 2)
Content of rock fragments- 0 to 10 percent
Bg horizons:
Hue-5YR to 2.5 Y
Value-4 to 6
Chroma-1 or 2
Texture of the fine earth fraction-silt loam, very fine sandy loam, or loam
Content of rock fragments-0 to 10 percent
Bw horizons:
Hue-5YR to 2.5Y
Value-4 to 6
Chroma-3 or 4
Texture of the fine earth fraction-silt loam, very fine sandy loam, or loam
Content of rock fragments- 0 to 10 percent
2C horizons:
Hue-5YR to 5Y
Value-4 to 6
Chroma-1 to 4
Texture of the fine earth fraction-stratified loamy fine sand to coarse sand
Content of rock fragments-0 to 59 percent

Ridgebury Series Taxadjunct

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderate or moderately rapid in the surface layer and subsoil, slow or very slow in the substratum
Landform: Depressions and drainageways on hills and drumlins
Parent material: Lodgement till derived from granite, gneiss and schist
Slope range: 0 to 5 percent
Associated soils in a drainage sequence:
Paxton (well drained)
Woodbridge (moderately well drained)

Whitman (very poorly drained)
Associated similar soils:
Leicester (friable substratum)
Mudgepond (calcareous)
Wilbraham (redder)
Taxonomic class: Coarse-loamy, mixed, active, nonacid, mesic Aeric Endoaquepts
Typical Pedon
Ridgebury fine sandy loam, in an area of Ridgebury taxadjunct, Leicester, and Whitman soils, extremely stony, located in the town of Colchester, 2,500 feet south of the intersection of Connecticut Routes 149 and 16, and 100 feet west of Connecticut Route 149, on the Moodus USGS topographic quadrangle, lat. 41 degrees 32 minutes 18 seconds N., long. 72 degrees 24 minutes 49 seconds W., NAD 27, in a wooded area:

Oi-0 to 1 inch; slightly decomposed plant materials
A-1 to 5 inches; black (10YR 2/1) fine sandy loam, dark gray (10 YR 4/1) dry; weak medium granular structure; friable; common fine roots; 5 percent rock fragments; strongly acid; clear wavy boundary.
$\mathrm{Bg}-5$ to 14 inches; gray (10YR 5/1) fine sandy loam; massive; friable; common medium prominent strong brown (7.5YR 5/8) and yellowish brown (10YR 5/8) soft masses of iron accumulation; 5 percent rock fragments; strongly acid; gradual wavy boundary.
Bw-14 to 21 inches; brown (10YR 5/3) fine sandy loam; massive; friable to firm; many medium prominent yellowish brown (10YR 5/8) soft masses of iron accumulation and few fine faint grayish brown (10YR 5/2) iron depletions; 10 percent rock fragments; moderately acid; clear wavy boundary.
Cd-21 to 60 inches; grayish brown (10YR 5/2) sandy loam; massive; very firm, brittle; few fine prominent yellowish brown (10YR 5/8) soft masses of iron accumulation; 5 percent rock fragments; moderately acid.

Range in Characteristics

Solum thickness: 20 to 30 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
A horizon:
Hue-10YR or 2.5Y
Value-2 or 3
Chroma-1 or 2
Content of rock fragments-5 to 14 percent
Bg horizon:
Hue-7.5YR to 2.5 Y
Value-4 to 6
Chroma-1 or 2
Texture of the fine earth fraction-fine sandy loam, sandy loam or loam
Content of rock fragments-5 to 34 percent
Bw horizon:
Hue-7.5YR to 2.5 Y
Value-4 to 6
Chroma-3
Texture of the fine earth fraction-fine sandy loam, sandy loam or loam
Content of rock fragments-5 to 34 percent

Cd horizons:
Hue-10YR to 2.5 Y
Value-3 to 6
Chroma-1 to 4
Texture of the fine earth fraction-sandy loam or loam
Content of rock fragments-5 to 34 percent
The Ridgebury soils in this survey area are taxadjuncts because the soil is deeper than is defined as the range for the series. This difference, however, does not significantly affect the use, management, or interpretations of the soils. In this survey, the Ridgebury soils are coarse-loamy, mixed, active, nonacid mesic Aeric Epiaquepts.

Rippowam Series

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderate or moderately rapid in the surface layer and subsoil, and rapid or very rapid in the substratum
Landform: Depressions on flood plains
Parent material: Alluvium
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Occum (well drained)
Pootatuck (moderately well drained)
Associated similar soils:
Lim (finer texture in substratum)
Limerick (coarse-silty)
Taxonomic class: Coarse-loamy, mixed, superactive, nonacid, mesic Fluvaquentic Endoaquepts

Typical Pedon

Rippowam fine sandy loam, located in the town of Redding, 100 feet south of Cross Highway and 100 feet east of the Little River, on the Botsford USGS topographic quadrangle, lat. 41 degrees 18 minutes 32 seconds N., long. 73 degrees 21 minutes 57 seconds W., NAD 27, in a wooded area:

A-0 to 5 inches; very dark grayish brown (10YR 3/2) fine sandy loam, grayish brown (10 YR 5/2) dry; weak medium granular structure; friable; common fine and medium roots; very strongly acid; clear wavy boundary.
Bg1-5 to 12 inches; dark grayish brown (10YR 4/2) fine sandy loam; weak medium subangular blocky structure; friable; common fine and medium roots; common medium prominent strong brown (7.5YR 5/6) soft masses of iron accumulation; very strongly acid; clear wavy boundary.
Bg2—12 to 19 inches; dark gray (10YR 4/1) fine sandy loam; weak medium subangular blocky structure; friable; few fine and medium roots; many medium prominent yellowish red (5YR 4/6) soft masses of iron accumulation; strongly acid; clear wavy boundary.
BCg1—19 to 24 inches; grayish brown (10YR 5/2) sandy loam; massive; friable; few fine and medium roots; common medium prominent strong brown (7.5YR 5/6) soft masses of iron accumulation; strongly acid; clear wavy boundary.
BCg2—24 to 27 inches; very dark gray (10YR 3/1) sandy loam; massive; friable; few fine and medium roots; moderately acid; clear wavy boundary.
Cg1-27 to 31 inches; dark gray (10YR 4/1) loamy sand; single grain; loose; moderately acid; clear wavy boundary.

Cg2—31 to 65 inches; grayish brown (10YR 5/2) very gravelly sand; single grain; loose; 35 percent gravel; moderately acid.

Range in Characteristics

Solum thickness: 20 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to neutral above 24 inches, moderately acid to neutral below 24 inches (some subhorizon is moderately acid, slightly acid, or neutral within a depth of 40 inches)

A horizon:
Hue-10YR or 2.5 Y
Value-2 to 4
Chroma-1 or 2
Content of rock fragments-0 to 14 percent
Bg horizons:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-1 or 2
Texture of the fine earth fraction—sandy loam or fine sandy loam
Content of rock fragments-0 to 14 percent
BCg horizons (where present):
Hue-10YR to 5Y
Value-3 to 6
Chroma-1 to 4
Texture of the fine earth fraction-sandy loam or fine sandy loam
Content of rock fragments-0 to 14 percent
C horizons:
Hue-10YR to 5 Y
Value-3 to 6
Chroma-1 to 4
Texture of the fine earth fraction-stratified loamy fine sand to coarse sand
Content of rock fragments-0 to 40 percent

Rumney Series

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderate or moderately rapid in the surface layer and subsoil, and rapid or very rapid in the substratum
Landform: Flood plains
Parent material: Alluvium
Slope range: 0 to 3 percent
Associated soil in a drainage sequence:
Ondawa (well drained)
Associated similar soils:
Udifluvents (well drained)
Fluvaquents
Medomak Taxadjunct (finer texture)
Taxonomic class: Coarse-loamy, mixed, active, nonacid, frigid Fluvaquentic Endoaquents

Typical Pedon

Rumney silt loam, located in the town of Canaan, 1,600 feet south along Wangum Lake Brook from the outlet of Wangum Lake, and 30 feet east of brook, on the South Canaan USGS topographic quadrangle, lat. 41 degrees, 58 minutes, 12 seconds N ., long. 73 degrees 16 minutes 09 seconds W., NAD 27, in a brushy area:
A—0 to 7 inches; very dark grayish brown (10YR 3/2) silt loam, light brownish gray (10 YR 6/2) dry; moderate medium granular structure; very friable; many very fine and fine roots, few medium roots; common fine distinct dark yellowish brown (10 YR 4/4) masses of iron accumulation; 2 percent gravel; slightly acid; clear smooth boundary.
Bg1-7 to 22 inches; grayish brown (2.5Y 5/2) sandy loam; weak medium subangular blocky structure; very friable; few very fine and fine roots; common coarse prominent yellowish brown (10 YR 5/6) masses of iron accumulation and few fine faint dark gray (2.5 Y 4/1) iron depletions; 5 percent gravel; neutral; clear smooth boundary.
Bg2—22 to 38 inches; dark grayish brown (10 YR 4/2) sandy loam; weak medium subangular blocky structure; very friable; common fine prominent dark yellowish brown (10 YR 4/6) masses of iron accumulation; 5 percent gravel; neutral; abrupt smooth boundary.
Ab—38 to 42 inches; black (10 YR 2/1) sandy loam; weak medium subangular blocky structure; very friable; common fine prominent dark yellowish brown (10 YR 4/6) masses of iron accumulation; 5 percent gravel; neutral; abrupt smooth boundary.
$2 \mathrm{Cg}-42$ to 44 inches; dark grayish brown ($2.5 \mathrm{Y} 4 / 2$) extremely gravelly coarse sand; single grain; loose; 65 percent gravel; neutral; abrupt smooth boundary.
$3 \mathrm{Cg}-44$ to 65 inches; dark greenish gray (5 GY 4/1) gravelly fine sandy loam; massive; friable; 20 percent gravel; slightly alkaline.

Range in Characteristics

Solum thickness: 20 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Moderately acid to neutral (may range to slightly acid below a depth of 40 inches, some subhorizon is moderately acid, slightly acid, or neutral within a depth of 40 inches)

A horizon:
Hue-10YR or 2.5Y
Value-2 to 4 (dry value is 6 or more)
Chroma-1 to 3
Content of rock fragments-0 to 14 percent
B horizons:
Hue-10YR to 5 Y
Value-3 to 6
Chroma-1 to 4 (at least one subhorizon has hue of 10 YR or 2.5 Y , value 3 to 5 , and chroma 2)
Texture of the fine earth fraction-sandy loam, fine sandy loam, or loam
Content of rock fragments-0 to 14
C horizons:
Hue-10YR to 5 Y
Value-3 to 6
Chroma-1 to 4
Texture of the fine earth fraction-loamy fine sand to coarse sand (some pedons have a loamy layer)
Content of rock fragments-0 to 34 percent (weighted average in the substratum)

Saco Series

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderate in the surface layer and upper substratum and rapid or very rapid in the lower substratum
Landform: Depressions and drainageways on flood plains
Parent material: Alluvium
Slope range: 0 to 2 percent
Associated soils in a drainage sequence:
Hadley (well drained)
Winooski (moderately well drained)
Bash (somewhat poorly drained, coarse-loamy)
Lim (poorly drained, coarse-loamy)
Limerick (poorly drained)
Associated other soils:
Occum (well drained, coarse-loamy)
Pootatuck (moderately well drained, coarse-loamy)
Rippowam (poorly drained, coarse-loamy)
Taxonomic class: Coarse-silty, mixed, active, nonacid, mesic Fluvaquentic
Humaquepts
Typical Pedon
Saco silt loam, located in the town of South Windsor, 1200 feet west along Newbury Road from the intersection with Main Street, and 270 feet south of Newbury Road, on the Manchester USGS topographic quadrangle, lat. 41 degrees 49 minutes 49 seconds N., long. 72 degrees 37 minutes 23 seconds W., NAD 27, in a marsh:

A-0 to 12 inches; very dark gray (10YR 3/1) silt loam, gray (10YR 5/1) dry; weak coarse granular structure; very friable, many fine roots; moderately acid; clear wavy boundary.
Cg1-12 to 32 inches; gray (10YR 5/1) silt loam; massive; friable; few fine roots; common medium faint light brownish gray (10YR 6/2) iron depletions and prominent strong brown (7.5YR 5/8) soft masses of iron accumulation; moderately acid; clear wavy boundary.
Cg2-32 to 48 inches; gray ($5 \mathrm{Y} 5 / 1$) silt loam with thin strata of very dark gray (5 Y $3 / 1$) silt loam; massive; friable; moderately acid; clear wavy boundary.
2Cg3-48 to 60 inches; gray (10YR 6/1 and 5/1) stratified coarse sand and medium sand; single grain; loose; moderately acid.

Range in Characteristics

Solum thickness: 10 to 15 inches
Depth to bedrock: More than 80 inches
Reaction: Strongly acid to neutral to a depth of about 30 inches, moderately acid to neutral below

A horizon:
Hue-7.5YR to 2.5 Y
Value-2 or 3
Chroma-1 to 3
Content of rock fragments-0 to 5 percent
Cg horizons:
Hue-10YR to 5 Y
Value-3 to 6

Chroma-0 to 2
Texture of the fine earth fraction-silt loam
Texture below 40 inches-silt loam to fine gravel
Content of rock fragments- 0 to 5 percent
2Cg horizon:
Hue-10YR to 5 Y
Value-3 to 6
Chroma-0 to 2
Texture of the fine earth fraction-stratified loamy fine sand to coarse sand
Content of rock fragments- 0 to 40 percent

Scarboro Series

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderately rapid in the organic layer, moderately rapid or rapid in the surface layer, and rapid or very rapid in the substratum
Landform: Depressions and drainageways on outwash plains and terraces
Parent material: Organic materials over glaciofluvial deposits derived from granite, schist, and gneiss
Slope range: 0 to 2 percent
Associated soils in a drainage sequence:
Windsor (excessively drained)
Deerfield (moderately well drained)
Associated other soils:
Hinckley (excessively drained, sandy-skeletal)
Merrimac (somewhat excessively drained)
Agawam (well drained, coarse-loamy over sandy or sandy-skeletal)
Ninigret (moderately well drained, coarse-loamy over sandy or sandy-skeletal)
Sudbury (moderately well drained)
Walpole (poorly drained)
Taxonomic class: Sandy, mixed, mesic Histic Humaquepts

Typical Pedon

Scarboro muck, located in the town of Wolcott, 2,800 feet northeast along Long Swamp Road from the intersection of Route 69 and Long Swamp Road, 150 feet south of Long Swamp Road, and 100 feet west of Roaring Brook, on the Bristol USGS topographic quadrangle, lat. 41 degrees 37 minutes 59 seconds N., long. 72 degrees 57 minutes 14 seconds W., NAD 27, in a wooded area:

Oa-0 to 12 inches; black (10YR 2/1) muck; weak medium granular structure; very friable; many fine roots; strongly acid; clear wavy boundary.
A-12 to 17 inches; very dark gray (10YR 3/1) loamy sand, dark gray (10 YR 4/1) dry; weak medium granular structure; very friable; few roots; strongly acid; clear wavy boundary.
Cg1—17 to 31 inches; gray ($\mathrm{N} 6 /$) fine sand; single grain; loose; strongly acid; gradual wavy boundary.
Cg2—31 to 72 inches; grayish brown (2.5Y 5/2) sand; single grain; loose; few medium prominent yellowish brown (10YR5/6) soft masses of iron accumulation; 5 percent gravel; moderately acid

Range in Characteristics

Solum thickness: 13 to 27 inches
Depth to bedrock: More than 80 inches

Reaction: Very strongly acid to moderately acid in the surface layer and upper substratum, very strongly acid to neutral in the lower substratum

Oa horizon:
Hue-10YR
Value-2 to 4
Chroma-1 or 2
A horizon:
Hue-5YR to 2.5 Y
Value-2 or 3
Chroma-0 to 2
Texture of the fine earth fraction-fine sandy loam, sandy loam, loamy sand, loamy fine sand
Content of rock fragments-0 to 10 percent
Cg1 horizon:
Hue-10YR to 5Y
Value-4 to 7
Chroma-0 to 2
Texture of the fine earth fraction-stratified loamy sand to sand
Content of rock fragments- 0 to 14 percent
Cg2 horizon:
Hue-10YR to 5 Y or N to 5 GY
Value-4 to 6
Chroma-0 to 2
Texture of the fine earth fraction-stratified loamy fine sand to coarse sand
Content of rock fragments-0 to 50 percent
Some of the Scarboro soils in this survey area have a mean annual soil temperature which is colder than typical of the series. This map unit (435) is identified as a cold phase of the Scarboro series.

Schroon Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate to moderately rapid in the surface layer and subsoil, and moderately rapid in the substratum
Landform: Hills
Parent material: Melt-out till derived from granite, schist, and gneiss
Slope range: 0 to 15 percent
Associated soils in a drainage sequence:
Bice (well drained)
Loonmeadow (very poorly drained)
Associated other soils:
Westminster (shallow, somewhat excessively drained)
Millsite (moderately deep, well drained)
Taxonomic class: Coarse-loamy, mixed, superactive, frigid Aquic Dystrudepts
Typical Pedon
Schroon fine sandy loam, 3 to 15 percent slopes, very stony, located in the town of Norfolk, 500 feet south of the intersection of Wheeler Street and Barry Hill Road, 300 feet east of Barry Hill Road, on the South Sandisfield USGS topographic quadrangle,
lat. 42 degrees 01 minutes 54 second N., long. 73 degrees 10 minutes 38 seconds W., NAD 27, in a wooded area:

Oi-0 to 1 inch; slightly decomposed plant materials derived from leaves
Oe-1 to 2 inches; moderately decomposed plant materials derived from leaf litter
Oa-2 to 3 inches; highly decomposed plant materials
A-3 to 9 inches; very dark grayish brown (10YR 3/2) fine sandy loam, brown (10YR
$5 / 3$) dry; weak fine and medium granular structure; very friable; many fine to coarse roots; 3 percent gravel; very strongly acid; clear smooth boundary.
Bw1-9 to 14 inches; dark brown (7.5YR 3/4) fine sandy loam; weak very fine to medium subangular blocky structure; very friable; many very fine to coarse roots; 3 percent gravel; strongly acid; clear smooth boundary.
Bw2-14 to 23 inches; brown (10YR 4/4) fine sandy loam; weak very fine to medium subangular blocky structure; very friable; common very fine to medium roots; 3 percent gravel; strongly acid; clear smooth boundary.
Bw3-23 to 30 inches light olive brown (2.5Y 5/4) sandy loam; weak medium platy structure; friable; few fine roots; few fine prominent strong brown (7.5YR 4/6) soft masses of iron accumulation and common fine distinct light brownish gray (2.5Y $6 / 2$) iron depletions; 3 percent gravel; strongly acid; gradual smooth boundary.
C-30 to 60 inches pale olive ($5 \mathrm{Y} 6 / 3$) sandy loam; massive; friable; 5 percent gravel; strongly acid.

Range in Characteristics

Solum thickness: 18 to 36 inches

Depth to bedrock: More than 80 inches

Reaction: Extremely acid to moderately acid in the surface layer, very strongly acid to moderately acid in the subsoil, and strongly acid to slightly acid in the substratum

A horizon:
Hue-7.5YR or 10YR
Value-2 or 3
Chroma-1 or 2
Content of rock fragments-3 to 14 percent
Upper Bw horizon:
Hue-5YR to 10YR
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-fine sandy loam, sandy loam or loam
Content of rock fragments-3 to 34 percent
Lower Bw horizon:
Hue-10YR or 2.5Y
Value-4 or 5
Chroma-3 to 6
Texture of the fine earth fraction-fine sandy loam, sandy loam or loam
Content of rock fragments- 3 to 34 percent
C horizon:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-3 or 4
Texture of the fine earth fraction-fine sandy loam, sandy loam or coarse sandy loam
Content of rock fragments-3 to 34 percent

Scitico Series

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderate in the surface layer, moderately slow or slow in the upper subsoil, slow or very slow in the lower subsoil, and very slow in the substratum
Landform: Depressions and drainageways on lake plains and terraces
Parent material: Glaciolacustrine deposits
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Brancroft (moderately well drained)
Maybid (very poorly drained)
Associated similar soils: Raynham (coarse-silty)
Shaker (coarse-loamy over clayey)
Taxonomic class: Fine, illitic, semiactive, nonacid, mesic Typic Endoaquepts

Typical Pedon

Scitico silt loam, in an area of Scitico, Shaker, and Maybid soils, located in the town of East Windsor, 2,000 feet west of the intersection of Newberry Road and Winkler Road, 100 feet north of Newberry Road, on the Broad Brook USGS topographic quadrangle, lat. 41 degrees 55 minutes 20 seconds N., long. 72 degrees 35 minutes 22 seconds W., NAD 27:

Ap-0 to 8 inches; very dark grayish brown (2.5Y 3/2) silt loam, light gray ($5 \mathrm{Y} 7 / 1$) dry; moderate fine and medium granular structure; friable, sticky, plastic; few very fine, fine, and medium roots; slightly acid; clear smooth boundary.
Eg-8 to 11 inches; olive gray (5Y 5/2) silt loam; moderate medium blocky structure; friable, sticky, plastic; few very fine and fine roots; common fine distinct light olive brown (2.5Y5/4), prominent yellowish brown (10YR 5/4), and prominent dark yellowish brown (10YR 4/4) soft masses of iron accumulation; slightly acid; clear smooth boundary.
Bg1-11 to 18 inches; olive gray (5 Y $5 / 2,5 Y 4 / 2$) silty clay loam; moderate coarse blocky structure; firm, very sticky, plastic; few fine roots between peds; common fine prominent dark yellowish brown (10YR 4/4) and yellowish brown (10YR 5/6) soft masses of iron accumulation; continuous distinct gray ($5 \mathrm{Y} 5 / 1$) coatings on ped faces; neutral; clear smooth boundary.
Bg2-18 to 30 inches; dark gray (5Y 4/1) silty clay loam; moderate coarse prismatic structure parting to coarse blocky structure; firm, very sticky, plastic; few fine roots between peds; many fine prominent dark yellowish brown (10YR 4/4) and yellowish brown (10YR 5/6) soft masses of iron accumulation; continuous distinct gray (5Y $5 / 1$) coatings on vertical structure faces; few worm casts along prism faces; neutral; clear smooth boundary.
Bg3-30 to 38 inches; olive gray (5Y 5/2) and grayish brown (2.5Y 5/2) silty clay; weak coarse prismatic structure; firm, very sticky, plastic; few fine roots between prisms; many fine prominent yellowish brown (10YR 5/6) and dark yellowish brown (10YR 4/4) soft masses of iron accumulation; continuous distinct gray (5Y $5 / 1$) coatings on vertical structure faces; few worm casts along prism faces; neutral; clear smooth boundary.
Cg1-38 to 52 inches; olive gray (5Y 5/2), dark gray (5Y 4/1), grayish brown (2.5Y $5 / 2$), and light olive brown (2.5Y 5/4) varved silt and clay; silty clay loam weighted average texture; massive parting to weak thin platy structure along varved bedding planes; firm, very sticky, plastic; few fine prominent yellowish brown (10YR 5/6, 5/8) soft masses of iron accumulation; neutral; clear smooth boundary.

Cg2—52 to 65 inches; olive gray (5Y 5/2), gray (5Y 5/1), grayish brown (2.5Y 5/2), and light olive brown (2.5Y5/4) varved silt and clay; silty clay weighted average texture; weak thin platy structure along varved bedding planes; firm, very sticky, plastic; few prominent dark yellowish brown (10YR 4/4) soft masses of iron accumulation; massive; neutral.

Range in Characteristics

Solum thickness: 20 to 45 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to neutral in the surface layer, strongly acid to neutral in the upper subsoil, and moderately acid to slightly alkaline in the lower subsoil and substratum

Ap horizon:
Hue-10YR to 5 Y
Value-3 to 5 (Dry value 6 or more) (If A horizon present instead of Ap, value 2 or 3)

Chroma-1 to 3 (If A horizon present instead of Ap, chroma 1 or 2)
Content of rock fragments-0 to 3 percent
Eg horizon (where present):
Hue-2.5Y or 5Y
Value-4 to 6
Chroma-1 or 2
Texture of the fine earth fraction-silt loam, silty clay loam or silty clay
Content of rock fragments-0 to 3 percent
Upper Bg horizons:
Hue-7.5YR to 5 Y
Value-4 to 6
Chroma-1 or 2
Texture of the fine earth fraction-silt loam, silty clay loam, or silty clay
Content of rock fragments-0 to 3 percent
Lower Bg horizons:
Hue-7.5YR to 5 Y
Value-4 to 6
Chroma-1 or 2
Texture of the fine earth fraction-silty clay, clay or silty clay loam
Content of rock fragments-0 to 3 percent
Cg horizons:
Hue-7.5YR to 5 Y
Value-3 to 6
Chroma-0 to 2
Texture of the fine earth fraction-weighted average of silty clay, clay, or silty clay loam
Content of rock fragments- 0 to 3 percent

Shaker Series

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderately rapid in the surface layer and subsoil, and slow or very slow in the substratum
Landform: Depressions and drainageways on lake plains and terraces

Parent material: Eolian deposits over glaciolacustrine deposits
Slope range: 0 to 3 percent
Associated soil in a drainage sequence:
Elmridge (moderately well drained)
Associated similar soils:
Raynham (coarse-silty)
Scitico (fine)
Maybid (very poorly drained, fine)
Taxonomic class: Coarse-loamy over clayey, mixed, semiactive, nonacid, mesic
Aeric Epiaquepts

Typical Pedon

Shaker fine sandy loam, in an area of Scitico, Shaker, and Maybid soils, located in the town of Windsor, 2000 feet west of Basswood Road and the Conrail Railroad Crossing, 330 feet north of Basswood Road, on the Windsor Locks USGS topographic quadrangle, lat. 41 degrees 53 minutes 04 seconds N., long. 72 degrees 38 minutes 02 seconds W., NAD 27, in a wooded area:

Oe-0 to 2 inches; black (10YR 2/1) moderately decomposed plant materials
A-2 to 6 inches; very dark brown (10YR 2/2) fine sandy loam, grayish brown (10 YR $5 / 2$) dry; weak medium granular structure; very friable; many fine and medium roots; strongly acid; clear wavy boundary.
Bg-6 to 20 inches; light brownish gray (10YR 6/2) sandy loam weak medium subangular blocky structure; very friable; common fine and medium roots; common medium prominent yellowish brown (10YR 5/8) soft masses of iron accumulation; strongly acid; clear wavy boundary.
Bw-20 to 30 inches; brown (10YR 4/3) sandy loam; weak medium subangular blocky structure; very friable; few fine and medium roots; common medium prominent light gray (2.5Y 7/2) iron depletions and strong brown (7.5YR 5/8) soft masses of iron accumulation; moderately acid; abrupt wavy boundary.
2C-30 to 65 inches; dark yellowish brown (10YR 4/4) varved silt and clay; silty clay weighted average texture; massive structure, parting to weak thin platy structure along varved bedding planes; firm, very sticky, plastic; thin films of very fine sand on plate surfaces; common medium prominent light gray (2.5Y 7/2) iron depletions; slightly acid.

Range in Characteristics

Solum thickness: 18 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Strongly acid to neutral in the surface layer and subsoil, moderately acid to slightly alkaline in the substratum

In some pedons, the Oe horizon is absent.
Oe horizon (where present):
Hue-10YR
Value-2
Chroma-1
Content of rock fragments-none
A horizon:
Hue-7.5YR to 2.5Y
Value-2 to 4 (Dry value 6 or more) (If Ap horizon is present instead of A, value is 3 to 5
Chroma-1 to 3 (If Ap horizon is present instead of A, chroma is 2 to 4)
Content of rock fragments-0 to 5 percent

Bg horizon:
Hue-7.5YR to 5 Y
Value-4 to 6
Chroma-1 or 2
Texture of the fine earth fraction-sandy loam, fine sandy loam, or loam
Content of rock fragments-0 to 5 percent
Bw horizon:
Hue-7.5YR to 5 Y
Value-4 to 6
Chroma-3 or 4
Texture of the fine earth fraction-sandy loam, fine sandy loam, or loam
Content of rock fragments-0 to 5 percent
2C horizon:
Hue-7.5YR to 5 Y
Value-3 to 6
Chroma-0 to 4
Texture of the fine earth fraction-weighted average of silty clay loam, silty clay, or clay
Content of rock fragments-0 to 3 percent

Shelburne Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid in the surface layer and subsoil, slow or very slow in the substratum
Landform: Hills and drumlins
Parent material: Lodgement till derived from granite, schist and gneiss
Slope range: 3 to 35 percent
Associated soil in a drainage sequence:
Ashfield (moderately well drained)
Associated other soils:
Westminster (shallow, somewhat excessively drained)
Bice (friable substratum)
Millsite (moderately deep, well drained)
Taxonomic class: Coarse-loamy, mixed, active, frigid Oxyaquic Dystrudepts
Typical Pedon
Shelburne fine sandy loam, 8 to 15 percent slopes, very stony, located in the town of Norfolk, 700 feet west of Doolittle Lake, on the South Sandisfield USGS topographic quadrangle, lat. 42 degrees 00 minutes 57 seconds N ., long. 73 degrees 09 minutes 56 seconds W., NAD 27, in a wooded area:
$\mathrm{Oi}-0$ to 1 inch; slightly decomposed plant materials derived from leaf and twig litter
A - 1 to 2 inches; black (10YR 2/1) fine sandy loam; dark gray (10YR 4/1) dry; weak medium granular structure; friable; many fine to very coarse roots; 2 percent gravel; strongly acid; abrupt, wavy boundary
Bw1 - 2 to 7 inches; dark yellowish brown (10YR 3/4) fine sandy loam; weak medium subangular blocky structure; friable; common medium and coarse roots; 9 percent gravel; very strongly acid; clear wavy boundary
Bw2 - 7 to 21 inches; olive brown (2.5Y 4/4) gravelly fine sandy loam; moderate medium and coarse subangular blocky structure; friable; common fine to very coarse roots; 12 percent gravel and 5 percent cobbles; very strongly acid; clear wavy boundary.

Bw3 - 21 to 27 inches; olive brown (2.5Y 4/4) bouldery fine sandy loam; moderate medium subangular blocky structure; friable; common fine and medium roots; 12 percent gravel, 5 percent cobbles, and 17 percent boulders; very strongly acid; clear wavy boundary.
Cd1 - 27 to 32 inches; brown (10YR 4/3) gravelly fine sandy loam; moderate coarse and medium subangular blocky structure; firm; common very fine and fine roots; 13 percent gravel and 2 percent cobbles; very strongly acid; clear wavy boundary
Cd2 - 32 to 43 inches; olive brown (2.5Y 4/3) fine sandy loam; massive; very firm; common very fine to medium roots in cracks; few medium distinct light brownish gray ($2.5 \mathrm{Y} 6 / 2$) iron depletions and few medium prominent strong brown (7.5YR $5 / 8$) soft masses of iron accumulation; 8 percent gravel and 2 percent cobbles; strongly acid; clear wavy boundary.
Cd3 - 43 to 55 inches; olive brown (2.5Y 4/4) fine sandy loam; massive; very firm; common very fine to medium roots in cracks; common medium distinct light brownish gray (2.5Y 6/2) iron depletions and common coarse prominent strong brown (7.5YR 4/6) soft masses of iron accumulation; 10 percent gravel; strongly acid; gradual wavy boundary.
Cd4 - 55 to 80 inches; olive brown (2.5Y 4/3) fine sandy loam; massive; very firm; common very fine roots in cracks; common medium distinct gray (2.5Y 5/1) iron depletions and common medium prominent (7.5YR 4/6) masses of iron accumulation; 8 percent gravel; strongly acid.

Range in Characteristics

Solum thickness: 20 to 30 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
A horizon:
Hue-10YR
Value-3 or 4
Chroma-2 or 3
Content of rock fragments-0 to 14 percent
Bw horizons:
Hue-10YR or 2.5 Y
Value-3 to 5
Chroma-2 to 4
Texture of the fine earth fraction- fine sandy loam, sandy loam or loam
Content of rock fragments-5 to 34 percent
Cd horizon:
Hue-2.5Y or 5Y
Value-3 to 5
Chroma-2 to 4
Texture of the fine earth fraction- fine sandy loam, sandy loam or loam
Content of rock fragments-5 to 25 percent

Stockbridge Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface layer and subsoil, moderately slow in the substratum
Landform: Hills
Parent material: Till derived from limestone, schist, and dolomite

Slope range: 3 to 35 percent
Associated soils in a drainage sequence:
Georgia (moderately well drained)
Mudgepond (poorly drained)
Alden (very poorly drained)
Associated similar soils:
Charlton (no carbonates)
Nellis (carbonates within 40 inches)
Associated other soil:
Farmington (shallow to limestone bedrock)
Taxonomic class: Coarse-loamy, mixed, semiactive, mesic Dystric Eutrudepts

Typical Pedon

Stockbridge loam, 3 to 8 percent slopes, located in the town of Salisbury, 1800 feet south of the intersection of Race Track Road and Farnum Road, 400 feet east of Race Track Road, on Sharon USGS topographic quadrangle, lat. 41 degrees 57 minutes 27 seconds N., long. 73 degrees 25 minutes 03 seconds W., NAD 27, in a cultivated field:
Ap-0 to 10 inches, dark brown (10YR 3/3) loam, light brownish gray (2.5Y 6/2) dry; weak coarse granular structure; friable; many fine and very fine roots; 10 percent gravel; moderately acid; clear smooth boundary.
Bw1-10 to 20 inches, olive brown (2.5Y 4/4) loam; weak coarse subangular blocky structure; friable; common fine roots; 10 percent gravel; neutral; clear wavy boundary.
Bw2-20 to 28 inches, light olive brown (2.5Y 5/4) loam; weak coarse subangular blocky structure; firm; few fine roots; few weathered limestone fragments in lower part; 10 percent gravel; neutral; gradual wavy boundary.
C1-28 to 42 inches, olive (5Y 4/3) gravelly loam; weak thick platy structure; firm; few fine roots; many brown (10YR 4/3) weathered limestone fragments and few grayish brown (2.5Y 5/2) streaks; 15 percent gravel and 2 percent cobbles; neutral; gradual wavy boundary.
C2-42 to 48 inches, olive (5Y 4/3) gravelly loam; weak thick platy structure; firm; few brown (10YR 4/3) and light gray (10YR 7/1) streaks from weathered and partially weathered limestone and quartzite fragments; 15 percent gravel and 2 percent cobbles; slightly effervescent; slightly alkaline; gradual wavy boundary.
C3-48 to 65 inches, olive (5Y 4/3) gravelly loam; weak thick platy structure; firm; few brown (10YR 4/3) and light gray (10YR 7/1) streaks from weathered and partially weathered limestone and quartzite fragments; 15 percent gravel and 2 percent cobbles; slightly effervescent; moderately alkaline.

Range in Characteristics

Solum thickness: 20 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Strongly acid to neutral in the surface layer, moderately acid to neutral to a depth of 40 inches, and moderately acid to moderately alkaline below 40 inches

Ap horizon:
Hue-10YR or 2.5 Y
Value-2 to 4 (dry value 6 or more) (If A horizon is present instead of $A p$, value is 2 or 3)
Chroma-1 to 3
Content of rock fragments-5 to 14 percent
Bw1 horizon:
Hue-7.5YR to 2.5Y

Value-4 to 6
Chroma-3 to 6
Texture of the fine earth fraction-loam or silt loam
Content of rock fragments-5 to 34 percent
Bw2 horizon:
Hue-10YR to 5Y
Value-4 to 6
Chroma-3 to 6
Texture of the fine earth fraction-loam or silt loam
Content of rock fragments-5 to 34 percent
C horizon:
Hue-10YR to 5 Y
Value-3 to 6
Chroma-2 to 4
Texture of the fine earth fraction-loam or silt loam (may be fine sandy loam below a depth of 40 inches)
Content of rock fragments-5 to 34 percent above a depth of 40 inches, up to 50 percent below 40 inches

Sudbury Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderately rapid in the surface layer and subsoil, and rapid or very rapid in the substratum
Landform: Outwash plains and terraces
Parent material: Glaciofluvial deposits derived from granite, gneiss, and schist
Slope range: 0 to 5 percent
Associated soils in a drainage sequence:
Hinckley (excessively drained, sandy-skeletal)
Merrimac (somewhat excessively drained)
Walpole (poorly drained)
Associated similar soils:
Deerfield (coarser texture in the subsoil)
Ninigret (coarse-loamy over sandy or sandy-skeletal)
Tisbury (coarse-silty over sandy or sandy-skeletal)
Taxonomic class: Sandy, mixed, mesic Aquic Dystrudepts

Typical Pedon

Sudbury sandy loam, 0 to 5 percent slopes, located in the town of East Lyme, 800 feet southeast along Plants Dam Road from the intersection with Boston Post Road, 700 feet south of Plants Dam Road, and 100 feet north of the power transmission lines, on the Old Lyme USGS topographic quadrangle, lat. 41 degrees 20 minutes 30 seconds N., long. 72 degrees 15 minutes 30 seconds W., NAD 27, in a wooded area:
Oe-0 to 1 inch; moderately decomposed plant materials
A-1 to 5 inches; very dark brown (10YR 2/2) sandy loam, grayish brown (10 YR 5/2)
dry; weak medium granular structure; friable; many roots; 5 percent rock fragments; strongly acid; clear wavy boundary.
Bw1-5 to 17 inches; dark yellowish brown (10YR 4/4) gravelly sandy loam; weak medium subangular blocky structure; friable; common fine and medium roots; 15 percent rock fragments; strongly acid; gradual wavy boundary.
Bw2-17 to 25 inches; yellowish brown (10YR 5/6) sandy loam; weak medium
subangular blocky structure; friable; few fine and medium roots; common medium distinct strong brown (7.5YR 5/8) soft masses of iron accumulation and prominent light brownish gray (10YR 6/2) iron depletions; 5 percent rock fragments; strongly acid; clear wavy boundary.
2C-25 to 60 inches; dark yellowish brown (10YR 4/6) gravelly sand; single grain; loose; common medium distinct strong brown (7.5YR $5 / 8$) soft masses of iron accumulation; 15 percent rock fragments; strongly acid.

Range in Characteristics
Solum thickness: 18 to 36 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to slightly acid
In some pedons, the Oe horizon is absent.
A or Ap horizon:
Hue-7.5 YR or 10YR
Value-2 to 4
Chroma-1 to 4
Content of rock fragments-0 to 14 percent
Bw horizons:
Hue-7.5YR to 2.5Y
Value-3 to 5
Chroma-2 to 8
Texture of the fine earth fraction-sandy loam or fine sandy loam
Content of rock fragments-0 to 30 percent
2C horizon:
Hue-7.5YR to 2.5Y
Value-4 to 6
Chroma-2 to 8
Texture -stratified sand and gravel
Content of rock fragments-5 to 75 percent
Some of the Sudbury soils in this survey area have a mean annual soil temperature which is colder than typical of the series. This map unit (423A) is identified as a cold phase of the Sudbury series.

Suncook Series

Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid or very rapid
Landform: Flood plains
Parent material: Alluvium
Slope range: 0 to 3 percent
Associated soils:
Hadley (well drained, coarse-silty)
Occum (well drained, coarse-loamy)
Pootatuck (moderately well drained, coarse-loamy)
Winooski (moderately well drained, coarse-silty)
Rippowam (poorly drained, coarse-loamy)
Lim (poorly drained, coarse-loamy)
Limerick (poorly drained, coarse-silty)
Saco (very poorly drained, coarse-silty)

Taxonomic class: Mixed, mesic Typic Udipsamments
Typical Pedon
Suncook loamy fine sand, located in the town of Granby, 1000 feet east along Mechanicsville Road from the intersection with Connecticut Route 189, and 1200 feet north of Mechanicsville Road and 50 feet east of the East Branch Salmon Brook, on the Tariffville USGS topographic quadrangle, lat. 41 degrees 58 minutes 26 seconds N., long. 72 degrees 48 minutes 12 seconds W., NAD 27, in a wooded area:

Ap-0 to 7 inches; very dark grayish brown (10YR 3/2) loamy fine sand, pale brown (10 YR 6/3) dry; very weak coarse granular structure; very friable; many fine roots; strongly acid; abrupt smooth boundary.
C1-7 to 15 inches; dark grayish brown (10YR 4/2) and brown (10YR 5/3) coarse sand; single grain; loose; few fine roots; 2 percent fine gravel; strongly acid; abrupt smooth boundary.
C2-15 to 22 inches; dark brown (10YR 3/3) loamy fine sand with lenses of coarse sand; single grain; loose; few fine roots; strongly acid; abrupt smooth boundary.
C3-22 to 32 inches; pale brown (10YR 6/3) medium and coarse sand; single grain; loose; strongly acid; abrupt smooth boundary.
C4-32 to 42 inches; dark grayish brown (10YR 4/2) fine and medium sand; single grain; loose; strongly acid; abrupt smooth boundary.
C5-42 to 65 inches; dark grayish brown (10YR 4/2) sand; single grain; loose; 10 percent gravel; strongly acid.

Range in Characteristics

Solum thickness: 6 to 10 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to slightly acid
Ap or A horizon:
Hue-10YR or 2.5Y
Value-3 or 4
Chroma-1 to 3
Content of rock fragments-0 to 10 percent
C horizons:
Hue-7.5YR to 5 Y
Value-3 to 6
Chroma-1 to 4
Texture of the fine earth fraction-stratified loamy fine sand to coarse sand Content of rock fragments-0 to 14 percent (above 40 inches), 0 to 34 percent (below 40 inches)

Sutton Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderately rapid in the surface layer, moderate or moderately rapid in the subsoil, and moderately rapid in the substratum
Landform: Hills
Parent material: Melt-out till derived from granite, gneiss and schist
Slope range: 0 to 15 percent
Associated soils in a drainage sequence:
Canton (well drained, coarse-loamy over sandy or sandy-skeletal)

Charlton (well drained)
Leicester (poorly drained)
Associated similar soils:
Rainbow (dense substratum)
Wapping (finer texture in the subsoil)
Woodbridge (dense substratum)
Associated other soils:
Hollis (somewhat excessively drained and well drained, shallow)
Ridgebury (poorly drained, dense substratum)
Whitman (very poorly drained, dense substratum)
Taxonomic class: Coarse-loamy, mixed, active, mesic Aquic Dystrudepts

Typical Pedon

Sutton fine sandy loam, 2 to 15 percent slopes, extremely stony, located in the town of Prospect, 400 feet southeast along Merriman Lane from the intersection with Summit Road, and 70 feet north of Merriman Lane, on the Southington USGS topographic quadrangle, lat. 41 degrees 30 minutes 31 seconds N., long. 72 degrees 58 minutes 45 seconds W., NAD 27, in a wooded area:
Oe-0 to 1 inch; black (10YR 2/1) moderately decomposed plant materials.
A-1 to 6 inches; very dark brown (10YR 2/2) fine sandy loam, grayish brown (10 YR $5 / 2$) dry; weak medium granular structure; very friable; common fine and medium roots; 5 percent gravel; strongly acid; clear wavy boundary.
Bw1-6 to 12 inches; brown (7.5YR 4/4) fine sandy loam; weak fine and medium subangular blocky structure; friable; common fine and medium roots; 10 percent gravel and cobbles; moderately acid; gradual wavy boundary.
Bw2-12 to 24 inches; yellowish brown (10YR 5/6) fine sandy loam; weak medium subangular blocky structure; friable; few medium roots; common fine and medium prominent light brownish gray ($2.5 \mathrm{Y} 6 / 2$) iron depletions and faint yellowish red (5YR 5/6) soft masses of iron accumulation; 10 percent gravel and cobbles; moderately acid; gradual wavy boundary.
Bw3-24 to 28 inches; yellowish brown (10YR 5/4) fine sandy loam; weak medium subangular blocky structure; friable; common medium distinct light brownish gray (2.5Y 6/2) iron depletions, reddish brown (5YR 4/4), and strong brown (7.5YR $5 / 6$) soft masses of iron accumulation; 10 percent gravel and cobbles; moderately acid; gradual wavy boundary.
C1-28 to 36 inches; brown (10YR 5/3) gravelly fine sandy loam; weak thick platy structure; firm; common medium faint light brownish gray (2.5Y 6/2) iron depletions and prominent strong brown (7.5YR 5/6) soft masses of iron accumulation; 15 percent gravel and cobbles; moderately acid; gradual wavy boundary.
C2-36 to 65 inches; light olive brown (2.5Y 5/4) gravelly sandy loam; massive; friable; 25 percent gravel and cobbles; moderately acid.

Range in Characteristics

Solum thickness: 20 to 38 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
In some pedons the Oe horizon is absent.
A horizon:
Hue-10YR or 7.5YR
Value-2 to 4 (If Ap horizon is present instead of A, value is 3 or 4)

Chroma-1 to 3 (If Ap horizon is present instead of A, chroma is 2 through 4)
Content of rock fragments-5 to 14 percent
Upper Bw horizons:
Hue-7.5YR or 10YR
Value-4 to 6
Chroma-4 to 6
Texture of the fine earth fraction- fine sandy loam, loam or sandy loam
Content of rock fragments-5 to 34 percent
Lower Bw horizons:
Hue-10YR to 5Y
Value-4 to 6
Chroma-4 to 6
Texture of the fine earth fraction-fine sandy loam, loam, or sandy loam
Content of rock fragments-5 to 34 percent
C horizons:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-2 to 4
Texture of the fine earth fraction- fine sandy loam or sandy loam
Content of rock fragments-5 to 34 percent

Taconic Series

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderate or moderately rapid
Landform: Bedrock controlled hills and ridges
Parent material: Melt-out till derived from phyllite and schist
Slope range: 3 to 70 percent
Associated similar soil:
Macomber (moderately deep, well drained)
Associated other soils:
Dummerston (very deep, well drained)
Fullam (very deep, moderately well drained)
Brayton (very deep, poorly drained)
Taxonomic class: Loamy-skeletal, mixed, active, frigid Lithic Dystrudepts

Typical Pedon

Taconic very gravelly loam, in an area of Taconic-Rock Outcrop complex, 45 to 70 percent slopes, located in the town of Salisbury, 500 feet northeast along the Appalachian Trail from the summit of Bear Mountain, on the Bash Bish Falls USGS topographic quadrangle, lat. 42 degrees 2 minutes 45 seconds N., long. 73 degrees 27 minutes 18 seconds W., NAD 27, in a wooded area:

Oe-0 to 1 inch moderately decomposed plant materials derived from leaves and ferns
A—1 to 4 inches black (10YR 2/1) very gravelly loam, very dark grayish brown (10YR3/2) dry; friable; weak fine and medium granular structure; many very fine to medium roots; 45 percent gravel, 5 percent flagstones; very strongly acid; clear wavy boundary.
Bw-4 to 11 inches dark brown (7.5YR 3/3) very gravelly loam; friable; weak medium to coarse subangular blocky structure; many very fine to very coarse roots; 40 percent gravel, 10 percent stones; very strongly acid; abrupt irregular boundary.
2R-11 inches hard phyllite bedrock

Range in Characteristics

Solum thickness: 10 to 20 inches
Depth to bedrock: 10 to 20 inches
Reaction: Very strongly acid or strongly acid
A horizon:
Hue-7.5YR to 2.5 Y
Value-2 to 5
Chroma-1 to 3
Content of rock fragments- 35 to 50 percent
Bw horizons:
Hue-7.5YR to 5Y
Value-3 to 5
Chroma-2 to 6
Texture of the fine earth fraction-silt loam or loam
Content of rock fragments-35 to 59 percent
C horizon (where present):
Hue-2.5Y or 10YR
Value-4 or 5
Chroma-2 to 4
Texture of the fine earth fraction-silt loam or loam
Content of rock fragments- 45 to 65 percent

Timakwa Series

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderate to very rapid in the organic materials, and rapid or very rapid in the sandy substratum
Landform: Depressions
Parent Material: Organic materials over glaciofluvial deposits
Slope range: 0 to 2 percent
Associated similar soils:
Catden (organic materials greater than 51 inches deep)
Freetown (more acid, organic materials greater than 51 inches deep)
Natchaug (16 to 51 inches of organic materials, over loamy deposits)
Taxonomic class: Sandy or sandy-skeletal, mixed, euic, mesic Terric Haplosaprists

Typical Pedon

Timakwa muck, in an area of Timakwa and Natchaug soils, located in the town of Thompson, 750 feet NE on New Road from the intersection of Town Farm Road and New Road, 125 feet NW of New Road, on the Thompson USGS topographic quadrangle, lat. 41 degrees 59 minutes 57 seconds N., long. 71 degrees 48 minutes 30 seconds W., NAD 27, in a swamp:
Oa1-0 to 10 inches; black (10YR 2/1) broken face and rubbed muck; 20 percent fibers, 5 percent rubbed; massive; very friable, nonsticky and nonplastic; strongly acid; clear wavy boundary.
Oa2-10 to 21 inches; black (10YR 2/1) broken face and rubbed muck; 15 percent fibers, 2 percent rubbed; massive; very friable, nonsticky and nonplastic; 5 percent woody fragments; strongly acid; clear wavy boundary.
Oa3-21 to 24 inches; black (7.5YR 2.5/1) broken face and rubbed muck; 5 percent fibers, 0 percent rubbed; massive; very friable, nonsticky and nonplastic; strongly acid; clear wavy boundary.

Oa4-24 to 37 inches; black (5YR 2.5/1) broken face and rubbed muck; 40 percent fibers, 10 percent rubbed; massive; very friable, nonsticky and nonplastic; 10 percent woody fragments; strongly acid; abrupt wavy boundary.
2Cg1-37 to 47 inches; dark gray (5Y 4/1) very gravelly loamy coarse sand; single grain; loose, nonsticky and nonplastic; 40 percent gravel; moderately acid; clear wavy boundary.
2Cg2-47 to 60 inches; gray (5Y 5/1) gravelly loamy very fine sand; massive; friable, nonsticky and nonplastic; 20 percent gravel; moderately acid.

Range in Characteristics

Solum thickness: Organic layers 16 to 51 inches deep
Depth to bedrock: More than 80 inches
Reaction: Ultra acid to moderately acid (in 0.01 M calcium chloride) in the organic
layers and strongly acid to neutral in the sandy substratum
Woody fragments in organic soil material: 2 to 10 percent
Upper Oa horizons:
Hue-10YR to 5YR, or is neutral
Value-2 to 4
Chroma-0 to 6
Lower Oa horizons:
Hue-10YR to 5 YR , or is neutral
Value-2 or 3
Chroma-0 to 4
2Cg horizons:
Hue-7.5YR to 5 Y , or is neutral
Value-3 to 6
Chroma-0 to 8
Texture of the fine earth fraction-loamy very fine sand, loamy fine sand, loamy coarse sand, loamy sand, sand, or coarse sand
Content of rock fragments-0 to 40 percent

Tisbury Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface layer and subsoil, and rapid or very rapid in the substratum
Landform: Outwash plains and terraces
Parent material: Eolian deposits over glaciofluvial deposits derived from granite, gneiss, and schist
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Enfield (well drained)
Haven (well drained, coarse-loamy over sandy or sandy-skeletal)
Raypol (poorly drained, coarse-loamy over sandy or sandy-skeletal)
Associated similar soils:
Deerfield (sandy)
Ellington (redder, coarse-loamy over sandy or sandy-skeletal)
Ninigret (coarse-loamy over sandy or sandy-skeletal)
Sudbury (sandy)
Taxonomic class: Coarse-silty over sandy or sandy-skeletal, mixed, active, mesic Aquic Dystrudepts

Typical Pedon

Tisbury silt loam, in an area of Ninigret and Tisbury soils, 0 to 5 percent slopes, located in the town of Ledyard, 250 feet west along Route 214 from the intersection with Spicer Hill Road, 600 feet south of Route 214, and 50 feet west of Lee Brook, on the Uncasville USGS topographic quadrangle, lat. 41 degrees 26 minutes 15 seconds N., long. 72 degrees 00 minutes 06 seconds W., NAD 27, in a grassy field:

Ap-0 to 8 inches; very dark grayish brown (10YR 3/2) silt loam, light brownish gray (10 YR 6/2) dry; weak coarse granular structure; friable; many very fine and fine roots; few scattered pebbles; strongly acid; abrupt smooth boundary.
Bw1-8 to 18 inches; yellowish brown (10YR 5/6) silt loam; weak medium and coarse subangular blocky structure; very friable; common very fine and fine roots; few scattered pebbles; strongly acid; clear wavy boundary.
Bw2-18 to 26 inches; brownish yellow (10YR 6/6) silt loam; massive; very friable; few fine roots; common medium prominent grayish brown (2.5Y 5/2) iron depletions and faint strong brown (7.5YR 5/6) soft masses of iron accumulation; few scattered pebbles; strongly acid; clear wavy boundary.
2C-26 to 60 inches; grayish brown (10YR 5/2) very gravelly sand; single grain; loose; common medium prominent strong brown (7.5YR 5/6) soft masses of iron accumulation and common medium faint light brownish gray (10YR 6/2) iron depletions; 60 percent gravel; strongly acid.

Range in Characteristics

Solum thickness: 17 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
Ap horizon:
Hue-7.5YR or 10YR
Value-2 to 4 (dry value 6 or more) (If A horizon is present instead of $A p$, value is 2 or 3)
Chroma-2 to 4 (If A horizon is present instead of Ap, chroma is 1 through 3) Content of rock fragments-0 to 5 percent
Upper Bw horizon:
Hue-7.5YR or 10YR
Value-4 or 5
Chroma-3 to 6
Texture of the fine earth fraction-silt loam or very fine sandy loam
Content of rock fragments- 0 to 5 percent
Lower Bw horizon:
Hue-7.5YR to 2.5Y
Value-4 to 6
Chroma-3 to 6
Texture of the fine earth fraction-silt loam or very fine sandy loam
Content of rock fragments-0 to 5 percent
2C horizon:
Hue-2.5YR to 2.5Y
Value-4 to 6
Chroma-0 to 6
Texture of the fine earth fraction- stratified sand and loamy sand
Content of rock fragments-0 to 59 percent

Udifluvents

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderately rapid in the surface layer and moderate to very rapid in the substratum
Landform: Flood plains
Parent material: Alluvium
Slope range: 0 to 3 percent
Associated soil in a drainage sequence:
Fluvaquents (somewhat poorly drained to very poorly drained)
Associated similar soils:
Occum (well drained, subsoil development)
Pootatuck (moderately well drained, subsoil development)
Rippowam (poorly drained)
Saco (very poorly drained)
Taxonomic class: Udifluvents

Sample Pedon

Udifluvents, in an area of Fluvaquents-Udifluvents complex, frequently flooded, located in the town of Cornwall, 1800 feet southwest of the intersection of Dawn Hill Road and River Road, 100 feet west of the Housatonic River, on the Ellsworth USGS topographic quadrangle, lat. 41 degrees 48 minutes 12 seconds N , long. 73 degrees 23 minutes 48 seconds W, NAD27, in an old field:

A-0 to 2 inches; very dark grayish brown (10YR 3/2) fine sandy loam, gray ($5 \mathrm{Y} 5 / 1$) dry; weak fine granular structure; very friable; many fine to medium roots; slightly alkaline; abrupt smooth boundary.
C-2 to 4 inches; light yellowish brown (2.5Y 6/3) loamy fine sand; massive; very friable; many fine to medium roots; slightly alkaline; abrupt smooth boundary.
Ap-4 to 12 inches; very dark grayish brown (10YR 3/2) fine sandy loam; weak coarse subangular blocky structure; very friable; many fine to medium roots; slightly alkaline; clear smooth boundary.
AC-12 to 18 inches; brown (10YR 4/3) fine sandy loam; weak medium subangular blocky structure; very friable; few fine to medium roots; 2 percent gravel; slightly alkaline; clear smooth boundary.
C1-18 to 35 inches; olive brown (2.5Y 4/4) loamy sand; massive; very friable; few fine to medium roots; 2 percent gravel; slightly alkaline; clear smooth boundary.
C2-35 to 38 inches; olive brown ($2.5 \mathrm{Y} 4 / 3$) very gravelly loamy sand; single grain; loose; 45 percent gravel; slightly alkaline; clear smooth boundary.
C3-38 to 60 inches; light yellowish brown ($2.5 \mathrm{Y} 6 / 3$) very gravelly coarse sand; single grain; loose; 55 percent gravel; slightly alkaline.

Range in Characteristics

Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to neutral
Content of rock fragments: 0 to 59 percent
A horizons:
Hue-5YR to 2.5 Y
Value-3 to 5
Chroma-1 to 4
Texture of the fine earth fraction-loamy sand, loamy fine sand, loamy very fine sand, very fine sandy loam, fine sandy loam, sandy loam, loam, or silt loam

C horizons:

Hue-5YR to 2.5Y
Value-3 to 7
Chroma-2 to 6
Texture of the fine earth fraction-coarse sand, sand, fine sand, very fine sand, loamy sand, loamy fine sand, loamy very fine sand, very fine sandy loam, fine sandy loam, sandy loam, loam, or silt loam

Udipsamments

Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid or very rapid
Landform: Coastal dunes
Parent material: Beach sands
Slope range: 0 to 8 percent
Associated soils:
Merrimac (somewhat excessively drained, more soil profile development)
Hinckley (sandy-skeletal, more soil profile development)
Windsor (more soil profile development)
Ipswich (very poorly drained organic soil)
Pawcatuck (very poorly drained organic materials over sandy or sandy skeletal)
Westbrook (very poorly drained organic materials over loamy)
Taxonomic class: Udipsamments

Sample Pedon

Udipsamments, in an area of Beaches-Udipsamments complex, coastal, located in the town of Madison in Hammonasset State Park, 1500 feet west of the traffic circle and 3000 feet west of Webster Point, on the Clinton USGS topographic quadrangle, lat. 41 degrees 15 minutes 43 seconds N., long. 72 degrees 33 minutes 39 seconds W., NAD 27, on Hammonasset Beach:

C1—0 to 38 inches; 85 percent light brownish gray ($2.5 \mathrm{Y} 6 / 2$), 10 percent yellow (2.5Y 7/6) and 5 percent black (10 YR 2/1) sand; single grain; loose; few fine and medium roots; moderately acid; clear smooth boundary.
C2—38 to 50 inches; 85 percent light brownish gray ($2.5 \mathrm{Y} 6 / 2$), 10 percent yellow (2.5Y 7/6) and 5 percent black (10 YR 2/1) coarse sand; single grain; loose; slightly acid; abrupt smooth boundary.
C3-50 to 65 inches; 50 percent light olive brown (2.5Y5/4) and 50 percent olive yellow (2.5Y 6/6) sand; single grain; loose; neutral.

Range in Characteristics

Depth to bedrock: More than 80 inches
Reaction: Moderately acid to neutral
Content of rock fragments: 0 to 34 percent
C horizons:
Hue-10YR to 5Y
Value-2 to 7
Chroma-1 to 6
Texture of the fine earth fraction- fine sand, sand or coarse sand

Udorthents

Depth class: Very deep
Drainage class: Moderately well drained and well drained
Permeability: Very slow to very rapid
Landform: Variable
Parent material: Glaciofluvial deposits, till, or glaciolacustrine deposits
Slope range: 0 to 70 percent
Associated similar soil:
Udipsamments (excessively drained, sandy)
Taxonomic class: Udorthents

Sample Pedon

Udorthents, in an area of Udorthents-Urban land complex, located in the town of Hartford, 4400 feet north along Mark Twain Drive from the intersection with Connecticut Route 44, and 50 feet west of Mark Twain Drive, on the Hartford North USGS topographic quadrangle, lat. 41 degrees 47 minutes 32 seconds N., long. 72 degrees 42 minutes 35 seconds W., NAD 27, in a wooded area:

A-0 to 5 inches; very dark grayish brown (10YR 3/2) loam; moderate medium to coarse subangular blocky structure parting to moderate medium granular structure; firm; common fine to very fine and few medium to coarse roots; 8 percent gravel; 2 percent concrete, asphalt, and brick fragments; neutral; clear wavy boundary.
C1-5 to 21 inches; brown (10YR 4/3) gravelly loam; massive; firm; common very fine to fine roots; 10 percent gravel; 10 percent concrete, asphalt, shale, and brick fragments; neutral; clear wavy boundary.
C2-21 to 80 inches; dark brown (10YR 3/3) very gravelly sandy loam; massive; firm; 15 percent gravel; 25 percent concrete, asphalt, and brick fragments; slightly alkaline.

Range in Characteristics

Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to slightly alkaline
Content of rock fragments: 0 to 65 percent
A horizon:
Hue-5YR to 5Y
Value-2 to 4
Chroma-1 to 4
Texture of the fine earth fraction-loamy coarse sand, loamy sand, loamy fine sand, loamy very fine sand, sandy loam, fine sandy loam, very fine sandy loam, loam, silt loam, or silty clay loam
C horizons:
Hue-5YR to 5 Y
Value-3 to 7
Chroma-1 to 6
Texture of the fine earth fraction-coarse sand, sand, fine sand, very fine sand, loamy coarse sand, loamy sand, loamy fine sand, loamy very fine sand, very fine sandy loam, fine sandy loam, sandy loam, loam, silt loam, or silty clay loam

Walpole Series

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderately rapid in the surface layer and subsoil, and rapid or very rapid in the substratum
Landform: Depressions and drainageways on outwash plains and terraces
Parent material: Glaciofluvial deposits derived from granite, gneiss, and schist
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Hinckley (excessively drained, sandy-skeletal)
Merrimac (somewhat excessively drained)
Sudbury (moderately well drained)
Associated similar soils:
Raypol (coarse-loamy over sandy or sandy-skeletal)
Scarboro (very poorly drained)
Taxonomic class: Sandy, mixed, mesic Aeric Endoaquepts
Typical Pedon
Walpole sandy loam, located in the town of Killingly, 400 feet north along North Shore Drive from the intersection with Route 101, 500 feet east of North Shore Drive, and 700 feet south of the outlet of Alexander Lake, on the Danielson USGS topographic quadrangle, lat. 41 degrees 50 minutes 58 seconds N., long. 71 degrees 54 minutes 28 seconds W., NAD 27 in a wooded area:

Oe-0 to 1 inch; black (10YR 2/1) moderately decomposed plant materials A-1 to 7 inches; very dark brown (10YR 2/2) sandy loam, grayish brown (10 YR 5/2) dry; weak medium granular structure; very friable; many fine and medium roots; 8 percent gravel; very strongly acid; clear smooth boundary.
Bg-7 to 21 inches; dark grayish brown (2.5Y 4/2) sandy loam; massive; friable; common fine and medium roots in the upper part of the horizon and few fine roots in the lower part; common medium prominent strong brown (7.5YR 5/6) and yellowish brown (10YR $5 / 6$), and distinct yellowish brown (10YR 5/4) soft masses of iron accumulation and light brownish gray (10YR 6/2) iron depletions; 10 percent gravel; strongly acid; gradual smooth boundary.
Bw-21 to 25 inches; light olive brown (2.5Y 5/4) gravelly sandy loam; massive; friable; common medium distinct yellowish brown (10YR 5/6) soft masses of iron accumulation, light brownish gray (10YR 6/2) and dark grayish brown (2.5Y 4/2) iron depletions; 20 percent gravel; strongly acid; clear smooth boundary.
C1-25 to 41 inches; light yellowish brown (2.5Y 6/4) very gravelly loamy sand; single grain; loose; common medium prominent strong brown (7.5YR 5/6) and faint yellowish brown (10YR 5/4) soft masses of iron accumulation; 30 percent gravel and 5 percent cobbles; strongly acid; gradual smooth boundary.
C2-41 to 65 inches; light brownish gray (10YR 6/2) very gravelly sand; few brown (10YR 5/3) streaks; single grain; loose; 35 percent gravel and 5 percent cobbles, moderately acid.

Range in Characteristics

Solum thickness: 18 to 28 inches

Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to neutral
In some pedons the Oe horizon is absent.

A horizon:
Hue-10YR
Value-2 or 3 (If Ap horizon present instead of A, value 2 to 4)
Chroma-1 or 2 (If Ap horizon present instead of A, chroma 1 to 3)
Content of rock fragments-0 to 14 percent
Bg horizon:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-1 or 2
Texture of the fine earth fraction-sandy loam or fine sandy loam
Content of rock fragments-0 to 25 percent
Bw horizon:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-3 or 4
Texture of the fine earth fraction-sandy loam or fine sandy loam
Content of rock fragments-0 to 25 percent
C horizons:
Hue-10YR to 5 Y
Value-4 to 6
Chroma-1 to 4
Texture of the fine earth fraction-stratified loamy fine sand to coarse sand
Content of rock fragments-0 to 50 percent

Wapping Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface layer and subsoil, and moderately rapid in the upper substratum, and moderately rapid or rapid in the lower substratum
Landform: Hills and till plains
Parent material: Eolian deposits over melt-out till derived from sandstone, shale, basalt, and gneiss
Slope range: 0 to 8 percent
Associated soil in a drainage sequence:
Narragansett (well drained, coarse-loamy over sandy or sandy-skeletal)
Associated similar soils:
Ludlow (dense substratum, redder)
Rainbow (dense substratum)
Taxonomic class: Coarse-loamy, mixed, active, mesic Aquic Dystrudepts

Typical Pedon

Wapping very fine sandy loam, 0 to 3 percent slopes, located in the town of South Windsor, 4,400 feet north along Barber Hill Road from the intersection with Miller Road and 600 feet east of Barber Hill Road, on the Manchester USGS Topographic map, lat. 41 degrees 51 minutes 39 seconds N., long. 72 degrees 31 minutes 45 seconds W., NAD27, in a corn field:

Ap-0 to11 inches; dark brown (7.5YR 3/3) very fine sandy loam, pale brown (10YR $6 / 3$) dry; weak medium granular structure; very friable; common very fine and fine roots; 5 percent gravel; moderately acid; abrupt smooth boundary.

Bw1-11 to 16 inches; brown (7.5YR 4/4) very fine sandy loam; moderate medium subangular blocky structure; very friable; few fine roots; 5 percent gravel; moderately acid; clear smooth boundary.
Bw2-16 to 20 inches; yellowish brown (10YR 5/4) very fine sandy loam; moderate coarse subangular blocky structure; friable; few fine roots; common fine to coarse distinct light brownish gray (10 YR 6/2) iron depletions, and common fine distinct strong brown (7.5YR 5/6) and reddish brown (5 YR 4/4) soft masses of iron accumulation; 5 percent gravel; moderately acid; clear smooth boundary.
2C1-20 to 28 inches; reddish brown (5YR 4/4) gravelly sandy loam; massive; friable; 20 percent gravel; moderately acid; clear smooth boundary.
2C2-28 to 36 inches; reddish brown (2.5YR 4/4) gravelly loamy sand; massive; friable; 30 percent gravel; moderately acid. clear smooth boundary.
2C3-36 to 80 inches; reddish brown (2.5YR 4/4) gravelly loamy sand; massive; friable; 20 percent gravel; moderately acid.

Range in Characteristics

Solum thickness: 20 to 38 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
Ap horizon:
Hue-7.5YR or 10YR
Value-3 or 4 (dry value 6 or more) (If A horizon is present instead of $A p$, value is 2 or 3)
Chroma-2 to 4 (If A horizon is present instead of Ap, chroma is 1 to 3)
Content of rock fragments-0 to 14 percent
Bw horizons:
Hue-7.5YR or 10YR
Value-4 or 5
Chroma-4 to 6
Texture of the fine earth fraction-very fine sandy loam, silt loam, or loam
Content of rock fragments-0 to 14 percent
2C1 horizon:
Hue-2.5YR to 5 Y
Value-2 to 6
Chroma-2 to 6
Texture of the fine earth fraction- sandy loam or fine sandy loam
Content of rock fragments-15 to 34 percent
2C2 and 2C3 horizons:
Hue-2.5YR to 5 Y
Value-2 to 6
Chroma-2 to 6
Texture of the fine earth fraction- sandy loam, fine sandy loam, or loamy sand Content of rock fragments-15 to 50 percent

Watchaug Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface layer and subsoil, and moderate or moderately rapid in the substratum
Landform: Till plains and hills
Parent material: Melt-out till derived from sandstone, shale and basalt

Slope range: 0 to 8 percent
Associated soil in a drainage sequence:
Cheshire (well drained)
Associated similar soils:
Ludlow (dense substratum)
Rainbow (dense substratum, browner)
Wapping (yellower in the subsoil)
Taxonomic class: Coarse-loamy, mixed, semiactive, mesic Aquic Dystrudepts

Typical Pedon

Watchaug fine sandy loam, 0 to 3 percent slopes, located in the town of Wallingford, 400 feet north of the intersection of Cook Hill Road and Schoolhouse Road, on the Wallingford USGS topographic quadrangle, lat. 41 degrees 27 minutes 22 seconds N., long. 72 degrees 51 minutes 54 seconds W., NAD 27, in a wooded area:

Ap-0 to 8 inches; dark reddish brown (5YR 3/3) fine sandy loam, light reddish brown (5YR 6/3) dry; weak medium and fine granular structure; friable; common fine and medium roots; 8 percent gravel; strongly acid; clear wavy boundary.
Bw1-8 to 18 inches; reddish brown (5YR 4/4) fine sandy loam; weak medium subangular blocky structure; friable; common fine and medium roots; 10 percent gravel; strongly acid; gradual wavy boundary.
Bw2-18 to 24 inches; yellowish red (5YR 5/6) fine sandy loam; weak medium subangular blocky structure; very friable; few fine and medium roots; common fine and medium faint strong brown (7.5YR 5/6) soft masses of iron accumulation and prominent pinkish gray (5YR 6/2) iron depletions; 10 percent gravel; strongly acid; gradual wavy boundary.
C-24 to 65 inches; reddish brown (5YR 4/3) gravelly sandy loam; massive; friable; few fine roots above 48 inches; streaks of pale red (2.5YR 6/2) and reddish brown (2.5YR 5/4); 25 percent gravel and cobbles; strongly acid.

Range in Characteristics

Solum thickness: 18 to 36 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid in the surface layer and subsoil, and very strongly acid to slightly acid in the substratum

Ap horizon:
Hue-5YR to 10YR
Value-2 to 4 (dry value 6 or more) (If A horizon is present instead of Ap, value is 2 or 3)
Chroma-2 to 4 (If A horizon is present instead of Ap, chroma is 1 to 3)
Content of rock fragments-5 to 14 percent
Bw horizons:
Hue-2.5YR or 5YR
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-fine sandy loam, silt loam, or loam
Content of rock fragments-5 to 34 percent
C horizon:
Hue-2.5YR or 5YR
Value-3 to 6
Chroma-3 to 6
Texture of the fine earth fraction- sandy loam or fine sandy loam
Content of rock fragments-5 to 34 percent

Westbrook Series

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderate to rapid in the organic layers, and moderate to very slow in the substratum
Landform: Tidal marshes and salt marshes
Parent material: Grassy organic materials over loamy deposits
Slope range: 0 to 2 percent
Associated similar soils:
Ipswich (organic materials deeper than 51 inches)
Pawcatuck (organic materials over sandy deposits)
Taxonomic class: Loamy, mixed, euic, mesic Terric Sulfihemists

Typical Pedon

Westbrook mucky peat, located in the town of Westbrook, 250 feet south of US Route 1 and 500 feet west of the south end of Hammock Road and Hammock Dock, on the Essex USGS topographic quadrangle, lat. 41 degrees 16 minutes 30 seconds N ., long. 72 degrees 28 minutes 18 seconds N., NAD 27, in a salt grass tidal marsh:
Oe1-0 to 10 inches; very dark gray (10YR 3/1) mucky peat; dark gray (10YR 4/1) dry; 65 percent fiber, 30 percent rubbed; dense mat of roots, stems and leaves; massive; many very fine, fine, and medium roots; fibers (herbaceous); thin lenses and coatings of silt; 45 percent organic matter; strongly saline; slightly acid; clear wavy boundary.
Oe2-10 to 40 inches; very dark gray (10YR 3/1) mucky peat, dark gray (10YR 4/1) dry; 50 percent fiber, 25 percent rubbed; massive; few very fine, fine, and medium roots; fibers (herbaceous); thin lenses and coatings of silt; 44 percent organic matter; strongly saline; moderately acid; gradual wavy boundary.
Oe3-40 to 48 inches; dark olive gray (5Y 3/2) mucky peat, dark gray (10YR 4/1) dry; 35 percent fiber, 25 percent rubbed; massive; fibers (herbaceous); 24 percent organic matter; strongly saline; neutral; clear wavy boundary.
Cg1-48 to 64 inches; very dark gray (5Y 3/1) silt loam, dark gray (10YR 4/1) dry; massive; 12 percent organic matter; strongly saline; neutral; diffuse wavy boundary.
Cg2-64 to 99 inches; dark gray ($\mathrm{N} 4 /$) silt loam, dark gray (10YR 4/1) dry; massive; 10 percent organic matter; few small shell fragments; strongly saline; slightly acid.

Range in Characteristics

Thickness of organic materials: 16 to 51 inches
Depth to bedrock: More than 80 inches
Reaction: Strongly acid to slightly alkaline
Salinity: Very slightly saline to strongly saline
Surface tier:
Hue-neutral or 5 YR to 5 Y
Value-2 to 5
Chroma-0 to 3
Content of rock fragments-none
Subsurface tier:
Hue-neutral or 5YR to 5Y
Value-2 to 5
Chroma-0 to 3
Texture of the organic fraction-mucky peat
Content of rock fragments-none

Bottom tier:
Hue-neutral or 5YR to 5Y
Value-2 to 5
Chroma-0 to 3
Texture of the organic fraction-mucky peat
Content of rock fragments-none
Cg horizons:
Hue-neutral or 10YR to 5BG
Value-2 to 7
Chroma-0 to 2
Texture of the fine earth fraction-silt loam, silty clay loam or sandy loam
Content of rock fragments-none

Westminster Series

Depth class: Shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Landform: Bedrock controlled hills and ridges
Parent material: Melt-out till derived from schist, gneiss, or granite
Slope range: 3 to 70 percent
Associated similar soil:
Millsite (moderately deep, well drained)
Associated other soils:
Ashfield (very deep, moderately well drained, dense substratum)
Bice (very deep, well drained)
Schroon (very deep, moderately well drained)
Loonmeadow (very deep, very poorly drained)
Taxonomic class: Loamy, mixed, active, frigid Lithic Dystrudepts
Typical Pedon
Westminster fine sandy loam, in an area of Westminster-Millsite-Rock Outcrop complex, 3 to 15 percent slopes, located in the town of Norfolk, 2000 feet southeast along Loon Meadow Drive from the intersection with Lovers Lane and 1000 feet south of Loon Meadow Drive, on the South Sandisfield USGS topographic quadrangle, lat. 42 degrees 00 minutes 31 seconds N., long. 73 degrees 10 minutes 51 seconds W., NAD 27, in a wooded area:

Oi-0 to 1 inch; slightly decomposed plant materials derived from leaf litter
Oe-1 to 2 inches; moderately decomposed plant materials derived from leaf litter
A-2 to 5 inches; dark brown (7.5YR 3/3) fine sandy loam, light yellowish brown (10
YR 6/4) dry; weak fine to medium granular structure; very friable; many very fine to coarse roots; 4 percent gravel, 3 percent stones, 3 percent cobbles; very strongly acid; abrupt wavy boundary.
Bw1-5 to 12 inches; dark yellowish brown (10Y 3/4) fine sandy loam; weak fine to coarse subangular blocky structure; very friable; common very fine to coarse roots; 5 percent gravel, 5 percent cobbles, 2 percent stones; very strongly acid; clear wavy boundary.
Bw2-12 to 16 inches; dark yellowish brown (10YR 4/4) fine sandy loam; weak fine to coarse subangular blocky structure; very friable; few very fine to medium roots; 5 percent gravel, 5 percent stones; strongly acid; irregular boundary.
2R-16 inches; green schist bedrock with bands of quartz

Range in Characteristics

Solum thickness: 10 to 20 inches
Depth to bedrock: 10 to 20 inches
Reaction: Extremely acid to strongly acid
A horizon:
Hue-5YR to 10YR
Value-2 or 3
Chroma-0 to 3
Content of rock fragments-5 to 14 percent
Bw horizons:
Hue-7.5YR or 10YR
Value-3 or 4
Chroma-2 to 4
Texture of the fine earth fraction-fine sandy loam or loam
Content of rock fragments-5 to 25 percent

2R horizon:

Schist bedrock, but in places is gneiss or granite

Wethersfield Series

Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate in the surface layer and subsoil, and slow or very slow in the substratum
Landform: Hills and drumlins
Parent material: Lodgement till derived from sandstone, shale or basalt
Slope range: 3 to 35 percent
Associated soils in a drainage sequence:
Ludlow (moderately well drained)
Wilbraham (poorly drained)
Menlo (very poorly drained)
Associated similar soils:
Broadbrook (browner)
Cheshire (friable substratum)
Narragansett (coarse-silty over sandy or sandy-skeletal, browner)
Yalesville (moderately deep over bedrock)
Taxonomic class: Coarse-loamy, mixed, active, mesic Oxyaquic Dystrudepts
Typical Pedon
Wethersfield loam, 3 to 8 percent slopes, very stony, located in the town of Middlefield, 2000 feet northeast along Route 66 from the intersection with Route 147, 50 feet south of Route 66 at the south end of Mt. Higbee Reservoir, on the Middletown USGS topographic quadrangle, lat. 41 degrees 32 minutes 17 seconds N., long. 72 degrees 43 minutes 32 seconds W., NAD 27, in a wooded area:

Oe-0 to 1 inch; black (10YR 2/1) moderately decomposed plant materials
A-1 to 3 inches; dark brown (7.5YR 3/2) loam, brown (7.5 YR 5/2); moderate medium granular structure; friable; many fine and medium roots; 10 percent gravel; strongly acid; clear wavy boundary.
Bw1-3 to 13 inches; reddish brown (5YR 4/4) loam; weak medium subangular blocky structure; friable; common fine and medium roots; 10 percent gravel; strongly acid; clear wavy boundary.

Bw2-13 to 27 inches; dark reddish brown (5YR 3/3) gravelly loam; weak medium subangular blocky structure; friable; few medium roots; 15 percent gravel and cobbles; strongly acid; clear wavy boundary.
Cd-27 to 65 inches; reddish brown (2.5YR 4/4) gravelly loam; weak thick platy structure; very firm, brittle; few silt films and black coatings on some plates; 20 percent gravel and cobbles; strongly acid.

Range in Characteristics

Solum thickness: 20 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid to a depth of 60 inches, and strongly acid to slightly alkaline below 60 inches.

In some pedons, the Oe horizon may be absent.
Oe horizon (where present):
Hue-10YR
Value-2
Chroma-1
Content of rock fragments-none
A horizon:
Hue-5YR to 10YR
Value-2 or 3 (If Ap horizon is present instead of A, value is 3 or 4)
Chroma-1 to 3 (If Ap horizon is present instead of A, chroma is 2 to 4)
Content of rock fragments-5 to 14 percent
Bw horizons:
Hue-2.5YR or 5YR
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-loam or fine sandy loam
Content of rock fragments-5 to 25 percent
Cd horizon:
Hue-10R to 5YR
Value-3 to 5
Chroma-2 to 6
Texture of the fine earth fraction- loam or fine sandy loam
Content of rock fragments-10 to 34 percent

Whitman Series

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderate or moderately rapid in the surface layer and subsoil, and slow or very slow in the substratum
Landform: Depressions and drainageways on hills and drumlins
Parent material: Lodgement till derived from granite, gneiss and schist
Slope range: 0 to 2 percent
Associated soils in a drainage sequence:
Montauk (well drained)
Paxton (well drained)
Woodbridge (moderately well drained)
Ridgebury taxadjunct (poorly drained)

Associated similar soil:
Leicester (poorly drained, friable substratum)
Taxonomic class: Loamy, mixed, active, nonacid, mesic shallow Typic Humaquepts

Typical Pedon

Whitman fine sandy loam, in an area of Ridgebury, Leicester, and Whitman soils, extremely stony, located in the town of Lebanon, 300 feet southwest along Browning Road from the intersection with Madley Road, and 200 feet west of Browning Road, on; the Fitchville USGS topographic quadrangle, lat. 41 degrees 37 minutes 15 seconds N., long. 72 degrees 12 minutes 39 seconds W., NAD 27, in a wooded area:

Oi-0 to 1 inch; slightly decomposed plant materials
A-1 to 9 inches; black (10YR 2/1) fine sandy loam, dark gray (10 YR 4/1) dry; weak medium granular structure; friable; common fine and medium roots; strongly acid; abrupt wavy boundary.
Bg-9 to 16 inches; dark grayish brown (10YR 4/2) fine sandy loam; weak medium subangular blocky structure; friable; few fine roots; few fine prominent yellowish brown (10YR 5/8) soft masses of iron accumulation; 5 percent rock fragments; moderately acid; clear wavy boundary.
Cdg1-16 to 22 inches; grayish brown (2.5Y5/2) fine sandy loam; moderate medium platy structure; very firm, brittle; common medium prominent strong brown (7.5YR $5 / 8$) soft masses of iron accumulation and few medium faint light brownish gray (2.5Y 6/2) iron depletions; 5 percent rock fragments; slightly acid; gradual wavy boundary.
Cdg2-22 to 60 inches; grayish brown (2.5Y 5/2) fine sandy loam; massive; firm, brittle; common medium prominent strong brown (7.5YR $5 / 8$) soft masses of iron accumulation and few medium faint light brownish gray (2.5Y 6/2) iron depletions; 5 percent rock fragments; slightly acid.

Range in Characteristics

Solum thickness: 12 to 20 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to slightly acid (some horizon within a depth of 40 inches is moderately acid or slightly acid)
In some pedons, the Oi horizon may be absent.
A horizon:
Hue-10YR
Value-2 or 3
Chroma-1 or 2
Content of rock fragments-5 to 14 percent
Bg horizon:
Hue-neutral or 10YR to 5Y
Value-4 to 6
Chroma-1 or 2
Texture of the fine earth fraction-fine sandy loam or loam
Content of rock fragments-5 to 34 percent
Cdg horizons:
Hue-neutral or 10YR to 5 Y
Value-4 to 6
Chroma-1 or 2 (chroma 3 below 30 inches)
Texture of the fine earth fraction-loam, fine sandy loam, or sandy loam
Content of rock fragments-5 to 34 percent

Wilbraham Series

Depth class: Very deep
Drainage class: Poorly drained
Permeability: Moderate in the surface layer and subsoil, and slow or very slow in the substratum
Landform: Depressions and drainageways on hills and drumlins
Parent material: Lodgement till derived from sandstone, shale and/or basalt
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Wethersfield (well drained)
Ludlow (moderately well drained)
Menlo (very poorly drained)
Associated other soils:
Broadbrook (well drained)
Cheshire (well drained, friable substratum)
Rainbow (moderately well drained)
Watchaug (moderately well drained, friable substratum)
Taxonomic class: Coarse-loamy, mixed, active, mesic Aquic Dystrudepts
Typical Pedon
Wilbraham silt loam, in an area of Wilbraham and Menlo soils, extremely stony, located in the town of Middlefield, 1300 feet northeast along Laurel Brook Road from the intersection with Cherry Hill Road and 700 feet north of Laurel Brook Road, on the Middletown USGS topographic quadrangle, lat. 41 degrees 30 minutes 40 seconds N., long. 72 degrees 41 minutes 35 seconds W., NAD 27, in an unimproved pasture:

A-0 to 4 inches; very dark gray (10YR 3/1) silt loam, gray (10 YR 5/1) dry; weak medium granular structure; very friable; many fine roots; 5 percent gravel; strongly acid; abrupt wavy boundary.
Bw1-4 to 8 inches; dark reddish brown (5YR 3/3) silt loam; weak coarse subangular blocky structure; very friable; few fine roots; common medium prominent pinkish gray (7.5YR 6/2) iron depletions; 10 percent gravel; strongly acid; clear wavy boundary.
Bw2-8 to 20 inches; reddish brown (5YR 4/4) silt loam; weak coarse subangular blocky structure; friable; few fine roots; common distinct reddish gray (5YR 5/2) iron depletions; 13 percent gravel and cobbles; strongly acid; clear wavy boundary.
Cd-20 to 65 inches; dark reddish brown (5YR 3/3) gravelly loam; weak thick platy structure; very firm, brittle; silt films and black (10YR 2/1) coatings on some plates; many distinct brown (7.5YR 5/2) and faint dark brown (7.5YR 4/4) soft masses of iron accumulation; 25 percent gravel and cobbles; strongly acid.

Range in Characteristics

Solum thickness: 20 to 36 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
A horizon:
Hue-5YR to 10YR
Value-2 or 3 (If Ap horizon is present instead of A, value is 2 to 4)
Chroma-1 or 2 (If Ap horizon is present instead of A , chroma is 2 or 3)
Content of rock fragments-5 to 14 percent

Bw1 horizon:
Hue-5YR to 10YR
Value-3 to 6
Chroma-3 or 4
Texture of the fine earth fraction-silt loam, loam, or very fine sandy loam
Content of rock fragments-5 to 25 percent
Bw2 horizon:
Hue-2.5YR or 5YR
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-silt loam, loam, or very fine sandy loam
Content of rock fragments-5 to 25 percent
Cd horizon:
Hue-10R to 5YR
Value-3 to 6
Chroma-2 to 6
Texture of the fine earth fraction- silt loam, loam, or very fine sandy loam
Content of rock fragments-10 to 34 percent

Windsor Series

Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid in the surface layer and upper subsoil, rapid or very rapid in the lower subsoil and substratum
Landform: Outwash plains, terraces, and kames
Parent material: Eolian deposits over glaciofluvial deposits derived from granite, gneiss, and schist
Slope range: 0 to 15 percent
Associated soils in a drainage sequence:
Deerfield (moderately well drained)
Scarboro (very poorly drained)
Associated similar soils:
Hinckley (sandy-skeletal)
Merrimac (somewhat excessively drained)
Taxonomic class: Mixed, mesic Typic Udipsamments
Typical Pedon
Windsor loamy sand, 0 to 3 percent slopes, located in the town of South Windsor, 0.35 miles east of Chapel Road and U.S. Route 5,50 feet south of Chapel Road, on the Manchester USGS topographic quadrangle, lat. 41 degrees 48 minutes 35 seconds N., long. 72 degrees 36 minutes 24 seconds W., NAD 27, in a wooded area:
Oe-0 to 1 inch; black (10YR 2/1) moderately decomposed plant materials; many very fine and fine roots; very strongly acid; abrupt smooth boundary.
A-1 to 3 inches; very dark grayish brown (10YR 3/2) loamy sand, pale brown (10 YR $6 / 3$) dry; weak medium granular structure; very friable; many very fine and fine roots; strongly acid; abrupt wavy boundary.
Bw1-3 to 9 inches; strong brown (7.5YR 5/6) loamy sand; very weak fine granular structure; very friable; many fine and medium roots; strongly acid; gradual wavy boundary.

Bw2-9 to 21 inches; yellowish brown (10YR 5/6) loamy sand; very weak fine granular structure; very friable; common fine and medium roots; strongly acid; gradual wavy boundary.
Bw3-21 to 25 inches; light yellowish brown (10YR 6/4) sand; single grain; loose; few coarse roots; strongly acid; clear wavy boundary.
C-25 to 65 inches; pale brown (10YR 6/3) and light brownish gray (10YR 6/2) sand; single grain; loose; few coarse roots; strongly acid.

Range in Characteristics

Solum thickness: 18 to 36 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid in the surface layer and subsoil, and very strongly acid to slightly acid in the substratum

In some pedons, the Oe horizon may be absent.
A horizon:
Hue-7.5YR or 10YR
Value-2 or 3 (If Ap horizon present instead of A, value 3 or 4)
Chroma-1 to 3 (If Ap horizon present instead of A, chroma 2 to 4)
Content of rock fragments-0 to 10 percent
Upper Bw horizons:
Hue-7.5YR to 2.5Y
Value-4 to 6
Chroma-4 to 8
Texture of the fine earth fraction-loamy sand or loamy fine sand
Content of rock fragments-0 to 10 percent
Lower Bw horizons:
Hue-7.5YR to 5Y
Value-4 to 7
Chroma-3 to 6
Texture of the fine earth fraction-loamy sand, fine sand or sand
Content of rock fragments-0 to 10 percent
C horizon:
Hue-5YR to 5Y
Value-4 to 7
Chroma-1 to 6
Texture of the fine earth fraction- loamy sand, fine sand or sand
Content of rock fragments-0 to 14 percent

Winooski Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface layer and subsoil, and moderate or moderately rapid in the substratum
Landform: Flood plains
Parent material: Alluvium
Slope range: 0 to 3 percent
Associated soils in a drainage sequence:
Hadley (well drained)
Bash (somewhat poorly drained, coarse-loamy)
Lim (coarse-loamy, poorly drained)

Limerick (poorly drained)
Saco (very poorly drained)
Associated similar soil:
Pootatuck (coarse-loamy)
Taxonomic class: Coarse-silty, mixed, active, nonacid, mesic Fluvaquentic Dystrudepts

Typical Pedon

Winooski silt loam, located in the town of South Windsor, 2,300 feet west along Newbury Road from the intersection with Main Street, and 100 feet south of Newbury Road, on the Hartford North USGS topographic quadrangle, lat. 41 degrees 49 minutes 54 seconds N., long. 72 degrees 37 minutes 34 seconds W., NAD 27, in a cropped field:

Ap-0 to 12 inches; very dark grayish brown (2.5Y 3/2) silt loam; light brownish gray (2.5Y 6/2) dry; weak medium granular structure; very friable; few very fine and fine roots; moderately acid; clear smooth boundary.
Bw1-12 to 18 inches; dark grayish brown (2.5Y 4/2) silt loam; massive friable; few fine roots; moderately acid; clear smooth boundary.
Bw2-18 to 36 inches; dark grayish brown (2.5Y 4/2) silt loam; massive; friable; common medium distinct olive brown (2.5Y 4/4) and dark yellowish brown (10YR $4 / 4$) soft masses of iron accumulation and distinct light olive gray ($5 \mathrm{Y} 6 / 2$) iron depletions; slightly acid; clear smooth boundary.
C1-36 to 52 inches; olive gray (5Y 4/2) very fine sandy loam; massive; very friable; common medium prominent yellowish brown (10YR 5/6) and dark yellowish brown (10YR 4/4) soft masses of iron accumulation, and faint gray (5Y 5/1) iron depletions; slightly acid; clear smooth boundary.
C2-52 to 65 inches; olive gray (5Y 4/2) silt loam; massive; friable; common medium prominent yellowish brown (10YR 5/6) and dark yellowish brown (10YR 4/4) soft masses of iron accumulation and faint gray ($5 \mathrm{Y} 5 / 1$) iron depletions; slightly acid.

Range in Characteristics

Solum thickness:18 to 43 inches
Depth to bedrock: More than 80 inches
Reaction: Moderately acid to slightly acid in the surface layer and subsoil, moderately acid to neutral in the substratum

Ap or A horizon:
Hue-10YR to 5 Y
Value-3 or 4
Chroma-2 or 3
Content of rock fragments-less than 1 percent
Bw horizons:
Hue-7.5YR to 5 Y
Value-2 to 5
Chroma - 2 to 4
Texture of the fine earth fraction-silt loam or very fine sandy loam
Content of rock fragments-less than 1 percent
C horizons:
Hue-10YR to 5 Y
Value-3 to 6
Chroma-2 to 4
Texture of the fine earth fraction-silt loam, very fine sandy loam or loamy very fine sand
Content of rock fragments-less than 1 percent

Wonsqueak Series

Depth class: Very deep
Drainage class: Very poorly drained
Permeability: Moderately slow to moderately rapid in the organic material and moderate or moderately slow in the mineral substratum
Landform: Depressions
Parent material: Organic materials over drift
Slope range: 0 to 2 percent
Associated similar soil:
Bucksport (organic materials greater than 51 inches thick)
Associated other soils:
Brayton (poorly drained mineral soil, till from phyllite, schist, slate, and shale)
Loonmeadow (very poorly drained mineral soil, till from gneiss, schist, and dolomite)

Taxonomic class: Loamy, mixed, euic, frigid Terric Haplosaprists

Typical Pedon

Wonsqueak mucky peat, located in the town of Norfolk, 500 feet south along Barry Hill Road from the intersection with Wheeler Street, 50 feet west of Barry Hill Road, on the South Sandisfield USGS topographic quadrangle, lat. 42 degrees 01 minutes 44 seconds N., long. 73 degrees 10 minutes 58 seconds W., NAD 27, in a wooded swamp:

Oe-0 to 2 inches; moderately decomposed black (7.5YR 2.5/1) mucky peat; about 60 percent fiber, 35 percent rubbed; massive; many fine to very coarse roots; about 10 percent woody and 90 percent herbaceous fibers; moderately acid; clear wavy boundary.
Oa1-2 to 11 inches; highly decomposed very dark brown (7.5YR 2.5/2) muck; about 45 percent fiber, 15 percent rubbed; massive; many fine to very coarse roots; about 10 percent woody and 90 percent herbaceous fibers; moderately acid; clear smooth boundary.
Oa2-11 to 22 inches; highly decomposed black (10YR 2/1) muck; about 5 percent fiber, 2 percent rubbed; massive; few fine to medium roots; about 40 percent woody and 60 percent herbaceous fibers; moderately acid; clear broken boundary.
2Cg1-22 to 25 inches; black (N 2.5/1) mucky silt loam; massive; friable; slightly acid clear smooth boundary;
2Cg2—25 to 45 inches; dark gray (5Y 4/1) gravelly fine sandy loam; massive; friable; 15 percent gravel, 5 percent cobbles and 5 percent stones; slightly acid; clear smooth boundary
2Cg3-45 to 60 inches; dark grayish brown (2.5Y4/2) fine sandy loam with lenses of loamy fine sand; massive; friable; 10 percent gravel, 2 percent stones, 2 percent cobbles; slightly acid.

Range in Characteristics

Thickness of organic layers: 16 to 51 inches
Depth to bedrock: More than 80 inches
Reaction: Extremely acid to slightly acid in the surface tier, very strongly acid to slightly acid in the subsurface and bottom tiers, and very strongly acid to neutral in the substratum
Woody fragments in organic layers: 0 to 20 percent, $3 / 4$ to 1 inch in diameter
Surface tier:
Hue—neutral or 2.5YR to 10YR

Value-2 or 3
Chroma-0 to 2
Subsurface and bottom tiers:
Hue-neutral or 2.5 YR to 2.5 Y
Value-2 to 4
Chroma-0 to 2
2C horizons:
Hue-neutral or 5YR to 5GY
Value-3 to 6
Chroma-0 to 4
Texture-fine sandy loam, silt loam, or loam
Rock fragments-0 to 20 percent, mostly gravel

Woodbridge Series

Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderate in the surface layer and subsoil, and slow or very slow in the substratum
Landform: Hills and drumlins
Parent material: Lodgement till derived from granite, gneiss and schist
Slope range: 0 to 15 percent
Associated soils in a drainage sequence:
Paxton (well drained)
Ridgebury taxadjunct (poorly drained)
Whitman (very poorly drained)
Associated similar soil:
Sutton (friable substratum)
Taxonomic class: Coarse-loamy, mixed, active, mesic Aquic Dystrudepts
Typical Pedon
Woodbridge fine sandy loam, 3 to 8 percent slopes, located in the town of Mansfield, 0.75 miles south of the intersection of Connecticut Routes 275 and 195 along Rte. 195 , and 0.25 miles east on the University of Connecticut Agronomy Farm, 800 feet north of the greenhouses, on the Spring Hill USGS topographic quadrangle, lat. 41 degrees 47 minutes 53 seconds N., long. 72 degrees 13 minutes 48 seconds W., NAD 27, in a field:

Ap-0 to 7 inches; very dark grayish brown (10YR 3/2) fine sandy loam, light brownish gray (10YR 6/2) dry; moderate medium granular structure; friable; many fine and medium roots; few very dark brown (10YR 2/2) earthworm casts; 5 percent gravel; moderately acid; abrupt wavy boundary.
Bw1-7 to 18 inches; dark yellowish brown (10YR 4/4) fine sandy loam; weak medium subangular blocky structure; friable; common fine roots; few very dark brown (10YR 2/2) earthworm casts; 10 percent gravel; moderately acid; gradual wavy boundary.
Bw2-18 to 26 inches; dark yellowish brown (10YR 4/4) fine sandy loam; weak medium subangular blocky structure; friable; common fine roots; few very dark brown (10YR 2/2) earthworm casts; few medium distinct strong brown (7.5YR $5 / 6$) soft masses of iron accumulation and distinct light brownish gray (10YR 6/2) iron depletions; 10 percent gravel; moderately acid; gradual wavy boundary.
Bw3-26 to 30 inches; light olive brown (2.5Y 5/4) fine sandy loam; weak medium subangular blocky structures; friable; few fine roots; common medium prominent
strong brown (7.5YR 5/6) soft masses of iron accumulation and distinct light brownish gray (10YR 6/2) iron depletions; 10 percent gravel; moderately acid; clear wavy boundary.
Cd1-30 to 43 inches; light olive brown (2.5Y5/4) gravelly fine sandy loam; weak thick platy structure; very firm, brittle; many medium prominent strong brown (7.5YR $5 / 8$) soft masses of iron accumulation and distinct light brownish gray (10YR 6/2) iron depletions; 20 percent gravel; moderately acid; gradual wavy boundary.
Cd2-43 to 65 inches; light olive brown (2.5Y 5/4) gravelly fine sandy loam; weak thick platy structure; very firm, brittle; few fine distinct very dark brown (10YR 2/2) coatings on plates; common fine prominent brown (7.5YR 5/8) soft masses of iron accumulation; 25 percent gravel; moderately acid.

Range in Characteristics

Solum thickness: 20 to 40 inches
Depth to bedrock: More than 80 inches
Reaction: Very strongly acid to moderately acid
Ap horizon:
Hue-10YR
Value-3 or 4 (Dry value 6 or more) (If A horizon is present instead of $A p$, value is 2 or 3)
Chroma-2 to 4 (If A horizon is present instead of $A p$, chroma is 1 or 2)
Content of rock fragments-5 to 14 percent
Upper Bw horizons:
Hue-7.5YR to 2.5 Y
Value-3 to 6
Chroma-3 to 8
Texture of the fine earth fraction-fine sandy loam, loam, or sandy loam
Content of rock fragments-5 to 34 percent
Lower Bw horizons:
Hue-10YR or 2.5 Y
Value-4 to 6
Chroma-3 to 6
Texture of the fine earth fraction-fine sandy loam, loam, or sandy loam
Content of rock fragments-5 to 34 percent
Cd horizons:
Hue-10YR to $5 Y$
Value-4 to 6
Chroma-1 to 4
Texture of the fine earth fraction- fine sandy loam, sandy loam, or loam Content of rock fragments-5 to 34 percent

Yalesville Series

Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate or moderately rapid in the surface layer and subsoil, moderately rapid in the substratum
Landform: Bedrock-controlled hills and ridges
Parent material: Melt-out till derived from red sandstone, shale, and/or basalt
Slope range: 3 to 15 percent
Associated soils:
Cheshire (very deep, well drained)

Holyoke (shallow, well drained)
Wethersfield (very deep, dense substratum)
Ludlow (very deep, moderately well drained)
Watchaug (very deep, moderately well drained)
Wilbraham (very deep, poorly drained)
Taxonomic class: Coarse-loamy, mixed, active, mesic Typic Dystrudepts
Typical Pedon
Yalesville fine sandy loam, 3 to 8 percent slopes, located in the town of North Branford, 2000 feet north of the junction of Village Street and Clintonville Road, 250 feet west of Village Street, on the Wallingford USGS topographic quadrangle, lat. 41 degrees 23 minutes 57 seconds N., long. 72 degrees 48 minutes 26 seconds W., NAD 27, in a hay field:

Ap-0 to 8 inches; dark brown (7.5YR 3/2) fine sandy loam, pinkish gray (7.5YR 6/2) dry; weak medium granular structure; friable; common very fine, fine, and medium roots; 5 percent gravel; moderately acid; abrupt wavy boundary.
Bw1-8 to 14 inches; reddish brown (5YR 4/4) fine sandy loam; weak medium subangular blocky structure; friable; common fine and medium roots; few very dark grayish brown earthworm casts; 5 percent gravel; moderately acid; gradual wavy boundary.
Bw2-14 to 25 inches; reddish brown (5YR 4/4) loam; weak medium subangular blocky structure; friable; few fine roots; 5 percent gravel; moderately acid; gradual wavy boundary.
C-25 to 36 inches; reddish brown (2.5YR 4/4) gravelly sandy loam; massive; firm; 12 percent gravel and 3 percent cobbles; moderately acid; abrupt wavy boundary.
2R-36 inches; reddish brown (2.5YR 4/4) hard sandstone bedrock

Range in Characteristics

Solum thickness: 18 to 36 inches
Depth to bedrock: 20 to 40 inches
Reaction: Very strongly acid to moderately acid
Ap horizon:
Hue-5YR to 10YR
Value-3 or 4 (Dry value 6 or more)
Chroma-2 or 3
Content of rock fragments-2 to 14 percent
Bw horizons:
Hue-10R, 2.5YR, or 5YR
Value-3 to 5
Chroma-4 to 6
Texture of the fine earth fraction-fine sandy loam, sandy loam, or loam Content of rock fragments-2 to 34 percent
C horizon:
Hue-10R, 2.5YR, or 5YR
Value-3 to 5
Chroma-3 to 6
Texture of the fine earth fraction-sandy loam, fine sandy loam, or loam
Content of rock fragments-5 to 50 percent
2R horizon:
Reddish brown sandstone, shale, or basalt

Formation of the Soils

This first part of this section describes the factors of soil formation as they relate to the soils of Connecticut. The second part defines the processes of soil horizon formation.

Factors of Soil Formation

Soils are products of weathering and other physical and chemical processes that act on parent material. The properties of a soil at a given point on the earth depend on the combination of the following factors: the physical and chemical composition of the parent material, the topography, the climate, the plant and animal life, and time (Jenny, 1941). The relative influence of each of these factors differs from place to place, and each modifies the effect of the others. For example, the impact of climate over a given area is tempered by topography or parent material. The variability of Connecticut soils are primarily attributed to parent material, topography, and time. Table 30 shows the relationship between the soil series in Connecticut and their parent material, position on the landscape, and drainage.

Parent Material

Parent material is the unconsolidated earthy material in which soils are formed. It influences the physical, chemical, and mineralogical composition of the soils. It also influences the rate at which soil forming processes will proceed.

Most of the soils in Connecticut formed in deposits left as a result of glaciation. Glacial till is the most extensive type of parent material. Less extensive parent materials are glaciofluvial deposits (outwash), glaciolacustrine deposits, alluvial deposits, and organic deposits.

Soils formed in glacial till have a wide range of characteristics as a result of the heterogeneous nature of the till, its rock and soil particles. Some soils such as Paxton, Broadbrook, Brayton, Shelburne, and Wethersfield, which are formed in very deep glacial till deposits, have a dense substratum. Other soils such as Charlton, Stockbridge, Schroon, and Dummerston, which also formed in very deep glacial till, do not have a dense layer. Narragansett is an example of a soil with a silty windblown layer above the glacial till. In some places, the glacial till is moderately deep or shallow over bedrock. Hollis, Farmington, and Taconic are examples of soils that are shallow over bedrock. Chatfield, Yalesville, and Millsite are soils that are moderately deep over bedrock. Some areas have bedrock exposed at the surface. Rock outcrop is mapped in these areas.

As the glacial ice melted, large quantities of meltwater transported and sorted soil and rock debris. This material is referred to as glacial outwash and was redeposited in layers of sand and gravel on outwash plains and terraces. Hinckley, Manchester, and Copake are examples of soils formed in these materials. A layer of silty windblown material is above the sand and gravel in Agawam and Tisbury soils, for example.

At one time, much of the Connecticut River Valley and some smaller valleys in other areas of the state contained glacial lakes where glacial meltwater was
impounded. Most of the stone-free sediment deposited in the still lake waters was silty or clayey. Belgrade, Brancroft, Scitico, and Berlin are examples of soils that formed in these fine textured deposits.

In more recent times, overflowing streams have deposited fresh, dark alluvial material on flood plains. This material tends to be variable in texture. Soils formed in this material show weak soil profile development. Suncook, Hadley, Pootatuck, Rumney, and Saco are examples of alluvial soils.

Soils formed in organic deposits are mainly in closed depressions throughout the state and in tidal marshes along Long Island Sound and associated estuaries of major rivers of the state. Catden, Bucksport, and Westbrook soils, for example, formed in well decomposed remains of trees or other plants.

Topography

Topography refers to the shape of the land surface, and also (for soils) to the effect of the shape of the land surface on the movement of water in soil and across the land. Components of topography include: slope configuration (e.g. convex, concave, flat), slope aspect (direction downhill slope faces, e.g. southwest), slope steepness, slope position (e.g., bottom, lower slope, mid-slope, shoulder, ridge top), and elevation (where elevation affects soil properties through its inter-relationship to climate). The components of topography may be viewed at multiple scales; for example, a large, generally concave slope may have a convex bulge. The appropriate scale for considering topography depends upon the soil forming process being considered.

Topography has a great influence on the formation of the soils. Soils that formed in convex positions, where little or no runoff accumulates, are generally well drained and do not contain iron depletions in the subsoil. Examples of soils in this category are Stockbridge and Charlton. In level or slightly depressional areas, the water table is usually closer to the surface for extended periods. This results in gray iron depletions close to the surface and often, accumulation of sediment at the surface.

Some soils are wet because they occupy a position where the water table is at or near the surface for long periods. This wetness is evident by a thick, dark surface layer and strong redoximorphic features or gray subsoil. Leicester and Scarboro soils are examples of soils with high water tables.

Climate

Climate, in particular temperature and precipitation, is one of the most influential of the soil forming factors. It determines to a large degree the kind of weathering processes that occur. It also affects the growth and kind of vegetation and the leaching and translocation of weathered materials.

Connecticut has a humid, temperate climate that promotes the development of moderately weathered, leached soils. The difference in elevation in the state, which ranges from sea level along Long Island Sound to over 2,000 feet in some areas of northern and northwestern Connecticut, results in two temperature regimes, mesic and frigid. Mesic soils have a mean annual soil temperature greater than 47 degrees F and frigid soils have a mean annual soil temperature less than 47 degrees F. Westminster, Ondawa, Ashfield, and Loonmeadow are examples of frigid soils. Cooler temperatures tend to slow down the weathering processes and shorten the growing season. More detailed and specific data on the climate of Connecticut are in the climate section under "General Nature of the Survey Area".

Plant and Animal Life

All living organisms, including plants, animals, bacteria, and fungi, influence soil formation. Vegetation is generally responsible for the amount of organic matter and nutrients in the soil and for the color and structure of the surface layer. Earthworms and burrowing animals help to keep the soil porous and more permeable for air and water. Their waste products cause aggregations of soil particles which improves soil structure. Bacteria and fungi decompose vegetation, which results in the release of nutrients.

As the last glacier began retreating northward, a long process of revegetation began in Connecticut. Initially the vegetation was tundra; by the time European settlement began, the forest was primarily an oak-chestnut cover type, with Northern Hardwoods found in the northern part of the state, especially at the higher elevations.

Because the rooting depth is shallow in many of the upland soils, trees are susceptible to windthrow, which has caused much mixing of the soil materials.

Human activity, through clearing trees, cultivating the land, artificial drainage, grading, and the introduction of new plants, has also influenced changes that occur in the soils. This has added nutrients by fertilization, has mixed some soil horizons by plowing or land development activities, and has accelerated erosion in many areas.

Time

The degree of profile development not only reflects the age of a soil, but it also reflects the influence of other factors. In geologic terms, the deposits in which Connecticut soils formed are relatively young, having being deposited when the last glacier receded about 10,000 to 15,000 years ago. The soils have not all reached the same stage of soil profile development because the other soil forming factors also influence the rate of soil profile development.

An immature soil is one that has not had enough time to develop distinct horizons. Lim soils and Fluvaquents, formed in recent alluvium, are examples. They are regularly flooded and more sediment is deposited. The time for soil development is constantly interrupted and thin or irregular soil profiles develop.

Processes of Soil Formation

This section contains a brief explanation of soil horizon nomenclature and a discussion of the processes involved in soil horizon development as they relate to soil formation.

The soil forming factors cause the formation of different layers, or soil horizons. These soil horizons can be viewed in a vertical cut of the soil, known as a soil profile. The soil profile extends from the surface downward into material that is little altered by the soil forming processes. Most soils contain three major horizons, called A, B, and C horizons.

Several processes cause the formation of soil horizons. They include the accumulation of organic matter, the leaching of soluble salts and minerals, the translocation of clay minerals, the reduction and transfer of iron, and the formation of dense and compact layers in the subsoil (Simonson, 1959).

The accumulation of organic matter takes place as plant residue decomposes. This process darkens the surface layer and helps to form the A horizon. It takes a long time to replace this organic matter once it has been lost. The organic matter content of the surface layers of soils in Connecticut averages about 4 percent.

For soils to develop distinct subsoil, some of the lime and other soluble salts must be leached before other soil processes such as translocation of clay minerals can
take place. Factors that affect leaching include the kinds of salts originally present, the rate and depth of percolation, and the texture of the soil.

One of the more important processes of soil horizon development in some of the soils is the translocation of silicate clay minerals. The amount of clay minerals in a soil is inherent in the parent material, but clay content varies from one soil horizon to another. Clay particles are transported (eluviation) downward from the A horizon and redeposited (illuviation) in the B horizon as clay films on ped faces, as linings along pores and root channels, and as coatings on some rock fragments. In some soils, an E horizon has formed by considerable eluviation of clay minerals to the B horizon. The Scitico soil is an example of a soil where the clay content is higher in the B horizon than in the A horizon because of translocation.

The reduction and transfer of iron compounds occur mainly in the wetter, more poorly drained soils. This process is known as gleying. In poorly drained and very poorly drained soils, such as Whitman, the grayish subsoil indicates the reduction of iron. In moderately well drained soils, such as Woodbridge, yellowish brown and reddish brown mottles indicate the segregation of iron compounds. A bright colored soil indicates a well drained soil where no reduction and transfer of iron have taken place. Canton soils are an example.

References

Adams, F. 1984. Soil acidity and liming. American Society of Agronomy, Agronomy Monograph 12, 2nd edition.

Allan, P.F., L.E. Garland, and R. Dugan. 1963. Rating northeastern soils for their suitability for wildlife habitat. In Transactions of the twenty-eighth North American wildlife and natural resources conference, pp. 247-261.

Alerich, C.L. In press. Forest statistics for Connecticut-1985 and 1998. U. S.
Department of Agriculture, Forest Service, Northeastern Research Station.
American Association of State Highway and Transportation Officials (AASHTO). 1998. Standard specifications for transportation materials and methods of sampling and testing. 19th edition, 2 volumes.

American Society for Testing and Materials (ASTM). 1998. Standard classification of soils for engineering purposes. ASTM Standard D 2487.

Applequist, M.B. 1959. Soil-site studies of southern hardwoods. In Southern forest soils-Eighth annual forestry symposium, pp. 49-63.

Beck, Donald E. 1962. Yellow-poplar site index curves. U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station Research Note 180.

Bell, Michael. 1985. The face of Connecticut: people, geology, and the land. Bulletin 110, State Geological and Natural History Survey of Connecticut, Connecticut Department of Environmental Protection.

Birkeland, Peter W. 1974. Pedology, weathering, and geomorphological research.
Birkeland, Peter W. 1984. Soils and geomorphology. 2nd edition.
Black, C.A. 1968. Soil-plant relationships. 2nd edition.
Broadfoot, Walter M. 1960. Field guide for evaluating cottonwood sites. U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station Occasional Paper 178.

Buol, S.W., F.D. Hole, and R.J. McCracken. 1980. Soil genesis and classification. 3rd edition.

Carmean, Willard H. 1967. Soil survey refinements for predicting black oak site quality in southeastern Ohio. Soil Science Society of America Proceedings 31: 805810.

Coleman, Steven M. 1981. Rock-weathering rates as functions of time. Quaternary Research 15: 250-264.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Doolittle, James A. 1982. Characterizing soil map units with the ground-penetrating radar. Soil Survey Horizons 23(4): 3-10.

Doolittle, James A. 1983. Investigating Histosols with the ground penetrating radar. Soil Survey Horizons 24(3): 23-28.

Dowhan, Joseph J. and Robert J. Craig. 1976. Rare and endangered species of Connecticut and their habitat. Report of Investigations No. 6. State Geological and Natural History Survey of Connecticut, Connecticut Department of Environmental Protection.

Eyre, F.H., editor. 1980. Forest cover types of the United States and Canada. Society of American Forestry.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. February 24, 1995. Hydric soils of the United States.
Hurt, G.W., P.M. Whited, and R.F. Pringle, editors. 1996. Field indicators of hydric soils in the United States.

Jenny, Hans. 1941. Factors of soil formation.
Jenny, Hans. 1980. The soil resource—Origin and behavior. Ecological Studies 37.
Johnson, R.W., R. Glaccum, and R. Wojtasinski. 1980. Application of ground penetrating radar to soil survey. Soil and Crop Science Society of Florida Proceedings 39: 68-72. (Reprinted in Soil Survey Horizons 23(3): 17-25)

Keys, J.E. et al. 1995. Ecological units of the eastern United States. U.S. Department of Agriculture, Forest Service.

Kilpatrick, Howard J. et al. 2001. Connecticut deer program summary 2001. Connecticut Department of Environmental Protection.

Khasawneh, F.E., E.C. Sample, and E.J. Kamprath, editors. 1980. The role of phosphorus in agriculture. American Society of Agronomy.

Michigan State University, Departments of Crop and Soil Sciences and Horticulture. 1985. Fertilizer recommendations for vegetables and field crops in Michigan. Extension Bulletin E-550.

Mokma, D.L. 1978. Soil management units and land use planning. Michigan State University, Extension Bulletin E-1262.

Munson, Robert D., editor. 1985. Potassium in agriculture. American Society of Agronomy.

National Research Council. 1995. Wetlands: Characteristics and boundaries.
Ohio Cooperative Extension Service. 1985. Ohio agronomy guide. Ohio State University, Bulletin 472, Agdex 100.

Portland Cement Association. 1973. PCA soil primer.
Ruhe, Robert V. 1956. Geomorphic surfaces and the nature of soils. Soil Science 82 : 441-455.

Ruhe, Robert V. 1969. Quaternary landscapes in lowa.
Simonson, Roy W. 1959. Outline of a generalized theory of soil genesis. Soil Science Society of America Proceedings 23: 152-156.

Stevenson, F.J. 1982. Humus chemistry: Genesis, composition, reactions.
Stevenson, F.J., editor. 1982. Nitrogen in agricultural soils. American Society of Agronomy, Agronomy Monograph 22.

Storie, R.E. 1933. An index for rating the agricultural value of soils. University of California Agricultural Experiment Station Bulletin 556.

Tennessee Valley Authority. Site curves for eastern redcedar. (Unpublished, processed curves based on 271 observations from plots throughout the Tennessee Valley)

Thornbury, William D. 1969. Principles of geomorphology. 2nd edition.
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Forest Service. 1976. Volume, yield, and stand tables for second-growth southern pines. Forest Service Miscellaneous Publication 50.

United States Department of Agriculture, Natural Resources Conservation Service. National engineering handbook.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual.

United States Department of Agriculture, Natural Resources Conservation Service. 1996. National soil survey handbook, title 430-VI. Soil Survey Staff.

United States Department of Agriculture, Natural Resources Conservation Service. 1996. Soil survey laboratory methods manual. Soil Survey Investigations Report 42.

United States Department of Agriculture, Natural Resources Conservation Service. 1998. Keys to soil taxonomy. 8th edition. Soil Survey Staff.

United States Department of Agriculture, Natural Resources Conservation Service. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Soil Survey Staff. U.S. Department of Agriculture Handbook 436.

United States Department of Agriculture, Natural Resources Conservation Service and Statistical Laboratory, Iowa State University. 2000. Summary report: 1997 national resources inventory (revised December 2000).

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210.

United States Department of Agriculture, Soil Conservation Service. 1981. Land resource regions and major land resource areas of the United States. U.S. Department of Agriculture Handbook 296.

United States Department of Agriculture, Soil Conservation Service. 1985. Site index and yield of second growth baldcypress. Soil Conservation Service Technical Note 5.

United States Department of Agriculture, Soil Conservation Service. 1987. Basic statistics, 1982 national resources inventory. Statistical Bulletin 756.

United States Department of Agriculture, Soil Conservation Service. 1993. Soil survey manual. Soil Survey Staff, U.S. Department of Agriculture Handbook 18.

Walsh, L.M., and J.D. Beaton, editors. 1973. Soil testing and plant analysis. Soil Science Society of America.

Glossary

ABC soil. A soil having an $A, a B$, and a C horizon.
AC soil. A soil having only an A and a C horizon. Commonly, such soil formed in recent alluvium or on steep, rocky slopes.
Aeration, soil. The exchange of air in soil with air from the atmosphere. The air in a well aerated soil is similar to that in the atmosphere; the air in a poorly aerated soil is considerably higher in carbon dioxide and lower in oxygen.
Aggregate, soil. Many fine particles held in a single mass or cluster. Natural soil aggregates, such as granules, blocks, or prisms, are called peds. Clods are aggregates produced by tillage or logging.
Alluvial fan. The fanlike deposit of a stream where it issues from a gorge upon a plain or of a tributary stream near or at its junction with its main stream.
Alluvium. Material, such as sand, silt, or clay, deposited on land by streams.
Alpha, alpha-dipyridyl. A dye that when dissolved in 1 N ammonium acetate is used to detect the presence of reduced iron (Fe II) in the soil. A positive reaction indicates a type of redoximorphic feature.
Anaerobic. The absence of molecular oxygen.
Animal unit month (AUM). The amount of forage required by one mature cow of approximately 1,000 pounds weight, with or without a calf, for 1 month.
Aquic conditions. Current soil wetness characterized by saturation, reduction, and redoximorphic features.
Area reclaim (in tables). An area difficult to reclaim after the removal of soil for construction and other uses. Revegetation and erosion control are extremely difficult.
Argillic horizon. A subsoil horizon characterized by an accumulation of illuvial clay.
Aspect. The direction in which a slope faces.
Association, soil. A group of soils or miscellaneous areas geographically associated in a characteristic repeating pattern and defined and delineated as a single map unit.
Available water capacity (available moisture capacity). The capacity of soils to hold water available for use by most plants. It is commonly defined as the difference between the amount of soil water at field moisture capacity and the amount at wilting point. It is commonly expressed as inches of water per inch of soil. The capacity, in inches, in a 60 -inch profile or to a limiting layer is expressed as:

Backslope. The position that forms the steepest and generally linear, middle portion of a hillslope. In profile, backslopes are commonly bounded by a convex shoulder above and a concave footslope below.

Basal area. The area of a cross section of a tree, generally referring to the section at breast height and measured outside the bark. It is a measure of stand density, commonly expressed in square feet.
Base saturation. The degree to which material having cation-exchange properties is saturated with exchangeable bases (sum of $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}$, and K), expressed as a percentage of the total cation-exchange capacity.
Base slope. A geomorphic component of hills consisting of the concave to linear (perpendicular to the contour) slope that, regardless of the lateral shape, forms an apron or wedge at the bottom of a hillside dominated by colluvium and slopewash sediments (for example, slope alluvium).
Bedding planes. Fine strata, less than 5 millimeters thick, in unconsolidated alluvial, eolian, lacustrine, or marine sediment.
Bedrock. The solid rock that underlies the soil and other unconsolidated material or that is exposed at the surface.
Bedrock-controlled topography. A landscape where the configuration and relief of the landforms are determined or strongly influenced by the underlying bedrock.
Bench terrace. A raised, level or nearly level strip of earth constructed on or nearly on a contour, supported by a barrier of rocks or similar material, and designed to make the soil suitable for tillage and to prevent accelerated erosion.
Bisequum. Two sequences of soil horizons, each of which consists of an illuvial horizon and the overlying eluvial horizons.
Blowout. A shallow depression from which all or most of the soil material has been removed by the wind. A blowout has a flat or irregular floor formed by a resistant layer or by an accumulation of pebbles or cobbles. In some blowouts the water table is exposed.
Bottom land. The normal flood plain of a stream, subject to flooding.
Boulders. Rock fragments larger than 2 feet (60 centimeters) in diameter.
Breaks. The steep and very steep broken land at the border of an upland summit that is dissected by ravines.
Breast height. An average height of 4.5 feet above the ground surface; the point on a tree where diameter measurements are ordinarily taken.
Brush management. Use of mechanical, chemical, or biological methods to make conditions favorable for reseeding or to reduce or eliminate competition from woody vegetation and thus allow understory grasses and forbs to recover. Brush management increases forage production and thus reduces the hazard of erosion. It can improve the habitat for some species of wildlife.
Buffer strip. Streamside vegetation consisting of trees, shrubs, and grasses for intercepting pollutants from a farm field. See conservation buffers.
Cable yarding. A method of moving felled trees to a nearby central area for transport to a processing facility. Most cable yarding systems involve use of a drum, a pole, and wire cables in an arrangement similar to that of a rod and reel used for fishing. To reduce friction and soil disturbance, felled trees generally are reeled in while one end is lifted or the entire log is suspended.
Calcareous soil. A soil containing enough calcium carbonate (commonly combined with magnesium carbonate) to effervesce visibly when treated with cold, dilute hydrochloric acid.
Canopy. The leafy crown of trees or shrubs. (See Crown.)
Capillary water. Water held as a film around soil particles and in tiny spaces between particles. Surface tension is the adhesive force that holds capillary water in the soil.
Catena. A sequence, or "chain," of soils on a landscape that formed in similar kinds of parent material but have different characteristics as a result of differences in relief and drainage.

Cation. An ion carrying a positive charge of electricity. The common soil cations are calcium, potassium, magnesium, sodium, and hydrogen.
Cation-exchange capacity. The total amount of exchangeable cations that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality (pH 7.0) or at some other stated pH value. The term, as applied to soils, is synonymous with base-exchange capacity but is more precise in meaning.
Catsteps. Very small, irregular terraces on steep hillsides, especially in pasture, formed by the trampling of cattle or the slippage of saturated soil.
Channer. Flat fragments of rock that are longer than they are thick, ranging in size from 2 millimeters to 150 millimeters.
Channery soil material. Soil material that has, by volume, 15 to 35 percent thin, flat fragments of sandstone, shale, slate, limestone, or schist as much as 6 inches (15 centimeters) along the longest axis. A single piece is called a channer.
Chemical treatment. Control of unwanted vegetation through the use of chemicals.
Chiseling. Tillage with an implement having one or more soil-penetrating points that shatter or loosen hard, compacted layers to a depth below normal plow depth.
Clay. As a soil separate, the mineral soil particles less than 0.002 millimeter in diameter. As a soil textural class, soil material that is 40 percent or more clay, less than 45 percent sand, and less than 40 percent silt.
Clay depletions. Low-chroma zones having a low content of iron, manganese, and clay because of the chemical reduction of iron and manganese and the removal of iron, manganese, and clay. A type of redoximorphic depletion.
Clay film. A thin coating of oriented clay on the surface of a soil aggregate or lining pores or root channels. Synonyms: clay coating, clay skin.
Clayey. Have 35 percent or more (by weight) clay and are in a shallow family or the layer is an element in a strongly contrasting particle-size class.
Climax plant community. The array of plant species that would be present upon a moist, fertile, adequately drained site if the site remained free of vegetation disturbance (such as wind, fire, insects, disease, human-wrought changes) long enough for the shade tolerant plant species best adapted to the climate to be both present and reproducing themselves.
Coarse textured soil. Sand or loamy sand.
Coarse-loamy. Have, in the fine-earth and gravel fraction, 15 percent or more (by weight) particles that are fine sand or coarser and in the fine-earth fraction, less than 18 percent (by weight) clay.
Coarse-silty. Have, in the fine-earth and gravel fraction, less than 15 percent (by weight) fine sand or coarser and, in the fine-earth fraction, less than 18 percent (by weight) clay.
Cobble (or cobblestone). A rounded or partly rounded fragment of rock 3 to 10 inches (7.6 to 25 centimeters) in diameter.
Cobbly soil material. Material that has 15 to 35 percent, by volume, rounded or partially rounded rock fragments 3 to 10 inches (7.6 to 25 centimeters) in diameter. Very cobbly soil material has 35 to 60 percent of these rock fragments, and extremely cobbly soil material has more than 60 percent.
COLE (coefficient of linear extensibility). See Linear extensibility.
Complex slope. Irregular or variable slope. Planning or establishing terraces, diversions, and other water-control structures on a complex slope is difficult.
Complex, soil. A map unit of two or more kinds of soil or miscellaneous areas in such an intricate pattern or so small in area that it is not practical to map them separately at the selected scale of mapping. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas.
Component, soil. The collection of polypedons or parts of polypedons within a map unit that are members of the taxon (or a kind of miscellaneous unit) for which the map unit is named. Simple or complex names for the component soils are formed
from a class name (taxon name) from some categorical level of the U.S. system of soil taxonomy, with or without an additional phase identification for utilitarian features.
Concretions. Cemented bodies with crude internal symmetry organized around a point, a line, or a plane. They typically take the form of concentric layers visible to the naked eye. Calcium carbonate, iron oxide, and manganese oxide are common compounds making up concretions. If formed in place, concretions of iron oxide or manganese oxide are generally considered a type of redoximorphic concentration.
Conglomerate. A coarse grained, clastic rock composed of rounded or subangular rock fragments more than 2 millimeters in diameter. It commonly has a matrix of sand and finer textured material. Conglomerate is the consolidated equivalent of gravel.
Conservation buffers. Conservation buffers are small areas or strips of land in permanent vegetation, designed to slow water runoff, provide shelter and stabilize riparian areas. Strategically placed buffer strips in the agricultural landscape can effectively mitigate the movement of sediment, nutrients, and pesticides within farm fields and from farm fields. Buffers include: contour buffer strips, field borders, filter strips, grassed waterways, living snow fences, riparian buffers, shelterbelts/windbreaks, (grass, shrubs, and trees), and wetlands.
Conservation cropping system. Growing crops in combination with needed cultural and management practices. In a good conservation cropping system, the soilimproving crops and practices more than offset the effects of the soil-depleting crops and practices. Cropping systems are needed on all tilled soils. Soilimproving practices in a conservation cropping system include the use of rotations that contain grasses and legumes and the return of crop residue to the soil. Other practices include the use of green manure crops of grasses and legumes, proper tillage, adequate fertilization, and weed and pest control.
Conservation tillage. Any tillage and planting system that covers 30 percent or more of the soil surface with crop residue, after planting, to reduce soil erosion by water.
Consistence, soil. Refers to the degree of cohesion and adhesion of soil material and its resistance to deformation when ruptured. Consistence includes resistance of soil material to rupture and to penetration; plasticity, toughness, and stickiness of puddled soil material; and the manner in which the soil material behaves when subject to compression. Terms describing consistence are defined in the "Soil Survey Manual."
Consociation, soil. A kind of map unit comprised of delineations, each of which shows the size, shape, and location of a landscape unit composed of one kind of component soil, or one kind of miscellaneous area, plus allowable inclusions in either case. See also component soil, soil complex, soil association, undifferentiated group, miscellaneous areas.
Contour farming. Farming with row patterns nearly level around the hill, not up and down the slope.
Contour stripcropping. Growing crops in strips that follow the contour. Strips of grass or close-growing crops are alternated with strips of clean-tilled crops or summer fallow.
Control section. The part of the soil on which classification is based. The thickness varies among different kinds of soil, but for many it is that part of the soil profile between depths of 10 inches and 40 or 80 inches.
Corrosion. Soil-induced electrochemical or chemical action that dissolves or weakens concrete or uncoated steel.
Cover crop. A close-growing crop grown primarily to improve and protect the soil between periods of regular crop production, or a crop grown between trees and vines in orchards and vineyards.

Cropping system. Growing crops according to a planned system of rotation and management practices.
Crop residue management. Returning crop residue to the soil, which helps to maintain soil structure, organic matter content, and fertility and helps to control erosion.
Cross-slope farming. Deliberately conducting farming operations on sloping farmland in such a way that tillage is across the general slope.
Crown. The upper part of a tree or shrub, including the living branches and their foliage.
Cutbanks cave (in tables). The walls of excavations tend to cave in or slough.
Deferred grazing. Postponing grazing or resting grazing land for a prescribed period.
Delta. A body of alluvium having a surface that is nearly flat and fan shaped; deposited at or near the mouth of a river or stream where it enters a body of relatively quiet water, generally a sea or lake.
Dense layer (in tables). A very firm, massive layer that has a bulk density of more than 1.8 grams per cubic centimeter. Such a layer affects the ease of digging and can affect filling and compacting.
Dense till. Earthy, compact material deposited by a glacier. The dense till in Connecticut has a bulk density of at least $1.65 \mathrm{~g} \mathrm{~cm}-3$. See lodgement till.
Densic material. Relatively unaltered materials that have a noncemented rupture resistance class. The bulk density is such that roots cannot enter, except in cracks. Densic material is mostly earthy materials, such as till.
Depth, soil. Generally, the thickness of the soil over bedrock. Very deep soils are more than 60 inches deep over bedrock; deep soils, 40 to 60 inches; moderately deep, 20 to 40 inches; shallow, 10 to 20 inches; and very shallow, less than 10 inches.
Depth to rock (in tables). Bedrock is too near the surface for the specified use.
Dip slope. A slope of the land surface, roughly determined by and approximately conforming to the dip of the underlying bedrock.
Diversion (or diversion terrace). A ridge of earth, generally a terrace, built to protect downslope areas by diverting runoff from its natural course.
Drainage class (natural). Refers to the frequency and duration of wet periods under conditions similar to those under which the soil formed. Alterations of the water regime by human activities, either through drainage or irrigation, are not a consideration unless they have significantly changed the morphology of the soil. Seven classes of natural soil drainage are recognized-excessively drained, somewhat excessively drained, well drained, moderately well drained, somewhat poorly drained, poorly drained, and very poorly drained. These classes are defined in the "Soil Survey Manual."
Drainage, surface. Runoff, or surface flow of water, from an area.
Drumlin. A low, smooth, elongated oval hill, mound, or ridge of compact glacial till. The longer axis is parallel to the path of the glacier and commonly has a blunt nose pointing in the direction from which the ice approached.
Duff. A generally firm organic layer on the surface of mineral soils. It consists of fallen plant material that is in the process of decomposition and includes everything from the litter on the surface to underlying pure humus.
Dysic. Histosols that have a pH value, on undried samples, of less than 4.5 (in 0.01 M CaCl 2) in one or more layers of organic soil materials within the control section.
Ecological site. An area where climate, soil, and relief are sufficiently uniform to produce a distinct natural plant community. An ecological site is the product of all the environmental factors responsible for its development. It is typified by an association of species that differ from those on other ecological sites in kind and/ or proportion of species or in total production.

Eluviation. The movement of material in true solution or colloidal suspension from one place to another within the soil. Soil horizons that have lost material through eluviation are eluvial; those that have received material are illuvial.
Endosaturation. A type of saturation of the soil in which all horizons between the upper boundary of saturation and a depth of 2 meters are saturated.
Eolian soil material. Earthy parent material accumulated through wind action; commonly refers to sandy material in dunes or to loess in blankets on the surface.
Ephemeral stream. A stream, or reach of a stream, that flows only in direct response to precipitation. It receives no long-continued supply from melting snow or other source, and its channel is above the water table at all times.
Episaturation. A type of saturation indicating a perched water table in a soil in which saturated layers are underlain by one or more unsaturated layers within 2 meters of the surface.
Erosion. The wearing away of the land surface by water, wind, ice, or other geologic agents and by such processes as gravitational creep.
Erosion (geologic). Erosion caused by geologic processes acting over long geologic periods and resulting in the wearing away of mountains and the building up of such landscape features as flood plains and coastal plains. Synonym: natural erosion.
Erosion (accelerated). Erosion much more rapid than geologic erosion, mainly as a result of human or animal activities or of a catastrophe in nature, such as a fire, that exposes the surface.
Erosion pavement. A layer of gravel or stones that remains on the surface after fine particles are removed by sheet or rill erosion.
Escarpment. A relatively continuous and steep slope or cliff breaking the general continuity of more gently sloping land surfaces and resulting from erosion or faulting. Synonym: scarp.
Esker. A narrow, winding ridge of stratified gravelly and sandy drift deposited by a stream flowing in a tunnel beneath a glacier.
Euic. Histosols that have a pH value, on undried samples, of 4.5 or more (in 0.01 M $\mathrm{CaCl} 2)$ in one or more layers of organic soil materials within the control section.
Excess fines (in tables). Excess silt and clay in the soil. The soil does not provide a source of gravel or sand for construction purposes.
Excess salts (in tables). Excess water-soluble salts in the soil that restrict the growth of most plants.
Excess sulfur (in tables). Excessive amount of sulfur in the soil. The sulfur causes extreme acidity if the soil is drained, and the growth of most plants is restricted.
Extrusive rock. Igneous rock derived from deep-seated molten matter (magma) emplaced on the earth's surface.
Fallow. Cropland left idle in order to restore productivity through accumulation of moisture. Summer fallow is common in regions of limited rainfall where cereal grain is grown. The soil is tilled for at least one growing season for weed control and decomposition of plant residue.
Fast intake (in tables). The rapid movement of water into the soil.
Fertility, soil. The quality that enables a soil to provide plant nutrients, in adequate amounts and in proper balance, for the growth of specified plants when light, moisture, temperature, tilth, and other growth factors are favorable.
Fibric soil material (peat). The least decomposed of all organic soil material. Peat contains a large amount of well preserved fiber that is readily identifiable according to botanical origin. Peat has the lowest bulk density and the highest water content at saturation of all organic soil material.
Field moisture capacity. The moisture content of a soil, expressed as a percentage of the ovendry weight, after the gravitational, or free, water has drained away; the
field moisture content 2 or 3 days after a soaking rain; also called normal field capacity, normal moisture capacity, or capillary capacity.
Fill slope. A sloping surface consisting of excavated soil material from a road cut. It commonly is on the downhill side of the road.
Fine. Have 35 percent or more (by weight) clay and less than 60 percent (by weighted average) in the fine-earth fraction.
Fine textured soil. Sandy clay, silty clay, or clay.
Fine-loamy. Have, in the fine-earth and gravel fraction, 15 percent or more (by weight) fine sand or coarser, and 18 to 35 percent (by weight) clay.
Fine-silty. Have, in the fine-earth and gravel fraction, less than 15 percent (by weight) fine sand or coarser and in the fine-earth fraction 18 to 35 percent clay.
Firebreak. Area cleared of flammable material to stop or help control creeping or running fires. It also serves as a line from which to work and to facilitate the movement of firefighters and equipment. Designated roads also serve as firebreaks.
Flaggy soil material. Material that has, by volume, 15 to 35 percent flagstones. Very flaggy soil material has 35 to 60 percent flagstones, and extremely flaggy soil material has more than 60 percent flagstones.
Flagstone. A thin fragment of sandstone, limestone, slate, shale, or (rarely) schist 6 to 15 inches (15 to 38 centimeters) long.
Flood plain. A nearly level alluvial plain that borders a stream and is subject to flooding unless protected artificially.
Flooding. Accumulation of large amounts of runoff on the landscape as a result of rainfall in excess of the soils ability to drain water from the landscape before extensive inundation and ponding occurs. Flooding is described by frequency, duration, and month. Flooding is a result of overflow from a stream or other flowing water. See ponding.
Fluvial. Of or pertaining to rivers; produced by river action, as a fluvial plain.
Foothill. A steeply sloping upland that has relief of as much as 1,000 feet (300 meters) and fringes a mountain range or high-plateau escarpment.
Footslope. The position that forms the inner, gently inclined surface at the base of a hillslope. In profile, footslopes are commonly concave. A footslope is a transition zone between upslope sites of erosion and transport (shoulders and backslopes) and downslope sites of deposition (toeslopes).
Forb. Any herbaceous plant not a grass or a sedge.
Forest cover. All trees and other woody plants (underbrush) covering the ground in a forest.
Forest type. A stand of trees similar in composition and development because of given physical and biological factors by which it may be differentiated from other stands.
Fragipan. A loamy, brittle subsurface horizon low in porosity and content of organic matter and low or moderate in clay but high in silt or very fine sand. A fragipan appears cemented and restricts roots. When dry, it is hard or very hard and has a higher bulk density than the horizon or horizons above. When moist, it tends to rupture suddenly under pressure rather than to deform slowly.
Frost action (in tables). Freezing and thawing of soil moisture. Frost action can damage roads, buildings and other structures, and plant roots.
Genesis, soil. The mode of origin of the soil. Refers especially to the processes or soil-forming factors responsible for the formation of the solum, or true soil, from the unconsolidated parent material.
Glacial drift. Pulverized and other rock material transported by glacial ice and then deposited. Also, the sorted and unsorted material deposited by streams flowing from glaciers.

Glacial outwash. Gravel, sand, and silt, commonly stratified, deposited by glacial meltwater.
Glacial till (till). Unsorted, nonstratified glacial drift consisting of clay, silt, sand, and boulders transported and deposited by glacial ice.
Glaciofluvial deposits. Material moved by glaciers and subsequently sorted and deposited by streams flowing from the melting ice. The deposits are stratified and occur as kames, eskers, deltas, and outwash plains.
Glaciolacustrine deposits. Material ranging from fine clay to sand derived from glaciers and deposited in glacial lakes mainly by glacial meltwater. Many deposits are interbedded or laminated.
Gleyed soil. Soil that formed under poor drainage, resulting in the reduction of iron and other elements in the profile and in gray colors.
Grassed waterway. A natural or constructed waterway, typically broad and shallow, seeded to grass as protection against erosion. Conducts surface water away from cropland.
Gravel. Rounded or angular fragments of rock as much as 3 inches (2 millimeters to 7.6 centimeters) in diameter. An individual piece is a pebble.

Gravelly soil material. Material that has 15 to 35 percent, by volume, rounded or angular rock fragments, not prominently flattened, as much as 3 inches (7.6 centimeters) in diameter.
Green manure crop (agronomy). A soil-improving crop grown to be plowed under in an early stage of maturity or soon after maturity.
Ground water. Water filling all the unblocked pores of the material below the water table.
Gully. A miniature valley with steep sides cut by running water and through which water ordinarily runs only after rainfall. The distinction between a gully and a rill is one of depth. A gully generally is an obstacle to farm machinery and is too deep to be obliterated by ordinary tillage; a rill is of lesser depth and can be smoothed over by ordinary tillage.
Hard bedrock. Bedrock that cannot be excavated except by blasting or by the use of special equipment that is not commonly used in construction.
Hardpan. A hardened or cemented soil horizon, or layer. The soil material is sandy, loamy, or clayey and is cemented by iron oxide, silica, calcium carbonate, or other substance.
Head slope. A geomorphic component of hills consisting of a laterally concave area of a hillside, especially at the head of a drainageway. The overland waterflow is converging.
Headcut. Small abrupt elevation drops ($1-5$ centimeters) on the floor of rills or irrigation furrows that result in accelerated erosion as they undercut the rill floor and migrate upstream.
Hemic soil material (mucky peat). Organic soil material intermediate in degree of decomposition between the less decomposed fibric material and the more decomposed sapric material.
High-residue crops. Such crops as small grain and corn used for grain. If properly managed, residue from these crops can be used to control erosion until the next crop in the rotation is established. These crops return large amounts of organic matter to the soil.
Hill. A natural elevation of the land surface, rising as much as 1,000 feet above surrounding lowlands, commonly of limited summit area and having a well defined outline; hillsides generally have slopes of more than 15 percent. The distinction between a hill and a mountain is arbitrary and is dependent on local usage.
Histic epipedon. A surface organic soil layer that is characterized by saturation and reduction for some time during normal years. The histic epipedon contains more organic carbon than the mollic epipedon.

Horizon, soil. A layer of soil, approximately parallel to the surface, having distinct characteristics produced by soil-forming processes. In the identification of soil horizons, an uppercase letter represents the major horizons. Numbers or lowercase letters that follow represent subdivisions of the major horizons. An explanation of the subdivisions is given in the "Soil Survey Manual." The major horizons of mineral soil are as follows:
O horizon.-An organic layer of fresh and decaying plant residue.
A horizon.-The mineral horizon at or near the surface in which an accumulation of humified organic matter is mixed with the mineral material. Also, a plowed surface horizon, most of which was originally part of a B horizon.
E horizon.-The mineral horizon in which the main feature is loss of silicate clay, iron, aluminum, or some combination of these.
B horizon.-The mineral horizon below an A horizon. The B horizon is in part a layer of transition from the overlying A to the underlying C horizon. The B horizon also has distinctive characteristics, such as (1) accumulation of clay, sesquioxides, humus, or a combination of these; (2) prismatic or blocky structure; (3) redder or browner colors than those in the A horizon; or (4) a combination of these.
C horizon.-The mineral horizon or layer, excluding indurated bedrock, that is little affected by soil-forming processes and does not have the properties typical of the overlying soil material. The material of a C horizon may be either like or unlike that in which the solum formed. If the material is known to differ from that in the solum, an Arabic numeral, commonly a 2, precedes the letter C . Cr horizon.-Soft, consolidated bedrock beneath the soil. R layer.-Consolidated bedrock beneath the soil. The bedrock commonly underlies a C horizon, but it can be directly below an A or a B horizon.
Humus. The well decomposed, more or less stable part of the organic matter in mineral soils.
Hydric soil. A soil that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part. The concept of hydric soils includes soils developed under sufficiently wet conditions to support the growth and regeneration of hydrophytic vegetation. Soils that are sufficiently wet because of artificial measures are included in the concept of hydric soils. Also, soils in which the hydrology has been artificially modified are hydric if the soil, in an unaltered state, was hydric. Some series designated as hydric have phases that are not hydric depending on water table, flooding, and ponding characteristics.
Hydrologic soil groups. Refers to soils grouped according to their runoff potential. The soil properties that influence this potential are those that affect the minimum rate of water infiltration on a bare soil during periods after prolonged wetting when the soil is not frozen. These properties are depth to a seasonal high water table, the infiltration rate and permeability after prolonged wetting, and depth to a very slowly permeable layer. The slope and the kind of plant cover are not considered but are separate factors in predicting runoff.
Hydrophytic vegetation. Plant life growing in water or on a substrate that is at least periodically deficient in oxygen as a result of excessive water content.
Igneous rock. Rock formed by solidification from a molten or partially molten state. Major varieties include plutonic and volcanic rock. Examples are andesite, basalt, and granite.
Illuviation. The movement of soil material from one horizon to another in the soil profile. Generally, material is removed from an upper horizon and deposited in a lower horizon.
Impervious soil. A soil through which water, air, or roots penetrate slowly or not at all. No soil is absolutely impervious to air and water all the time.

Inclusion. See minor component.
Infiltration. The downward entry of water into the immediate surface of soil or other material, as contrasted with percolation, which is movement of water through soil layers or material.
Infiltration capacity. The maximum rate at which water can infiltrate into a soil under a given set of conditions.
Infiltration rate. The rate at which water penetrates the surface of the soil at any given instant, usually expressed in inches per hour. The rate can be limited by the infiltration capacity of the soil or the rate at which water is applied at the surface.
Intake rate. The average rate of water entering the soil under irrigation. Most soils have a fast initial rate; the rate decreases with application time. Therefore, intake rate for design purposes is not a constant but is a variable depending on the net irrigation application. The rate of water intake, in inches per hour, is expressed as follows:

0.2 to 0.4 .. 0.4 to 0.75 .. 0.75 to 1.25 1.25 to 1.75 1.75 to 2.5 ...

Interfluve. An elevated area between two drainageways that sheds water to those drainageways.
Intermittent stream. A stream, or reach of a stream, that flows for prolonged periods only when it receives ground-water discharge or long, continued contributions from melting snow or other surface and shallow subsurface sources.
Invasive species. A species that is 1)non-native to the ecosystem under consideration and 2) whose introduction causes or is likely to cause economic or environmental harm or harm to human health.
Iron depletions. Low-chroma zones having a low content of iron and manganese oxide because of chemical reduction and removal, but having a clay content similar to that of the adjacent matrix. A type of redoximorphic depletion.
Irrigation. Application of water to soils to assist in production of crops. Methods of irrigation are:
Basin.-Water is applied rapidly to nearly level plains surrounded by levees or dikes.
Controlled flooding.-Water is released at intervals from closely spaced field ditches and distributed uniformly over the field.
Corrugation.-Water is applied to small, closely spaced furrows or ditches in fields of close-growing crops or in orchards so that it flows in only one direction. Drip (or trickle).-Water is applied slowly and under low pressure to the surface of the soil or into the soil through such applicators as emitters, porous tubing, or perforated pipe.
Furrow.-Water is applied in small ditches made by cultivation implements.
Furrows are used for tree and row crops.
Sprinkler.-Water is sprayed over the soil surface through pipes or nozzles from a pressure system.
Subirrigation.-Water is applied in open ditches or tile lines until the water table is raised enough to wet the soil.
Wild flooding.-Water, released at high points, is allowed to flow onto an area without controlled distribution.
Kame. An irregular, short ridge or hill of stratified glacial drift.
Knoll. A small, low, rounded hill rising above adjacent landforms.
$\mathbf{K}_{\text {sat }}$. Saturated hydraulic conductivity (K-sat) quantifies the soil's ability to transmit water under saturated conditions. It is used to compare water movement in different soils, layers, or materials. (See Permeability.)
Lacustrine deposit. Material deposited in lake water and exposed when the water level is lowered or the elevation of the land is raised.
Landslide. The rapid downhill movement of a mass of soil and loose rock, generally when wet or saturated. The speed and distance of movement, as well as the amount of soil and rock material, vary greatly.
Large stones (in tables). Rock fragments 3 inches (7.6 centimeters) or more across. Large stones adversely affect the specified use of the soil.
Leaching. The removal of soluble material from soil or other material by percolating water.
Linear extensibility. Refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. Linear extensibility is used to determine the shrink-swell potential of soils. It is an expression of the volume change between the water content of the clod at $1 / 3$ - or $1 / 10$-bar tension (33 kPa or 10 kPa tension) and oven dryness. Volume change is influenced by the amount and type of clay minerals in the soil. The volume change is the percent change for the whole soil. If it is expressed as a fraction, the resulting value is COLE, coefficient of linear extensibility.
Liquid limit. The moisture content at which the soil passes from a plastic to a liquid state.
Loam. Soil material that is 7 to 27 percent clay particles, 28 to 50 percent silt particles, and less than 52 percent sand particles.
Loamy. Have a texture of loamy very fine sand, very fine sand, or finer, including less than 35 percent (by weight) clay in the fine-earth fraction.
Loamy-skeletal. Soil material that has 35 percent or more (by volume) rock fragments, texture finer than loamy sand, and less than 35 percent (by weight) clay.
Lodgement till. Compact glacial till deposited beneath the ice.
Loess. Fine grained material, dominantly of silt-sized particles, deposited by wind.
Loose till. Earthy, friable material deposited by a glacier. Loose till in Connecticut has a bulk density less than $1.65 \mathrm{~g} \mathrm{~cm}-3$. See melt-out till.
Low-residue crops. Such crops as corn used for silage, peas, beans, and potatoes. Residue from these crops is not adequate to control erosion until the next crop in the rotation is established. These crops return little organic matter to the soil.
Low strength. The soil is not strong enough to support loads.
Major component. The dominant soil(s) in a named mapping unit. Individually, major components account for no less than 15 percent of the composition of soils in a mapping unit.
Marl. An earthy, unconsolidated deposit consisting chiefly of calcium carbonate mixed with clay in approximately equal amounts.
Masses. Concentrations of substances in the soil matrix that do not have a clearly defined boundary with the surrounding soil material and cannot be removed as a discrete unit. Common compounds making up masses are calcium carbonate, gypsum or other soluble salts, iron oxide, and manganese oxide. Masses consisting of iron oxide or manganese oxide generally are considered a type of redoximorphic concentration.
Mechanical treatment. Use of mechanical equipment for seeding, brush management, and other management practices.
Medium textured soil. Very fine sandy loam, loam, silt loam, or silt.
Meltout till. Loose, permeable till deposited during the final downwasting of glacial ice. Lenses of crudely sorted sand and gravel are common. See loose till.

Metamorphic rock. Rock of any origin altered in mineralogical composition, chemical composition, or structure by heat, pressure, and movement. Nearly all such rocks are crystalline.
Mineral soil. Soil that is mainly mineral material and low in organic material. Its bulk density is more than that of organic soil.
Minimum tillage. Only the tillage essential to crop production and prevention of soil damage.
Minor component. The unnamed and lesser soils in a mapping unit, sometimes called inclusions. Individually, minor components account for less than 15 percent of the composition of soils in a mapping unit.
Miscellaneous area. An area that has little or no natural soil and supports little or no vegetation without major reclamation. Examples of miscellaneous areas are beaches, dumps, urban land, and rock outcrop.
Moderately coarse textured soil. Coarse sandy loam, sandy loam, or fine sandy loam.
Moderately fine textured soil. Clay loam, sandy clay loam, or silty clay loam.
Mollic epipedon. A thick, dark, humus-rich surface horizon (or horizons) that has high base saturation and pedogenic soil structure. It may include the upper part of the subsoil.
Moraine. An accumulation of earth, stones, and other debris deposited by a glacier. Some types are terminal, lateral, medial, and ground.
Morphology, soil. The physical makeup of the soil, including the texture, structure, porosity, consistence, color, and other physical, mineral, and biological properties of the various horizons, and the thickness and arrangement of those horizons in the soil profile.
Mottling, soil. Irregular spots of different colors that vary in number and size. Descriptive terms are as follows: abundance-few, common, and many; sizefine, medium, and coarse; and contrast-faint, distinct, and prominent. The size measurements are of the diameter along the greatest dimension. Fine indicates less than 5 millimeters (about 0.2 inch); medium, from 5 to 15 millimeters (about 0.2 to 0.6 inch); and coarse, more than 15 millimeters (about 0.6 inch).

Muck. Dark, finely divided, well decomposed organic soil material. (See Sapric soil material.)
Mudstone. Sedimentary rock formed by induration of silt and clay in approximately equal amounts.
Munsell notation. A designation of color by degrees of three simple variables-hue, value, and chroma. For example, a notation of $10 \mathrm{YR} 6 / 4$ is a color with hue of 10 YR , value of 6 , and chroma of 4 .
Neutral soil. A soil having a pH value of 6.6 to 7.3. (See Reaction, soil.)
Nodules. Cemented bodies lacking visible internal structure. Calcium carbonate, iron oxide, and manganese oxide are common compounds making up nodules. If formed in place, nodules of iron oxide or manganese oxide are considered types of redoximorphic concentrations.
Nose slope. A geomorphic component of hills consisting of the projecting end (laterally convex area) of a hillside. The overland waterflow is predominantly divergent.
Nutrient, plant. Any element taken in by a plant essential to its growth. Plant nutrients are mainly nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, copper, boron, and zinc obtained from the soil and carbon, hydrogen, and oxygen obtained from the air and water.
Ochric epipedon. A surface horizon of mineral soil that is too light in color, too high in chroma, too low in organic carbon, or too thin to be a plaggen, mollic, umbric, anthropic, or histic epipedon, or is both hard and massive when dry. Typically, ochric epipedons have color value of 4 or more.

Organic matter. Plant and animal residue in the soil in various stages of decomposition. The content of organic matter in the surface layer is described as follows:

Outwash plain. A landform of mainly sandy or coarse textured material of glaciofluvial origin. An outwash plain is commonly smooth; where pitted, it generally is low in relief.
Pan. A compact, dense layer in a soil that impedes the movement of water and the growth of roots. For example, hardpan, fragipan, claypan, plowpan, and traffic pan.
Parent material. The unconsolidated organic and mineral material in which soil forms.
Peat. Unconsolidated material, largely undecomposed organic matter, which has accumulated under excess moisture. (See Fibric soil material.)
Ped. An individual natural soil aggregate, such as a granule, a prism, or a block.
Pedon. The smallest volume that can be called "a soil." A pedon is three dimensional and large enough to permit study of all horizons. Its area ranges from about 10 to 100 square feet (1 square meter to 10 square meters), depending on the variability of the soil.
Percolation. The movement of water through the soil.
Percs slowly (in tables). The slow movement of water through the soil adversely affects the specified use.
Permeability. The quality of the soil that enables water or air to move downward through the profile. The rate at which a saturated soil transmits water is accepted as a measure of this quality. In soil physics, the rate is referred to as "saturated hydraulic conductivity," which is defined in the "Soil Survey Manual." In line with conventional usage in the engineering profession and with traditional usage in published soil surveys, this rate of flow continues to be expressed as "permeability." Permeability rates are listed in the tables for both mineral and organic soil horizons. The permeability ranges listed in the detailed soil map unit descriptions and soil series descriptions refer only to the permeability of the mineral soil horizons. The permeability ranges are measured in inches per hour and are as follows:

derately slow 0.2 to 0.6 in

Phase, soil. A subdivision of a soil series based on features that affect its use and management, such as slope, stoniness, and flooding.
pH value. A numerical designation of acidity and alkalinity in soil. (See Reaction, soil.)
Piping (in tables). Formation of subsurface tunnels or pipelike cavities by water moving through the soil.

Plasticity index. The numerical difference between the liquid limit and the plastic limit; the range of moisture content within which the soil remains plastic.
Plastic limit. The moisture content at which a soil changes from semisolid to plastic.
Plowpan. A compacted layer formed in the soil directly below the plowed layer.
Ponding. Standing water on soils in closed depressions. Unless the soils are artificially drained, the water can be removed only by percolation or evapotranspiration. Ponding is described by depth, duration, frequency class, and month.
Poor filter (in tables). Because of rapid or very rapid permeability, the soil may not adequately filter effluent from a waste disposal system.
Poorly graded. Refers to a coarse grained soil or soil material consisting mainly of particles of nearly the same size. Because there is little difference in size of the particles, density can be increased only slightly by compaction.
Potential native plant community. See Climax plant community.
Potential rooting depth (effective rooting depth). Depth to which roots could penetrate if the content of moisture in the soil were adequate. The soil has no properties restricting the penetration of roots to this depth.
Prescribed burning. Deliberately burning an area for specific management purposes, under the appropriate conditions of weather and soil moisture and at the proper time of day.
Productivity, soil. The capability of a soil for producing a specified plant or sequence of plants under specific management.
Profile, soil. A vertical section of the soil extending through all its horizons and into the parent material.
Proper grazing use. Grazing at an intensity that maintains enough cover to protect the soil and maintain or improve the quantity and quality of the desirable vegetation. This practice increases the vigor and reproduction capacity of the key plants and promotes the accumulation of litter and mulch necessary to conserve soil and water.
Reaction, soil. A measure of acidity or alkalinity of a soil, expressed in pH values. A soil that tests to pH 7.0 is described as precisely neutral in reaction because it is neither acid nor alkaline. The reaction ranges listed in the detailed soil map unit descriptions and soil series descriptions refer does not include the reaction of Oi or Oe horizons. The degrees of acidity or alkalinity, expressed as pH values, are:

Red beds. Sedimentary strata that are mainly red and are made up largely of sandstone and shale.
Redoximorphic concentrations. Nodules, concretions, soft masses, pore linings, and other features resulting from the accumulation of iron or manganese oxide. An indication of chemical reduction and oxidation resulting from saturation.
Redoximorphic depletions. Low-chroma zones from which iron and manganese oxide or a combination of iron and manganese oxide and clay has been removed. These zones are indications of the chemical reduction of iron resulting from saturation.

Redoximorphic features. Redoximorphic concentrations, redoximorphic depletions, reduced matrices, a positive reaction to alpha,alpha-dipyridyl, and other features indicating the chemical reduction and oxidation of iron and manganese compounds resulting from saturation.
Reduced matrix. A soil matrix that has low chroma in situ because of chemically reduced iron (Fe II). The chemical reduction results from nearly continuous wetness. The matrix undergoes a change in hue or chroma within 30 minutes after exposure to air as the iron is oxidized (Fe III). A type of redoximorphic feature.
Regolith. The unconsolidated mantle of weathered rock and soil material on the earth's surface; the loose earth material above the solid rock.
Relief. The elevations or inequalities of a land surface, considered collectively.
Rill. A steep-sided channel resulting from accelerated erosion. A rill generally is a few inches deep and not wide enough to be an obstacle to farm machinery.
Rill erosion. The removal of soil by concentrated water running through little streamlets, or headcuts. Detachment in a rill occurs if the sediment in the flow is below the amount the water can transport and if the flow exceeds the soil's resistance to detachment. As detachment continues or flow increases, rills will become wider and deeper.
Riparian buffer. Strips of grass, shrubs, and/or trees along the banks of rivers and streams that filter polluted runoff and provide a transition zone between water and human land use.
Road cut. A sloping surface produced by mechanical means during road construction. It is commonly on the uphill side of the road.
Rock fragments. Rock or mineral fragments having a diameter of 2 millimeters or more; for example, pebbles, cobbles, stones, and boulders.
Root zone. The part of the soil that can be penetrated by plant roots.
Rooting depth (in tables). Shallow root zone. The soil is shallow over a layer that greatly restricts roots.
Runoff. The precipitation discharged into stream channels from an area. The water that flows off the surface of the land without sinking into the soil is called surface runoff. Water that enters the soil before reaching surface streams is called ground-water runoff or seepage flow from ground water.
Salic horizon. A mineral soil horizon of enrichment with secondary salts more soluble in cold water than gypsum. A salic horizon is 15 centimeters or more in thickness, contains at least 20 grams per kilogram salt, and the product of the thickness in centimeters and amount of salt by weight is more than 600 grams per kilogram.
Saline soil. A soil containing soluble salts in an amount that impairs growth of plants. A saline soil does not contain excess exchangeable sodium.
Salty water (in tables). Water that is too salty for consumption by livestock.
Sand. As a soil separate, individual rock or mineral fragments from 0.05 millimeter to 2.0 millimeters in diameter. Most sand grains consist of quartz. As a soil textural class, a soil that is 85 percent or more sand and not more than 10 percent clay.
Sandstone. Sedimentary rock containing dominantly sand-sized particles.
Sandy. Have a texture of sand or loamy sand, including less than 50 percent (by weight) very fine sand in the fine-earth.
Sandy loam. Soil material that contains 20% clay or less and the percentage of silt plus twice the percentage of clay exceeds 30 , and 52% or more sand; OR less than 7% clay, less than 50% silt and between 43% and 52% sand. Sandy loam texture includes coarse sandy loam, fine sandy loam, and very fine sandy loam.
Sandy-skeletal. Soil material that has 35 percent or more (by volume) rock fragments and a fine-earth fraction with a texture of sand or loamy sand, including less than 50 percent (by weight) very fine sand.

Sapric soil material (muck). The most highly decomposed of all organic soil material. Muck has the least amount of plant fiber, the highest bulk density, and the lowest water content at saturation of all organic soil material.
Saprolite. Unconsolidated residual material underlying the soil and grading to hard bedrock below.
Saturation. Wetness characterized by zero or positive pressure of the soil water. Under conditions of saturation, the water will flow from the soil matrix into an unlined auger hole.
Saturated conditions. The condition in which all pores (voids) between soil particles are filled with water.
Scarification. The act of abrading, scratching, loosening, crushing, or modifying the surface to increase water absorption or to provide a more tillable soil.
Sedimentary rock. Rock made up of particles deposited from suspension in water. The chief kinds of sedimentary rock are conglomerate, formed from gravel; sandstone, formed from sand; shale, formed from clay; and limestone, formed from soft masses of calcium carbonate. There are many intermediate types. Some wind-deposited sand is consolidated into sandstone.
Seepage (in tables). The movement of water through the soil. Seepage adversely affects the specified use.
Sequum. A sequence consisting of an illuvial horizon and the overlying eluvial horizon. (See Eluviation.)
Series, soil. A group of soils that have profiles that are almost alike, except for differences in texture of the surface layer. All the soils of a series have horizons that are similar in composition, thickness, and arrangement.
Shale. Sedimentary rock formed by the hardening of a clay deposit.
Sheet erosion. The removal of a fairly uniform layer of soil material from the land surface by the action of rainfall and surface runoff.
Shoulder. The position that forms the uppermost inclined surface near the top of a hillslope. It is a transition from backslope to summit. The surface is dominantly convex in profile and erosional in origin.
Shrink-swell (in tables). The shrinking of soil when dry and the swelling when wet. Shrinking and swelling can damage roads, dams, building foundations, and other structures. It can also damage plant roots.
Side slope. A geomorphic component of hills consisting of a laterally planar area of a hillside. The overland waterflow is predominantly parallel.
Silica. A combination of silicon and oxygen. The mineral form is called quartz.
Silica-sesquioxide ratio. The ratio of the number of molecules of silica to the number of molecules of alumina and iron oxide. The more highly weathered soils or their clay fractions in warm-temperate, humid regions, and especially those in the tropics, generally have a low ratio.
Silt. As a soil separate, individual mineral particles that range in diameter from the upper limit of clay (0.002 millimeter) to the lower limit of very fine sand (0.05 millimeter). As a soil textural class, soil that is 80 percent or more silt and less than 12 percent clay.
Silt loam. Soil material that contains 50 percent or more silt and 7 percent to 27 percent clay; or 50 percent to 80 percent silt and less than 12 percent clay.
Silty clay. Soil material that contains 40 percent or more clay and 40 percent or more silt.
Silty clay loam. Soil material that contains 27 percent to 40 percent clay and less than 20 percent sand.
Siltstone. Sedimentary rock made up of dominantly silt-sized particles.
Similar soils. Soils that share limits of diagnostic criteria, behave and perform in a similar manner, and have similar conservation needs or management requirements for the major land uses in the survey area.

Site index. A designation of the quality of a forest site based on the height of the dominant stand at an arbitrarily chosen age. For example, if the average height attained by dominant and codominant trees in a fully stocked stand at the age of 50 years is 75 feet, the site index is 75 .
Slickensides. Polished and grooved surfaces produced by one mass sliding past another. In soils, slickensides may occur at the bases of slip surfaces on the steeper slopes; on faces of blocks, prisms, and columns; and in swelling clayey soils, where there is marked change in moisture content.
Slippage (in tables). Soil mass susceptible to movement downslope when loaded, excavated, or wet.
Slope. The inclination of the land surface from the horizontal. Percentage of slope is the vertical distance divided by horizontal distance, then multiplied by 100. Thus, a slope of 20 percent is a drop of 20 feet in 100 feet of horizontal distance.
Slope (in tables). Slope is great enough that special practices are required to ensure satisfactory performance of the soil for a specific use.
Slow intake (in tables). The slow movement of water into the soil.
Slow refill (in tables). The slow filling of ponds, resulting from restricted permeability in the soil.
Small stones (in tables). Rock fragments less than 3 inches (7.6 centimeters) in diameter. Small stones adversely affect the specified use of the soil.
Soft bedrock. Bedrock that can be excavated with trenching machines, backhoes, small rippers, and other equipment commonly used in construction.
Soil. A natural, three-dimensional body at the earth's surface. It is capable of supporting plants and has properties resulting from the integrated effect of climate and living matter acting on earthy parent material, as conditioned by relief over periods of time.
Soil quality. The capacity of a specific kind of soil to function within natural or managed ecosystem boundaries, to sustain plant and animal productivity, maintain or enhance water and air quality, and support human health and habitation.
Soil separates. Mineral particles less than 2 millimeters in equivalent diameter and ranging between specified size limits. The names and sizes, in millimeters, of separates recognized in the United States are as follows:

Solum. The upper part of a soil profile, above the C horizon, in which the processes of soil formation are active. The solum in soil consists of the A, E, and B horizons. Generally, the characteristics of the material in these horizons are unlike those of the material below the solum. The living roots and plant and animal activities are largely confined to the solum.
Stone line. A concentration of coarse fragments in a soil. Generally, it is indicative of an old weathered surface. In a cross section, the line may be one fragment or more thick. It generally overlies material that weathered in place and is overlain by recent sediment of variable thickness.
Stones. Rock fragments 10 to 24 inches (25 to 60 centimeters) in diameter if rounded or 15 to 24 inches (38 to 60 centimeters) in length if flat.
Stony. Refers to a soil containing stones in numbers that interfere with or prevent tillage.

Stripcropping. Growing crops in a systematic arrangement of strips or bands that provide vegetative barriers to wind erosion and water erosion.
Structure, soil. The arrangement of primary soil particles into compound particles or aggregates. The principal forms of soil structure are-platy (laminated), prismatic (vertical axis of aggregates longer than horizontal), columnar (prisms with rounded tops), blocky (angular or subangular), and granular. Structureless soils are either single grained (each grain by itself, as in dune sand) or massive (the particles adhering without any regular cleavage, as in many hardpans).
Stubble mulch. Stubble or other crop residue left on the soil or partly worked into the soil. It protects the soil from wind erosion and water erosion after harvest, during preparation of a seedbed for the next crop, and during the early growing period of the new crop.
Subsoil. Technically, the B horizon; roughly, the part of the solum below plow depth.
Subsoiling. Tilling a soil below normal plow depth, ordinarily to shatter a hardpan or claypan.
Substratum. The part of the soil below the solum.
Subsurface layer. Any surface soil horizon (A, E, AB, or EB) below the surface layer.
Summit. The topographically highest position of a hillslope. It has a nearly level (planar or only slightly convex) surface.
Surface layer. The soil ordinarily moved in tillage, or its equivalent in uncultivated soil, ranging in depth from 4 to 10 inches (10 to 25 centimeters). Frequently designated as the "plow layer," or the "Ap horizon."
Surface soil. The A, E, AB, and EB horizons, considered collectively. It includes all subdivisions of these horizons.
Talus. Fragments of rock and other soil material accumulated by gravity at the foot of cliffs or steep slopes.
Taxadjuncts. Soils that cannot be classified in a series recognized in the classification system. Such soils are named for a series they strongly resemble and are designated as taxadjuncts to that series because they differ in ways too small to be of consequence in interpreting their use and behavior. Soils are recognized as taxadjuncts only when one or more of their characteristics are slightly outside the range defined for the family of the series for which the soils are named.
Terminal moraine. A belt of thick glacial drift that generally marks the termination of important glacial advances.
Terrace. An embankment, or ridge, constructed across sloping soils on the contour or at a slight angle to the contour. The terrace intercepts surface runoff so that water soaks into the soil or flows slowly to a prepared outlet. A terrace in a field generally is built so that the field can be farmed. A terrace intended mainly for drainage has a deep channel that is maintained in permanent sod.
Terrace (geologic). An old alluvial plain, ordinarily flat or undulating, bordering a river, a lake, or the sea.
Texture, soil. The relative proportions of sand, silt, and clay particles in a mass of soil. The basic textural classes, in order of increasing proportion of fine particles, are sand, loamy sand, sandy loam, loam, silt loam, silt, sandy clay loam, clay loam, silty clay loam, sandy clay, silty clay, and clay. The sand, loamy sand, and sandy loam classes may be further divided by specifying "coarse," "fine," or "very fine."
Thin layer (in tables). Otherwise suitable soil material that is too thin for the specified use.
Till plain. An extensive area of nearly level to undulating soils underlain by glacial till.
Tilth, soil. The physical condition of the soil as related to tillage, seedbed preparation, seedling emergence, and root penetration.
Toeslope. The position that forms the gently inclined surface at the base of a hillslope. Toeslopes in profile are commonly gentle and linear and are
constructional surfaces forming the lower part of a hillslope continuum that grades to valley or closed-depression floors.
Topsoil. The upper part of the soil, which is the most favorable material for plant growth. It is ordinarily rich in organic matter and is used to topdress roadbanks, lawns, and land affected by mining.
Trace elements. Chemical elements, for example, zinc, cobalt, manganese, copper, and iron, in soils in extremely small amounts. They are essential to plant growth.
Umbric epipedon. A surface layer of mineral soil that has the same requirements as the mollic epipedon with respect to color, thickness, organic carbon content, consistence, structure, and phosphorus content, but that has a base saturation less than 50% when measured at pH 7 .
Undifferentiated group, soil. A kind of map unit used in soil surveys comprised of two or more taxa components that are not consistently associated geographically and do not always occur together in the same map delineation. These taxa are included as the same named map unit because use and management are the same or very similar for common uses.
Upland. Land at a higher elevation, in general, than the alluvial plain or stream terrace; land above the lowlands along streams.
Valley fill. In glaciated regions, material deposited in stream valleys by glacial meltwater. In nonglaciated regions, alluvium deposited by heavily loaded streams.
Variegation. Refers to patterns of contrasting colors assumed to be inherited from the parent material rather than to be the result of poor drainage.
Varve. A sedimentary layer or a lamina or sequence of laminae deposited in a body of still water within a year. Specifically, a thin pair of graded glaciolacustrine layers seasonally deposited, usually by meltwater streams, in a glacial lake or other body of still water in front of a glacier.
Water bars. Smooth, shallow ditches or depressional areas that are excavated at an angle across a sloping road. They are used to reduce the downward velocity of water and divert it off and away from the road surface. Water bars can easily be driven over if constructed properly.
Water quality. Used to describe the chemical, physical, and biological characteristics of water, usually in respect to its suitability for a particular use.
Weathering. All physical and chemical changes produced in rocks or other deposits at or near the earth's surface by atmospheric agents. These changes result in disintegration and decomposition of the material.
Well graded. Refers to soil material consisting of coarse grained particles that are well distributed over a wide range in size or diameter. Such soil normally can be easily increased in density and bearing properties by compaction. Contrasts with poorly graded soil.
Wetlands, Connecticut. Land, including submerged land, which consists of any of the soil types designated as poorly drained, very poorly drained, alluvial, and floodplain by the National Cooperative Soil Survey, as may be amended from time to time, of the Natural Resources Conservation Service of the United States Department of Agriculture.
Wetlands, federal. Land that has 1)a predominance of hydric soils; and 2)is inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and under normal circumstances does support, a prevalence of hydrophytic vegetation typically adapted for life in saturated soil conditions.
Wilting point (or permanent wilting point). The moisture content of soil, on an ovendry basis, at which a plant (specifically a sunflower) wilts so much that it does not recover when placed in a humid, dark chamber.
Windthrow. The uprooting and tipping over of trees by the wind.

Tables

(Recorded in the period 1961-90 at BRIDGEPORT WSO ARPT, CT0806)

Month	Temperature						Precipitation				
	Average daily maximum	Average daily minimum	Average	2 years in 10 will have--		Average number of growing degree days*	Average	2 years in 10 will have--		Average number of days with 0.10 inch or more	Average snowfall
				Maximum temperature higher than--	Minimum temperature lower than--			Less than--	More than--		
	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \underline{F}$	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \underline{F}$	Units	In	In	In	Days	In
January--	35.9	21.9	28.9	57	-1	9	3.24	1.45	4.77	6	8.4
February-	37.6	23.2	30.4	58	2	11	3.01	1.75	4.14	6	8.0
March----	46.2	30.9	38.6	69	11	68	3.75	2.03	5.26	6	4.0
April---	56.7	39.8	48.3	81	25	256	3.75	1.99	5.31	6	0.4
May-----	66.8	49.9	58.3	86	36	569	3.93	1.93	5.66	7	0.0
June-----	76.0	59.1	67.6	92	46	828	3.46	1.36	5.23	5	0.0
July-----	81.6	65.6	73.6	95	53	1041	3.78	1.61	5.63	5	0.0
August---	80.7	65.0	72.8	92	50	1018	3.25	1.72	4.59	5	0.0
September	74.0	57.5	65.7	89	40	772	3.07	1.56	4.38	5	0.0
October--	63.7	46.9	55.3	79	29	476	3.11	1.68	4.38	5	0.0
November-	52.8	38.1	45.5	71	21	194	3.81	1.89	5.49	6	0.6
December-	41.0	27.5	34.2	61	6	37	3.50	1.80	4.98	6	4.9
Yearly:											
Average	59.4	43.8	51.6	---	---	-	---	---	-	--	---
Extreme	100	-7	---	95	-2	---	---	---	---	---	--
Total--	---	---	---	-	-	5279	41.67	33.28	49.63	68	26.3

Table 1.-Temperature and Precipitation-Continued
(Recorded in the period 1961-90 at COCKAPONSET RANGER ST, CT1488)

Month	Temperature						Precipitation				
	Average daily maximum	Average daily minimum	Average	2 years in 10 will have--		Average number of growing degree days*	Average	$\begin{array}{\|l\|} \hline 2 \text { years in } 10 \\ \text { will have-- } \end{array}$		Average number of days with 0.10 inch or more	Average snowfall
				Maximum temperature higher than--	Minimum temperature lower than--			Less than--	\| More		
	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \underline{F}$	${ }^{\circ} \underline{F}$	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \underline{F}$	Units	In	In	In	Days	In
January--	37.6	15.8	26.7	57	-13	2	4.28	1.85	6.36	6	9.8
February-	39.4	18.1	28.7	60	-4	8	3.73	2.24	5.06	6	11.0
March----	49.4	25.0	37.2	79	5	86	4.28	2.63	5.76	6	5.6
April----	57.6	34.5	46.1	87	20	197	4.61	2.46	6.50	6	1.3
May-----	69.7	45.7	57.7	94	28	549	4.64	2.93	6.19	7	0.0
June-----	78.3	53.5	65.9	94	35	776	3.71	1.69	5.44	6	0.0
July----	81.9	59.7	70.8	95	41	954	3.89	1.80	5.68	5	0.0
August---	80.8	57.2	69.0	95	37	899	3.68	1.96	5.20	6	0.0
September	72.6	46.7	59.6	88	29	553	4.01	2.32	5.51	6	0.0
October--	62.5	34.8	48.6	82	18	279	4.17	1.99	6.05	5	0.1
November-	52.2	27.7	39.9	74	3	98	4.78	2.67	6.64	7	1.1
December-	38.0	18.3	28.2	62	-13	16	4.55	2.26	6.53	7	6.7
Yearly:											
Average	60.0	36.4	48.2	---	---	---	---	---	---	---	--
Extreme	98	-18	---	101	-15	---	---	---	---	--	--
Total--	---	---	---	---	---	4419	50.32	42.61	54.81	73	35.7

[^5]Table 1.-Temperature and Precipitation-Continued
(Recorded in the period 1961-90 at FALLS VILLAGE, CT2658)

Month	Temperature						Precipitation				
	Average daily maximum	Average daily minimum	Average	2 years in 10 will have--		Average number of growing degree days*	Average	$\begin{aligned} & 2 \text { years in } 10 \\ & \text { will have-- } \end{aligned}$		Average number of days with 0.10 inch or more	Average snowfall
				Maximum temperature higher than--	Minimum temperature lower than--			Less than--	More than--		
	${ }^{\circ} \underline{F}$	${ }^{\circ} \underline{F}$	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \underline{F}$	${ }^{\circ} \underline{F}$	Units	In	In	In	Days	In
January-	33.6	11.8	22.7	59	-19	3	2.95	1.48	4.22	6	10.4
February-	36.4	14.3	25.3	60	-15	8	2.73	1.51	3.80	6	9.5
March---	46.3	24.0	35.2	76	0	50	3.07	1.74	4.25	6	6.4
April----	59.1	33.1	46.1	85	15	211	3.64	2.14	4.99	7	1.7
May-----	71.7	43.8	57.8	90	25	548	4.00	2.37	5.46	8	0.1
June-----	79.3	52.6	65.9	93	34	778	4.26	2.12	6.12	7	0.0
July---	83.8	57.5	70.6	96	41	950	3.66	1.91	5.19	6	0.0
August---	81.4	56.1	68.8	93	37	892	4.38	2.65	5.94	7	0.0
September	73.6	48.6	61.1	90	29	632	3.54	1.95	4.95	6	0.0
October--	62.7	37.1	49.9	81	18	320	3.28	1.94	4.47	6	0.1
November-	50.1	29.4	39.8	73	10	98	3.68	2.32	4.90	7	1.2
December-	37.6	18.4	28.0	62	-10	14	3.42	1.90	4.76	6	10.3
Yearly:											
Average	59.6	35.6	47.6	---	---	---	---	-	---	---	--
Extreme	98	-30	---	96	-20	---	---	---	---	-	-
Total--	---	---	---	---	---	4504	42.60	36.52	48.46	78	39.7

* A growing degree day is a unit of heat available for plant growth. It can be calculated by adding the maximum and minumum daily temperatures, dividing the sum by 2 , and subtracting the temperature below which growth is minimal for the principal crops in the area (40 degrees F).

Table 1.-Temperature and Precipitation-Continued
(Recorded in the period 1961-90 at GROTON, CT3207)

Month	Temperature						Precipitation				
	Average daily maximum	$\begin{array}{\|c} \text { Average } \\ \text { daily } \\ \mid \text { minimum } \end{array}$	Average	2 years in 10 will have--		Average number of growing degree days*	Average	2 years in 10 will have--		Average number of days with 0.10 inch or more	Average snowfall
				Maximum temperature higher than--	Minimum temperature lower than--			Less than--	More than--		
	${ }^{\circ} \mathrm{F}$	Units	In	In	In	Days	In				
January--	36.9	18.5	27.7	58	-7	10	4.16	2.08	5.96	7	7.7
February-	38.5	20.3	29.4	58	-4	12	3.83	2.27	5.23	6	6.8
March---	46.6	28.5	37.5	68	9	57	4.34	2.73	5.79	7	3.2
April---	56.4	37.0	46.7	79	21	212	4.28	2.47	5.89	6	0.3
May-----	66.0	46.6	56.3	86	33	505	3.96	2.25	5.48	7	0.0
June----	75.0	55.7	65.4	91	41	761	3.47	1.49	5.15	6	0.0
July----	80.7	62.1	71.4	94	50	973	3.30	1.55	4.81	5	0.0
August---	79.9	61.3	70.6	92	46	950	3.71	1.96	5.24	5	0.0
September	73.1	53.6	63.3	89	36	700	3.61	1.91	5.10	5	0.0
October--	63.0	43.0	53.0	79	25	406	3.89	2.19	5.39	6	0.0
November-	52.9	34.8	43.9	70	16	162	4.94	2.61	6.98	7	0.6
December-	41.7	24.3	33.0	63	0	35	4.66	2.53	6.53	7	4.4
Yearly:											
Average	59.2	40.5	49.8	---	---	---	---	---	---	---	---
Extreme	99	-14	---	95	-9	---	---	---	---	---	---
Total--	---	---	---	---	---	4783	48.12	41.31	54.21	74	23.0

[^6]Table 1.-Temperature and Precipitation-Continued
(Recorded in the period 1961-90 at HARTFORD BRAINARD FIELD, CT3451)

Month	Temperature						Precipitation				
	Average daily maximum	Average daily minimum	Average	2 years in 10 will have--		Average number of growing degree days*	Average	2 years in 10 will have--		Average number of days with 0.10 inch or more	Average snowfall
				Maximum temperature higher than--	Minimum temperature lower than--			Less than--	More than--		
	${ }^{\circ} \underline{F}$	${ }^{\circ} \underline{F}$	${ }^{\circ} \underline{F}$	${ }^{\circ} \underline{F}$	${ }^{\circ} \mathrm{F}$	Units	In	In	In	Days	In
January-	34.7	16.2	25.4	60	-8	7	3.25	1.29	4.90	5	6.4
February-	37.5	18.7	28.1	61	-4	12	2.98	1.58	4.22	5	7.8
March---	46.9	27.6	37.2	74	8	66	3.35	1.95	4.59	6	5.8
April----	58.6	36.9	47.8	85	21	247	3.88	2.24	5.34	6	0.8
May------	70.0	47.2	58.6	91	31	576	4.01	2.15	5.64	7	0.0
June-----	78.4	56.5	67.5	95	42	824	3.48	2.01	4.78	6	0.0
July----	83.5	62.2	72.9	97	48	1015	3.57	1.99	4.96	6	0.0
August---	81.5	60.3	70.9	95	44	959	3.60	1.50	5.38	5	0.0
September	74.4	51.6	63.0	92	33	689	3.63	1.97	5.09	5	0.0
October--	63.3	40.5	51.9	83	23	374	3.56	1.94	5.00	5	0.0
November-	51.6	32.9	42.2	74	16	135	3.64	1.95	5.12	6	0.6
December-	38.9	21.9	30.4	64	-1	22	3.71	1.91	5.28	6	6.8
Yearly:											
Average	59.9	39.4	49.7	-	-	-	-	---	-	--	---
Extreme	102	-17	---	98	-9	---	---	---	---	---	---
Total--	---	---	---	---	---	4926	42.65	34.87	48.00	68	28.4

* A growing degree day is a unit of heat available for plant growth. It can be calculated by adding the maximum and minumum daily temperatures, dividing the sum by 2 , and subtracting the temperature below which growth is minimal for the principal crops in the area (40 degrees F).

Table 1.-Temperature and Precipitation-Continued
(Recorded in the period 1961-90 at MOUNT CARMEL, CT5077)

Month	Temperature						Precipitation				
	Average daily maximum	$\begin{array}{\|c} \text { Average } \\ \text { daily } \\ \text { \|minimum } \end{array}$	Average	2 years in 10 will have--		Average number of growing degree days*	Average	2 years in 10 will have--		Average number of days with 0.10 inch or more	Average snowfall
				Maximum temperature higher than--	Minimum temperature lower than--			Less than--	More than--		
	${ }^{\circ} \underline{F}$	${ }^{\circ} \underline{F}$	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \underline{F}$	${ }^{\circ} \underline{F}$	Units	In	In	In	Days	In
January-	36.3	18.2	27.3	59	-9	10	3.84	1.65	5.70	6	9.3
February	38.8	20.2	29.5	60	-6	17	3.40	2.00	4.65	6	9.2
March---	48.0	28.5	38.3	72	6	76	4.19	2.37	5.81	6	4.9
April---	59.3	37.2	48.2	83	20	258	4.56	2.55	6.33	6	0.5
May----	69.8	46.7	58.2	89	30	566	4.57	2.34	6.53	7	0.0
June----	78.5	55.9	67.2	93	39	816	4.25	1.70	6.41	6	0.0
July----	83.3	61.8	72.5	95	46	1009	4.17	1.76	6.22	6	0.0
August---	81.7	60.7	71.2	93	43	967	3.92	1.84	5.71	6	0.0
September	74.6	53.0	63.8	91	34	714	4.32	2.14	6.21	5	0.0
October--	64.3	42.2	53.3	82	22	414	3.91	1.97	5.60	5	0.1
November-	52.7	34.2	43.5	73	14	159	4.39	2.29	6.23	7	1.2
December-	40.3	23.4	31.8	64	-2	30	4.11	2.15	5.82	6	6.4
Yearly:											
Average	60.6	40.2	50.4	---	---	---	---	---	---	---	--
Extreme	99	-17	---	96	-11	---	---	---	---	--	-
Total--	-	---	---	---	---	5035	49.62	39.48	57.84	72	31.6

[^7]Table 1.-Temperature and Precipitation-Continued
(Recorded in the period 1961-90 at NORFOLK 2 SW, CT5445)

Month	Temperature						Precipitation				
	Average daily maximum	Average daily minimum	Average	2 years in 10 will have--		Average number of growing degree days*	Average	$\begin{array}{\|l\|} \hline 2 \text { years in } 10 \\ \text { will have-- } \end{array}$		Average number of days with 0.10 inch or more	Average snowfall
				Maximum temperature higher than--	Minimum temperature lower than--			Less than--	More than--		
	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \underline{F}$	${ }^{\circ} \underline{F}$	${ }^{\circ} \underline{F}$	${ }^{\circ} \mathrm{F}$	Units	In	In	In	Days	In
January-	27.4	10.8	19.1	53	-14	2	3.74	2.04	5.24	7	21.7
February	29.5	11.9	20.7	55	-12	4	3.88	2.33	5.27	7	22.6
March---	39.6	21.5	30.5	70	-2	27	4.16	2.56	5.60	7	17.5
April----	52.4	32.2	42.3	81	14	140	4.45	2.69	6.03	8	7.1
May-----	64.8	43.3	54.1	85	27	440	4.59	2.60	6.36	8	0.9
June-----	72.8	52.4	62.6	88	36	678	4.60	2.37	6.55	7	0.0
July----	77.5	57.5	67.5	89	44	854	4.19	2.52	5.70	7	0.0
August--	75.4	55.9	65.7	87	40	796	4.55	2.88	6.06	7	0.0
September	67.6	48.3	58.0	84	31	540	4.13	2.28	5.77	6	0.0
October--	56.4	37.7	47.0	76	21	245	3.95	2.43	5.31	6	0.9
November-	44.4	29.3	36.8	67	10	67	4.56	3.04	5.94	8	6.9
December-	32.0	17.2	24.6	58	-8	9	4.44	2.66	6.03	8	20.9
Yearly:											
Average	53.3	34.8	44.1	---	---	---	---	---	---	---	--
Extreme	92	-20	---	90	-16	---	---	---	---	---	--
Total--	---	--	---	---	---	3802	51.24	43.84	58.11	86	98.6

* A growing degree day is a unit of heat available for plant growth. It can be calculated by adding the maximum and minumum daily temperatures, dividing the sum by 2 , and subtracting the temperature below which growth is minimal for the principal crops in the area (40 degrees. F).

Table 1.-Temperature and Precipitation-Continued
(Recorded in the period 1961-90 at SHEPAUG DAM, CT7373)

Month	Temperature						Precipitation				
	Average daily maximum	$\begin{gathered} \text { Average } \\ \text { daily } \\ \text { minimum } \end{gathered}$	Average	2 years in 10 will have--		Average number of growing degree days*	Average	```2 years in 10 will have--```		Average number of days with 0.10 inch or more	Average snowfall
				Maximum temperature higher than--	Minimum temperature lower than--			Less than--	More than--		
	${ }^{\circ} \mathrm{F}$	Units	In	In	In	Days	In				
January-	33.1	13.6	23.3	57	-16	4	3.52	1.66	5.12	6	14.7
February -	35.7	15.5	25.6	59	-12	8	3.36	1.77	4.76	6	13.8
March---	45.1	24.9	35.0	74	0	49	3.90	2.22	5.39	7	9.4
April---	57.5	34.6	46.0	84	16	208	4.24	2.55	5.75	8	2.3
May---	68.2	45.0	56.6	88	29	515	4.57	2.56	6.35	9	0.1
June----	75.8	53.9	64.9	91	37	744	4.08	2.10	5.81	7	0.0
July-	80.3	59.2	69.7	93	45	921	4.21	2.48	5.76	7	0.0
August--	78.7	57.8	68.3	91	41	876	4.25	2.44	5.86	6	0.0
September	71.5	50.6	61.1	88	32	629	4.06	2.07	5.79	6	0.0
October--	61.8	40.0	50.9	81	22	345	3.95	2.11	5.57	6	0.4
November-	50.1	31.8	40.9	71	13	116	4.34	2.73	5.79	7	3.0
December-	37.6	20.2	28.9	62	-6	17	3.94	2.15	5.52	7	10.8
Yearly:											
Average	57.9	37.3	47.6	---	---	---	---	---	---	---	--
Extreme	95	-27	---	93	-17	---	-	---	---	---	---
Total--	---	---	---	---	---	4433	48.41	39.62	55.96	82	54.4

* A growing degree day is a unit of heat available for plant growth. It can be calculated by adding the maximum and minumum daily temperatures, dividing the sum by 2 , and subtracting the temperature below which growth is minimal for the principal crops in the area (40 degrees F).

Table 1.-Temperature and Precipitation-Continued
(Recorded in the period 1961-90 at STORRS, CT8138)

Month	Temperature						Precipitation				
	Average daily maximum	Average daily minimum	Average	2 years in 10 will have--		Average number of growing degree days*	Average	$\left\lvert\, \begin{gathered}2 \text { years in } 10 \\ \text { will have-- }\end{gathered}\right.$		Average number of days with 0.10 inch or more	Average snowfall
				Maximum temperature higher than--	Minimum temperature lower than--			Less than--	More than- -		
	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \underline{F}$	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$	$\underline{\text { Units }}$	In	In	In	Days	In
January--	32.9	16.5	24.7	58	-8	8	3.93	1.65	5.86	6	10.1
February-	35.4	18.7	27.1	60	-4	11	3.45	2.07	4.68	6	10.7
March---	44.8	27.4	36.1	73	6	59	3.50	2.14	4.73	6	6.5
April---	56.5	36.6	46.5	82	20	218	4.24	2.39	5.88	7	0.8
May-----	67.6	46.1	56.8	88	31	521	4.20	2.57	5.66	7	0.1
June-----	75.4	54.8	65.1	90	40	751	3.85	1.89	5.54	7	0.0
July----	79.8	60.5	70.1	93	47	933	4.14	2.36	5.72	6	0.0
August--	78.2	59.1	68.7	90	43	887	3.96	2.09	5.59	6	0.0
September	71.2	51.4	61.3	87	34	638	3.94	2.15	5.51	5	0.0
October--	61.4	41.3	51.4	80	24	360	4.14	2.40	5.68	5	0.2
November-	49.8	33.4	41.6	72	14	128	4.47	2.65	6.10	7	1.8
December-	37.3	21.9	29.6	63	-2	23	4.21	2.21	5.97	6	7.4
Yearly:											
Average	57.5	39.0	48.2	---	---	---	---	---	---	--	--
Extreme	98	-13	---	94	-10	---	---	---	---	---	--
Total--	---	--	---	---	---	4538	48.02	39.30	53.09	74	37.7

Table 1.-Temperature and Precipitation-Continued
(Recorded in the period 1961-90 at WEST THOMPSON LAKE, CT9388)

Month	Temperature						Precipitation				
	Average daily maximum	$\begin{array}{\|c} \text { Average } \\ \text { daily } \\ \mid \text { minimum } \end{array}$	Average	2 years in 10 will have--		Average number of growing degree days*	Average	2 years in 10 will have--		Average number of days with 0.10 inch or more	Average snowfall
				Maximum temperature higher than--	Minimum temperature lower than--			Less than--	More than--		
	${ }^{\circ} \underline{F}$	Units	In	In	In	Days	In				
January--	34.5	11.9	23.2	61	-14	7	3.93	1.74	5.81	6	10.3
February-	36.9	14.2	25.6	62	-13	9	3.22	1.65	4.59	6	9.5
March---	46.2	24.4	35.3	76	1	54	4.06	2.55	5.43	7	5.1
April---	57.6	34.1	45.9	85	16	202	4.32	2.50	5.95	7	1.1
May-----	68.9	43.9	56.4	90	27	509	4.39	3.08	5.60	7	0.0
June-----	76.9	53.2	65.0	93	36	744	4.13	2.07	5.93	7	0.0
July----	82.6	58.9	70.7	96	43	939	4.18	2.42	5.74	6	0.0
August---	80.7	57.5	69.1	94	39	890	4.16	2.04	6.00	6	0.0
September	73.0	48.3	60.6	90	31	610	3.79	1.92	5.42	5	0.0
October--	62.5	36.7	49.6	82	18	303	4.28	2.51	5.86	5	0.1
November-	51.1	29.7	40.4	74	10	111	4.70	2.75	6.43	7	2.0
December-	38.8	18.4	28.6	64	-8	19	4.37	2.27	6.21	7	6.4
Yearly:											
Average	59.1	35.9	47.5	---	---	---	---	---	---	---	---
Extreme	100	-23	---	97	-18	---	---	---	---	---	---
Total-	---	---	---	---	---	4397	49.54	43.79	55.12	76	34.4

* A growing degree day is a unit of heat available for plant growth. It can be calculated by adding the maximum and minumum daily temperatures, dividing the sum by 2 , and subtracting the temperature below which growth is minimal for the principal crops in the area (40 degrees F).

Table 2.-Freeze Dates in Spring and Fall

| (Recorded in the period $1961-90$ at BRIDGEPORT WSO ARPT, CT0806) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Table 2.-Freeze Dates in Spring and Fall-Continued | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (Recorded in the period $1961-90$ | at COCKAPONSET RANGER ST, CT1488) |

Table 2.-Freeze Dates in Spring and Fall-Continued
(Recorded in the period 1961-90 at FALLS VILLAGE, CT2658)

| Table 2.-Freeze Dates in Spring and Fall-Continued |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (Recorded in the period $1961-90$ at GROTON, CT3207) |

Table 2.-Freeze Dates in Spring and Fall-Continued
(Recorded in the period 1961-90 at HARTFORD BRAINARD FIELD, CT3451)

Probability	Temperature			
	$\begin{gathered} 24 \circ_{F} \\ \text { or lower } \end{gathered}$	$\begin{gathered} 28 \circ_{F} \\ \text { or lower } \end{gathered}$	$\begin{gathered} 32^{\circ} \mathrm{F} \\ \text { or lower } \end{gathered}$	
Last freezing temperature in spring:				
later than--	April 11	April 25	May	11
$\begin{aligned} & 2 \text { year in } 10 \\ & \text { later than- } \end{aligned}$	April 7	April 20	May	6
```5 year in 10 later than--```	March 29	April 12	April	27
First freezing temperature in fall:				
```1 yr in 10 earlier than--```	October 17	October 9	September	
$\begin{aligned} & 2 \text { yr in } 10 \\ & \text { earlier than-- } \end{aligned}$	October 25	October 14	October	1
```5 yr in 10 earlier than--```	November 7	October 24	October	

Table 2.-Freeze Dates in Spring and Fall-Continued
(Recorded in the period 1961-90 at MOUNT CARMEL, CT5077)


Table 2.-Freeze Dates in Spring and Fall-Continued
(Recorded in the period 1961-90 at NORFOLK 2 SW, CT5445)



| Table 2.-Freeze Dates in Spring and Fall-Continued |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (Recorded in the period $1961-90$ at STORRS, CT8138) |

Table 2.-Freeze Dates in Spring and Fall-Continued
(Recorded in the period 1961-90 at WEST THOMPSON LAKE, CT9388)


Table 3.-Growing Season
(Recorded for the period 1961-90 at BRIDGEPORT WSO ARPT, CT0806)

	Daily Minimum Temperature During growing season		
Probability	$\begin{aligned} & \text { Higher } \\ & \text { than } \\ & 24 \circ_{F} \end{aligned}$	Higher   than   $28^{\circ} \mathrm{F}$	Higher than $32{ }^{\circ} \mathrm{F}$
9 years in 10	Days 234	Days   212	Days 182
8 years in 10	241	219	190
5 years in 10	253	233	203
2 years in 10	266	246	217
1 year in 10	273	253	224

Table 3.-Growing Season
(Recorded for the period 1961-90 at COCKAPONSET RANGER ST, CT1488)

	Daily Minimum Temperature   During growing season		
Probability	Higher   than   $240_{F}$	Higher   than   $280_{F}$	Higher   than   $320_{F}$
9 years in 10	176	Days	143
8 years in 10	183	151	131
5 years in 10	194	166	134
2 years in 10	206	212	180
1 year in 10		141	

Table 3.-Growing Season-Continued
(Recorded for the period 1961-90 at FALLS VILLAGE, CT2658)

	Daily Minimum Temperature   During growing season		
Probability	Higher   than   $240_{F}$	Higher   than   $28 \circ_{F}$	Higher   than   $32 \circ_{F}$
9 years in 10	164	Days	138
8 years in 10	171	184	144
5 years in 10	197	170	109
2 years in 10	204	176	130
1 year in 10		144	

Table 3.-Growing Season
(Recorded for the period 1961-90 at GROTON, CT3207)

	Daily Minimum Temperature   During growing season		
Probability	Higher   than   $240_{F}$	Higher   than   $280_{F}$	Higher   than   $320_{F}$
9 years in 10	208	Days	185
8 years in 10	216	192	Days
5 years in 10	232	204	158
2 years in 10	247	216	178
1 year in 10	255	223	191

Table 3.-Growing Season-Continued
(Recorded for the period 1961-90 at HARTFORD BRAINARD FIELD, CT3451)

	Daily Minimum Temperature During growing season		
Probability	Higher   than $24^{\circ} \mathrm{F}$	Higher than $28^{\circ} \mathrm{F}$	$\begin{aligned} & \text { Higher } \\ & \text { than } \\ & 32 \circ_{F} \end{aligned}$
9 years in 10	Days 193	Days 171	Days 143
8 years in 10	203	179	151
5 years in 10	221	194	164
2 years in 10	240	209	178
1 year in 10	250	217	185

Table 3.-Growing Season
(Recorded for the period 1961-90 at MOUNT CARMEL, CT5077)

	Daily Minimum Temperature   During growing season		
Probability	Higher   than   $240_{F}$	Higher   than   $28 \circ_{F}$	Higher   than   $32 \circ_{F}$
9 years in 10	193	Days	171
8 years in 10	202	178	Days
5 years in 10	220	192	142
2 years in 10	239	205	162
1 year in 10	248	212	176

Table 3.-Growing Season-Continued
(Recorded for the period 1961-90 at NORFOLK 2 SW, CT5445)

	Daily Minimum Temperature During growing season		
Probability	Higher   than   $24{ }^{\circ} \mathrm{F}$	Higher   than   $28{ }^{\circ} \mathrm{F}$	Higher than $32{ }^{\circ} \mathrm{F}$
9 years in 10	$\begin{aligned} & \text { Days } \\ & 180 \end{aligned}$	Days   154	Days   123
8 years in 10	187	161	130
5 years in 10	199	173	142
2 years in 10	212	185	155
1 year in 10	218	191	161

Table 3.-Growing Season
(Recorded for the period 1961-90 at SHEPAUG DAM, CT7373)

	Daily Minimum Temperature   During growing season		
Probability	Higher   than   $240_{F}$	Higher   than   $280_{F}$	Higher   than   $32 \circ_{F}$
9 years in 10	190	Days	161

Table 3.-Growing Season-Continued
(Recorded for the period 1961-90 at STORRS, CT8138)

	Daily Minimum Temperature   During growing season		
Probability	Higher   than   $240_{F}$	Higher   than   $28 \circ_{F}$	Higher   than   $32 \circ_{F}$
9 years in 10	204	Days	175
8 years in 10	211	224	181
5 years in 10	237	205	146
2 years in 10	243	212	153
1 year in 10		166	

Table 3.-Growing Season
(Recorded for the period 1961-90 at WEST THOMPSON LAKE, CT9388)

	Daily Minimum Temperature   During growing season		
Probability	Higher   than   $240_{F}$	Higher   than   $280_{F}$	Higher   than   $32 \circ_{F}$
9 years in 10	178	Days	151

Table 4.-Acreage and Proportionate Extent of the Soils

Map   symbol	Soil name	Acres	Percent
2	Ridgebury fine sandy	8,683	0.3
3	Ridgebury, Leicester, and Whitman soils, extremely stony	154,932	4.8
4	Leicester fine sandy loam	3,274	0.1
5	Wilbraham silt loam	4,814	0.1
6	Wilbraham and Menlo soils, extremely stony	13,950	0.4
7	Mudgepond silt loam-	1,050	*
8	Mudgepond and Alden soils, extremely stony	1,803	*
9	Scitico, Shaker, and Maybid soil	10,560	0.3
10	Raynham silt loam-	1,923	*
12	Raypol silt loam-	14,946	0.5
13	Walpole sandy loam	13,482	0.4
14	Fredon silt loam-	866	*
15	Scarboro muck	16,168	0.5
16	Halsey silt loam	1,548	*
17	Timakwa and Natchaug soil	30,322	0.9
18	Catden and Freetown soils	40,679	1.3
20A	Ellington silt loam, 0 to 5 percent slop	3,823	0.1
21A	Ninigret and Tisbury soils, 0 to 5 percent slope	25,048	0.8
22A	Hero gravelly loam, 0 to 3 percent slopes	873	*
22B	Hero gravelly loam, 3 to 8 percent slopes	487	*
23A	Sudbury sandy loam, 0 to 5 percent slope	11,590	0.4
24A	Deerfield loamy fine sand, 0 to 3 percent slop	1,029	*
25A	Brancroft silt loam, 0 to 3 percent slopes	899	*
25B	Brancroft silt loam, 3 to 8 percent slopes	2,941	*
25 C	Brancroft silt loam, 8 to 15 percent slopes	399	*
26A	Berlin silt loam, 0 to 3 percent slopes	735	*
26B	Berlin silt loam, 3 to 8 percent slopes	408	*
27A	Belgrade silt loam, 0 to 5 percent slope	1,179	*
28A	Elmridge fine sandy loam, 0 to 3 percent slope	3,800	0.1
28B	Elmridge fine sandy loam, 3 to 8 percent slope	2,968	*
29A	Agawam fine sandy loam, 0 to 3 percent slopes	12,368	. 4
29B	Agawam fine sandy loam, 3 to 8 percent slopes	21,231	0.7
29 C	Agawam fine sandy loam, 8 to 15 percent slopes	1,990	*
30 A	Branford silt loam, 0 to 3 percent slopes	3,460	0.1
30B	Branford silt loam, 3 to 8 percent slopes	6,546	0.2
30 C	Branford silt loam, 8 to 15 percent slopes	98	*
31	Copake fine sandy loam, 0 to 3 percent slopes	774	*
31B	Copake fine sandy loam, 3 to 8 percent slopes	2,472	*
31	Copake gravelly loam, 8 to 15 percent slopes	82	*
32A	Haven and Enfield soils, 0 to 3 percent slopes	11,987	0.4
32B	Haven and Enfield soils, 3 to 8 percent slopes	13,934	0.4
32 C	Haven and Enfield soils, 8 to 15 percent slope	1,095	*
33A	Hartford sandy loam, 0 to 3 percent slopes	3,464	0.1
33B	Hartford sandy loam, 3 to 8 percent slopes	3,855	0.1
34A	Merrimac sandy loam, 0 to 3 percent slopes	15,827	0.5
34B	Merrimac sandy loam, 3 to 8 percent slopes	19,101	0.6
34 C	Merrimac sandy loam, 8 to 15 percent slopes	4,369	. 1
35A	Penwood loamy sand, 0 to 3 percent slopes	2,539	*
35B	Penwood loamy sand, 3 to 8 percent slopes	2,141	*
36A	Windsor loamy sand, 0 to 3 percent slopes	10,277	0.3
36B	Windsor loamy sand, 3 to 8 percent slopes	10,845	. 3
36 C	Windsor loamy sand, 8 to 15 percent slopes	1,546	*
37A	Manchester gravelly sandy loam, 0 to 3 percent slope	1,721	*
37 C	Manchester gravelly sandy loam, 3 to 15 percent slopes	19,084	0.6
37 E	Manchester gravelly sandy loam, 15 to 45 percent slope	8,690	0.3
38A	Hinckley gravelly sandy loam, 0 to 3 percent slopes	5,607	0.2
38 C	Hinckley gravelly sandy loam, 3 to 15 percent slopes	72,730	2.3
38 E	Hinckley gravelly sandy loam, 15 to 45 percent slopes	33,382	1.0
39A	Groton gravelly sandy loam, 0 to 3 percent slopes	204	*
39 C	Groton gravelly sandy loam, 3 to 15 percent slopes	1,214	*
39 E	Groton gravelly sandy loam, 15 to 45 percent slopes	957	*
40A	Ludlow silt loam, 0 to 3 percent slopes	1,959	*

[^8]Table 4.-Acreage and Proportionate Extent of the Soils-Continued

Map symbol	Soil name	Acres	Percent	
40B	Ludlow silt loam, 3 to 8 percent slope	6,865	0.2	
41B	\|Ludlow silt loam, 2 to 8 percent slopes, very stony	2,108	*	
42C	\|Ludlow silt loam, 2 to 15 percent slopes, extremely st	4,194	0.1	
43A	\|Rainbow silt loam, 0 to 3 percent slope	1,089	*	
43B	\|Rainbow silt loam, 3 to 8 percent slop	1,525	*	
44B	\|Rainbow silt loam, 2 to 8 percent slopes, very st	1,318		
45A	Woodbridge fine sandy loam, 0 to 3 percent slopes	13,430	0.4	
45B	Woodbridge fine sandy loam, 3 to 8 percent slope	48,606	1.5	
45C	\|Woodbridge fine sandy loam, 8 to 15 percent slop	7,688	0.2	
46B	Woodbridge fine sandy loam, 2 to 8 percent slopes, very stony	52,163	1.6	
46 C	Woodbridge fine sandy loam, 8 to 15 percent slopes, very stony	6,134	0.2	
47 C	\|Woodbridge fine sandy loam, 2 to 15 percent slopes, extremely st	59,508	1.9	
48B	Georgia and Amenia silt loams, 2 to 8 percent slopes	4,809	0.1	
48C	\|Georgia and Amenia silt loams, 8 to 15 percent slopes	1,172	*	
49B	Georgia and Amenia silt loams, 3 to 8 percent slopes, very stony	668	*	
49 C	Georgia and Amenia silt loams, 8 to 15 percent slopes, very ston	1,273	*	
50A	Sutton fine sandy loam, 0 to 3 percent slopes	1,916		
50B	\|Sutton fine sandy loam, 3 to 8 percent slope	11,127	0.3	
51B	Sutton fine sandy loam, 2 to 8 percent slopes, very ston	21,172	0.7	
52C	Sutton fine sandy loam, 2 to 15 percent slopes, extremely stony	31,190	1.0	
53A	\|Wapping very fine sandy loam, 0 to 3 percent slopes	669	*	
53B	Wapping very fine sandy loam, 3 to 8 percent slope	698	*	
54B	Wapping very fine sandy loam, 2 to 8 percent slopes, very stony	655	*	
55A	Watchaug fine sandy loam, 0 to 3 percent slopes	636	*	
55B	\|Watchaug fine sandy loam, 3 to 8 percent slope	1,895	*	
56B	\|Watchaug fine sandy loam, 2 to 8 percent slopes, very stony	454	*	
57B	\|Gloucester gravelly sandy loam, 3 to 8 percent slope	2,260	*	
57C	Gloucester gravelly sandy loam, 8 to 15 percent slopes	2,186	*	
57D	\|Gloucester gravelly sandy loam, 15 to 25 percent slope	456	*	
58B	Gloucester gravelly sandy loam, 3 to 8 percent slopes, very stony	2,666	*	
58C	\|Gloucester gravelly sandy loam, 8 to 15 percent slopes, very stony------		3,282	0.1
59C	\|Gloucester gravelly sandy loam, 3 to 15 percent slopes, extremely stony--		4,767	0.1
59D	\|Gloucester gravelly sandy loam, 15 to 35 percent slopes, extremely stony-		3,057	*
60B	Canton and Charlton soils, 3 to 8 percent slopes	54,509	1.7	
60C	Canton and Charlton soils, 8 to 15 percent slopes	24,403	0.8	
60D	Canton and Charlton soils, 15 to 25 percent slope	10,397	0.3	
61B	\|Canton and Charlton soils, 3 to 8 percent slopes, very stony	64,355	2.0	
61C	\|Canton and Charlton soils, 8 to 15 percent slopes, very stony	53,878	1.7	
62 C	\|Canton and Charlton soils, 3 to 15 percent slopes, extremely stony------		92,372	2.9
62D	\|Canton and Charlton soils, 15 to 35 percent slopes, extremely stony	68,412	2.1	
63B	\|Cheshire fine sandy loam, 3 to 8 percent slopes	11,276	0.4	
63 C	\|Cheshire fine sandy loam, 8 to 15 percent slopes	3,942	0.1	
63D	Cheshire fine sandy loam, 15 to 25 percent slope	1,446	*	
64B	Cheshire fine sandy loam, 3 to 8 percent slopes, very stony	3,707	0.1	
64C	\|Cheshire fine sandy loam, 8 to 15 percent slopes, very stony	1,621	*	
65 C	Cheshire fine sandy loam, 3 to 15 percent slopes, extremely stony-	2,472	*	
65D	Cheshire fine sandy loam, 15 to 35 percent slopes, extremely stony	467	*	
66B	Narragansett silt loam, 2 to 8 percent slopes	6,004	0.2	
66 C	Narragansett silt loam, 8 to 15 percent slopes	998	*	
67B	Narragansett silt loam, 3 to 8 percent slopes, very stony---------------1\|	2,756	*	
67 C	Narragansett silt loam, 8 to 15 percent slopes, very stony	615	*	
68C	Narragansett silt loam, 3 to 15 percent slopes, extremely stony-	1,990	*	
68D	Narragansett silt loam, 15 to 25 percent slopes, extremely stony	1,998	*	
69B	Yalesville fine sandy loam, 3 to 8 percent slopes	4,528	0.1	
69 C	Yalesville fine sandy loam, 8 to 15 percent slopes	3,530	0.1	
70C	Branford-Holyoke complex, 3 to 15 percent slopes, very rocky	524	*	
71 C	\|Brookfield-Brimfield-Rock outcrop complex, 3 to 15 percent slopes-------		4,886	0.2
71E	\| Brookfield-Brimfield-Rock outcrop complex, 15 to 45 percent slopes------		2,698	*
73 C	\|Charlton-Chatfield complex, 3 to 15 percent slopes, very rocky----------		269,531	8.4
73E	\|Charlton-Chatfield complex, 15 to 45 percent slopes, very rocky	134,058	4.2	
74 C	Narragansett-Hollis complex, 3 to 15 percent slopes, very rocky---------\|	2,763	*	
75C	\|Hollis-Chatfield-Rock outcrop complex, 3 to 15 percent slopes-----------		75,037	2.3
75E	\|Hollis-Chatfield-Rock outcrop complex, 15 to 45 percent slopes----------		110,455	3.4

Table 4.-Acreage and Proportionate Extent of the Soils-Continued

Map symbol	Soil name	Acres	Percent
76 E	Rock outcrop-Hollis complex, 3 to 45 percent slopes	10,453	0.3
76 F	Rock outcrop-Hollis complex, 45 to 60 percent slope	7,527	0.2
77C	Cheshire-Holyoke complex, 3 to 15 percent slopes, very rocky	12,446	0.4
77 D	Cheshire-Holyoke complex, 15 to 35 percent slopes, very rocky	9,361	0.3
78C	Holyoke-Rock outcrop complex, 3 to 15 percent slopes	9,355	0.3
78 E	Holyoke-Rock outcrop complex, 15 to 45 percent slopes	14,185	0.4
79 E	Rock outcrop-Holyoke complex, 3 to 45 percent slope	6,331	0.2
80B	Bernardston silt loam, 3 to 8 percent slopes	451	*
80C	Bernardston silt loam, 8 to 15 percent slopes	560	*
81C	Bernardston silt loam, 3 to 15 percent slopes, extremely stony	456	*
81D	Bernardston silt loam, 15 to 25 percent slopes, extremely stony	515	*
82B	Broadbrook silt loam, 3 to 8 percent slopes	5,717	0.2
82C	Broadbrook silt loam, 8 to 15 percent slope	1,394	*
82D	Broadbrook silt loam, 15 to 25 percent slop	671	*
83B	Broadbrook silt loam, 3 to 8 percent slopes, very stony	1,321	*
83C	Broadbrook silt loam, 8 to 15 percent slopes, very stony	647	*
84B	Paxton and Montauk fine sandy loams, 3 to 8 percent slope	72,531	2.3
84C	Paxton and Montauk fine sandy loams, 8 to 15 percent slope	31,139	1.0
84D	Paxton and Montauk fine sandy loams, 15 to 25 percent slope	11,895	0.4
85B	Paxton and Montauk fine sandy loams, 3 to 8 percent slopes, very stony---	41,472	1.3
85C	Paxton and Montauk fine sandy loams, 8 to 15 percent slopes, very stony--	25,132	0.8
86C	Paxton and Montauk fine sandy loams, 3 to 15 percent slopes, extremely stony	27,302	0.9
86D	Paxton and Montauk fine sandy loams, 15 to 35 percent slopes, extremely stony	25,318	0.8
87B	Wethersfield loam, 3 to 8 percent slope	19,779	0.6
87C	Wethersfield loam, 8 to 15 percent slope	8,915	0.3
87D	Wethersfield loam, 15 to 25 percent slope	5,380	0.2
88B	Wethersfield loam, 3 to 8 percent slopes, very stony	3,563	0.1
88C	Wethersfield loam, 8 to 15 percent slopes, very stony	2,264	*
89 C	Wethersfield loam, 3 to 15 percent slopes, extremely stony	4,124	0.1
89D	Wethersfield loam, 15 to 35 percent slopes, extremely stony	3,899	0.1
90B	Stockbridge loam, 3 to 8 percent slopes	6,151	0.2
90C	Stockbridge loam, 8 to 15 percent slopes	4,900	0.2
90D	Stockbridge loam, 15 to 25 percent slopes	1,778	*
91B	Stockbridge loam, 3 to 8 percent slopes, very stony	171	*
91C	Stockbridge loam, 8 to 15 percent slopes, very stony	1,387	*
91D	Stockbridge loam, 15 to 35 percent slopes, very stony	1,689	*
92B	Nellis fine sandy loam, 3 to 8 percent slopes	1,566	*
92C	Nellis fine sandy loam, 8 to 15 percent slopes	584	*
92D	Nellis fine sandy loam, 15 to 25 percent slopes	68	*
93C	Nellis fine sandy loam, 3 to 15 percent slopes, very stony	492	*
94C	Farmington-Nellis complex, 3 to 15 percent slopes, very rocky	4,746	0.1
94 E	Farmington-Nellis complex, 15 to 35 percent slopes, very rocky	2,302	*
95C	Farmington-Rock outcrop complex, 3 to 15 percent slopes	666	*
95E	Farmington-Rock outcrop complex, 15 to 45 percent slopes	802	*
96	Ipswich mucky peat	500	*
97	Pawcatuck mucky peat	840	*
98	Westbrook mucky peat	7,121	0.2
99	Westbrook mucky peat, low salt	4,108	0.1
100	Suncook loamy fine sand	4,050	0.1
101	Occum fine sandy loam-	4,887	0.2
102	Pootatuck fine sandy loam	9,310	0.3
103	Rippowam fine sandy loam	21,028	0.7
104	Bash silt loam-	3,708	0.1
105	Hadley silt loam	4,000	0.1
106	Winooski silt loam	3,669	0.1
107	Limerick and Lim soils	7,651	0.2
108	Saco silt loam-	21,212	0.7
109	Fluvaquents-Udifluvents complex, frequently flooded	8,667	0.3
221A	Ninigret-Urban land complex, 0 to 5 percent slopes	2,288	*
224A	Deerfield-Urban land complex, 0 to 3 percent slopes	301	*
225B	Brancroft-Urban land complex, 0 to 8 percent slopes-	1,362	*

Table 4.-Acreage and Proportionate Extent of the Soils-Continued

Map symbol	Soil name	Acres	Percent	
226B	Berlin-Urban land complex, 0 to 8 percent slopes	441	*	
228B	\|Elmridge-Urban land complex, 0 to 8 percent slop	1,541	*	
229B	Agawam-Urban land complex, 0 to 8 percent slopes	8,926	0.3	
229 C	Agawam-Urban land complex, 8 to 15 percent slopes	150	*	
230B	Branford-Urban land complex, 0 to 8 percent slope	2,403	*	
230C	Branford-Urban land complex, 8 to 15 percent slop	236	*	
232B	Haven-Urban land complex, 0 to 8 percent slopes	2,967	*	
234B	Merrimac-Urban land complex, 0 to 8 percent slope	2,617	*	
235B	Penwood-Urban land complex, 0 to 8 percent slopes	6,100	0.2	
236B	Windsor-Urban land complex, 0 to 8 percent slope	3,403	0.1	
237A	Manchester-Urban land complex, 0 to 3 percent slope	1,566	*	
237 C	Manchester-Urban land complex, 3 to 15 percent slope	4,343	0.1	
238A	Hinckley-Urban land complex, 0 to 3 percent slopes	966	*	
238C	Hinckley-Urban land complex, 3 to 15 percent slopes	3,754	0.1	
240B	Ludlow-Urban land complex, 0 to 8 percent slopes	2,080	*	
243B	Rainbow-Urban land complex, 0 to 8 percent slope	252	*	
245B	Woodbridge-Urban land complex, 0 to 8 percent slope	3,121	*	
245 C	Woodbridge-Urban land complex, 8 to 15 percent slope	431	*	
248B	Georgia-Urban land complex, 2 to 8 percent slopes	11	*	
250B	Sutton-Urban land complex, 0 to 8 percent slopes	2,658	*	
253B	Wapping-Urban land complex, 0 to 8 percent slopes	18	*	
255B	Watchaug-Urban land complex, 0 to 8 percent slopes	262	*	
260B	Charlton-Urban land complex, 3 to 8 percent slopes	8,905	0.3	
260C	Charlton-Urban land complex, 8 to 15 percent slopes	3,884	0.1	
260 D	Charlton-Urban land complex, 15 to 25 percent slope	816	*	
263B	Cheshire-Urban land complex, 3 to 8 percent slopes	3,184	*	
263C	Cheshire-Urban land complex, 8 to 15 percent slopes	2,274	*	
266B	Narragansett-Urban land complex, 3 to 8 percent slope	13	*	
269 B	Yalesville-Urban land complex, 3 to 8 percent slopes	686	*	
269 C	Yalesville-Urban land complex, 8 to 15 percent slopes	519	*	
$273 C$	Urban land-Charlton-Chatfield complex, rocky, 3 to 15 percent slopes-----\|	9,664	0.3	
273E	Urban land-Charlton-Chatfield complex, rocky, 15 to 45 percent slopes----\|	1,125	*	
275 C	Urban land-Chatfield complex, rocky, 3 to 15 percent slopes	1,286	*	
275E	Urban land-Chatfield-Rock outcrop complex, 15 to 45 percent slope	600	*	
282B	Broadbrook-Urban land complex, 3 to 8 percent slopes	804	*	
284B	Paxton-Urban land complex, 3 to 8 percent slopes-	6,466	0.2	
284C	Paxton-Urban land complex, 8 to 15 percent slopes	3,373	0.1	
284D	Paxton-Urban land complex, 15 to 25 percent slopes	814	*	
287B	Wethersfield-Urban land complex, 3 to 8 percent slopes	7,083	0.2	
287 C	Wethersfield-Urban land complex, 8 to 15 percent slopes	1,985	*	
287D	Wethersfield-Urban land complex, 15 to 25 percent slopes	369	*	
290B	Stockbridge-Urban land complex, 3 to 8 percent slopes--------------------1	140	*	
290C	Stockbridge-Urban land complex, 8 to 15 percent slopes	69	*	
290 D	Stockbridge-Urban land complex, 15 to 25 percent slopes	2	*	
301	Beaches-Udipsamments complex, coastal	1,672	*	
302	Dumps -	2,274	*	
303	Pits, quarries	2,099	*	
304	\| Udorthents, loamy, very steep	2,216	*	
305	Udorthents-Pits complex, gravelly	11,843	0.4	
306	Udorthents-Urban land complex	120,353	3.7	
307	Urban lan	44,596	1.4	
308	Udorthents, smoothed	20,687	0.6	
309	Udorthents, flood control	753	*	
310	Udorthents, periodically flooded-	98	*	
401C	Macomber-Taconic complex, 3 to 15 percent slopes, very rocky-------------\|	2,042	*	
402D	Taconic-Macomber-Rock outcrop complex, 15 to 25 percent slopes----------\|	428	*	
403 C	\|Taconic-Rock outcrop complex, 3 to 15 percent slopes---------------------		145	*
403E	Taconic-Rock outcrop complex, 15 to 45 percent slopes	787	*	
403 F	Taconic-Rock outcrop complex, 45 to 70 percent slopes--------------------\|	948	*	
405 C	Dummerston gravelly loam, 3 to 15 percent slopes, very stony------------\|	367	*	
405E	Dummerston gravelly loam, 15 to 45 percent slopes, very stony-----------\|	356	*	
407 C	Lanesboro loam, 3 to 15 percent slopes, very stony-----------------------\|	318	*	
407E	\|Lanesboro loam, 15 to 45 percent slopes, very stony----------------------		157	*

Table 4.-Acreage and Proportionate Extent of the Soils-Continued

Map symbol	Soil name	Acres	Percent
408C	Fullam silt loam, 3 to 15 percent slopes, very stony---------------------1	953	*
409B	Brayton mucky silt loam, 0 to 8 percent slopes, very stony---------------	371	*
412B	Bice fine sandy loam, 3 to 8 percent slopes	514	*
412C	Bice fine sandy loam, 8 to 15 percent slope	260	*
412D		117	*
413 C	Bice-Millsite complex, 3 to 15 percent slopes, very rocky	9,270	0.3
413E	Bice-Millsite complex, 15 to 45 percent slopes, very rocky	6,001	0.2
414	Fredon silt loam, cold-	44	*
415C	Westminster-Millsite-Rock outcrop complex, 3 to 15 percent slopes--------	3,104	*
415E	Westminster-Millsite-Rock outcrop complex, 15 to 45 percent slopes-------	5,623	0.2
416E	Rock outcrop-Westminster complex, 8 to 45 percent slopes------------------	844	*
416F	Rock outcrop-Westminster complex, 45 to 70 percent slopes----------------	460	*
417B		1,391	*
417 C	Bice fine sandy loam, 8 to 15 percent slopes, very stony	4,399	0.1
417D	Bice fine sandy loam, 15 to 25 percent slopes, very stony	3,736	0.1
418C	Schroon fine sandy loam, 2 to 15 percent slopes, very stony--------------1	2,237	*
420A	Schroon fine sandy loam, 0 to 3 percent slopes----------------------------	11	*
420B	Schroon fine sandy loam, 3 to 8 percent slopes	112	*
421A	Ninigret fine sandy loam, cold, 0 to 3 percent slopes---------------------	100	*
423A	Sudbury sandy loam, cold, 0 to 3 percent slopes	69	*
424B	Shelburne fine sandy loam, 3 to 8 percent slopes	992	*
424 C	Shelburne fine sandy loam, 8 to 15 percent slopes	419	*
424D		74	*
425B	Shelburne fine sandy loam, 3 to 8 percent slopes, very stony--------------	1,283	*
425 C	Shelburne fine sandy loam, 8 to 15 percent slopes, very stony	3,284	0.1
426D	Shelburne fine sandy loam, 15 to 35 percent slopes, extremely stony-	1,666	*
427B	Ashfield fine sandy loam, 2 to 8 percent slopes, very stony--------------1.	1,424	*
427 C	Ashfield fine sandy loam, 8 to 15 percent slopes, very stony	3,641	0.1
428A	Ashfield fine sandy loam, 0 to 3 percent slopes	106	*
428B		454	*
428C	Ashfield fine sandy loam, 8 to 15 percent slopes	104	*
429A	Agawam fine sandy loam, cold, 0 to 3 percent slopes	7	*
429B		63	*
429 C	Agawam fine sandy loam, cold, 8 to 15 percent slopes	26	*
433	Moosilauke sandy loam-	107	*
434A	Merrimac sandy loam, cold, 0 to 3 percent slopes	18	*
434B		138	*
434 C	Merrimac sandy loam, cold, 8 to 15 percent slopes-------------------------	37	*
435	Scarboro muck, cold	96	*
436	Halsey silt loam, cold	138	*
437	Wonsqueak mucky peat	1,132	*
438	Bucksport muck	1,768	*
440A	Boscawen gravelly sandy loam, 0 to 3 percent slopes-----------------------	54	*
440C		578	*
440 E	Boscawen gravelly sandy loam, 15 to 45 percent slopes	363	*
442	Brayton loam-	147	*
443	Brayton-Loonmeadow complex, extremely stony	3,877	0.1
448B		114	*
449B	Hogansburg loam, 3 to 8 percent slopes, very stony	61	*
449 C	Hogansburg loam, 8 to 15 percent slopes, very stony-----------------------1.	176	*
450B		211	*
450 C	Pyrities loam, 8 to 15 percent slopes	85	*
450D	Pyrities loam, 15 to 25 percent slopes	8	*
451B		17	*
451C		86	*
451D	Pyrities loam, 15 to 25 percent slopes, very stony	6	*
457	Mudgepond silt loam, cold-------------------------------------------------	16	*
458	Mudgepond and Alden soils, extremely stony, cold	131	*
501		14	*
503	Rumney fine sandy loam	131	*
508	Medomak silt loam-	210	*
W		348,652	10.9
	Total------------------------------------------------------------------1)	3,211,700	100.0

Table 5.-Prime and other Important Farmland
(Only the soils considered prime or important farmland are listed. Urban or built-up areas of the soils listed are not considered prime or important farmland. If a soil is prime or important farmland only under certain conditions, the conditions are specified in parentheses after the soil name.)

Map symbol	Map unit name	Farmland Classification
20A	Ellington silt loam, 0 to 5 percent slopes	All areas are prime farmland
21A	Ninigret and Tisbury soils, 0 to 5 percent slopes	All areas are prime farmland
22A	Hero gravelly loam, 0 to 3 percent slopes	All areas are prime farmland
22B	Hero gravelly loam, 3 to 8 percent slopes	All areas are prime farmland
23A	Sudbury sandy loam, 0 to 5 percent slopes	All areas are prime farmland
26A	Berlin silt loam, 0 to 3 percent slopes	All areas are prime farmland
27A	Belgrade silt loam, 0 to 5 percent slopes	All areas are prime farmland
28A	Elmridge fine sandy loam, 0 to 3 percent slopes	All areas are prime farmland
28B	Elmridge fine sandy loam, 3 to 8 percent slopes	All areas are prime farmland
29A	Agawam fine sandy loam, 0 to 3 percent slopes	All areas are prime farmland
29B	Agawam fine sandy loam, 3 to 8 percent slopes	All areas are prime farmland
30A	Branford silt loam, 0 to 3 percent slopes	All areas are prime farmland
30B	Branford silt loam, 3 to 8 percent slopes	All areas are prime farmland
31A	Copake fine sandy loam, 0 to 3 percent slopes	All areas are prime farmland
31B	Copake fine sandy loam, 3 to 8 percent slopes	All areas are prime farmland
32A	Haven and Enfield soils, 0 to 3 percent slopes	All areas are prime farmland
32B	Haven and Enfield soils, 3 to 8 percent slopes	All areas are prime farmland
33A	Hartford sandy loam, 0 to 3 percent slopes	All areas are prime farmland
33B	Hartford sandy loam, 3 to 8 percent slopes	All areas are prime farmland
34A	Merrimac sandy loam, 0 to 3 percent slopes	All areas are prime farmland
34B	Merrimac sandy loam, 3 to 8 percent slopes	All areas are prime farmland
40A	Ludlow silt loam, 0 to 3 percent slopes	All areas are prime farmland
40B	Ludlow silt loam, 3 to 8 percent slopes	All areas are prime farmland
43A	Rainbow silt loam, 0 to 3 percent slopes	All areas are prime farmland
43B	Rainbow silt loam, 3 to 8 percent slopes	All areas are prime farmland
45A	Woodbridge fine sandy loam, 0 to 3 percent slopes	All areas are prime farmland
45B	Woodbridge fine sandy loam, 3 to 8 percent slopes	All areas are prime farmland
48B	Georgia and Amenia silt loams, 2 to 8 percent slopes	All areas are prime farmland
50A	Sutton fine sandy loam, 0 to 3 percent slopes	All areas are prime farmland
50B	Sutton fine sandy loam, 3 to 8 percent slopes	All areas are prime farmland
53A	Wapping very fine sandy loam, 0 to 3 percent slopes	All areas are prime farmland
53B	Wapping very fine sandy loam, 3 to 8 percent slopes	All areas are prime farmland
55A	Watchaug fine sandy loam, 0 to 3 percent slopes	All areas are prime farmland
55B	Watchaug fine sandy loam, 3 to 8 percent slopes	All areas are prime farmland
57B	Gloucester gravelly sandy loam, 3 to 8 percent slopes	All areas are prime farmland
60B	Canton and Charlton soils, 3 to 8 percent slopes	All areas are prime farmland
63B	Cheshire fine sandy loam, 3 to 8 percent slopes	All areas are prime farmland
66B	Narragansett silt loam, 2 to 8 percent slopes	All areas are prime farmland
69B	Yalesville fine sandy loam, 3 to 8 percent slopes	All areas are prime farmland
80B	Bernardston silt loam, 3 to 8 percent slopes	All areas are prime farmland
82B	Broadbrook silt loam, 3 to 8 percent slopes	All areas are prime farmland
84B	Paxton and Montauk fine sandy loams, 3 to 8 percent slopes	All areas are prime farmland
87B	Wethersfield loam, 3 to 8 percent slopes	All areas are prime farmland
90B	Stockbridge loam, 3 to 8 percent slopes	All areas are prime farmland
92B	Nellis fine sandy loam, 3 to 8 percent slopes	All areas are prime farmland
101	Occum fine sandy loam	All areas are prime farmland
102	Pootatuck fine sandy loam	All areas are prime farmland
105	Hadley silt loam	All areas are prime farmland
106	Winooski silt loam	All areas are prime farmland
420A	Schroon fine sandy loam, 0 to 3 percent slopes	All areas are prime farmland
421A	Ninigret fine sandy loam, cold, 0 to 3 percent slopes	All areas are prime farmland
423A	Sudbury sandy loam, cold, 0 to 3 percent slopes	All areas are prime farmland
429A	Agawam fine sandy loam, cold, 0 to 3 percent slopes	All areas are prime farmland
429B	Agawam fine sandy loam, cold, 3 to 8 percent slopes	All areas are prime farmland
434A	Merrimac sandy loam, cold, 0 to 3 percent slopes	All areas are prime farmland
434B	Merrimac sandy loam, cold, 3 to 8 percent slopes	All areas are prime farmland
448B	Hogansburg loam, 3 to 8 percent slopes	All areas are prime farmland
450B	Pyrities loam, 3 to 8 percent slopes	All areas are prime farmland
501	Ondawa fine sandy loam	All areas are prime farmland
2	Ridgebury fine sandy loam	Farmland of statewide importan

Table 5.-Prime and other Important Farmland-Continued

Map symbol	Map unit name	Farmland Classification
4	Leicester fine sandy loam	Farmland of statewide importance
5	Wilbraham silt loam	Farmland of statewide importance
7	Mudgepond silt loam	Farmland of statewide importance
9	Scitico, Shaker, and Maybid soils	Farmland of statewide importance
10	Raynham silt loam	Farmland of statewide importance
12	Raypol silt loam	Farmland of statewide importance
13	Walpole sandy loam	Farmland of statewide importance
14	Fredon silt loam	Farmland of statewide importance
24A	Deerfield loamy fine sand, 0 to 3 percent slopes	Farmland of statewide importance
25A	Brancroft silt loam, 0 to 3 percent slopes	Farmland of statewide importance
25B	Brancroft silt loam, 3 to 8 percent slopes	Farmland of statewide importance
25C	Brancroft silt loam, 8 to 15 percent slopes	Farmland of statewide importance
26 B	Berlin silt loam, 3 to 8 percent slopes	Farmland of statewide importance
29 C	Agawam fine sandy loam, 8 to 15 percent slopes	Farmland of statewide importance
30 C	Branford silt loam, 8 to 15 percent slopes	Farmland of statewide importance
31 C	Copake gravelly loam, 8 to 15 percent slopes	Farmland of statewide importance
32 C	Haven and Enfield soils, 8 to 15 percent slopes	Farmland of statewide importance
34 C	Merrimac sandy loam, 8 to 15 percent slopes	Farmland of statewide importance
35A	Penwood loamy sand, 0 to 3 percent slopes	Farmland of statewide importance
35B	Penwood loamy sand, 3 to 8 percent slopes	Farmland of statewide importance
36A	Windsor loamy sand, 0 to 3 percent slopes	Farmland of statewide importance
36 B	Windsor loamy sand, 3 to 8 percent slopes	Farmland of statewide importance
36 C	Windsor loamy sand, 8 to 15 percent slopes	Farmland of statewide importance
37A	Manchester gravelly sandy loam, 0 to 3 percent slopes	Farmland of statewide importance
37 C	Manchester gravelly sandy loam, 3 to 15 percent slopes	Farmland of statewide importance
38A	Hinckley gravelly sandy loam, 0 to 3 percent slopes	Farmland of statewide importance
38C	Hinckley gravelly sandy loam, 3 to 15 percent slopes	Farmland of statewide importance
39A	Groton gravelly sandy loam, 0 to 3 percent slopes	Farmland of statewide importance
39 C	Groton gravelly sandy loam, 3 to 15 percent slopes	Farmland of statewide importance
45 C	Woodbridge fine sandy loam, 8 to 15 percent slopes	Farmland of statewide importance
48C	Georgia and Amenia silt loams, 8 to 15 percent slopes	Farmland of statewide importance
57 C	Gloucester gravelly sandy loam, 8 to 15 percent slopes	Farmland of statewide importance
60C	Canton and Charlton soils, 8 to 15 percent slopes	Farmland of statewide importance
63 C	Cheshire fine sandy loam, 8 to 15 percent slopes	Farmland of statewide importance
66 C	Narragansett silt loam, 8 to 15 percent slopes	Farmland of statewide importance
69 C	Yalesville fine sandy loam, 8 to 15 percent slopes	Farmland of statewide importance
80C	Bernardston silt loam, 8 to 15 percent slopes	Farmland of statewide importance
82C	Broadbrook silt loam, 8 to 15 percent slopes	Farmland of statewide importance
84C	Paxton and Montauk fine sandy loams, 8 to 15 percent slopes	Farmland of statewide importance
87 C	Wethersfield loam, 8 to 15 percent slopes	Farmland of statewide importance
90C	Stockbridge loam, 8 to 15 percent slopes	Farmland of statewide importance
92C	Nellis fine sandy loam, 8 to 15 percent slopes	Farmland of statewide importance
100	Suncook loamy fine sand	Farmland of statewide importance
103	Rippowam fine sandy loam	Farmland of statewide importance
104	Bash silt loam	Farmland of statewide importance
107	Limerick and Lim soils	Farmland of statewide importance
412B	Bice fine sandy loam, 3 to 8 percent slopes	Farmland of statewide importance
412 C	Bice fine sandy loam, 8 to 15 percent slopes	Farmland of statewide importance
414	Fredon silt loam, cold	Farmland of statewide importance
420B	Schroon fine sandy loam, 3 to 8 percent slopes	Farmland of statewide importance
429 C	Agawam fine sandy loam, cold, 8 to 15 percent slopes	Farmland of statewide importance
433	Moosilauke sandy loam	Farmland of statewide importance
434 C	Merrimac sandy loam, cold, 8 to 15 percent slopes	Farmland of statewide importance
440A	Boscawen gravelly sandy loam, 0 to 3 percent slopes	Farmland of statewide importance
440 C	Boscawen gravelly sandy loam, 3 to 15 percent slopes	Farmland of statewide importance
450 C	Pyrities loam, 8 to 15 percent slopes	Farmland of statewide importance
457	Mudgepond silt loam, cold	Farmland of statewide importance
503	Rumney fine sandy loam	Farmland of statewide importance

Table 6.-Non-Irrigated Yields by Map Unit Component
(Yields are those that can be expected under a high level of management. They are for nonirrigated areas. Absence of a yield indicates that the soil is not suited to the crop or the crop generally is not grown on the soil.)


Table 6.-Non-Irrigated Yields by Map Unit Component-Continued


Table 6.-Non-Irrigated Yields by Map Unit Component-Continued

Map symbol   and soil name	Land capability	Corn	Corn silage	Grass-legume hay	Pasture	Tobacco
		Bu	Tons	Tons	AUM	Lbs
83B :						
Broadbrook-------------	$6 s$	---	---	---	1.00	-
83C:						
Broadbrook-------------	$6 s$	---	---	---	1.00	-
84B:						
Paxton-----------------	2 e	139.00	25.00	2.50	2.00	---
Montauk-----------------	2 e	138.00	25.00	2.50	2.00	---
84C:						
Paxton-----------------	3 e	136.00	24.00	2.00	2.00	---
Montauk----------------	3 e	135.00	24.00	2.00	2.00	--
84D:						
Paxton-----------------	4 e	130.00	23.00	2.00	1.50	-
Montauk----------------	4 e	129.00	23.00	2.00	1.50	---
85B :						
Paxton-----------------	$6 s$	---	--	---	0.50	--
Montauk-----------------	6 s	---	---	---	0.50	---
85C:						
Paxton-----------------	$6 s$	---	---	--	0.50	---
Montauk-----------------	$6 s$	---	--	--	0.50	-- -
86C:						
Paxton-----------------	7s	---	--	-	0.50	---
Montauk----------------	7s	---	---	---	0.50	---
86D:						
Paxton-----------------	7s	---	---	---	0.50	---
Montauk-----------------	7s	---	--	-	0.50	---
87B :						
Wethersfield-----------	2 e	142.00	26.00	2.50	2.50	---
87C:						
Wethersfield-----------	3 e	139.00	25.00	2.50	2.00	---
87D :						
Wethersfield-----------	4 e	132.00	23.00	2.00	1.50	---
88B :						
Wethersfield-----------	6s	---	---	1.50	0.50	---
88C:						
Wethersfield-----------	$6 s$	---	-	1.50	0.50	--
89C:						
Wethersfield-----------	7s	-	---	1.50	0.50	---
89D:						
Wethersfield-----------	7s	-	---	1.50	0.50	---
90B :						
Stockbridge------------	2 e	176.00	35.00	4.50	5.00	---

Table 6.-Non-Irrigated Yields by Map Unit Component-Continued


Table 6.-Non-Irrigated Yields by Map Unit Component-Continued

Map symbol and soil name	Land capability	Corn	Corn silage	Grass-legume hay	Pasture	Tobacco
		Bu	Tons	Tons	AUM	Lbs
Pootatuck--------------	2w	148.00	28.00	3.00	3.00	---
103:						
Rippowam--------------	---	---	---	---	---	---
104: Bash----------------------	4w	159.00	31.00	3.50	3.50	---
105 :						
Hadley----------------	1	180.00	35.00	5.00	6.00	2,100.00
106:						
Winooski---------------	2w	179.00	35.00	4.50	5.50	--
107:						
Limerick---------------	--	--	--	--	--	--
Lim---------------------	4w	155.00	29.00	3.50	3.50	---
$108:$						
Saco------------------	6w	---	---	---	--	---
109:						
Fluvaquents, Frequently   Flooded	6w	---	---	---	3.50	--
Udifluvents, Frequently Flooded	6w	---	---	---	2.00	---
221A:						
Ninigret--------------	2w	---	---	---	-	---
Urban land-------------	8	---	---	---	--	---
224A:						
Deerfield--------------	2w	---	---	---	---	-- -
Urban land--------------	8	---	---	---	---	---
225B:						
Brancroft-------------	2 e	--	---	--	---	---
Urban land-------------	8	---	---	---	--	---
226B:						
Berlin----------------	2 e	-	-	-	---	---
Urban land-------------	8	-	---	---	---	---
228B:						
Elmridge--------------	2w	---	-	---	---	---
Urban land-------------	8	-	-	-	---	---
229B:						
Agawam-----------------	2 e	--	---	---	---	---
Urban land-------------	8	---	---	---	---	---
229C:						
Agawam-----------------	3 e	---	---	---	---	---
Urban land-------------	8	---	---	---	---	---

Table 6.-Non-Irrigated Yields by Map Unit Component-Continued

Map symbol and soil name	Land capability	Corn	Corn silage	Grass-legume hay	Pasture	Tobacco
		Bu	Tons	Tons	AUM	Lbs
Branford----	2 e	--	---	---	---	---
Urban land--	8	--	---	---	-	---
230C:						
Branford-----	3 e	---	---	---	---	---
Urban land-	8	--	---	---	---	---
232B:						
Haven----	2 e	---	---	---	---	--
Urban land---	8	---	- -	---	---	--
234B:						
Merrimac--	2 e	---	---	---	---	-
Urban land-	8	- -	--	---	---	--
235B:						
Penwood---------	2 s	--	--	-	--	---
Urban land-	8	---	---	---	---	---
236B:						
Windsor--	2s	---	---	---	---	---
Urban land-	8	---	---	---	---	--
237A:						
Manchester-	2 s	---	---	---	--	---
Urban land--	8	---	-	-	-	---
237C:						
Manchester--	3 e	---	---	---	---	--
Urban land-	8	-	---	---	--	---
238A:						
Hinckley----	3 s	---	---	---	---	---
Urban land-	8	-	-	-	-	---
238C:						
Hinckley-	4 e	-	---	---	---	--
Urban land--	8	-	---	-	-	--
240B:						
Ludlow---	2 e	-	-	-	-	---
Urban land-	8	-	-	--	--	---
243B:						
Rainbow---------	2 e	---	---	---	---	---
Urban land--------	8	---	---	---	---	---
245B:						
Woodbridge-------	2w	-	-	---	-	---
Urban land--	8	---	---	---	---	---

Table 6.-Non-Irrigated Yields by Map Unit Component-Continued


Table 6.-Non-Irrigated Yields by Map Unit Component-Continued


Table 6.-Non-Irrigated Yields by Map Unit Component-Continued

Map symbol and soil name	Land capability	Corn	Corn silage	Grass-legume $\qquad$	Pasture	Tobacco
		Bu	Tons	Tons	AUM	Lbs
Stockbridge	3 e	---	---	---	--	---
Urban land-------------	8	---	---	---	---	---
290D:						
Stockbridge------------	4 e	---	---	--	-	---
Urban land-------------	8	---	---	-	---	---
301:						
Beaches---------------	8	-	---	---	---	---
Udipsamments-----------	3s	--	---	---	---	---
302:						
Dumps------------------	8	---	---	---	---	---
303:						
Pits, quarries---------	8	---	-	---	-	---
304:						
Udorthents------------	$7 e$	---	---	--	--	---
305:						
Udorthents-------------	4 e	--	---	---	---	---
Pits------------------	8	---	--	---	---	---
306:						
Udorthents-------------	3 e	---	-	-	---	--
Urban land-------------	8	--	---	-	---	---
307:						
Urban land-------------	8	--	---	-	---	---
308:						
Udorthents------------	4 e	---	-	-	-	---
309 :						
Udorthents-------------	4 e	--	---	---	-	---
310:						
Udorthents, Periodically Flooded	4 e	--	---	--	--	---
401C:						
Macomber--------------	$6 s$	-	---	-	-	---
Taconic---------------	$6 s$	-- -	---	--	--	---
402D:						
Macomber--------------	7s	---	---	--	--	---
Taconic---------------	7s	---	---	---	---	---
Rock outcrop-----------	8	---	---	---	--	---
403C:						
Taconic---------------	7 s	---	---	---	---	---
Rock outcrop------------	8	---	---	---	--	---

Table 6.-Non-Irrigated Yields by Map Unit Component-Continued


Table 7.-Acreage by Capability Class and Subclass

$\begin{gathered} \text { Capability } \\ \text { class } \end{gathered}$	Capability subclass	Acreage
Unclassified	---	370,616
1	--	46,174
2	e	238,649
2	w	123,027
2	s	31,134
3	e	156,420
3	s	6,877
4	e	127,589
4	w	52,345
5	w	75,142
6	e	28,278
6	w	25,921
6	s	545,521
7	e	8,946
7	s	638,984
8	---	183,220

Table 8.-Forestland Productivity

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site   index	Volume of wood fiber	
2:			cu ft/ac	green ash, red maple, tuliptree
	eastern white pine--	63	114	
	\|elm-----	---	-	
	\|northern red oak----	57	43	
	\|red maple	---	---	
	sugar maple	52	29	
3:				\|green ash, red maple, tuliptree
	eastern white pine--	63	114	
	elm-	---	$--$	
	\|northern red oak----	57	43	
	red maple	---	---	
	sugar maple	52	29	
Leicester---------	eastern white pine--	69	129	green ash, red maple, tuliptree
	northern red oak	$56$	$43$	
	red maple	70	43	
	yellow birch-------	---	---	
Whitman-----------	eastern white pine--	56	100	---
	red maple----------	55	29	
	\|swamp tupelo-------	---	---	
4:				\|green ash, red maple, tuliptree
	eastern white pine--	69	129	
	northern red oak----	56	43	
	\|red maple	70	43	
	\|yellow birch-------	---	---	
$5:$   Wilbraham				\|green ash, red maple, tuliptree
	eastern white pine--	65	$114$	
	\|northern red oak----	63	$43$	
	\|red maple----------	70	43	
	sugar maple	55	29	
	white oak	---	---	
$6:$   Wilbraham				\|green ash, red maple, tuliptree
	eastern white pine--	65	$114$	
	\|northern red oak----	63	$43$	
	\|red maple----------	70	43	
	\|sugar maple--------	55	29	
Menlo-------------	eastern white pine--	55	86	---
	\|elm---------------	---	---	
	red maple----------	55	29	
7:Mudgepond				
	eastern white pine--	75	143	green ash, red maple, tuliptree
	\|green ash			
	\|northern red oak----	70	57	
	\|red maple----------	75	43	
8:				
	eastern white pine--	75	143	green ash, red maple, tuliptree
	\|green ash	---	---	
	\|northern red oak----	70	57	
	red maple----------	75	43	
Alden------------------- \|	\|red maple----------	50	29	---

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site   index	Volume of wood fiber		
			cu ft/ac		
9 :					
Scitico----------	\|eastern white pine--		57	100	green ash, red
	\|elm---------------		---	-	maple, tuliptree
	\|pin oak-----------	---	---		
	\|red maple----------		55	29	
Shaker------------	\|eastern white pine--		57	100	green ash, red maple, tuliptree
	\|elm---------------		---	---	
	\|pin oak------------		---	---	
	\|red maple----------	55	29		
Maybid-----------------	\|red maple-----------	55	29	---	
10:					
Raynham-----------	\|eastern hemlock-----		---	0	green ash, red maple, tuliptree
	eastern white pine--	65	114		
	\|elm----------------	---	0		
	\|red maple-----------	65	43		
	\|sugar maple--------		---	0	
	\|tamarack----------	---	0		
12:					
Raypol-----------	\|eastern white pine--		68	114	green ash, red maple, tuliptree
	\|elm---------------		---	---	
	\|red maple----------	75	43		
13:					
Walpole------------	\|eastern hemlock-----		54	114	green ash, red maple, tuliptree
	\|eastern white pine--		68	114	
	\|red maple----------		75	43	
	\|white ash----------		61	43	
14:					
Fredon------------	\|eastern white pine--		70	129	green ash, red maple, tuliptree
	\|northern red oak----		60	43	
	\|red maple----------		70	43	
	\|tuliptree----------		80	72	
15:					
Scarboro----------			0	---	
	eastern white pine--	55	86		
	\|red maple---------	55	29		
16:					
Halsey-----------	red maple----------	55	29	---	
	river birch	---	0		
	\|swamp white oak-----		-- -	0	
17:					
Timakwa----------	Atlantic white cedar	---	0	---	
	\|eastern hemlock-----	--	---		
	\|eastern white pine--	---	---		
	\|red maple----------	55	29		
	\|silver maple-------	80	29		
	\| tamarack-----------	61	57		
	\|white ash----------	---	0		
Natchaug-	Atlantic white cedar	-	0	---	
	\|eastern hemlock----	---	-		
	\|eastern white pine--	---	---		
	\|red maple----------	55	29		
	\|silver maple--------	80	29		
	\| tamarack-----------	61	57		
	\|white ash----------	---	0		

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site   index	Volume of wood fiber	
			cu ft/ac	
18:				
Catden------------	\|eastern hemlock-----	---	--	---
	\|eastern white pine--	---	--	
	\|red maple----------	56	29	
Freetown----------	\|eastern hemlock-----	---	---	---
	\|eastern white pine--	--	--	
	\|red maple----------	56	29	
20A:				
Ellington---------	northern red oak	70	$57$	northern red oak,
	\|red maple----------	---	0	white oak
	\|white oak-----------	-	---	
21A:				
Ninigret----------	eastern white pine--	75	143	
	northern red oak----	65	43	northern red oak,
	red maple----------	60	43	white oak
	\| sugar maple---------	55	29	
	\|white oak-----------	---	---	
Tisbury-----------	eastern white pine--	75	143	
	northern red oak----	70	57	northern red oak,
	tuliptree   white oak	---	---	tuliptree, white oak
22A:				
Hero--------------	eastern hemlock	---		
	eastern white pine--	70	129	eastern white
	\|northern red oak----	65	43	pine, northern red
	white oak-----------	---	---	oak, white oak
22B:				
Hero--------------	eastern white pine--	--7	129	eastern white
	\|northern red oak----	65	43	pine, northern red
	white oak-----------	-	---	oak, white oak
23A:				
Sudbury-----------	eastern white pine--	60	100	
	northern red oak----	45	29	northern red oak,
	\|white oak----------	--	---	
24A:				
Deerfield---------	eastern white pine--	65	114	eastern white pine
	northern red oak----	55	43	
	pitch pine---------	---	---	
	\|white oak-----------	---	---	
25A:				
Brancroft---------	eastern hemlock----	---	0	
	\|eastern white pine--	65	114	eastern white pine
	northern red oak----	55	43	
	\|red maple----------	--	0	
	\|white ash-----------	--	0	
	white oak-----------	---	---	

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site   index	Volume of wood fiber		
			$\overline{\mathrm{cu}} \mathrm{ft/ac}$		
25B:					
Brancroft	eastern hemlock----eastern white pine--	---	0 114	eastern hemlock, eastern white pine	
	\|northern red oak----		55	43	
	red maple----------	---	0		
	\|white ash-----------	---	0		
	\|white oak-----------	---	---		
25C:					
Brancroft---------	eastern hemlock-----\|	---	0	eastern hemlock,	
	eastern white pine--\|	65	114	eastern white pine	
	northern red oak----\|	55	43		
	red maple----------	---	0		
	white ash-----------	---	0		
	\|white oak-----------	---	--		
26A:					
Berlin------------	eastern white pine--\|	65		eastern white pine,	
	northern red oak----\|	60	43	northern red oak,	
	red maple----------	---	---	white oak	
	\|white oak----------	---	---		
26B:					
Berlin-----------	eastern white pine--\|	65	114	eastern white pine,	
	northern red oak----\|	60	43	northern red oak,	
	red maple----------	--	-	white oak	
	white oak-----------	---	--		
27A:					
Belgrade---------	eastern white pine-northern red oak----	$\begin{aligned} & 75 \\ & 62 \end{aligned}$	$\begin{array}{r} 143 \\ 43 \end{array}$	eastern white pine, northern red oak,	
	white oak-----	---	---	white oak	
28A:					
Elmridge----------	eastern white pine--	75	143		
	northern red oak--	70	57	northern red oak,	
	red maple----------	--	0	white oak	
	\|shagbark hickory----		60	43	
	white oak-----------	---	---		
28B:					
Elmridge----------	eastern white pine--\|	75	143	\|eastern white pine,	
	northern red oak----\|	70	57	northern red oak,	
	red maple-----------	---	0		
	shagbark hickory----	60	43		
	white oak----------	---	---		
29A:					
Agawam------------	eastern white pine--\|	70	129	\|eastern white pine,	
	northern red oak----\|	65	129	northern red oak,	
	sugar maple---------	-	0		
	\|white oak----------	---	---		
29B:					
Agawam	eastern white pine--\|	70	129	\|eastern white pine,	
	\|northern red oak----		65	129	northern red oak,
	sugar maple	---	0	white oak	
	white oak	---	---		
29C:					
Agawam-----------	eastern white pine--\|	70	129	\|eastern white pine,	
	northern red oak----\|	65	129	northern red oak,	
	sugar maple--------	-	0	white oak	
	\|white oak----------	---	---		

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site index	Volume of wood fiber	
			cu ft/ac	
$30 \mathrm{~A}:$Branford				
	eastern white pine--	75	143	eastern white pine,
	northern red oak----	70	57	northern red oak,
	shagbark hickory	---	0	white oak
	white oak-----------	---	---	
30B:				
Branford---------	eastern white pine--	75	143	\|eastern white pine,
	northern red oak----	70	57	northern red oak,
	shagbark hickory----	---	0	white oak
	white oak-----------	---	---	
30C:				
Branford----------	eastern white pine--	75	143	
	northern red oak----	70	57	northern red oak,
	shagbark hickory----	---	0	
	white oak-----------	---	---	
31A:				
Copake-----------	eastern white pine--	65	114	\|eastern white pine,
	northern red oak----	60	43	northern red oak,
	sugar maple--------	55	29	white oak
	white oak-----------	---	---	
31B:				
Copake-----------	eastern white pine--	65	114	eastern white pine,
	northern red oak----	60	43	northern red oak,
	sugar maple---------	55	29	white oak
	white oak-----------	---	---	
31C:				
Copak	eastern white pine--	65	114	\|eastern white pine,
	northern red oak----	60	43	northern red oak,
	sugar maple--------	55	29	
	white oak----------	---	---	
32A:				
Haven------------	eastern white pine--	75	143	eastern white pine,
	northern red oak-	55	43	sugar maple, white
	sugar maple--------	65	43	oak
	white oak-----------	---	--	
Enfield-----------	eastern white pine--	74	129	\|eastern white pine,
	northern red oak-	65	43	northern red oak,
	shagbark hickory---	---	0	white oak
	white oak-----------	---	---	
32B:				
Haven------------	eastern white pine--	75	143	eastern white pine,
	northern red oak----	55	43	sugar maple, white
	sugar maple--------	65	43	
	white oak----------	---	---	
Enfield-----------	eastern white pine--	74	129	\|eastern white pine,
	northern red oak----	65	43	northern red oak,
	shagbark hickory----	--	0	white oak
	white oak----------	---	---	
32C:				
Haven------------	eastern white pine--	75	143	eastern white pine,
	northern red oak----	55	43	sugar maple, white
	sugar maple---------	65	43	
	white oak-----------	---	---	

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site   index	Volume of wood fiber	
			$\overline{\mathrm{cu} \mathrm{ft/ac}}$	
32C:				
Enfield-----------	eastern white pine--	74	129	eastern white pine,
	northern red oak----	65	43	northern red oak,
	shagbark hickory----	---	0	white oak
	white oak-----------	--	---	
33A:				
Hartford----------	eastern white pine--	65	114	eastern white pine,
	northern red oak----	59	43	sugar maple, white
	sugar maple--------	60	43	oak
	white oak-----------	---	---	
33B:				
Hartford	eastern white pine--	65	114	eastern white pine,
	northern red oak----	59	43	sugar maple, white
	sugar maple--------	60	43	
	white oak-----------	---	---	
34A:				
Merrimac	northern red oak----	51	114 29	white oak
	sugar maple--------	58	43	
	white oak-----------	---	---	
34B:				
Merrimac---------	eastern white pine--	64	114	eastern white pine,
	northern red oak----	51	29	white oak
	sugar maple---------	58	43	
	white oak-----------	---	---	
34C:				
Merrimac	eastern white pine--	64	$114$	eastern white pine,
	northern red oak----	51	$29$	white oak
	sugar maple--------	58	43	
	white oak----------	---	---	
35A:				
Penwood-----------	eastern white pine--	57	100	eastern white pine
	northern red oak----	50	29	
	pitch pine---------	50	0	
35B:				
Penwood-----------	eastern white pine--	57	100	eastern white pine
	northern red oak----	50	29	
	pitch pine---------	50	0	
36A:				
Windsor-----------	eastern white pine--	57	100	eastern white pine
	northern red oak----	52	29	
	pitch pine---------	---	---	
	sugar maple--------	55	29	
36B:				
Windsor-----------	eastern white pine--	57	100	eastern white pine
	northern red oak----	52	29	
	pitch pine---------	---	---	
	sugar maple--------	55	29	
36C:				
Windsor-	eastern white pine--	57	100	eastern white pine
	northern red oak----	52	29	
	pitch pine---------	---	---	
	sugar maple--------	55	29	

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site   index	Volume of wood fiber		
			\|cu ft/ac		
37A:					
Manchester--------	\|eastern white pine--		55	86	eastern white pine
	\|northern red oak----		50	29	
	\|pitch pine---------		--	---	
	\|white oak----------	---	---		
37C:					
Manchester--------	\|eastern white pine--		55	86	\|eastern white pine
	\|northern red oak----		50	29	
	pitch pine---------	-	--		
	\|white oak----------	---	---		
37E:					
Manchester--------	\|eastern white pine--	55	$86$	eastern white pine	
	\|northern red oak----	$50$	$29$		
	\|pitch pine---------		---	---	
	\|white oak----------	---	---		
38A:					
Hinckley---------	\|eastern white pine--		60	100	\|eastern white pine
	\|northern red oak----		49	29	
	\| sugar maple---------	57	29		
	white oak	---	---		
38C:					
Hinckley----------	eastern white pine--	$60$	$100$	eastern white pine	
	northern red oak---	49	$29$		
	\|sugar maple	57	29		
	white oak	---	---		
38E:					
Hinckley	\|eastern white pine--		60	$100$	\|eastern white pine
	\|northern red oak----		49	29	
	\|sugar maple--------		57	29	
	\|white oak----------	-- -	---		
39A:					
Groton------------	\|eastern white pine--		60	100	\|eastern white pine
	\|northern red oak----	55	43		
	\|sugar maple--------		55	43	
39C:					
Groton------------	\|eastern white pine--		60		\|eastern white pine
	\|northern red oak----		55	43	
	\|sugar maple--------		55	43	
39E:					
Groton------------		60		\|eastern white pine	
	northern red oak----	$55$	$43$		
	sugar maple	55	43		
40A:					
Ludlow------------					
	northern red oak----	70	$57$	oak, sugar maple,	
	\|red maple----------	---	0	tuliptree, white oak	
40B:					
Ludlow	\|eastern white pine--		75	143	\|ash, northern red
	northern red oak----	70	$57$	oak, sugar maple,	
	\|red maple	---	0	tuliptree, white oak	

Table 8.-Forestland Productivity-Continued


Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site   index	Volume   of wood   fiber		
			$\overline{c u ~ f t / a c}$		
47C:					
Woodbridge--------	eastern white pine--\|	67	114	\|ash, northern red	
	northern red oak-	72	57	oak, sugar maple,	
	\|sugar maple--------		65	43	tuliptree, white
	\|white oak-----------	--	--	oak	
48B :					
Georgia-----------	\| basswood----------		65	43	```eastern white pine, northern red oak, sugar maple, white ash```
	\|eastern white pine--		75	143	
	northern red oak----\|	70	57		
	quaking aspen-------	---	0		
	\|red maple----------	70	43		
	\|sugar maple---------	60	43		
	white ash----------	66	43		
	yellow birch-------	60	43		
Amenia------------	American basswood---	---	0	```eastern white pine, northern red oak, sugar maple, white ash```	
	\|eastern white pine--		75	143	
	northern red oak----\|	70	57		
	sugar maple-------	65	43		
	white ash----------\|	75	43		
48C:					
Georgia-----------	\|basswood----------		65	43	```eastern white pine, northern red oak, sugar maple, white ash```
	\|eastern white pine--		75	143	
	northern red oak----\|	70	57		
	quaking aspen-------	---	0		
	\|red maple----------	70	43		
	\|sugar maple---------	60	43		
	white ash----------\|	66	43		
	yellow birch-------	60	43		
Amenia------------	American basswood---\|	---	0	```eastern white pine, northern red oak, sugar maple, white ash```	
	eastern white pine--\|	75	143		
	northern red oak----\|	70	57		
	\|sugar maple--------	65	43		
	white ash----------	75	43		
49B:					
Georgia-----------	\| basswood-----------	65	43	```\|eastern white pine, northern red oak, sugar maple, white ash```	
	eastern white pine--\|	75	143		
	northern red oak----\|	70	57		
	sugar maple--------\|	60	43		
Amenia------------	American basswood---\|	---	0	```eastern white pine, northern red oak, sugar maple, white ash```	
	eastern white pine--\|	75	143		
	northern red oak----\|	70	57		
	\|sugar maple---------	65	43		
	white ash----------\|	75	43		
49C:					
Georgia-----------	\| basswood-----------	65	43	```\|eastern white pine, northern red oak, sugar maple, white ash```	
	eastern white pine--\|	75	143		
	northern red oak----	70	57		
	sugar maple--------	60	43		
Amenia-----------	American basswood---\|	---	0	```eastern white pine, northern red oak, sugar maple, white ash```	
	eastern white pine--\|	75	143		
	northern red oak----\|	70	57		
	sugar maple--------	65	43		
	white ash----------	75	43		

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site   index	$\begin{gathered} \text { Volume } \\ \text { of wood } \\ \text { fiber } \end{gathered}$		
			$\overline{c u ~ f t / a c}$		
50A:Sutto				eastern white pine, northern red oak, white oak	
	black cherry	72	43		
	\|eastern white pine--		62	114	
	northern red oak	62	43		
	\|sugar mapl	54	29		
	\|white oak-----------	--	---		
50B:					
Sutton----------------- \|	\|black cherry-------	72	43	eastern white pine, northern red oak, white oak	
	\|eastern white pine--		62	114	
	northern red oak----\|	62	43		
	\|sugar maple	54	29		
	white oak-----------\|	---	---		
51B:Sutton			43	eastern white pine, northern red oak, white oak	
	\|eastern white pine--		72 62	43 114	
	northern red oak----\|	62	43		
	\|sugar maple	54	29		
	white oak-----------\|	---	---		
52C:Sutton				```eastern white pine, northern red oak, white oak```	
	black cherry-------eastern white pine--	72 62	$\begin{array}{r} 43 \\ 114 \end{array}$		
	northern red oak----\|	62	43		
	sugar maple	54	29		
	\|white oak-----------	--	---		
53A:Wapping					
	black cherry-------	72	43	eastern white pine, northern red oak	
	\|eastern white pine--		75	143	
	northern red oak----\|	70	57		
	sugar maple--------	54	29		
53B:   Wapping					
	black cherry	72	43	eastern white pine, northern red oak	
	\|eastern white pine--		75	143	
	\|northern red oak----		70	57	
	\|sugar maple--------		54	29	
54B:Wapping					
		72	43	eastern white pine, northern red oak	
	eastern white pine--	75	143		
	northern red oak----\|	70	57		
	\|sugar maple--------		54	29	
55A:Watchaug					
	eastern white pine--\|	65	114	eastern white pine, northern red oak	
	northern red oak----	65	$43$		
	red maple----------	68	43		
55B:Watchaug					
				eastern white pine, northern red oak	
	northern red oak----	65	43		
	red maple----------	68	43		
56B:Watchaug----------------					
	eastern white pine--\|	65	114	eastern white pine, northern red oak	
	northern red oak----\|	65	43		
	\|red maple----------	68	43		

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site   index	Volume of wood fiber	
			cu ft/ac	
$\begin{aligned} & \text { 57B: } \\ & \text { Gloucest } \end{aligned}$				eastern white pine, northern red oak, white oak
	eastern white pine--	61	100	
	northern red oak-	60	43	
	\|sugar maple	53	29	
	\|white oak-----------	--	---	
57C:				
Gloucester--------	eastern white pine--	61	100	eastern white pine, northern red oak, white oak
	\|northern red oak----	60	43	
	sugar maple--------	53	29	
	\|white oak----------	-	--	
57D:				
Gloucester--------	eastern white pine--	61	100	eastern white pine, northern red oak, white oak
	northern red oak-	60	43	
	\|sugar maple--------	53	29	
	\|white oak-----------	---	---	
58B :				
Gloucester-------	\|eastern white pine--	61	100	eastern white pine, northern red oak, white oak
	\|northern red oak----	60	43	
	sugar maple--------	53	29	
	white oak-----------	-	---	
58C:				
Gloucester--------	eastern white pine--	61	100	eastern white pine, northern red oak, white oak
	northern red oak----	60	43	
	\|sugar maple---------	53	29	
	\|white oak-----------	---	---	
59C:				
Gloucester--------	eastern white pine--	61	100	eastern white pine, northern red oak, white oak
	northern red oak----	60	43	
	sugar maple--------	53	29	
	white oak----------	---	---	
59D:				
Gloucester--------	eastern white pine--	61	100	eastern white pine, northern red oak, white oak
	northern red oak	60	43	
	sugar maple---------	53	29	
	\|white oak----------	---	---	
60B :				
Canton------------	eastern hemlock-----	---	---	```eastern hemlock, eastern white pine, white oak```
	\|eastern white pine--	58	100	
	\|northern red oak----	52	29	
	white oak-----------	---	---	
Charlton----------	eastern hemlock-----	---	---	```eastern hemlock, eastern white pine, northern red oak, white oak```
	eastern white pine--	65	114	
	\|northern red oak----	65	43	
	red maple----------	55	29	
	\|shagbark hickory----	---	0	
	\|sugar maple--------	55	29	
	\|white oak----------	---	---	
60C:				
Canton------------	eastern hemlock-----	---	-	```eastern hemlock, eastern white pine, white oak```
	\|eastern white pine--	58	100	
	\|northern red oak----	52	29	
	white oak----------	---	---	

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site   index	Volume of wood fiber	
			$\overline{\mathrm{cu} \mathrm{ft/ac}}$	
60C:				
Charlton----------	eastern hemlock-----	---	-	eastern hemlock,
	\|eastern white pine--	65	114	eastern white
	\|northern red oak----	65	43	pine, northern red
	\|red maple	55	29	oak, white oak
	shagbark hickory----	---	0	
	\|sugar maple---------	55	29	
	\|white oak-----------	--	---	
60D :				
Canton------------	eastern hemlock-----	---	---	eastern hemlock,
	\|eastern white pine--	58	100	eastern white
	northern red oak----	52	29	pine, white oak
	white oak	---	---	
Charlton----------	eastern hemlock-----	---	---	
	\|eastern white pine--	65	114	eastern white
	\|northern red oak----	65	43	pine, northern red
	red maple---------	55	29	oak, white oak
	\|shagbark hickory----	---	0	
	\|sugar maple---------	55	29	
	\|white oak----------	---	---	
61B:				
Canton------------	\|eastern hemlock-----	---	---	eastern hemlock,
	\|eastern white pine--	58	100	eastern white
	northern red oak----	52	29	pine, white oak
	white oak	---	---	
Charlton----------	eastern hemlock-----	---	---	eastern hemlock,
	\|eastern white pine--	65	114	eastern white
	\|northern red oak----	65	43	pine, northern red
	red maple----------	55	29	oak, white oak
	\|shagbark hickory----	---	0	
	\|sugar maple--------	55	29	
	\|white oak----------	--	---	
61C:				
Canton	\|eastern hemlock-----	---	--	eastern hemlock,
	\|eastern white pine--	58	100	eastern white
	northern red oak----	52	29	pine, white oak
	white oak-----------	--	---	
Charlton----------	\|eastern hemlock-----	---	---	eastern hemlock,
	\|eastern white pine--	65	114	eastern white
	northern red oak----	65	43	pine, northern red
	red maple---------	55	29	oak, white oak
	\|shagbark hickory----	---	0	
	sugar maple---------	55	29	
	\|white oak----------	---	---	
62C:				
Canton-	eastern hemlock-----	---	---	eastern hemlock,
	\|eastern white pine--	58	100	eastern white
	\|northern red oak----	52	29	pine, white oak
	\|white oak----------	---	---	
Charlton-	eastern hemlock-----	---	---	eastern hemlock,
	\|eastern white pine--	65	114	eastern white
	\|northern red oak----	65	43	pine, northern red
	red maple----------	55	29	oak, white oak
	\|shagbark hickory----	---	0	
	\|sugar maple--------	55	29	
	\|white oak----------	---	---	

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site index	Volume of wood fiber	
			cu ft/ac	
62D:				
Canton------------	eastern hemlock-----	--	-	eastern hemlock,
	\|eastern white pine--	58	100	eastern white
	northern red oak----	52	29	pine, white oak
	white oak-----------	---	---	
Charlton----------	eastern hemlock----	--	---	eastern hemlock,
	eastern white pine--	65	114	eastern white
	northern red oak----	65	43	pine, northern red
	red maple----------	55	29	oak, white oak
	shagbark hickory----	---	0	
	\|sugar maple	55	29	
	white oak-----------	---	---	
63B:				
Cheshire---------	eastern hemlock-----	---	---	eastern hemlock,
	eastern white pine--	65	114	eastern white
	northern red oak----	60	43	pine, northern red
	\|shagbark hickory----	---	0	oak
	sugar maple--------	---	0	
63C:				
Cheshire	eastern white pine--	65	114	eastern white
	northern red oak---	60	43	pine, northern red
	\|shagbark hickory----	---	0	oak
	sugar maple--------	---	0	
63D :				
Cheshire---------	eastern hemlock-----	---	-	eastern hemlock,
	eastern white pine--	65	114	eastern white
	northern red oak----	60	43	pine, northern red
	shagbark hickory----	---	0	
	sugar maple--------	---	0	
64B :				
Cheshire---------	eastern hemlock----	--	--	eastern hemlock,
	eastern white pine--	65	114	eastern white
	northern red oak----	60	43	pine, northern red
	shagbark hickory----	---	0	oak
	sugar maple--------	---	0	
64C:				
Cheshire----------	eastern hemlock----	---	---	eastern hemlock,
	eastern white pine--	65	114	eastern white
	northern red oak----	60	43	pine, northern red
	shagbark hickory----	---	0	oak
	\|sugar maple--------	---	0	
65C:				
Cheshire---------	eastern hemlock-----	--	---	eastern hemlock,
	\|eastern white pine--	65	114	eastern white
	northern red oak----	60	43	pine, northern red
	shagbark hickory----	---	0	oak
	\|sugar maple--------	---	0	
65D:				
Cheshire---------	eastern hemlock-----	---	---	eastern hemlock,
	eastern white pine--	65	114	eastern white
	northern red oak----	60	43	pine, northern red
	shagbark hickory----	---	0	oak
	sugar maple--------	---	0	

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site   index	Volume of wood fiber	
			cu ft/ac	
66B :				
Narragansett-----	eastern hemlock-----	--	---	eastern hemlock,
	eastern white pine--	68	114	eastern white
	northern red oak-	60	43	pine, northern red
	\|sugar maple	55	29	
66C:				
Narragansett------	eastern hemlock-----	---	--	eastern hemlock,
	\|eastern white pine--	68	114	eastern white
	northern red oak----	60	43	pine, northern red
	\|sugar maple--------	55	29	oak
67B:				
Narragansett-----	eastern hemlock-----	---	---	eastern hemlock,
	eastern white pine--	68	114	eastern white
	northern red oak-	60	43	pine, northern red
	sugar maple-	55	29	oak
67C:				
Narragansett-----	eastern hemlock-----	---	---	eastern hemlock, eastern white
	northern red oak----	60	43	pine, northern red
	sugar maple--------	55	29	oak
68C:				
Narragansett------	eastern hemlock-----	---	--	
	eastern white pine--	68	114	eastern white
	northern red oak----	60	43	pine, northern red
	\|sugar maple--------	55	29	oak
68D :				
Narragansett------	eastern hemlock-----	---	---	eastern hemlock,
	\|eastern white pine--	68	114	eastern white
	northern red oak----	60	43	pine, northern red
	\|sugar maple--------	55	29	oak
69B:				
Yalesville-------	eastern white pine-northern red oak----	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{array}{r} 114 \\ 43 \end{array}$	eastern white pine, northern red oak
	\|sugar maple--------	---	0	
69C:				
Yalesville-------	eastern white pine--	65	114	eastern white pine,
	northern red oak----	60	43	northern red oak
	sugar maple--------	---	0	
70C:				
Branford---------	eastern white pine--	75	143	
	northern red oak----	70	57	northern red oak,
	shagbark hickory----	--	0	white oak
	white oak----------	---	---	
Holyoke----------	chestnut oak-------	---	---	chestnut oak,
	\|eastern white pine--	55	86	eastern white pine
	northern red oak----	47	29	
71C:				
Brookfield-------	eastern hemlock----	---	11	eastern hemlock,
	\|eastern white pine--	65	114	eastern white
	northern red oak----	65	43	pine, northern red
	sugar maple---------	55	29	oak, white oak
	white oak-----------	---	---	

Table 8.-Forestland Productivity-Continued


Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site   index	Volume of wood fiber		
			cu ft/ac		
75C:Holli					
	chestnut oak--------	--	--	chestnut oak,	
	\|eastern hemlock-----		---	---	eastern white pine
	\|eastern white pine--		55	86	
	\|northern red oak----		47	29	
	\|sugar maple--------	56	29		
Chatfield---------	eastern hemlock----\|	---	---	\|eastern hemlock,	
	\|northern red oak----		70	57	eastern white
	sugar maple---------	65	43	pine, northern red	
	white ash----------	75	43	oak, white oak	
	\|white oak-----------	---	---		
Rock outcrop-----------	---	--	---	---	
75E:					
Hollis-----------	chestnut oak--------	--	---	chestnut oak,	
	\|eastern hemlock-----		--	---	eastern white pine
	\|eastern white pine--		55	86	
	\|northern red oak----		47	29	
	\|sugar maple---------	56	29		
Chatfield---------	eastern hemlock-----\|	---	---	\|eastern hemlock,	
	northern red oak	70	57	\| eastern white	
	sugar maple--------	65	43	pine, northern red	
	white ash-----------	75	43	oak, white oak	
	white oak-----------	---	---		
Rock outcrop-----------	-	-	---	---	
76E:					
Rock outcrop	---	-	-	---	
Hollis	chestnut oak--------	---	---	chestnut oak,	
	eastern hemlock-----\|	---	---	eastern white pine	
	\|eastern white pine--		55	86	
	\|northern red oak----		47	29	
	\|sugar maple---------	56	29		
76 F :					
Rock outcrop	---	-	---	---	
Hollis	chestnut oak--------	---	---	chestnut oak,	
	\|eastern hemlock-----		---	---	eastern white pine
	eastern white pine--\|	55	86		
	northern red oak----\|	47	29		
	\|sugar maple--------	56	29		
77C:					
Cheshire----------	eastern hemlock-----	---	---		
	\|eastern white pine--		65	114	eastern white
	\|northern red oak----		60	43	pine, northern red
	\|shagbark hickory----		--	0	oak
	sugar maple--------	---	0		
Holyoke	chestnut oak--------	---	---	chestnut oak,	
	\|eastern white pine--		55	86	eastern white pine
	northern red oak----\|	47	29		

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site index	Volume of wood fiber		
			cu ft/ac		
77D:Cheshir					
	\|eastern hemlock-----		---	---	eastern hemlock,
	\|eastern white pine--		65	114	eastern white
	\|northern red oak----		60	43	\| pine, northern red
	\|shagbark hickory----		---	0	oak
	\|sugar maple--------		---	0	
Holyoke---------------- \|	\|chestnut oak--------		---	---	chestnut oak,
	\|eastern white pine--		55	86	eastern white pine
	\|northern red oak----		47	29	
78C:					
Holyoke----------------	chestnut oak--------\|	---		chestnut oak,	
	eastern white pine--	55	86	eastern white pine	
	northern red oak----	47	$29$		
Rock outcrop-----------	---	---	-	---	
78E:					
Holyoke--------------- \|	\|chestnut oak--------		---	---	chestnut oak,
	\|eastern white pine--		55	$86$	eastern white pine
	northern red oak	$47$	$29$		
Rock outcrop-----------	---	---	---	---	
79E:					
Rock outcrop------------	\| ---	---	---	---	
Holyoke----------------	chestnut oak--------	---	---	chestnut oak,	
	\|eastern white pine--		55	86	eastern white pine
	\|northern red oak----		47	29	
80B:					
Bernardston------------	\|eastern hemlock-----		65	0	ash, northern red
	\|eastern white pine--		65	$114$	oak, sugar maple,
	\|northern red oak----		55	43	tuliptree, white
	\|sugar maple--------		65	43	oak
80C:					
Bernardston------------	\|eastern hemlock-----		65	0	
	\|eastern white pine--		65	114	oak, sugar maple,
	northern red oak----	55	$43$	tuliptree, white	
	sugar maple	65	43		
81C:					
Bernardston------------	eastern hemlock-----\|	65	0		
	\|eastern white pine--		65	114	oak, sugar maple,
	\|northern red oak----		55	43	tuliptree, white
	\|sugar maple--------		65	43	oak
81D:					
Bernardston------------	\|eastern hemlock-----		65	0	ash, northern red
	\|eastern white pine--		65	114	oak, sugar maple,
	\|northern red oak----		55	43	tuliptree, white
	\|sugar maple--------		65	43	oak
82B:					
Broadbrook-------------	eastern white pine--\|	75	143		
	\|northern red oak----		70	57	oak, sugar maple,
	tuliptree	93	$100$	tuliptree, white	
	\|white ash----------		76	43	oak

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site   index	Volume of wood fiber	
			cu ft/ac	
82C:				
Broadbrook	eastern white pine--	75	143	ash, northern red
	northern red oak-	70	57	oak, sugar maple,
	tuliptree	93	100	tuliptree, white
	white ash	76	43	oak
82D:				
Broadbrook--------	eastern white pine--	75	143	ash, northern red
	northern red oak-	70	57	oak, sugar maple,
	tuliptree	93	100	tuliptree, white
	white ash	76	$43$	oak
83B:				
Broadbrook--------	eastern white pine--	75	143	
	northern red oak----	$70$	$57$	oak, sugar maple,
	tuliptree----------	93	100	tuliptree, white
	\|white ash----------	76	43	oak
83C:				
Broadbrook-------	eastern white pine--	75	143	ash, northern red
	northern red oak----	70	57	oak, sugar maple,
	tuliptree	93	100	tuliptree, white
	white ash-	76	43	oak
84B :				
Paxton-----------	eastern white pine--	66	114	ash, northern red
	northern red oak----	65	43	oak, sugar maple,
	\|sugar maple	75	43	tuliptree, white
	white oak----------	---	--	oak
Montauk-----------	eastern white pine--	75	143	
	northern red oak----	$70$	$57$	oak, sugar maple,
	sugar maple	65	43	tuliptree, white
	white oak-	---	---	oak
84C:				
Paxton-----------	eastern white pine--	66	114	ash, northern red
	northern red oak----	65	43	oak, sugar maple,
	\|sugar maple--------	75	43	tuliptree, white
	white oak----------	-	--	oak
Montauk-----------	eastern white pine--	$75$	$143$	
	northern red oak----	$70$	$57$	oak, sugar maple,
	sugar maple	65	43	tuliptree, white
	white oak	---	---	oak
84D:				
Paxton-----------	eastern white pine--	66	114	ash, northern red
	northern red oak----	65	43	oak, sugar maple,
	sugar maple--------	75	43	tuliptree, white
	white oak----------	-	--	oak
Montauk----------	eastern white pine--	75	143	
	northern red oak----	70	57	oak, sugar maple,
	sugar maple--------	65	43	tuliptree, white
	white oak----------	---	---	oak
85B :				
Paxton-----------	eastern white pine--	66	114	ash, northern red
	northern red oak----	65	43	oak, sugar maple,
	sugar maple--------	75	43	tuliptree, white
	white oak----------	---	---	oak

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site   index	Volume of wood fiber	
			cu ft/ac	
85B :				
Montauk-----------	eastern white pine--\|	75	143	ash, northern red
	northern red oak----\|	70	57	oak, sugar maple,
	sugar maple--------	65	43	tuliptree, white
	white oak	---	---	oak
85C :				
Paxto	eastern white pine--\|	66	114	
	northern red oak----	65	$43$	oak, sugar maple,
	sugar maple--------	75	43	tuliptree, white
	white oak----------	---	---	oak
Montauk-----------	eastern white pine--	75	143	ash, northern red
	northern red oak----	70	57	oak, sugar maple,
	sugar maple---------	65	43	tuliptree, white
	white oak-----------	6	--	oak
86C:				
Paxton-----------	eastern white pine--	66	$114$	
	northern red oak----	65	$43$	oak, sugar maple,
	sugar maple---------	75	43	tuliptree, white
	white oak-----------	-	---	oak
Montauk-----------	eastern white pine--	75	143	ash, northern red
	northern red oak----	70	57	oak, sugar maple,
	sugar maple--------	65	43	tuliptree, white
	white oak-----------	-	---	oak
86D:				
Paxton-----------	eastern white pine--	66	114	
	northern red oak----	65	43	oak, sugar maple,
	sugar maple	75	43	tuliptree, white
	white oak----------	---	---	oak
Montauk-----------	eastern white pine--\|	75	143	ash, northern red
	northern red oak----	70	57	\| oak, sugar maple,
	sugar maple	65	43	tuliptree, white
	white oak-----------	--	---	
87B :				
Wethersfield------	eastern white pine--\|	75	143	ash, northern red
	northern red oak---	74	57	oak, sugar maple,
	sugar maple	63	43	tuliptree, white
	tuliptree---------	87	86	oak
87C:				
Wethersfield------	eastern white pine--	$75$	$143$	
	northern red oak----	74	57	oak, sugar maple,
	sugar maple--------	63	43	tuliptree, white
	tuliptree----------	87	86	oak
87D:				
Wethersfield------	eastern white pine--	75	143	ash, northern red
	northern red oak----	74	57	\| oak, sugar maple,
	sugar maple---------	63	43	tuliptree, white
	tuliptree----------	87	86	oak
88B:				
Wethersfield------	eastern white pine--	75	143	ash, northern red
	northern red oak----	74	57	oak, sugar maple,
	sugar maple	63	43	tuliptree, white
	tuliptree----------	87	86	oak

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site   index	Volume of wood fiber	
			cu ft/ac	
88C:				
Wethersfield------	\|eastern white pine--	75	143	ash, northern red
	northern red oak-	74	57	oak, sugar maple,
	\|sugar maple	63	43	tuliptree, white
	\|tuliptree----------	87	86	oak
89C:				
Wethersfield------	eastern white pine--	75	143	ash, northern red
	\|northern red oak----	74	57	oak, sugar maple,
	\|sugar maple--------	63	43	tuliptree, white
	\|tuliptree----------	87	86	oak
89D:				
Wethersfield------	eastern white pine--	75	143	ash, northern red
	\|northern red oak----	74	57	oak, sugar maple,
	\|sugar maple--------	63	43	tuliptree, white
	\|tuliptree----------	87	86	oak
90B :				
Stockbridge-------	\|eastern hemlock----	-	0	eastern white pine, northern red oak, sugar maple
	\|eastern white pine--	75	143	
	\|northern red oak----	70	57	
	\|sugar maple--------	60	43	
90C:				
Stockbridge-------	eastern hemlock-----	--	$0$	eastern white pine, northern red oak, sugar maple
	\|eastern white pine--	75	143	
	\|northern red oak----	70	57	
	\|sugar maple--------	60	43	
90D:				
Stockbridge-------	eastern hemlock-----	---	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	eastern white pine, northern red oak, sugar maple
	\|eastern white pine--	75	143	
	\|northern red oak----	70	57	
	\|sugar maple--------	60	43	
91B :				
Stockbridge-------	American beech------	---	0	eastern white pine, northern red oak, sugar maple
	\|eastern hemlock-----	--	0	
	\|eastern white pine--	75	143	
	\|northern red oak----	70	57	
	\|sugar maple--------	60	43	
91C:				
Stockbridge-------	American beech------	---	0	eastern white pine, northern red oak, sugar maple
	\|eastern hemlock-----	---	0	
	\|eastern white pine--	75	143	
	\|northern red oak----	70	57	
	\|sugar maple--------	60	43	
91D:				
Stockbridge-------	American beech-----	---	0	eastern white pine, northern red oak, sugar maple
	\|eastern hemlock-----	---	0	
	\|eastern white pine--	75	143	
	\|northern red oak----	70	57	
	\|sugar maple---------	60	43	

Table 8.-Forestland Productivity-Continued


Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site index	Volume of wood fiber		
			cu ft/ac		
96 :					
Ipswich---------------	-- -	---	- -	---	
97 :					
Pawcatuck--------------	---	---	---	-	
98 :					
Westbrook--------------- \|	---	---	---	-	
99 :					
Westbrook, low salt-----\|	--	-- -	---	---	
100:					
Suncook----------------- \|	American sycamore---\|	---	-	---	
	\|eastern white pine--		55	86	
	\|pin oak------------	---	---		
	\|red maple----------	50	29		
	silver maple-------	---	---		
101:					
Occum------------------- \|	\|American sycamore---		---	---	---
	\|eastern white pine--		70	129	
	\|red maple----------	---	---		
	\|silver maple-------		---	---	
102:					
Pootatuck-------------	American sycamore---\|	---	---	---	
	\|eastern white pine--		75	143	
	\|pin oak------------		---	---	
	red maple	60	43		
	yellow birch-------\|	60	43		
103:					
Rippowam--------------	\|eastern white pine--		65	114	---
	pin oak-----------	---	---		
	\|red maple----------	75	43		
104:					
Bash-----------------	\|red maple-----------		70	43	---
	\|white ash----------		70	43	
105:					
Hadley---------------- \|	\|eastern white pine--		70	129	---
	\|red maple	---	---		
	silver maple-------\|	-- -	---		
106:					
Winooski---------------		75		-- -	
	pin oak	---	---		
	\|silver maple-------		---	---	
107 :					
Limerick---------------	eastern white pine--\|	65	114	---	
	\|red maple----------	40	29		
	\|silver maple-------		---	---	
Lim---------------------	American elm-------\|	---	0	---	
	\|eastern white pine--		60	100	
	\| green ash----------		---	0	
	\|red maple----------	60	43		
	yellow birch--------	---	0		

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site   index	Volume of wood fiber		
			cu ft/ac		
108:					
Saco-------------------	eastern white pine--\|	50	86	---	
	red maple----------	50	29		
109:					
Fluvaquents, Frequently					
Flooded--------------	eastern white pine--	50	86	--	
	red maple	$55$	$29$		
Udifluvents, Frequently Flooded-					
	American sycamore---	---	0	---	
	eastern white pine--	50	86		
	red maple----------	55	29		
	silver maple-------\|	55	14		
221A:					
Ninigret---------------	eastern white pine--\|	75	143	---	
	northern red oak----\|	65	43		
	red maple-	60	43		
	sugar maple---------	55	29		
	white oak-----------	---	---		
Urban land------------	---	---	---	---	
224A:					
Deerfield-------------	eastern white pine--\|			-- -	
	northern red oak----	55	$43$		
	pitch pine---------	--	---		
	white oak----------	---	---		
Urban land-------------	-	---	---	---	
225B:					
Brancroft-------------	eastern hemlock-----\|	---	0	---	
	eastern white pine--\|	65	114		
	northern red oak----\|	55	43		
	red maple----------	--	0		
	white ash-----------\|	---	0		
	white oak----------	---	---		
Urban land-------------	---	---	---	---	
226B:					
Berlin----------------	eastern white pine--	65	114	---	
	northern red oak----	60	43		
	red maple----------	---	---		
	white oak----------	---	---		
Urban land------------	---	---	---	---	
228B:					
Elmridge---------------	eastern white pine--\|	75	143	---	
	northern red oak----\|	70	57		
	red maple---------	---	0		
	\|shagbark hickory----		60	43	
	white oak----------	---	---		
Urban land-------------	---	---	---	---	

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site index	$\begin{aligned} & \text { Volume } \\ & \text { of wood } \\ & \text { fiber } \end{aligned}$	
			cu ft/ac	
$22 \text { 9B: }$   Agawam				
	eastern white pine--	70	129	--
	northern red oak----	65	129	
	sugar maple---------	---	0	
	white oak-----------	---	---	
Urban land-------	---	---	---	---
229C:				
Agawam-	eastern white pine--	70	129	---
	northern red oak----	65	129	
	sugar maple---------	---	0	
	white oak-----------	---	---	
Urban land-------	-	---	---	---
230B:				
Branford----------	eastern white pine--	75	143	---
	northern red oak----	70	57	
	shagbark hickory----\|	---	0	
	white oak-----------	---	---	
Urban land-----	---	---	---	---
230C:				
Branford	eastern white pine--	75	143	---
	northern red oak----	70	57	
	shagbark hickory----\|	-	0	
	white oak-----------	---	---	
Urban land-------	--	---	---	---
232B:				
Haven-------------	eastern white pine--	75	143	---
	northern red oak----\|	55	43	
	sugar maple---------	65	43	
	white oak----------	---	---	
Urban land-------	---	---	---	---
234B:				
Merrimac---------	eastern white pine--	64		---
	northern red oak----	51	29	
	sugar maple---------	58	43	
	white oak----------	---	---	
Urban land----	-	---	---	---
235B:				
Penwood-----------	eastern white pine--	57	100	---
	northern red oak----\|	50	29	
	pitch pine---------	50	0	
Urban land-------	--	---	---	---
236B :				
Windso	eastern white pine--\|	57	100	---
	northern red oak----	52	29	
	pitch pine---------	---	---	
	sugar maple--------	55	29	
Urban land--------	---	---	---	---

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site   index	Volume of wood fiber	
			cu ft/ac	
237A:Manchest				
	eastern white pine--	55	86	---
	\|northern red oak----	50	29	
	pitch pine---------	---	---	
	\|white oak-----------	---	---	
Urban land-------	---	---	---	---
237C:				
Manchester--------	eastern white pine--	55	86	--
	northern red oak----	50	29	
	pitch pine---------	---	---	
	\|white oak-----------	---	---	
Urban land-------	-	---	---	---
238A:				
Hinckley----------	eastern white pine--	60	100	--
	northern red oak----	49	29	
	sugar maple--------	57	29	
	\|white oak----------	---	---	
Urban land-----	-	---	---	---
238C:				
Hinckley---------	eastern white pine--	60	100	-
	northern red oak----	49	29	
	\|sugar maple---------	57	29	
	\|white oak-----------	---	---	
Urban land-------	-	---	---	---
240B :				
Ludlow------------	eastern white pine--	75	143	---
	northern red oak----	70	57	
	\|red maple----------	---	0	
Urban land-------	-	---	---	---
243B:				
Rainbow----------	eastern white pine--	75	143	---
	northern red oak----	70	57	
	\|sugar maple--------	54	29	
Urban land--------	---	---	---	---
245B:				
Woodbridge--------	\|eastern white pine--	67	114	---
	northern red oak----	72	57	
	\|sugar maple---------	65	43	
	\|white oak-----------	---	---	
Urban land---------	-	---	---	-- -
245C:				
Woodbridge			114	---
	northern red oak----	72	57	
	sugar maple--------	65	43	
	\|white oak----------	---	---	
Urban land--------	---	---	---	---

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site   index	$\begin{aligned} & \text { Volume } \\ & \text { of wood } \\ & \text { fiber } \end{aligned}$		
			$\mid \overline{\mathrm{cu} \mathrm{ft/ac}}$		
248B:Georgi					
	\|basswood-----------		65	43	---
	\|eastern white pine--		75	143	
	\|northern red oak----		70	57	
	\|sugar maple--------		60	43	
Urban land-------------- \|	---	---	---	---	
250B:					
Sutton-----------------	\|black cherry-------	72	43	---	
	\|eastern white pine--		62	114	
	northern red oak----\|	62	43		
	\|sugar maple--------		54	29	
	white oak----------	---	---		
Urban land-------------- \|	---	---	---	---	
253B:					
Wapping----------------	black cherry-------	72	43	---	
	\|eastern white pine--		75	143	
	northern red oak----\|	70	57		
	sugar maple--------	54	29		
Urban land------------- \|	---	---	---	---	
255B:					
Watchaug---------------	eastern white pine--\|	65	114	---	
	\|northern red oak----		65	43	
	red maple----------	68	43		
Urban land--------------	--	---	---	---	
260B:					
Charlton--------------	eastern hemlock-----	---	-	---	
	\|eastern white pine--		65	114	
	\|northern red oak----		65	43	
	red maple---------	55	29		
	\|shagbark hickory----		---	0	
	sugar maple	55	29		
	white oak----------	---	---		
Urban land------------- \|	-	---	---	---	
260C:					
Charlton---------------		---	---	---	
	eastern white pine--	65	114		
	northern red oak----\|	65	43		
	\|red maple---------	55	29		
	shagbark hickory----\|	---	0		
	\|sugar maple--------		55	29	
	white oak-----------	---	---		
Urban land-------------	---	---	---	---	
260D:					
Charlton---------------	eastern hemlock-----\|	---	---	---	
	eastern white pine--\|	65	114		
	northern red oak----\|	65	43		
	red maple----------	55	29		
	\|shagbark hickory----		---	0	
	\|sugar maple--------		55	29	
	white oak----------	---	---		
Urban land-------------- \|	---	---	---	---	

Table 8.-Forestland Productivity-Continued


Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site   index	Volume of wood fiber	
			$\overline{c u f t / a c}$	
273C:Chatfield				
	eastern hemlock----	---	---	---
	\|northern red oak-	70	57	
	\|sugar maple	65	43	
	\|white ash-----------	75	43	
	white oak----------	---	---	
275E:				
Urban land-------	---	---	---	---
Chatfield---------	eastern hemlock----	---	---	---
	\|northern red oak----	70	57	
	\|sugar maple--------	65	43	
	white ash-----------	75	43	
	white oak----------	---	---	
Rock outcrop------	---	---	---	---
282B:				
Broadbrook--------	eastern white pine--	75	143	---
	northern red oak----	70	57	
	tuliptree----------	93	100	
	white ash----------	76	43	
Urban land--------	--	---	---	---
284B:				
Paxton------------	eastern white pine--	66	114	---
	northern red oak----	65	43	
	\|sugar maple---------	75	43	
	white oak----------	---	---	
Urban land-------	-	---	---	---
284C:				
Paxton------------	eastern white pine--	66	114	---
	\|northern red oak----	65	43	
	sugar maple--------	75	43	
	white oak-----------	---	---	
Urban land-------	-	---	---	---
284D:				
Paxton------------	eastern white pine--	66	114	---
	northern red oak----	65	43	
	\|sugar maple---------	75	43	
	\|white oak----------	---	---	
Urban land--------	---	---	---	---
287B:				
Wethersfield------	eastern white pine--	75	143	---
	northern red oak----	74	57	
	\| sugar maple--------	63	43	
	\|tuliptree---------	87	86	
Urban land--------	---	---	---	---

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site   index	Volume of wood fiber	
			cu ft/ac	
287C:Wethersfield				
	\|eastern white pine--	75	143	---
	\|northern red oak----	74	57	
	\| sugar maple---------	63	43	
	tuliptree	87	86	
Urban land-------	---	---	---	---
287D:				
Wethersfield------	eastern white pine--	75	143	--
	\|northern red oak----	74	57	
	\|sugar maple--------	63	43	
	\|tuliptree----------	87	86	
Urban land-------	---	---	---	---
290B:				
Stockbridge-------	American beech-----	---	0	--
	\|eastern hemlock-----	---	0	
	\|eastern white pine--	75	143	
	\|northern red oak----	70	57	
	\|sugar maple--------	60	43	
Urban land-------	---	---	---	---
290C:				
Stockbridge-------	American beech------	--	0	---
	\|eastern hemlock-----	---	0	
	\|eastern white pine--	75	143	
	\|northern red oak----	70	57	
	\|sugar maple--------	60	43	
Urban land-------	---	---	---	---
290D:				
Stockbridge-------	American beech-----	---	0	---
	\|eastern hemlock-----	--	0	
	\|eastern white pine--	75	143	
	\|northern red oak----	70	57	
	\|sugar maple--------	60	43	
Urban land------	---	---	---	---
301:				
Beaches----------	-	---	---	---
Udipsamments------	American holly-----	---	0	---
	\|eastern redcedar----	---	0	
	pitch pine---------	---	0	
302 :				
Dumps-------------	-	--	---	---
$303:$				
Pits, quarries----	-- -	---	---	---
304 :				
Udorthents--------	American beech------	---	---	---
	eastern hemlock-----	---	---	
	\|eastern white pine--	65	114	
	\|northern red oak----	55	43	

Table 8.-Forestland Productivity-Continued


Table 8.-Forestland Productivity-Continued


Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site   index	Volume of wood fiber	
			$\overline{c u ~ f t / a c}$	
$\begin{aligned} & \text { 408C: } \\ & \text { Fullam } \end{aligned}$				
	American beech-	---	0	ash, northern red oak, sugar maple, tuliptree, white oak
	eastern hemlock----	---	0	
	\|eastern white pine--	---	0	
	\|northern red oak----	65	43	
	\|paper birch----	---	0	
	\|sugar maple--------	60	43	
	\|white ash-----------	---	0	
	\|yellow birch-------	---	0	
409B:				
Brayton----------	eastern hemlock----	---		green ash, red maple, tuliptree
	\|eastern white pine--	67	114	
	\|red maple----------	65	43	
	red spruce	50	114	
	tamarack	60	57	
412B:				
Bice--------------	American beech	---	---	```eastern hemlock, eastern white pine, northern red oak, sugar maple```
	\|eastern hemlock-----	-- -	---	
	\|paper birch--------	---	---	
	\| sugar maple--------	---	---	
	\|eastern white pine--	65	114	
	\|northern red oak----	65	43	
412C:				
Bice-------------	American beech-	---	--	```eastern hemlock, eastern white pine, northern red oak, sugar maple```
	\|eastern hemlock-----	---	---	
	\|paper birch--------	---	---	
	\| sugar maple--------	---	---	
	\|eastern white pine--	65	114	
	\|northern red oak----	65	43	
Bice	American beech-----\|eastern hemlock-----	-	---	```eastern hemlock, eastern white pine, northern red oak, sugar maple```
	\|paper birch--------	---	---	
	\| sugar maple--------	---	---	
	\|eastern white pine--	65	114	
	\|northern red oak----	65	43	
413C:				
Bice-	American beech-----	---	---	```eastern hemlock, eastern white pine, northern red oak, sugar maple```
	\|eastern hemlock	---	---	
	\| paper birch--------	---	---	
	\| sugar maple--------	-	---	
	\|eastern white pine--	65	114	
	\|northern red oak----	65	43	
Millsite---------	American beech eastern hemlock-----	---	---	```American beech, eastern hemlock, eastern white pine, northern red oak```
	\|northern red oak----	60	43	
	\| sugar maple--------	73	43	
	\|white ash----------	75	43	
413E:				
Bice	American beech eastern hemlock	---	---	```eastern hemlock, eastern white pine, northern red oak, sugar maple```
	\| paper birch--------	---	---	
	\| sugar maple--------	---		
	\|eastern white pine--	65	114	
	\|northern red oak----	65	43	

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site   index	Volume of wood fiber		
			$\overline{\mathrm{cu}} \mathrm{ft/ac}$		
413E:					
Millsite---------	American beech-----	---	---	American beech,	
	\|eastern hemlock-----		-	---	eastern hemlock,
	\|northern red oak----		60	43	eastern white
	\|sugar maple---------	73	43	pine, northern red	
	white ash----------	75	43	oak	
414:					
Fredon, cold	\|eastern white pine--		70	129	green ash, red maple, tuliptree
	northern red oak----\|	60	43		
	red maple----------	70	43		
	\|tuliptree----------	80	72		
415C:					
Millsite---------	American beech eastern hemlock	---	---	```American beech, eastern hemlock, eastern white pine, northern red oak```	
	northern red oak----\|	60	43		
	\|sugar maple---------	73	43		
	white ash----------	75	43		
Westminster-------	American beech-----	---	0	eastern hemlock, eastern white pine	
	eastern hemlock-----	--	0		
	\|eastern white pine--		56	100	
	northern red oak----\|	54	43		
	paper birch---------	---	0		
	sugar maple--------	---	0		
Rock outcrop------------	---	---	---	---	
415E:					
Millsite----------	American beech------	---	---	American beech, eastern hemlock, eastern white pine, northern red oak	
	eastern hemlock-----	---	---		
	\|northern red oak----		60	43	
	sugar maple---------	73	43		
	white ash----------	75	43		
Westminster-------	American beech------	---	0	eastern hemlock, eastern white pine	
	\|eastern hemlock-----		---	0	
	\|eastern white pine--		56	100	
	\|northern red oak----		54	43	
	paper birch--------	---	0		
	\|sugar maple--------	---	0		
Rock outcrop-----------	---	---	---	---	
416E:					
Rock outcrop	---	---	---	---	
Westminster-------	American beech----eastern hemlock----eastern white pine-northern red oak---paper birch--------sugar maple---------	--	0	eastern hemlock, eastern white pine	
		-	0		
		56	100		
		54	43		
		---	0		
		---	0		
416F:					
Rock outcrop-	---	-- -	---	---	
Westminster-------	American beech eastern hemlock-----	---	0	eastern hemlock, eastern white pine	
		---	0		
	\|eastern white pine--		56	100	
	northern red oak----\|	54	43		
	paper birch---------	---	0		
	\|sugar maple--------	---	0		

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site index	Volume of wood fiber	
			cu ft/ac	
$\begin{gathered} \text { 417B: } \\ \text { Bice. } \end{gathered}$				\|eastern hemlock, eastern white pine, northern red oak, sugar maple
	American beech	---	---	
	eastern hemlock	-- -	---	
	paper birch	---	---	
	sugar maple-	---	---	
	eastern white pine--	65	114	
	northern red oak	65	43	
417C:				```eastern hemlock, eastern white pine, northern red oak, sugar maple```
	American beech	-	---	
	eastern hemlock	---	---	
	paper birch-	---	---	
	sugar maple-------	---	---	
	eastern white pine--	65	114	
	northern red oak----	65	43	
417D:   Bice				
	American beech eastern hemlock----	---	---	```eastern hemlock, eastern white pine, northern red oak, sugar maple```
	paper birch---------	---	---	
	sugar maple	---	---	
	eastern white pine--	65	114	
	northern red oak----	65	43	
418C:Schroon				```\|black cherry, eastern hemlock, eastern white pine, northern red oak```
	eastern hemlock----northern red oak----	---	----	
	sugar maple---	55	29	
	eastern white pine--	55	86	
	black cherry-------	72	43	
420A:Schroon				
	eastern hemlock-	---	---	\|black cherry, eastern hemlock, eastern white pine, northern red oak
	northern red oak	---	---	
	sugar maple--------	55	29	
	eastern white pine--	55	86	
	black cherry--------	72	43	
420B:Schroon				
	eastern hemlock----northern red oak----	---	---	\|black cherry, eastern hemlock, eastern white pine, northern red oak
	sugar maple--------	55	29	
	eastern white pine--	55	86	
	black cherry--------	72	43	
421A:Ninigret, cold				
	eastern white pine-northern red oak----	75 65	143 43	```eastern white pine, northern red oak, white oak```
	red maple----------	60	43	
	sugar maple---------	55	29	
	white oak----------	---	---	
423A:Sudbury, cold				
	eastern white pine--	60	100	```eastern white pine, northern red oak, white oak```
	northern red oak----	45	29	
	white oak-----	---	---	
$\begin{aligned} & \text { 424B: } \\ & \text { Shelburne } \end{aligned}$				
	American beech-----	---	---	\|ash, northern red oak, sugar maple, tuliptree, white oak
	eastern hemlock-----	---		
	eastern white pine--	60	100	
	northern red oak----	60	43	
	sugar maple--------	70	43	

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site   index	Volume of wood fiber		
			cu ft/ac		
424C:					
Shelburne---------	American beech-	---	---	\|ash, northern red oak, sugar maple, tuliptree, white oak	
	eastern hemlock	-- -			
	\|eastern white pine-	60	100		
	\|northern red oak----		60	43	
	\|sugar maple--------		70	43	
424D:					
Shelburne--------	\| American beech------		---	---	\|ash, northern red oak, sugar maple, tuliptree, white oak
	eastern hemlock	---	---		
	\|eastern white pine--		60	100	
	\|northern red oak----		60	43	
	\|sugar maple---------	70	43		
425B:					
Shelburne---------	\| American beech------		---	---	\|ash, northern red oak, sugar maple, tuliptree, white oak
	\|eastern hemlock	---	---		
	\|eastern white pine--		60	100	
	\|northern red oak----		60	43	
	\|sugar maple--------		70	43	
425C:					
Shelburne--------	American beech-	---	---	\|ash, northern red oak, sugar maple, tuliptree, white oak	
	\|eastern hemlock	---	---		
	\|eastern white pine--		60	100	
	\|northern red oak----		60	43	
	\|sugar maple---------	70	43		
426D:					
Shelburne--------	American beech-	---	--	ash, northern red oak, sugar maple, tuliptree, white oak	
	eastern hemlock----	---	---		
	\|eastern white pine--		60	100	
	\|northern red oak----		60	43	
	\|sugar maple--------		70	43	
427B:					
Ashfield---------	\|American beech------	66	43	ash, northern red oak, sugar maple, tuliptree, white oak	
	\|eastern hemlock-----		60	0	
	\|eastern white pine--		71	129	
	\|northern red oak----		--	-	
	\| paper birch---------	59	57		
	sugar maple--------	57	29		
	\|white ash---------		61	43	
427C:					
Ashfield---------	American beech-----		$43$	ash, northern red oak, sugar maple, tuliptree, white oak	
	eastern hemlock-----	60	0		
	\|eastern white pine--		71	129	
	\|northern red oak----		---	---	
	\| paper birch---------	59	57		
	\|sugar maple---------		57	29	
	\|white ash----------	61	43		
428A:					
Ashfield	\| American beech-----		66	43	ash, northern red oak, sugar maple, tuliptree, white oak
	\|eastern hemlock-----		60	0	
	\|eastern white pine--		71	129	
	\|northern red oak----		---	---	
	\| paper birch--------		59	57	
	\|sugar maple---------	57	29		
	\|white ash----------		61	43	

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage
	Common trees	Site   index	Volume of wood fiber	
			cu ft/ac	
428B:Ashfield				
	American beech-	66	43	ash, northern red oak, sugar maple, tuliptree, white oak
	eastern hemlock	60	0	
	eastern white pine--	71	129	
	northern red oak----	---	---	
	paper birch	59	57	
	sugar maple--------	57	29	
	white ash----------	61	43	
428C:Ashfield				
	American beech------	66	43	ash, northern red oak, sugar maple, tuliptree, white oak
	eastern hemlock-----	60	0	
	eastern white pine--	71	129	
	northern red oak----	---	-- -	
	paper birch--------	59	57	
	sugar maple--------	57	29	
	white ash	61	43	
429A:Agawam, cold				
	eastern white pine--	70	129	eastern white pine, northern red oak, white oak
	northern red oak----	65	129	
	sugar maple--------	---	0	
	white oak----------	---	---	
429B:Agawam, col				
	eastern white pine--	$70$		eastern white pine, northern red oak, white oak
	northern red oak----	65	$129$	
	sugar maple--------	---	0	
	white oak----------	---	---	
429C:Agawam, col				
	eastern white pine--	70	129	eastern white pine, northern red oak, white oak
	northern red oak----	65	129	
	sugar maple---------	---	0	
	white oak-----------	---	---	
$433 \text { : }$   Moosilauke				
	eastern hemlock	$54$		green ash, red maple, tuliptree
	eastern white pine--	68	$114$	
	red maple----------	75	43	
	white ash----------	61	43	
434A:				
Merrimac, cold-----	```\|eastern white pine-- northern red oak---- sugar maple--------- white oak-----------```	64	114	eastern white pine, white oak
		51	29	
		58	43	
		---	---	
434B:Merrimac, cold				
	eastern white pine--	64	114	eastern white pine, white oak
	northern red oak----	51	29	
	sugar maple--------	58	43	
	white oak-----------	---	---	
434C:				
Merrimac, cold----		64		eastern white pine, white oak
	northern red oak----	51	29	
	sugar maple--------	58	43	
	white oak-----------	---	---	

Table 8.-Forestland Productivity-Continued

Map symbol and soil name	Potential productivity			Trees to manage	
	Common trees	Site   index	Volume of wood fiber		
			cu ft/ac		
435:Scarbor					
	\|Atlantic white cedar		45	0	---
	\|eastern white pine--		55	86	
	\|red maple----------		55	29	
436:					
Halsey-----------	red maple----------	55	29	---	
	\|river birch--------		---	0	
	\|swamp white oak-----		---	0	
437 :					
Wonsqueak---------	\|black spruce-------		20	29	---
	\|eastern hemlock-----		---	0	
	red maple----------	--	---		
	red spruce	---	0		
	tamarack	---	---		
438:					
Bucksport---------	black spruce	25	29	---	
	eastern hemlock	---	---		
	\|red maple----------		--	0	
	\|red spruce---------	-- -	---		
	\|tamarack-----------		--	0	
	\|yellow birch--------	---	---		
440A:					
Boscawen---------	American beech-	---	---	\|eastern hemlock,	
	\|eastern hemlock-----		---	---	\| eastern white pine
	\|eastern white pine--		60	100	
	northern red oak----	49	29		
	\|sweet birch---------		---	---	
440C:					
Boscawen----------	American beech-	---	---	\|eastern hemlock,	
	\|eastern hemlock-----		---		\| eastern white pine
	\|eastern white pine--	60	100		
	northern red oak----	49	29		
	\|sweet birch--------	---	---		
440E:					
Boscawen----------	American beech--	---	---	\|eastern hemlock,	
	\|eastern hemlock----		---	--	\| eastern white pine
	\|eastern white pine--		60	100	
	northern red oak----	49	29		
	\|sweet birch--------	---	---		
442:					
Brayton----------			---	green ash, red	
	\|eastern white pine--	67	114	maple, tuliptree	
	\|red maple----------	65	43		
	red spruce	50	114		
	\|tamarack-----------	60	57		
443 :					
Brayton----------	\|eastern hemlock-----		--	---	\|green ash, red
	\|eastern white pine--		67	114	maple, tuliptree
	red maple----------\|	65	43		
	red spruce----------	50	114		
	\|tamarack-----------		60	57	
Loonmeadow--------	eastern hemlock----	---	---	---	
	\|red maple---------	---	---		
	\|yellow birch--------		---	---	
	\|eastern white pine--		65	114	

Table 8.-Forestland Productivity-Continued


Table 8.-Forestland Productivity-Continued


Table 9.-Forestland Management
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)

Map symbol and soil name	Pct.   of   map   unit	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
2 :							
Ridgebury-------	80	Slight		Poorly suited Wetness	1.00	Severe	
						Wetness	0.77
						Strength	0.38
						Slope	0.10
3:							
Ridgebury-------	40	Moderate Stoniness	0.50	Poorly suitedWetness		Severe	
					1.00	Wetness	0.77
				Rock fragments	0.50	Strength	0.38
						Slope	0.10
Leicester-------	35	Moderate	0.50	Poorly suited		Moderate	
		Stoniness		Wetness   Rock fragments	1.00	Wetness	0.58
					0.50	Strength	0.38
						Slope	0.10
Whitman----------	15	SevereWetnessStoniness		Poorly suited		Severe	
			1.00	Ponding	1.00	Wetness	1.00
			0.50	Wetness	1.00	Strength	0.38
				Rock fragments	0.50	Slope	0.05
4:							
Leicester-------	80	Slight		Poorly suited Wetness		Moderate	
					1.00	Wetness	0.58
						Strength	0.38
						Slope	0.10
5 :							
Wilbraham-------	80	Slight		Poorly suited Wetness		Severe	
					1.00	Strength	0.75
				Low strength	0.50	Wetness	0.58
						Slope	0.10
6:							
Wilbraham-------	60	Moderate		Poorly suited		Severe	
		Stoniness	0.50	Wetness	1.00	Strength	0.75
				Rock fragments	0.50	Wetness	0.58
				Low strength	0.50	Slope	0.10
Menlo------------	25	Severe Wetness Stoniness		Poorly suited		Severe	
			1.00	Ponding	1.00	Wetness	1.00
			0.50	Wetness	1.00	Strength	0.75
				Rock fragments	0.50	Slope	0.05
7:							
Mudgepond------	85	Severe   Wetness   Low strength		Poorly suited Wetness Low strength		Severe	
			1.00		1.00	Wetness	1.00
			0.50		0.50	Strength	0.75
						Slope	0.10

Table 9.-Forestland Management-Continued

Map symbol and soil name	Pct.   of map unit	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
Mudgepond-------	45	\| Severe		Poorly suited		Severe	
		Wetness	1.00	Wetness	\| 1.00	Wetness	\| 1.00
		Stoniness	0.50	Rock fragments	0.50	Strength	0.75
		Low strength	0.50	Low strength	0.50	Slope	0.10
Alden--------------	35	Moderate		Poorly suited		Severe	
		Stoniness	0.50	Ponding	1.00	Wetness	0.75
		Low strength	0.50	Wetness	1.00	Strength	0.75
				Rock fragments	0.50	Slope	0.10
				Low strength	0.50		
9 :							
Scitico------------	40	Moderate   Low strength	0.50	Poorly suite		Severe	
				Wetness	1.00	Wetness	0.75
				Low strength	0.50	Strength	0.75
						Slope	0.10
Shaker-------------	30	Slight		Poorly suited Wetness	1.00	Severe	
						Wetness	0.75
						Strength	0.38
						Slope	0.10
Maybid-------------	15	Severe		Poorly suited		Severe	
				Ponding	11.00	Wetness	1.00
		Low strength	0.50	Wetness   Low strength	$\begin{aligned} & 1.00 \\ & 0.50 \end{aligned}$	Strength	0.75
						Slope	0.10
10:							
Raynham------------	80	Moderate   Low strength	0.50	$\left\lvert\, \begin{aligned} & \text { Poorly suited } \\ & \text { Wetness } \\ & \text { Low strength }\end{aligned}\right.$		Severe	
					11.00	Strength	0.75
					0.50	Wetness Slope	0.58
							0.10
12:							
Raypol-------------	80	Moderate   Low strength	0.50	Poorly suited		Severe	
				Wetness	1.00	Strength	0.75
				Low strength	0.50		0.58
						Slope	0.10
13:							
Walpole-----------	80	Moderate Sandiness	0.50	```Poorly suited Wetness Sandiness```	\|1.00 0	Severe	
						Wetness	0.66
						Strength	0.38
						Slope	0.10
14:							
Fredon-------------	85	Severe    Wetness 1.00		Poorly suited		Severe	
				Wetness	1.00	Wetness	1.00
		Low strength	0.50	Sandiness	0.50	Strength	0.75
		Sandiness	0.50	Low strength	0.50	Slope	0.10
15:							
Scarboro-----------	80	Severe Wetness	1.00	Poorly suited Ponding Low strength		Severe	
					1.00	Wetness	1.00
					1.00	Strength	0.75
						Slope	0.05

Table 9.-Forestland Management-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard		
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value	
16:								
Halsey-------------	80	Severe		Poorly suited		Severe		
		Wetness	1.00	Ponding	1.00	Wetness	1.00	
		Low strength	0.50	Wetness	1.00	StrengthSlope	0.75	
		Sandiness	0.50	Sandiness	0.50		0.10	
				Low strength	0.50			
17:								
Timakwa------------ \|	45	Severe    Wetness 1.00		Poorly suited Ponding		Severe		
				1.00	Wetness	1.00		
		Sandiness	0.50		Low strength	1.00	Strength	0.75
				Wetness	$1.00$	Slope	0.05	
				Sandiness	0.50			
Natchaug-----------	40	Severe Wetness	1.00	Poorly suited Ponding		Severe		
					1.00	Wetness	1.00	
				Wetness	1.00	Slope	0.75	
							0.05	
18:								
Catden-------------	40	Severe		Poorly suited		Severe		
		Wetness	1.00		1.00	Wetness	1.00	
				Low strength Wetness	1.00	StrengthSlope	0.750.05	
					1.00			
Freetown------------ \|	40	Severe Wetness	1.00	Poorly suited		Severe		
						Wetness	1.00	
				Low strength	1.00	Strength	0.75	
				Wetness	1.00	Slope	0.05	
20A:								
Ellington----------	80	```Moderate Low strength```	0.50	Moderately suited Low strength	0.50	Severe		
						Strength	0.75	
						Wetness	0.50	
						Slope	0.15	
21A:								
Ninigret-----------	60	Slight		Well suited		Severe		
						Wetness	0.67	
						Strength	0.38	
						Slope	0.15	
Tisbury------------	25	Moderate   Low strength	0.50	Moderately suited Low strength	0.50	Severe		
						Strength	0.75	
						Wetness	0.67	
						Slope	0.10	
22A:								
Hero---------------	85	Slight		Well suited		Moderate		
						Wetness	0.50	
						Strength	0.38	
						Slope	0.10	
22B:								
Hero---------------	85	Slight		Moderately suited slope	0.50	Moderate		
						Wetness	0.50	
						Strength	0.38	
						slope	0.30	

Table 9.-Forestland Management-Continued


Table 9.-Forestland Management-Continued

Map symbol and soil name	Pct. of map unit	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
29A:   Agawam-	80	Moderate Sandiness	0.50	Moderately suited Sandiness	0.50	Slight Strength Slope	$\left\lvert\, \begin{aligned} & 0.38 \\ & 0.10 \end{aligned}\right.$
$29 \mathrm{~B}:$   Agawam	80	Moderate Sandiness	0.50	\| Moderately suited Sandiness Slope	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \end{aligned}\right.$	Slight Strength Slope	$\left\lvert\, \begin{aligned} & 0.38 \\ & 0.30 \end{aligned}\right.$
$29 \mathrm{C}:$   Agawam-	80	Moderate Sandiness	0.50	Moderately suited slope Sandiness	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \end{aligned}\right.$	Slight slope Strength	$\left\lvert\, \begin{aligned} & 0.60 \\ & 0.38 \end{aligned}\right.$
$30 \mathrm{~A}:$   Branford	80	Moderate Low strength Sandiness	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \end{aligned}\right.$	Moderately suited Sandiness Low strength	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \end{aligned}\right.$	Severe Strength Slope	$\left\lvert\, \begin{aligned} & 0.75 \\ & 0.10 \end{aligned}\right.$
30B:   Branford	80	Moderate Low strength Sandiness	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \end{aligned}\right.$	\|Moderately suited Sandiness Low strength	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \end{aligned}\right.$	Severe Strength slope	$\left\lvert\, \begin{aligned} & 0.75 \\ & 0.23 \end{aligned}\right.$
$\begin{aligned} & \text { 30C: } \\ & \text { Branford- } \end{aligned}$	80	Moderate Low strength Sandiness	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \end{aligned}\right.$	Moderately suited   Slope   Sandiness   Low strength	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \\ & 0.50 \end{aligned}\right.$	Severe Strength Slope	$\left\lvert\, \begin{aligned} & 0.75 \\ & 0.60 \end{aligned}\right.$
31A:   Copake	85	Slight		\| Well suited		Slight Strength Slope	$\left\lvert\, \begin{aligned} & 0.38 \\ & 0.10 \end{aligned}\right.$
31B:   Copake	85	Slight		\| Moderately suited Slope	0.50	Slight Strength Slope	$\left\lvert\, \begin{aligned} & 0.38 \\ & 0.30 \end{aligned}\right.$
31C:   Copake	85	Slight		Moderately suited slope	0.50	Slight slope Strength	$\left\lvert\, \begin{aligned} & 0.60 \\ & 0.38 \end{aligned}\right.$
32A:   Haven	60	Moderate   Low strength	0.50	\| Moderately suited Low strength	0.50	Severe Strength Slope	$\left\lvert\, \begin{aligned} & 0.75 \\ & 0.10 \end{aligned}\right.$
Enfield------------	25	Moderate   Low strength	0.50	\| Moderately suited Low strength	0.50	Severe Strength Slope	$\left\lvert\, \begin{aligned} & 0.75 \\ & 0.10 \end{aligned}\right.$
32B:   Haven	60	Moderate   Low strength	0.50	\|Moderately suited Low strength Slope	$\left\lvert\, \begin{array}{l\|l} 0.50 \\ 0.50 \end{array}\right.$	Severe Strength Slope	$\left\lvert\, \begin{aligned} & 0.75 \\ & 0.30 \end{aligned}\right.$

Table 9.-Forestland Management-Continued


Table 9.-Forestland Management-Continued


Table 9.-Forestland Management-Continued

Map symbol and soil name	Pct.   of   map   unit	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
41B:							
Ludlow----------	80	Moderate   Low strength	0.50	Low strength	0.50	Strength	0.75
						Wetness	0.50
						slope	0.25
42C:							
Ludlow----------	80	Moderate		Moderately suited		Severe	
		Stoniness	0.50	Slope	0.50	Strength	0.75
		Low strength	0.50	Rock fragments	0.50	Wetness	0.50
				Low strength	0.50	Slope	0.45
43A:							
Rainbow---------	80	Moderate   Low strength	0.50	Moderately suited Low strength	0.50	Severe	
						Strength	0.75
						Wetness	0.58
						slope	0.10
43B :							
Rainbow---------	80	Moderate	0.50	\| Moderately suited		Severe	
		Low strength		Low strength	0.50	Strength	0.75
				Slope	0.50	Wetness	0.58
						Slope	0.30
44B :							
Rainbow---------	80	Moderate   Low strength	0.50	\| Moderately suited Low strength Slope		Severe	
					0.50	Strength	0.75
					0.50	Wetness	0.58
						Slope	0.30
45A:							
Woodbridge------	80	Slight		Well suited		Moderate	
						Wetness	0.58
						Strength	0.38
						Slope	0.10
45B :							
Woodbridge------	80	Slight		Moderately suited slope	0.50	Moderate	
						Wetness	0.58
						Strength	0.38
						Slope	0.30
45C:							
Woodbridge------	80	Slight		Moderately suited Slope	0.50	Moderate	
						slope	0.60
						Wetness	0.58
						Strength	0.38
46B:							
Woodbridge------	80	Slight		\|Well suited		Moderate	
						Wetness	0.58
						Strength	0.38
						Slope	0.25
46C:							
Woodbridge	80	Slight		Moderately suited Slope	0.50	Moderate Slope	0.60
						Wetness	0.58
						Strength	0.38

Table 9.-Forestland Management-Continued

Map symbol and soil name	Pct.   of   map   unit	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
47C:Woodbridge	80	Moderate Stoniness	0.50	\|Moderately suited Slope   Rock fragments	0.500.50		
						Moderate	
						Wetness	0.58
						Slope	0.45
						Strength	0.38
48B:							
Georgia------------	50	```Moderate Low strength```	0.50	Moderately suited Low strength	0.50	Severe	
						Strength	0.75
						Wetness	0.58
						Slope	0.25
Amenia------------	35	Moderate   Low strength	0.50	Moderately suited	0.50	Severe	
				Low strength		Strength	0.75
						Wetness	0.58
						Slope	0.25
48C:							
Georgia------------	50	Moderate	0.50	Moderately suited		Severe	
		Low strength		Slope	0.50	Strength	0.75
				Low strength	0.50	Slope	0.60
						Wetness	0.58
Amenia--------------	35	Moderate Low strength	0.50	Moderately suited Slope   Low strength		Severe	
					0.50	Strength	0.75
					0.50	Slope	0.60
						Wetness	0.58
49B:							
Georgia------------	50	```Moderate Low strength Stoniness```	0.50	Moderately suited		Severe	
				Low strength	0.50	Strength	0.75
			0.50	Rock fragments	0.50	Wetness	0.58
				Slope	0.50	slope	0.30
Amenia------------	35	Moderate Low strength Stoniness	0.50	Moderately suited		Severe	
				Low strength	0.50	Strength	0.75
			0.50	Rock fragments	0.50	Wetness	0.58
				Slope	0.50	Slope	0.30
49C:							
Georgia-----------	50	Moderate		Moderately suited		Severe	
		Stoniness	0.50	Slope	0.50	Strength	0.75
		Low strength	0.50	Low strength	0.50	Slope	0.60
				Rock fragments	0.50	Wetness	0.58
Amenia------------- \|	35	Moderate Stoniness Low strength	$\begin{aligned} & 0.50 \\ & 0.50 \end{aligned}$	\|Moderately suited Slope Low strength Rock fragments		Severe	
					0.50	Strength	0.75
					0.50	Slope	0.60
					0.50	Wetness	0.58
50A:							
Sutton-------------- \|	80	Slight		Well suited		Moderate	
						Wetness	0.50
						Strength	0.38
						Slope	0.10
50B:							
Sutton-------------	80	Slight		\|Moderately suited Slope	0.50	Moderate	
						Wetness	0.50
						Strength	0.38
						Slope	0.30

Table 9.-Forestland Management-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard	
		Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
$\begin{aligned} & \text { 51B: } \\ & \text { Sutton } \end{aligned}$	80	Slight		Well suited		Moderate	
						Wetness	0.50
						Strength	0.38
						Slope	0.25
52C:							
Sutton------------- \|	80	Moderate Stoniness	0.50	Moderately suited Slope   Rock fragments	0.500.50	Moderate	
						Wetness	0.50
						slope	0.45
						Strength	0.38
53A:							
Wapping------------	80	Moderate   Low strength	0.50	Moderately suited Low strength	0.50	Severe	
						Strength	0.75
						Wetness	0.50
						Slope	0.10
53B :   Wapping							
	80	```Moderate Low strength```	0.50	Moderately suited		Severe	
				Low strength	0.50	Strength	0.75
				Slope	0.50	Wetness	0.50
						slope	0.30
54B:							
Wapping-------------	80	\| Moderate   Low strength	0.50	Moderately suited Low strength	0.50		
						Strength	0.75
						Wetness	0.50
						Slope	0.25
55A:	80	Slight					
Watchaug-----------				Well suited		Moderate	
						Wetness	0.50
						Strength	0.38
						Slope	0.10
55B:							
Watchaug-----------	80	Slight		Moderately suited Slope	0.50	Moderate	
						Wetness	0.50
						Strength	0.38
						Slope	0.30
56B:	80						
Watchaug------------ \|		Slight		Well suited		Moderate	
						Wetness	0.50
						Strength	0.38
						slope	0.25
57B:							
Gloucester---------	80	Moderate Sandiness	0.50	Moderately suited   Sandiness		Slight	
					0.50	Strength	0.38
				Slope	0.50	slope	0.30
57C:							
Gloucester---------	80	Moderate Sandiness	0.50	Moderately suited slope Sandiness		Slight	
					0.50	Slope	0.60
					0.50	Strength	0.38

Table 9.-Forestland Management-Continued

Map symbol and soil name	Pct.   of   map   unit	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard			
		Rating class and limiting features	\| Value	Rating class and limiting features	Value	Rating class and limiting features	Value		
57D:									
Gloucester---------	80	Moderate		Poorly suited		Moderate			
		Slope	0.50	Slope	1.00	Slope	1.00		
		Sandiness	0.50	Sandiness	0.50	Strength	0.38		
58B :									
Gloucester---------	80	ModerateSandiness		Moderately suited		Slight			
			0.50	Sandiness	0.50	Strength	0.38		
				Slope	0.50	Slope	0.30		
58C:									
Gloucester---------	80	ModerateSandiness		\| Moderately suited		Slight			
			0.50	Slope	0.50	Slope	0.60		
				Sandiness	0.50	Strength	0.38		
59C:									
Gloucester---------	80	Moderate		Moderately suited		Slight			
		Stoniness	0.50	Slope	0.50	Slope	0.45		
		Sandiness	0.50	Rock fragments	0.50	Strength	0.38		
				Sandiness	0.50				
59D:									
Gloucester---------	80	Moderate   Slope		Poorly suited   Slope		Moderate			
				slope	1.00				
		Stoniness	0.50			Rock fragments	0.50	Strength	0.38
		Sandiness	0.50	Sandiness	0.50				
60B:									
Canton------------- \|	45	Slight		Moderately suited Slope		Slight			
					0.50	Strength	0.38		
						Slope	0.30		
Charlton-----------	35	Slight		\| Moderately suited Slope		Slight			
					0.50	Strength	0.38		
						Slope	0.30		
60C:									
Canton-------------	45	Slight		Moderately suited Slope		Slight			
					0.50	Slope	0.60		
						Strength	0.38		
Charlton-----------	35	Slight		$\left\lvert\, \begin{gathered}\text { Moderately suited } \\ \text { Slope }\end{gathered}\right.$		Slight			
					0.50	Slope	$0.60$		
						Strength	$0.38$		
60D:									
Canton-------------	45	\|Moderate	0.50	Poorly suited Slope		Moderate			
					1.00	slope	1.00		
						Strength	0.38		
Charlton-----------	35	Moderate slope		$\begin{array}{\|l} \text { Poorly suited } \\ \text { Slope } \end{array}$		Moderate			
			0.50		1.00	Slope	1.00		
						Strength	0.38		
61B:									
Canton-------------	45	Slight		\|Moderately suited Slope		Slight			
					0.50	Strength	0.38		
						Slope	0.30		
Charlton-----------	35	Slight		\|Moderately suited Slope		Slight			
					0.50	Strength	0.38		
						slope	0.30		

Table 9.-Forestland Management-Continued

Map symbol and soil name	Pct.   of   map   unit	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard	
		Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	Value
61C:							
Canton----------	45	Slight		$\left\lvert\, \begin{gathered}\text { Moderately suited } \\ \text { Slope }\end{gathered}\right.$		Slight	
					0.50	Slope	0.60
						Strength	0.38
Charlton--------	35	Slight		Moderately suited		Slight	
				slope	0.50	Slope	0.60
						Strength	0.38
62C:							
Canton----------	45	Moderate Stoniness	0.50	Moderately suited		Slight	
				Slope   Rock fragments	0.50	Slope	0.45
					0.50	Strength	0.38
Charlton--------	35	ModerateStoniness	0.50	\| Moderately suited		Slight	
					0.50	Slope	0.45
				Rock fragments	0.50	Strength	0.38
62D:							
Canton----------	45	ModerateSlopeStoniness		Poorly suited		Moderate	
			0.50	\| Slope	\| 1.00	Slope	11.00
			0.50	Rock fragments	0.50	Strength	0.38
Charlton--------	35	Moderate Slope Stoniness		$\left\lvert\, \begin{aligned} & \text { Poorly suited } \\ & \text { Slope } \\ & \text { Rock fragments }\end{aligned}\right.$		Moderate	
			0.50		11.00		1.00
			0.50		0.50	Strength	0.38
63B :							
Cheshire--------	80	Slight		$\left\lvert\, \begin{gathered}\text { Moderately suited } \\ \text { Slope }\end{gathered}\right.$		Slight	
					0.50	Strength	0.38
						Slope	0.30
63C:							
Cheshire--------	80	Slight		Moderately suited Slope		Slight	
					0.50	Slope	0.60
						Strength	0.38
63D:							
Cheshire--------	80	Moderate Slope	0.50	$\begin{aligned} & \text { Poorly suited } \\ & \text { Slope } \end{aligned}$	1.00	Moderate	
						slope	1.00
						Strength	0.38
64B :							
Cheshire--------	80	Slight		$\left\lvert\, \begin{aligned} & \text { Moderately suited } \\ & \text { Slope }\end{aligned}\right.$		Slight	
					0.50	Strength	0.38
						Slope	0.30
64C:							
Cheshire	80	Slight		Moderately suited		Slight	
				Slope	0.50	Slope	0.60
						Strength	0.38
65C:							
Cheshire--------	80	Moderate Stoniness	0.50	Moderately suited Slope   Rock fragments		Slight	
					0.50 0.50	Slope Strength	$\begin{array}{\|l} 0.45 \\ 0.38 \end{array}$
65D:Cheshire							
	80	Moderate Slope Stoniness		Poorly suited		Moderate	
			0.50	Slope	1.00	Slope	1.00
			0.50	\| Rock fragments	0.50	Strength	\| 0.38

Table 9.-Forestland Management-Continued


Table 9.-Forestland Management-Continued


Table 9.-Forestland Management-Continued


Table 9.-Forestland Management-Continued


Table 9.-Forestland Management-Continued

Map symbol and soil name	Pct.   of   map   unit	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
82D:							
Broadbrook--------- \|	80	Moderate Slope	0.50	Poorly suited	1.00	Severe	
						Slope	1.00
				Low strength	0.50	Strength	0.75
						Wetness	0.17
83B:							
Broadbrook--------- \|	80	Moderate   Low strength	0.50	Moderately suited		Severe	
				Low strength	0.50	Strength	0.75
				Slope	0.50	Slope	0.30
						Wetness	0.17
83C:							
Broadbrook--------- \|	80	Moderate	0.50	Moderately suitedSlope		Severe	
		Low strength			0.50	Strength	0.75
				Low strength	$0.50$	Slope	0.60
						Wetness	0.17
84B :							
Paxton-------------	55	Slight		Moderately suited Slope		Moderate	
					0.50	Wetness	0.50
						Strength	0.38
						Slope	0.30
Montauk------------	30	Slight		Moderately suited Slope	0.50	Moderate	
						Wetness	0.50
						Strength	0.38
						Slope	0.30
84C:							
Paxton-------------	55	Slight		\|Moderately suited Slope	0.50	Moderate	
						Slope	0.60
						Wetness	0.50
						Strength	0.38
Montauk------------	30	Slight		Moderately suited Slope	0.50	Moderate	
						Slope	0.60
						Wetness	0.50
						Strength	0.38
84D:							
Paxton-------------	55	$\begin{array}{\|c} \text { Moderate } \\ \text { Slope } \end{array}$	0.50	Poorly suitedSlope	1.00	Moderate	
						Slope	1.00
						Wetness	0.50
						Strength	0.38
Montauk------------ \|	30	Moderate Slope	0.50	$\begin{array}{\|l} \text { Poorly suited } \\ \text { Slope } \end{array}$	1.00	Moderate	
						slope	1.00
						Wetness	0.50
						Strength	0.38
85B :							
Paxton-------------	55	Slight		Moderately suited Slope	0.50	Moderate	
						Wetness	0.50
						Strength	0.38
						Slope	0.30
Montauk------------- \|		Slight					
	30			\|Moderately suited Slope	0.50	Moderate	0.50
						Strength	0.38
						Slope	0.30

Table 9.-Forestland Management-Continued


Table 9.-Forestland Management-Continued

Map symbol and soil name	Pct.   of   map   unit	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value
89C:							
Wethersfield	80	Stoniness	0.50	Slope	0.50	Strength	0.75
		Low strength	0.50	Rock fragments	0.50	Slope	0.45
				Low strength	0.50	Wetness	0.25
				Wetness	0.50		
89D:							
Wethersfield-------	80	Moderate		Poorly suited		Severe	
		slope	0.50	Slope	1.00	Slope	1.00
		Stoniness	0.50	Rock fragments	0.50	Strength	0.75
				Low strength	0.50	Wetness	0.25
				Wetness	0.50		
90B:							
Stockbridge--------	80	Moderate   Low strength		Moderately suited		Severe	
			0.50	Low strength	0.50	Strength	0.75
				Slope	$0.50$	Slope	$0.30$
90C:							
Stockbridge-------- \|	80	Moderate		Moderately suited		Severe	
		Low strength	0.50	slope	0.50	Strength	0.75
				Low strength	0.50	Slope	0.60
90D:							
Stockbridge--------	80	$\begin{gathered} \text { Moderate } \\ \text { Slope } \end{gathered}$		Poorly suited		Severe	
			0.50	Slope	$\text { \| } 1.00$	Slope	
				Low strength	$0.50$	Strength	$0.75$
91B:							
Stockbridge--------	80	Moderate   Low strength		Moderately suited		\|Severe	
			0.50	Low strength	0.50	Strength	0.75
				slope	0.50	Slope	0.30
91C:							
Stockbridge--------	80	Moderate Low strength	0.50	Moderately suited	0.50	Severe	
				Low strength	0.50	Slope	0.60
91D:							
Stockbridge--------	80	Moderate Slope		Poorly suited		\| Severe	
			0.50	Slope	1.00	Slope	1.00
				Low strength	0.50	Strength	0.75
92B:							
Nellis------------- \|	85	Slight		Moderately suited Slope		Slight	
					0.50	Strength	0.38
						Slope	0.30
92C:							
Nellis-------------	85	Slight		\| Moderately suited Slope		Slight	
					0.50	Slope	$0.60$
						Strength	$0.38$
92D:							
Nellis-------------	85	$\begin{array}{\|c} \text { Moderate } \\ \text { Slope } \end{array}$		$\begin{aligned} & \text { Poorly suited } \\ & \text { Slope } \end{aligned}$		Moderate	
			0.50		1.00	slope   Strength	1.00   0.38
						Strength	0.38

Table 9.-Forestland Management-Continued


Table 9.-Forestland Management-Continued

Map symbol and soil name	Pct.   of   map   unit	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard			
		Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value		
98:									
Westbrook----------- \|	80	Severe		\| Poorly suited		Severe			
		FloodingWetness	1.00	Ponding	11.00	Wetness	1.00		
			1.00	Flooding	1.00	StrengthSlope	0.75		
		Wetness		Low strength	1.00		0.05		
					1.00				
99:									
Westbrook, low salt-	80	Severe    Flooding 1.00		Poorly suited		Severe	1.00		
				1.00	Wetness				
		Wetness	1.00		Flooding   Low strength Wetness	1.00	StrengthSlope	0.750.05	
				1.00					
				1.00		Slope	0.05		
100:									
Suncook------------	80	Slight		Well suited		Slight			
						Strength	0.38		
						Wetness	0.33		
						Slope	0.10		
101:									
Occum--------------	80	Moderate		\|Moderately suited		Moderate			
		Flooding Sandiness	0.50			Wetness	0.50		
			0.50	Flooding   Sandiness	0.50	Strength   Slope	$\begin{aligned} & 0.38 \\ & 0.10 \end{aligned}$		
					0.50				
102:									
Pootatuck----------- \|	80	Severe		Poorly suitedFlooding	1.00	Moderate			
		Flooding	1.00			Wetness	0.50		
		Sandiness	0.50	Flooding		Strength	0.38		
						slope	0.10		
103:									
Rippowam-----------	80	Severe    Flooding 1.00		Poorly suited    Flooding 1.00		Severe			
					0.83				
		Sandiness	$0.50$			Wetness	1.00	Strength Slope	
				0.10					
104:									
Bash--------------	80	Severe		Poorly suited		Severe			
		Flooding	1.00	Flooding	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \end{aligned}\right.$	Wetness	1.00		
		Wetness	0.50	Low strength		Strength	0.75		
		Low strength	0.50			Slope	0.10		
105:									
Hadley------------	80	$\begin{aligned} & \text { Moderate } \\ & \text { Flooding } \\ & \text { Low strength } \end{aligned}$	0.50	\|Moderately suited Flooding		Severe			
					0.50	Strength			
			0.50	Low strength	0.50	Wetness	0.50		
						Slope	0.10		
106:									
Winooski-----------	80	Severe		Poorly suited		Severe			
		Flooding	1.00	Flooding	1.00	Strength	0.75		
		Low strength	0.50	Low strength	0.50	Wetness	0.50		
						Slope	0.10		
107:									
Limerick-----------	50	Severe Flooding Low strength		Poorly suited		Severe			
			$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \end{aligned}\right.$	Flooding	1.00	Wetness	0.83		
				Wetness	1.00	Strength	0.75		
				Low strength	0.50	Slope	0.10		

Table 9.-Forestland Management-Continued


Table 9.-Forestland Management-Continued

Map symbol and soil name	Pct.   of map unit	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
$\begin{aligned} & \text { 307: } \\ & \text { Urban land } \end{aligned}$	80	Not rated		Not rated		Not rated	
Udorthents	80	Moderate		Poorly suited		Severe	
		Slope	0.50	slope	1.00	Slope	0.90
				Low strength	0.50	Strength	0.75
						Wetness	0.50
309 :							
Udorthents---------	80	Moderate		Poorly suited		\| Severe	
		slope	0.50	Slope	\| 1.00	Slope	0.90
				Low strength	0.50	Strength	0.75
						Wetness	0.50
310:							
$\begin{aligned} & \text { Udorthents, } \\ & \text { Periodically } \\ & \text { Flooded---- } \end{aligned}$							
	85	Severe		Poorly suited		Severe	
		Flooding	11.00	Flooding	1.00	Slope	0.90
		Slope	0.50	Slope	\| 1.00	Strength	0.75
				Low strength	0.50	Wetness	0.50
401C:							
Macomber-----------	55	Moderate		Moderately suited		Slight	
		Restrictive layer\|	0.50	\| Slope	0.50	\| Slope	0.60
						Strength	0.08
Taconic-----------	30	\| Severe		Moderately suited		Slight	
		Restrictive layer\|	1.00	slope	0.50	Slope	0.40
						Strength	0.08
402D:							
Macomber-----------	50	\| Severe		Poorly suited		Moderate	
		Restrictive layer\|	1.00	Slope	1.00	Slope	1.00
		Slope	0.50			Strength	0.08
Taconic------------	25	Severe		Poorly suited		Moderate	
		Restrictive layer Slope	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \end{aligned}\right.$	Slope	1.00	Slope Strength	$\left\lvert\, \begin{aligned} & 1.00 \\ & \mid 0.08 \end{aligned}\right.$
Rock outcrop--------	15	Not rated		Not rated		Not rated	
```403C: Taconic```	70	Severe   Restrictive layer	1.00	Moderately suited		Slight	
				slope	0.50	slope	0.40
Rock outcrop-------	25	Not rated		Not rated		Not rated	
403E:							
Taconic-----------	70	Severe Slope		Poorly suited		Moderate	
			11.00	\| Slope	1.00	slope	1.00
						Strength	0.08

Table 9.-Forestland Management-Continued

Table 9.-Forestland Management-Continued

Table 9.-Forestland Management-Continued

Table 9.-Forestland Management-Continued

Map symbol and soil name	Pct. of map unit	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	Value
424B:							
Shelburne	85	Slight		Slope	0.50	Wetness	0.50
				Wetness	0.50	Strength	0.38
						slope	0.30
424C:							
Shelburne-------	85	Slight		Moderately suited		\| Moderate	
				\| Slope	0.50	Slope	0.60
				Wetness	0.50	Wetness	0.50
						Strength	0.38
424D:							
Shelburne-------	85	Moderate slope	0.50	Poorly suitedSlope		Moderate	
					1.00	Slope	1.00
				Wetness	0.50	Wetness	0.50
						Strength	0.38
425B:							
Shelburne------	85	Slight		Moderately suited Slope		Moderate	
					0.50	Wetness	0.50
				Wetness	0.50	Strength	0.38
						Slope	0.30
425C:							
Shelburne-------	85	Slight		Moderately suited		Moderate	
					0.50	Slope	0.60
				Wetness	0.50	Wetness	0.50
						Strength	0.38
426D:							
Shelburne-------	85	Moderate		\| Poorly suited		Moderate	
		\| slope	0.50	\| slope	1.00	Slope	1.00
		Stoniness	0.50	Rock fragments Wetness	0.50	Wetness	0.50
					0.50	Strength	0.38
427B :							
Ashfield-------	85	Slight		Moderately suited		Severe	
				Wetness	0.50	Strength	0.75
				Low strength	0.50	Wetness	0.42
				Slope	0.50	Slope	0.30
427C:							
Ashfield-------	85	Slight		\| Moderately suited		Severe	
				\| Slope	0.50	Strength	0.75
				Wetness	0.50	Slope	0.60
				Low strength	0.50	Wetness	0.42
428A:							
Ashfield-------	85	Slight		Moderately suited		\| Severe	
				Wetness	0.50	Strength	0.75
				Low strength	0.50	Wetness	0.42
						Slope	0.10
428B:							
Ashfield-------	85	Slight		Moderately suited		Severe	
				Wetness	0.50	Strength	0.75
				Low strength	0.50	Wetness	0.42
				Slope	0.50	slope	0.30

Table 9.-Forestland Management-Continued

Table 9.-Forestland Management-Continued

Table 9.-Forestland Management-Continued

Table 9.-Forestland Management-Continued

Map symbol and soil name	Pct. of map unit	Limitations affecting construction of haul roads and log landings		Suitability for log landings		Soil rutting hazard	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
508:							
Medomak	85	Severe		Poorly suited		Severe	
		Flooding	1.00	Ponding	1.00	Wetness	1.00
		Wetness	1.00	Flooding	1.00	Strength	0.75
		Low strength	0.50	Wetness	1.00	Slope	0.05
		Sandiness	0.50	Sandiness	0.50		
				Low strength	0.50		

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Hazard of off-road or off-trail erosion		Hazard of erosion on roads and trails		Suitability for roads (natural surface)		
		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
2 :								
Ridgebury----------	80	Slight		Slight		Poorly suited Wetness	1.00	
3:								
Ridgebury----------	40	Slight		Slight		Poorly suited	1.00	
						Rock fragments	0.50	
Leicester----------	35	Slight		Slight		Poorly suited		
						Wetness	1.00	
						Rock fragments	0.50	
Whitman-------------	15	\|Slight		Slight		\|Poorly suited		
						Ponding	1.00	
						Wetness	1.00	
						Rock fragments	0.50	
4:								
Leicester----------	80	Slight		Slight		Poorly suited Wetness	1.00	
5 :								
Wilbraham---------- \|	80	Slight		Slight		Poorly suited		
						Wetness	1.00	
						Low strength	0.50	
6 :								
Wilbraham----------	60	Slight		Slight		Poorly suited		
						Wetness	1.00	
						Rock fragments	0.50	
						Low strength	0.50	
Menlo--------------	25	Slight		Slight		Poorly suited		
						Ponding	1.00	
						Wetness	1.00	
						Rock fragments	0.50	
7 :								
Mudgepond----------	85	Slight		Slight		Poorly suited		
						Wetness	1.00	
						Low strength	0.50	
8 :								
Mudgepond----------	45	Slight		Slight		Poorly suited \| 00		
						Wetness	1.00	
						Rock fragments	0.50	
						Low strength	0.50	
Alden--------------	35	Slight		Slight		Poorly suited		
						Ponding	1.00	
						Wetness	1.00	
						Rock fragments	0.50	
						Low strength	0.50	

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Map symbol and soil name	Pct. of map unit	Hazard of off-road or off-trail erosion		Hazard of erosion on roads and trails		Suitability for roads (natural surface)	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
$\begin{aligned} & \text { 43A: } \\ & \text { Rainbow- } \end{aligned}$	80	Slight		Slight		Moderately suited Low strength	0.50
Rainbow-	80	Slight			0.50	Moderately suited Low strength Slope	$\begin{aligned} & 0.50 \\ & 0.50 \end{aligned}$
$\begin{aligned} & \text { 44B: } \\ & \text { Rainbow } \end{aligned}$	80	Slight		```\|Moderate ```	0.50	Moderately suited Low strength Slope	$\begin{aligned} & 0.50 \\ & 0.50 \end{aligned}$
45A: Woodbridge	80	Slight		Slight		Well suited	
45B : Woodbridge	80	Slight		```Moderate ```	0.50	Moderately suited Slope	0.50
Woodbridge	80	Slight		Moderate Slope/erodibility	0.50	Moderately suited Slope	0.50
Woodbridge	80	Slight		```\|Moderate ```	0.50	Well suited	
46C: Woodbridge	80	Slight		```Moderate slope/erodibility```	0.50	Moderately suited Slope	0.50
47C: Woodbridge--	80	Slight		Moderate Slope/erodibility	0.50	Moderately suited Slope Rock fragments	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \end{aligned}\right.$
```48B : Georgia```	50	Slight		```Moderate ```	0.50	Moderately suited Low strength	0.50
Amenia---	35	Slight		```Moderate Slope/erodibility```	0.50	Moderately suited Low strength	0.50
$48 \mathrm{C}:$ Georgia	50	Slight		```Severe Slope/erodibility```	0.95	Moderately suited Slope Low strength	$\begin{array}{\|l\|l} 0.50 \\ 0.50 \end{array}$
Amenia---	35	Slight		```Severe ```	0.95	Moderately suited slope   Low strength	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \end{aligned}\right.$
```49B: Georgia```	50	Slight		Moderate Slope/erodibility	0.50	Moderately suited Low strength Rock fragments Slope	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \\ & 0.50 \end{aligned}\right.$

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

7Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Map symbol and soil name	Pct. of map unit	Hazard of off-road or off-trail erosion		Hazard of erosion on roads and trails		Suitability for roads (natural surface)	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
98:							
Westbrook-----------	80	\|Very Severe Organic matter content high	1.00	\|Very Severe Organic matter content high	1.00	Poorly suited Ponding	1.00
						Flooding	1.00
						Low strength	1.00
						Wetness	1.00
99:							
Westbrook, low salt-\|	80	Very Severe Organic matter content high	\| 1.00	\|Very Severe Organic matter content high	1.00	Poorly suited Ponding	1.00
						Flooding	1.00
						Low strength	1.00
						Wetness	
100 :							
Suncook------------	80	Slight		Slight		Well suited	
101:							
Occum--------------- \|	80	Slight		Slight		Moderately suited	
						Flooding	0.50
						Sandiness	0.50
102:							
Pootatuck----------	80	Slight		Slight		$\begin{gathered} \text { Poorly suited } \\ \text { Flooding } \end{gathered}$	1.00
103:							
Rippowam-----------	80	Slight		Slight		Poorly suited	
						Wetness	1.00
$104 \text { : }$							
	80	Slight		Slight		Flooding	1.00
						Low strength	0.50
105 :							
Hadley------------	80	Slight		Slight		\|Moderately suited	
						Low strength	0.50
106:							
Winooski------------	80	Slight		Slight		Poorly suited	
						Flooding Low strength	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \end{aligned}\right.$
107:							
Limerick-----------	50	Slight		Slight		Poorly suited	
						Flooding	1.00
						Wetness	$1 \begin{aligned} & 1.00 \\ & 0.50\end{aligned}$
						Low strength	0.50
Lim----------------	30	Slight		Slight		Poorly suited	
						Flooding	1.00
						Wetness	\| 1.00
						Low strength	0.50

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Map symbol and soil name	Pct. of map unit	Hazard of off-road or off-trail erosion		Hazard of erosion on roads and trails		Suitability for roads (natural surface)	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
250B:							
Sutton-	40	Slight		Slight		Well suited	
Urban land--	35	Not rated		Not rated		Not rated	
253B:							
Wapping--	40	Slight			0.50	\| Moderately suited Low strength	0.50
Urban land--	35	Not rated		Not rated		Not rated	
255B:							
Watchaug---	40	Slight		Slight		Well suited	
Urban land--	35	Not rated		Not rated		Not rated	
$260 \mathrm{~B}:$							
				\| Slope/erodibility	0.50	slope	0.50
Urban land----	35	Not rated		Not rated		Not rated	
$260 \mathrm{C}:$							
				Slope/erodibility	0.50	slope	0.50
Urban land----	35	Not rated		Not rated		Not rated	
260D:							
		Slope/erodibility	0.50	Slope/erodibility	0.95	slope	1.00
Urban land------	35	Not rated		Not rated		Not rated	
263B:							
				Slope/erodibility	0.50	slope	0.50
Urban land------	35	Not rated		Not rated		Not rated	
$\begin{aligned} & 263 \mathrm{C}: \\ & \text { Cheshire-- } \end{aligned}$	40	Slight		Moderate		Moderately suited	
				slope/erodibility	0.50	Slope	0.50
Urban land------	35	Not rated		Not rated		Not rated	

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Map symbol and soil name	Pct. of map unit	Hazard of off-road or off-trail erosion		Hazard of erosion on roads and trails		Suitability for roads (natural surface)		
		Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	Value	
275E:								
Rock outcrop---	15	Not rated		Not rated		Not rated		
282B:								
Broadbrook-	40	Slight		```\|Moderate ```	0.50	Moderately suited Low strength Slope	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \end{aligned}\right.$	
Urban land-	35	Not rated		Not rated		Not rated		
284B:								
Paxton--	40	Slight		```\|Moderate```	0.50	Moderately suited slope	0.50	
Urban land--	35	Not rated		Not rated		Not rated		
284C:								
				Slope/erodibility	0.50	Slope	0.50	
Urban land--	35	Not rated		Not rated		Not rated		
284D:								
		slope/erodibility	0.50	\| Slope/erodibility		0.95	Slope	11.00
Urban land--	35	Not rated		Not rated		Not rated		
287B:								
				\| Slope/erodibility	0.50	Low strength Slope	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \end{aligned}\right.$	
Urban land-----	35	Not rated		Not rated		Not rated		
287C:								
				Slope/erodibility	0.95	Slope Low strength	$\left\lvert\, \begin{aligned} & 0.50 \\ & 0.50 \end{aligned}\right.$	
Urban land--	35	Not rated		Not rated		Not rated		

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 10.-Hazard of Erosion and Suitability for Roads on Forestland-Continued

Table 11.-Damage by Fire and Seedling Mortality on Forestland
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential for damage to soil by fire		Potential for seedling mortality	
		Rating class and limiting features	Value	Rating class and limiting features	Value
2:					
Ridgebury-------	80	$\begin{array}{\|l} \text { Low } \\ \text { Texture/rock } \\ \text { fragments } \end{array}$	0.10	$\begin{array}{\|l} \text { High } \\ \text { Wetness } \end{array}$	1.00
3:					
Ridgebury-------	40	Low		\| High	
		Texture/rock fragments	0.10	Wetness	1.00
Leicester-------	35	Low		\| High	
		Texture/rock fragments	0.10	Wetness	1.00
Whitman---------	15	Low		\| High	
		Texture/rock fragments	0.10	Wetness	1.00
4:					
Leicester-------	80	\|Low		\|High	
		Texture/rock fragments	0.10	\| Wetness	1.00
5:					
Wilbraham-------	80	Moderate		\| High	
		Texture/surface depth/rock fragments	0.50	Wetness	1.00
6 :					
Wilbraham-------	60	Moderate Texture/surface depth/rock fragments	0.50	High \quad Wetness	
					1.00
Menlo-----------	25	Low	0.10	High	
		Texture/rock fragments		Wetness	1.00
7:					
Mudgepond-------	85	Low	0.10	High	
		Texture/rock fragments		Wetness	1.00
8 :					
Mudgepond-------	45	Low Texture/rock fragments		High	
			0.10	Wetness	1.00
Alden-----------	35	Moderate	0.50	High	1.00
		Texture/surface depth/rock fragments		Wetness	

Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued

Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued

Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued

Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued

Map symbol and soil name	\mid Pct.of\mid map\mid unit	Potential for damage to soil by fire		Potential for seedling mortality	
		Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
32A:					
Haven-----------	60	Low Texture/rock fragments	0.10	Low	
Enfield---------	25	Low	0.10	Low	
		Texture/rock fragments			
32B:					
Haven----------	60	Low Texture/rock fragments	0.10	Low	
Enfield---------	25	Low Texture/rock fragments	0.10	Low	
32C:					
Haven-----------	60	Low Texture/rock fragments		Low	
			0.10		
Enfield---------	25	Low Texture/rock fragments		Low	
			0.10		
33A:					
Hartford--------	80	Low Texture/rock fragments		Low	
			0.10		
33B:					
Hartford--------	80	Low Texture/rock fragments		Low	
			0.10		
34A:					
Merrimac--------	80	Low Texture/rock fragments		Low	
			0.10		
34B:					
Merrimac-------	80	Low Texture/rock fragments		Low	
			0.10		
34C:					
Merrimac-------	80	Low		Low	
		```Texture/rock fragments```	0.10		
35A:					
Penwood--------	80	Moderate Texture/rock fragments	0.50	Low	
35B :					
Penwood--------	80	Moderate Texture/rock fragments	0.50	Low	

Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued

```Map symbol and soil name```	$\left\|\begin{array}{\|c\|} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{array}\right\|$	Potential for damage to soil by fire		Potential for seedling mortality	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value
46C:					
Woodbridge---------	80	Low		Low	
		Texture/rock fragments	0.10		
47C:					
Woodbridge----------	80	Low		Low	
		Texture/rock fragments	0.10		
48B :					
Georgia-----------	50	Low		Low	
		```Texture/rock fragments```	0.10		
Amenia-------------	35	Low		Low	
		```Texture/rock fragments```	0.10		
48C:					
Georgia-----------	50	Low		Low	
		Texture/rock fragments	0.10		
Amenia------------	35	Low		Low	
		Texture/rock fragments	0.10		
49B:					
Georgia------------	50	Low		Low	
		```Texture/rock fragments```	0.10		
Amenia-------------	35	Low		Low	
		```Texture/rock fragments```	0.10		
```49C: Georgia```					
	50	Low		Low	
		```Texture/rock fragments```	0.10		
Amenia------------	35	\| Low		Low	
		Texture/rock fragments	0.10		
50A:					
Sutton-------------	80	Low		Low	
		Texture/rock fragments	0.10		
50B:					
Sutton-------------	80	Low		Low	
		```Texture/rock fragments```	0.10		
51B :					
Sutton-------------	80	Low		Low	
		Texture/rock fragments	0.10		

Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued

Map symbol and soil name	Pct.   of map unit	Potential for damage to soil by fire		Potential for seedling mortality	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
58C:					
Gloucester--	80	Low		Low	
		```Texture/surface depth/rock fragments```	0.10		
59C:					
Gloucester----	80	Low		Low	
		Texture/surface depth/rock	0.10		
59D:					
Gloucester-----	80	Low		Low	
		Texture/surface depth/rock fragments	0.10		
60B:					
Canton----------	45	Low		Moderate	
		Texture/surface depth/rock fragments	0.10	Soil reaction	0.50
Charlton--------	35	Low		Low	
		```Texture/surface depth/rock fragments```	0.10		
60C:					
Canton----------	45	Low		Moderate	
		Texture/surface depth/rock fragments	0.10	\| Soil reaction	0.50
Charlton--------	35	Low		Low	
		Texture/surface depth/rock fragments	0.10		
60D:					
Canton----------	45	Low		Moderate	
		Texture/surface depth/rock fragments	0.10	Soil reaction	0.50
Charlton--------	35	Low		Low	
		Texture/surface depth/rock fragments	0.10		
61B :					
Canton----------	45	Low   Texture/surface depth/rock fragments		Moderate	
			0.10	Soil reaction	0.50

Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential for damage to soil by fire		Potential for seedling mortality	
		Rating class and limiting features	\| Value	Rating class and limiting features	Value
76F:					
Hollis--------	25	Low		Low	
77C:					
Cheshire--------	45			Low	
		Texture/rock fragments	0.10		
Holyoke--------	35	Moderate   Texture/surface depth/rock fragments	0.50	Moderate Soil reaction	0.50
77D:					
Cheshire--------	45	Low		Low	
		```Texture/rock fragments```	0.10		
Holyoke---------	35	Moderate Texture/surface depth/rock fragments		Moderate	
			0.50	Soil reaction	0.50
				Available water	0.50
78C:					
Holyoke--------	50	Moderate Texture/surface depth/rock fragments			
			0.50	Soil reaction	0.50
Rock outcrop---78E:	25	Not rated		Not rated	
	78E:				
Holyoke---------	50	Moderate Texture/slope/sur face depth/rock fragments	0.50	Moderate Soil reaction	0.50
				Available water	0.50
Rock outcrop----79 E :	25	Not rated		Not rated	
Rock outcrop----	55	Not rated		Not rated	

Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued

Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued

Map symbol and soil name	Pct. of map unit	Potential for damage to soil by fire		Potential for seedling mortality	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value
84C:					
Paxton-------------	55	Low		Low	
		Texture/rock fragments	0.10		
Montauk------------	30	Moderate	0.50	Low	
		Texture/surface depth/rock fragments			
84D:					
Paxton-------------	55		0.10	Moderate	0.50
		Texture/rock fragments		Available water	
Montauk------------ \|	30	```Moderate Texture/surface depth/rock fragments```	0.50	Moderate	0.50
				Available water	
85B :					
Paxton-------------	55	Low Texture/rock fragments	0.10	Low	
Montauk------------ \|	30	```Moderate Texture/surface depth/rock fragments```	0.50	Low	
85C:					
Paxton-------------	55	Low Texture/rock fragments	0.10	Low	
Montauk------------ \|	30	Moderate Texture/surface depth/rock fragments	0.50	Low	
86C:					
Paxton-------------	55	Low Texture/rock fragments	0.10	Low	
Montauk------------- \|	30	Moderate Texture/surface depth/rock fragments	0.50	Low	
86D:					
Paxton------------	55	Low Texture/rock fragments	0.10	ModerateAvailable water	0.50
Montauk------------	30	Moderate Texture/surface depth/rock fragments	0.50	Moderate Available water	
					0.50

Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued

Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued

Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued

Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential for damage to soil by fire		Potential for seedling mortality	
		Rating class and limiting features	Value	Rating class and limiting features	Value
$104 \text { : }$ Bash	80	Low		High	
		Texture/rock fragments	0.10	Wetness	1.00
105:					
Hadley------------	80	Low		Low	
		Texture/rock fragments	0.10		
106:					
Winooski-----------	80	Low		Low	
		Texture/rock fragments	0.10		
107 :					
Limerick-----------	50	Low		High	
		Texture/rock fragments	0.10	Wetness	1.00
Lim----------------	30	Low		\| High	
		Texture/rock fragments	0.10	Wetness	1.00
108:					
Saco---------------	80	\| Low		High	
		Texture/rock fragments	0.10	Wetness	1.00
```109: Fluvaquents, Frequently Flooded-```	50				
		Low		High	
		Texture/surface depth/rock fragments	0.10	Wetness	1.00
```Udifluvents, Frequently Flooded-```	35				
		```Low Texture/surface depth/rock fragments```	0.10	Low	
$\begin{aligned} & \text { 221A: } \\ & \text { Ninigret } \end{aligned}$					
	40	Low		Low	
		Texture/rock fragments	0.10		
Urban land---------	35	Not rated		Not rated	
224A:					
Deerfield----------	40	Moderate Texture/rock fragments	0.50	Low	
Urban land---------	35	Not rated		Not rated	

Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued

Map symbol and soil name	$\mid$ Pct.   of   map   unit	Potential for damage to soil by fire		Potential for seedling mortality	
		Rating class and limiting features	Value	Rating class and limiting features	Value
417C:					
Bice--------------	85	Low		Low	
		Texture/rock fragments	0.10		
417D:					
Bice-------------	85	Low		Low	
		Texture/rock fragments	0.10		
418C:					
Schroon------------ \|	85	Low		Low	
		Texture/rock fragments	0.10		
420A:					
Schroon------------	85	Low		Low	
		Texture/rock fragments	0.10		
420B :					
Schroon------------	85	Low		Low	
		Texture/rock fragments	0.10		
```421A: Ninigret, cold```	85				
		Low		Low	
		Texture/rock fragments	0.10		
$\begin{aligned} & \text { 423A: } \\ & \text { Sudbury, cold- } \end{aligned}$					
	85	Low		Low	
		$\begin{aligned} & \text { Texture/surface } \\ & \text { depth/rock } \\ & \text { fragments } \end{aligned}$	0.10		
424B:					
Shelburne----------	85	L Low		Low	
		```Texture/surface depth/rock fragments```	0.10		
424C:   Shelburne					
	85	Low		Low	
		Texture/surface depth/rock fragments	0.10		
424D:					
Shelburne---------	85	Low		Low	
		Texture/surface depth/rock fragments	0.10		
425B:   Shelburne	85				
		Low		Low	
		Texture/surface depth/rock fragments	0.10		

Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued


Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential for damage to soil by fire		Potential for seedling mortality	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
443 :					
Loonmeadow---------- \|	35	Low		High	
		Texture/rock fragments	0.10	Wetness	\| 1.00
448B :					
Hogansburg---------	85	Low		Low	
		Texture/rock fragments	0.10		
449B:					
Hogansburg---------	85	Low		Low	
		Texture/rock fragments	0.10		
449C:					
Hogansburg--------- \|	85	Low		Low	
		Texture/rock fragments	0.10		
450B:					
Pyrities----------	80	Low		Low	
		Texture/rock fragments	0.10		
450C:					
Pyrities-----------	80	Low		Low	
		Texture/rock fragments	0.10		
450D:					
Pyrities-----------	80	Low		Low	
		Texture/rock fragments	0.10		
451B:					
Pyrities----------	80	Low		Low	
		Texture/rock fragments	0.10		
451C:					
Pyrities----------	80	Low		Low	
		Texture/rock fragments	0.10		
451D:					
Pyrities----------	80	Low		Low	
		Texture/rock fragments	0.10		
457:					
Mudgepond-----------	80			\|High	
		Texture/rock fragments	0.10	Wetness	\| 1.00
458 :					
Mudgepond--------- -	55	Low		High	
		Texture/rock fragments	0.10	Wetness	\| 1.00

Table 11.-Damage by Fire and Seedling Mortality on Forestland-Continued

Map symbol and soil name	Pct.   of map unit	Potential for damage to soil by fire		Potential for seedling mortality	
		Rating class and limiting features	Value	Rating class and limiting features	Value
$458 \text { : }$					
		Texture/surface depth/rock fragments	0.10	Wetness	1.00
501:					
Ondawa----------	85	Low		Low	
		Texture/rock fragments	0.10		
503 :					
Rumney---------	80	Low		High	
		```Texture/rock fragments```	0.10	Wetness	1.00
508:					
Medomak--------	85	Low		High	
		Texture/rock fragments	0.10	Wetness	1.00

Table 12.-Conservation and Environmental Plantings
(Absence of an entry indicates that trees generally do not grow to the given height.)

Map symbol and soil name	Trees having predicted 20-year average height, in feet, of--				
	<8	8-15	16-25	26-35	>35
$2:$ Ridgebury-	```black chokeberry; common winterberry; inkberry; swamp azalea```	common buttonbush; hazel alder; highbush blueberry; southern arrowwood; spicebush	coastal sweetpepperbush; speckled alder	Atlantic white cedar; blackgum	black willow; pin oak; red maple
3 : Ridgebury-	```black chokeberry; common winterberry; inkberry; swamp azalea```	common buttonbush; hazel alder; highbush blueberry; southern arrowwood; spicebush	coastal sweetpepperbush; speckled alder	Atlantic white cedar; blackgum	black willow; pin oak; red maple
Leicester-	```black chokeberry; common winterberry; inkberry; swamp azalea```	common buttonbush; hazel alder; highbush blueberry; southern arrowwood; spicebush	```coastal sweetpepperbush; speckled alder```	Atlantic white cedar; blackgum	black willow; pin oak; red maple
Whitman-	```black chokeberry; common winterberry; inkberry; swamp azalea```	common buttonbush; hazel alder; highbush blueberry; southern arrowwood; spicebush	$\begin{array}{\|l} \text { coastal } \\ \text { sweetpepperbush; } \\ \text { speckled alder } \end{array}$	Atlantic white cedar; blackgum	black willow; pin oak; red maple
4 : Leicester-	```black chokeberry; common winterberry; inkberry; swamp azalea```	common buttonbush; hazel alder; highbush blueberry; southern arrowwood; spicebush	coastal sweetpepperbush; speckled alder	Atlantic white cedar; blackgum	black willow; pin oak; red maple
$5:$ Wilbraham-	```black chokeberry; common winterberry; inkberry; swamp azalea```	common buttonbush; hazel alder; highbush blueberry; southern arrowwood; spicebush	coastal sweetpepperbush; speckled alder	Atlantic white cedar; blackgum	black willow; pin oak; red maple
```6: Wilbraham-```	```black chokeberry; common winterberry; inkberry; swamp azalea```	\|common buttonbush; hazel alder; highbush blueberry; southern arrowwood; spicebush	```coastal sweetpepperbush; speckled alder```	$\begin{aligned} & \text { Atlantic white } \\ & \text { cedar; blackgum } \end{aligned}$	black willow; pin oak; red maple

Table 12.-Conservation and Environmental Plantings-Continued


Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued


Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued

Map symbol and soil name	Trees having predicted 20-year average height, in feet, of--				
	<8	8-15	16-25	26-35	>35
29A:   Agawam-	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	\|deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
$\begin{aligned} & \text { 29B: } \\ & \text { Agawam-- } \end{aligned}$	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	\|deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
29C:   Agawam-	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	\|deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
30A:   Branford	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	\|deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	black cherry;   eastern white pine;   gray birch;   northern red oak; quaking aspen
30B: Branford-	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
$\begin{aligned} & \text { 30C: } \\ & \text { Branford- } \end{aligned}$	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	\|deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
31A:   Copake-	downy arrowwood; yew	shagbark hickory	mockernut hickory; sugar maple	\|chinkapin oak; eastern redcedar	eastern white pine
31B:   Copake	downy arrowwood; yew	shagbark hickory	\|mockernut hickory; sugar maple	\|chinkapin oak; eastern redcedar	eastern white pine

Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued

Map symbol and soil name	Trees having predicted 20-year average height, in feet, of--				
	<8	8-15	16-25	26-35	>35
33A:   Hartford	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
$\begin{aligned} & \text { 33B: } \\ & \text { Hartford--- } \end{aligned}$	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	\|deerberry; sassafras	$\begin{aligned} & \text { pignut hickory; pin } \\ & \text { cherry; staghorn } \\ & \text { sumac } \end{aligned}$	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
34A:   Merrimac	lowbush blueberry; mountain laurel	\|common chokecherry; smooth sumac	\|deerberry; sassafras	$\begin{aligned} & \text { pignut hickory; pin } \\ & \text { cherry; staghorn } \\ & \text { sumac } \end{aligned}$	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
34B:   Merrimac	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	$\begin{aligned} & \text { pignut hickory; pin } \\ & \text { cherry; staghorn } \\ & \text { sumac } \end{aligned}$	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
$34 C:$   Merrimac	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
$\begin{aligned} & \text { 35A: } \\ & \text { Penwood--- } \end{aligned}$	huckleberry; sweet fern	\|beach plum; northern bayberry	pitch pine	---	--
$\begin{aligned} & \text { 35B: } \\ & \text { Penwood--- } \end{aligned}$	huckleberry; sweet fern	beach plum; northern bayberry	pitch pine	--	---
$36 \mathrm{~A}:$   Windsor	huckleberry; sweet fern	beach plum; northern bayberry	pitch pine	---	---

Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued

Map symbol and soil name	Trees having predicted 20-year average height, in feet, of--				
	<8	8-15	16-25	26-35	>35
40A: Ludlow-	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak	```\|black cherry; eastern white pine; paper birch; sweetgum```
$\begin{aligned} & \text { 40B: } \\ & \text { Ludlow- } \end{aligned}$	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak	```\|black cherry; eastern white pine; paper birch; sweetgum```
$\begin{aligned} & \text { 41B: } \\ & \text { Ludlow-. } \end{aligned}$	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak	```\|lack cherry; eastern white pine; paper birch; sweetgum```
$\begin{aligned} & \text { 42C: } \\ & \text { Ludlow- } \end{aligned}$	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak	```\|black cherry; eastern white pine; paper birch; sweetgum```
43A: Rainbow-	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak	```\|lack cherry; eastern white pine; paper birch; sweetgum```

Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued

Map symbol and soil name	Trees having predicted 20-year average height, in feet, of--				
	<8	8-15	16-25	26-35	>35
$\begin{aligned} & \text { 45C: } \\ & \text { Woodbridge-- } \end{aligned}$	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak	```\|black cherry; eastern white pine; paper birch; sweetgum```
46B :   Woodbridge-	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak	```\|black cherry; eastern white pine; paper birch; sweetgum```
$46 \mathrm{C}:$   Woodbridge-	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak	```\|black cherry; eastern white pine; paper birch; sweetgum```
$47 \mathrm{C}:$   Woodbridge	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak	```\|black cherry; eastern white pine; paper birch; sweetgum```
$\begin{aligned} & \text { 48B: } \\ & \text { Georgia- } \end{aligned}$	gray dogwood	redosier dogwood	common pricklyash; hickory; sugar maple	Arnold hawthorn; nannyberry; swamp white oak	```\|balsam poplar; eastern cottonwood; green ash; silver maple```

Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued

	Trees having predicted 20-year average height, in feet, of--				
and soil name	<8	8-15	16-25	26-35	>35
$\begin{aligned} & \text { 50B: } \\ & \text { Sutton- } \end{aligned}$	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	```alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak```	```\|black cherry; eastern white pine; paper birch; sweetgum```
$\begin{aligned} & \text { 51B: } \\ & \text { Sutton- } \end{aligned}$	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	```alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak```	```\|black cherry; eastern white pine; paper birch; sweetgum```
$\begin{aligned} & \text { 52C: } \\ & \text { Sutton-- } \end{aligned}$	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch		```alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak```	```\|black cherry; eastern white pine; paper birch; sweetgum```
53A:   Wapping-	silky dogwood; swamp rose	hobblebush	\|American holly; American hornbeam	swamp white oak; yellow birch	$\begin{aligned} & \text { \|American elm; } \\ & \text { tuliptree } \end{aligned}$
53B : Wapping-	silky dogwood; swamp rose	hobblebush	\|American holly; American hornbeam	swamp white oak; yellow birch	$\begin{aligned} & \text { American elm; } \\ & \text { tuliptree } \end{aligned}$
54B :   Wapping-	silky dogwood; swamp rose	hobblebush	\|American holly; American hornbeam	swamp white oak; yellow birch	$\begin{aligned} & \text { American elm; } \\ & \text { tuliptree } \end{aligned}$
55A:   Watchaug-	silky dogwood; swamp rose	hobblebush	\|American holly; American hornbeam	swamp white oak; yellow birch	$\begin{aligned} & \text { \|American elm; } \\ & \text { tuliptree } \end{aligned}$
55B :   Watchaug	silky dogwood; swamp rose	hobblebush	\|American holly; American hornbeam	swamp white oak; yellow birch	$\begin{aligned} & \text { \|American elm; } \\ & \mid \text { tuliptree } \end{aligned}$

Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued

Map symbol   and soil name	Trees having predicted 20-year average height, in feet, of--				
	<8	8-15	16-25	26-35	>35
60B: Charlton--	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
$\begin{aligned} & \text { 60C: } \\ & \text { Canton- } \end{aligned}$	lowbush blueberry; mountain laurel	\|common chokecherry; smooth sumac	deerberry; sassafras	$\begin{aligned} & \text { pignut hickory; pin } \\ & \text { cherry; staghorn } \\ & \text { sumac } \end{aligned}$	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
Charlton-	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
$\begin{aligned} & \text { 60D: } \\ & \text { Canton-- } \end{aligned}$	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	$\begin{aligned} & \text { pignut hickory; pin } \\ & \text { cherry; staghorn } \\ & \text { sumac } \end{aligned}$	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
Charlton-	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
$\begin{aligned} & \text { 61B: } \\ & \text { Canton-- } \end{aligned}$	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
Charlton-	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	$\begin{aligned} & \text { \|pignut hickory; pin } \\ & \text { cherry; staghorn } \\ & \text { sumac } \end{aligned}$	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```

Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued


Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued


Table 12.-Conservation and Environmental Plantings-Continued

Map symbol and soil name	Trees having predicted 20-year average height, in feet, of--				
	<8	8-15	16-25	26-35	>35
75C:   Rock outcrop-	---	---	---	---	---
```75E: Hollis```	beach plum;   kinnikinnick; sweet fern	---	--	---	---
Chatfield--	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	$\begin{aligned} & \text { pignut hickory; pin } \\ & \text { cherry; staghorn } \\ & \text { sumac } \end{aligned}$	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
Rock outcrop-----	---	---	---	---	---
76 E :					
Rock outcrop-----	---	---	---	---	---
Hollis----------	```beach plum; kinnikinnick; sweet fern```	---	---	---	---
76F: Rock outcrop-	---	---	---	--	--
Hollis-	```beach plum; kinnikinnick; sweet fern```	-	-	---	---
77C:					
Cheshire--------	silky dogwood; swamp rose	hobblebush	\|American holly; American hornbeam	\|swamp white oak; yellow birch	$\begin{aligned} & \text { American elm; } \\ & \text { tuliptree } \end{aligned}$
Holyoke-	```beach plum; kinnikinnick; sweet fern```	---	---	---	---
77D:					
Cheshire---------	silky dogwood; swamp rose	hobblebush	\|American holly; American hornbeam	swamp white oak; yellow birch	\|American elm;
Holyoke-	```beach plum; kinnikinnick; sweet fern```	---	---	---	---
78C:					
Holyoke---	```beach plum; kinnikinnick; sweet fern```	---	---	---	---

Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued

Map symbol and soil name	Trees having predicted 20-year average height, in feet, of--				
	<8	8-15	16-25	26-35	>35
86C: Montauk-	lowbush blueberry; mountain laurel	$\begin{aligned} & \text { \|common chokecherry; } \\ & \text { smooth sumac } \end{aligned}$	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
$\begin{aligned} & \text { 86D: } \\ & \text { Paxton--- } \end{aligned}$	lowbush blueberry; mountain laurel	\|common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
Montauk -	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	```pignut hickory; pin cherry; staghorn sumac```	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
87B: Wethersfield--	lowbush blueberry; mountain laurel	$\begin{aligned} & \text { common chokecherry; } \\ & \text { smooth sumac } \end{aligned}$	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
87C: Wethersfield-	lowbush blueberry; mountain laurel	\|common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
87D: Wethersfield--	lowbush blueberry; mountain laurel	\|common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
88B: Wethersfield---	lowbush blueberry; mountain laurel	\|common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```

Table 12.-Conservation and Environmental Plantings-Continued

Map symbol and soil name	Trees having predicted 20-year average height, in feet, of--				
	<8	8-15	16-25	26-35	>35
```88C: Wethersfield```	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	\|black cherry;   eastern white pine;   gray birch;   northern red oak;   quaking aspen
```89C: Wethersfield```	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	black cherry;   eastern white pine; gray birch; northern red oak; quaking aspen
```89D: Wethersfield```	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	\|black cherry;   eastern white pine; gray birch; northern red oak; quaking aspen
$\begin{aligned} & \text { 90B: } \\ & \text { Stockbridge } \end{aligned}$	gray dogwood	redosier dogwood	common pricklyash; hickory; sugar maple	Arnold hawthorn; nannyberry; swamp white oak	```balsam poplar; eastern cottonwood; green ash; silver maple```
```90C: Stockbridge```	gray dogwood	redosier dogwood	common pricklyash; hickory; sugar maple	Arnold hawthorn; nannyberry; swamp white oak	```balsam poplar; eastern cottonwood; green ash; silver maple```
90D: Stockbridge	gray dogwood	redosier dogwood	common pricklyash; hickory; sugar maple	Arnold hawthorn; nannyberry; swamp white oak	```balsam poplar; eastern cottonwood; green ash; silver maple```
```91B: Stockbridge```	gray dogwood	redosier dogwood	common pricklyash; hickory; sugar maple	Arnold hawthorn; nannyberry; swamp white oak	```balsam poplar; eastern cottonwood; green ash; silver maple```

Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued

Map symbol and soil name	Trees having predicted 20-year average height, in feet, of--				
	<8	8-15	16-25	26-35	>35
94E:   Farmington	beach plum; kinnikinnick; sweet fern	---	---	---	---
Nellis------------------	gray dogwood	redosier dogwood	$\begin{aligned} & \text { common pricklyash; } \\ & \text { hickory; sugar } \\ & \text { maple } \end{aligned}$	Arnold hawthorn; nannyberry; swamp white oak	```balsam poplar; eastern cottonwood; green ash; silver maple```
95C:					
Farmington------------	beach plum;   kinnikinnick; sweet fern	---	-	-	---
Rock outcrop-----------	---	---	---	---	--
95E:					
Farmington------------	```beach plum; kinnikinnick; sweet fern```	---	---	--	-
Rock outcrop-----------	---	---	---	---	---
96:					
Ipswich--------------	---	---	---	---	- -
97 :					
Pawcatuck-------------	---	---	---	---	---
$98 \text { : }$   Westbrook	---	---	---	---	---
99:					
Westbrook, low salt----	---	---	---	---	-
$100:$					
Suncook	\|huckleberry; sweet fern	beach plum; northern bayberry	pitch pine	---	---
101:					
Occum------------------	huckleberry	roundleaf dogwood	$\begin{aligned} & \text { chestnut oak; } \\ & \text { eastern redcedar; } \\ & \text { scrub oak } \end{aligned}$	scarlet oak	\|eastern white pine; gray birch
$102 \text { : }$					
Pootatuck	huckleberry	roundleaf dogwood	$\begin{aligned} & \text { chestnut oak; } \\ & \text { eastern redcedar; } \\ & \text { scrub oak } \end{aligned}$	scarlet oak	\|eastern white pine; gray birch

Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued


Table 12.-Conservation and Environmental Plantings-Continued


Table 12.-Conservation and Environmental Plantings-Continued


Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued

Map symbol and soil name	Trees having predicted 20-year average height, in feet, of--				
	<8	8-15	16-25	26-35	>35
$\begin{aligned} & \text { 250B: } \\ & \text { Sutton- } \end{aligned}$	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak	```\|black cherry; eastern white pine; paper birch; sweetgum```
Urban land-------	-	---	--	-	---
$\begin{aligned} & \text { 253B: } \\ & \text { Wapping-- } \end{aligned}$	silky dogwood; swamp rose	hobblebush	\|American holly; American hornbeam	swamp white oak; yellow birch	$\begin{aligned} & \text { American elm; } \\ & \text { tuliptree } \end{aligned}$
Urban land-------	---	---	---	---	---
$\begin{aligned} & \text { 255B: } \\ & \text { Watchaug-- } \end{aligned}$	silky dogwood; swamp rose	hobblebush	\|American holly; American hornbeam	swamp white oak; yellow birch	$\begin{aligned} & \text { American elm; } \\ & \text { tuliptree } \end{aligned}$
Urban land-------	---	--	---	---	---
$\begin{aligned} & \text { 260B: } \\ & \text { Charlton-- } \end{aligned}$	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	```pignut hickory; pin cherry; staghorn sumac```	\|black cherry;   eastern white pine;   gray birch;   northern red oak;   quaking aspen
Urban land------	-	- -	-	---	---
$\begin{aligned} & 260 \mathrm{C}: \\ & \text { Charlton-- } \end{aligned}$	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	```pignut hickory; pin cherry; staghorn sumac```	```black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
Urban land--	---	---	---	---	---
$\begin{aligned} & \text { 260D: } \\ & \text { Charlton } \end{aligned}$	lowbush blueberry; mountain laurel	\|common chokecherry; smooth sumac	deerberry; sassafras\|	pignut hickory; pin cherry; staghorn sumac	\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen

Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued


Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued


Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued

Map symbol and soil name	Trees having predicted 20-year average height, in feet, of--				
	<8	8-15	16-25	26-35	>35
401C:   Taconic	beach plum;   kinnikinnick; sweet fern	---	---	---	---
```402D: Macomber```	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	$\begin{aligned} & \text { pignut hickory; pin } \\ & \text { cherry; staghorn } \\ & \text { sumac } \end{aligned}$	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
Taconic---------	```beach plum; kinnikinnick; sweet fern```	---	---	---	---
Rock outcrop-	---	---	---	---	--
$\begin{aligned} & \text { 403C: } \\ & \text { Taconic-- } \end{aligned}$	beach plum; kinnikinnick; sweet fern	---	---	---	---
Rock outcrop-----	---	---	---	---	---
$\begin{aligned} & \text { 403E: } \\ & \text { Taconic } \end{aligned}$	beach plum; kinnikinnick; sweet fern	---	---	---	---
Rock outcrop-----	---	---	--	--	--
$\begin{aligned} & \text { 403F: } \\ & \text { Taconic } \end{aligned}$	beach plum; kinnikinnick; sweet fern	---	---	---	---
Rock outcrop-----	---	---	---	---	-
405C: Dummerston	```black raspberry; mapleleaf viburnum; partridgeberry```	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	```alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak```	```\|black cherry; eastern white pine; paper birch; sweetgum```

Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued

Map symbol and soil name	Trees having predicted 20-year average height, in feet, of--				
	<8	8-15	16-25	26-35	>35
412B: Bice	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak	```\|black cherry; eastern white pine; paper birch; sweetgum```
$\begin{aligned} & \text { 412C: } \\ & \text { Bice } \end{aligned}$	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	\|alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak	```\|black cherry; eastern white pine; paper birch; sweetgum```
$\begin{gathered} \text { 412D: } \\ \text { Bice. } \end{gathered}$	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak	```\|black cherry; eastern white pine; paper birch; sweetgum```
$\begin{aligned} & \text { 413C: } \\ & \text { Bice- } \end{aligned}$	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak	```\|black cherry; eastern white pine; paper birch; sweetgum```
Millsite-	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```

Table 12.-Conservation and Environmental Plantings-Continued

Map symbol and soil name	Trees having predicted 20-year average height, in feet, of--				
	<8	8-15	16-25	26-35	>35
$\begin{aligned} & \text { 413E: } \\ & \text { Bice } \end{aligned}$	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	\|alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak	```\|black cherry; eastern white pine; paper birch; sweetgum```
Millsite---	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	\|deerberry; sassafras	```pignut hickory; pin cherry; staghorn sumac```	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
414 : Fredon, cold	elderberry	\|silky willow	\|black ash; pussy willow; swamp birch	---	```\|boxelder; green ash;```
$\begin{aligned} & \text { 415C: } \\ & \text { Millsite--- } \end{aligned}$	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
Westminster-	```beach plum; kinnikinnick; sweet fern```	---	-	---	--
Rock outcrop--	---	---	---	---	---
$\begin{aligned} & \text { 415E: } \\ & \text { Millsite--- } \end{aligned}$	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
Westminster--	```beach plum; kinnikinnick; sweet fern```	---	---	---	--
Rock outcrop-----	---	---	---	---	---
416E:					
Rock outcrop-------	---	--	--	--	-

Table 12.-Conservation and Environmental Plantings-Continued

Map symbol and soil name	Trees having predicted 20-year average height, in feet, of--				
	<8	8-15	16-25	26-35	>35
```416E: Westminster```	beach plum;   kinnikinnick; sweet fern	---	--	---	--
$416 \mathrm{~F}:$   Rock outcrop	---	---	---	---	---
Westminster---	```beach plum; kinnikinnick; sweet fern```	---	-	---	--
417B:   Bice-	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak	```\|black cherry; eastern white pine; paper birch; sweetgum```
417C:   Bice	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak	```\|black cherry; eastern white pine; paper birch; sweetgum```
$\begin{aligned} & \text { 417D: } \\ & \text { Bice- } \end{aligned}$	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak	```\|black cherry; eastern white pine; paper birch; sweetgum```

Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued

Map symbol and soil name	Trees having predicted 20-year average height, in feet, of--				
	$<8$	8-15	16-25	26-35	>35
424B:   Shelburne	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
$424 \mathrm{C}:$   Shelburne--	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
424D:   Shelburne-	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
$\begin{aligned} & \text { 425B: } \\ & \text { Shelburne-- } \end{aligned}$	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
$\begin{aligned} & \text { 425C: } \\ & \text { Shelburne- } \end{aligned}$	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
$\begin{aligned} & \text { 426D: } \\ & \text { Shelburne- } \end{aligned}$	lowbush blueberry; mountain laurel	\|common chokecherry; smooth sumac	deerberry; sassafras	pignut hickory; pin cherry; staghorn sumac	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
$\begin{aligned} & \text { 427B: } \\ & \text { Ashfield-- } \end{aligned}$	black raspberry; mapleleaf viburnum; partridgeberry	American witchhazel; beaked hazelnut; sweet birch	American plum; blackhaw; eastern hophornbeam; redbud	```alternateleaf dogwood; American beech; bitternut hickory; black oak; flowering dogwood; mountain maple; striped maple; white oak```	```\|black cherry; eastern white pine; paper birch; sweetgum```

Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued

Map symbol and soil name	Trees having predicted 20-year average height, in feet, of--				
	<8	8-15	16-25	26-35	>35
$\begin{aligned} & \text { 429B: } \\ & \text { Agawam, cold----- } \end{aligned}$	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	\|deerberry; sassafras	$\begin{aligned} & \text { pignut hickory; pin } \\ & \text { cherry; staghorn } \\ & \text { sumac } \end{aligned}$	\|black cherry;   eastern white pine;   gray birch;   northern red oak;   quaking aspen
$\begin{aligned} & \text { 429C: } \\ & \text { Agawam, cold- } \end{aligned}$	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	\|deerberry; sassafras	$\begin{aligned} & \text { pignut hickory; pin } \\ & \text { cherry; staghorn } \\ & \text { sumac } \end{aligned}$	```black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
$433 \text { : }$   Moosilauke-	```black chokeberry; common winterberry; inkberry; swamp azalea```	common buttonbush; hazel alder; highbush blueberry; southern arrowwood; spicebush	coastal sweetpepperbush; speckled alder	Atlantic white cedar; blackgum	\|black willow; pin oak; red maple
$\begin{aligned} & \text { 434A: } \\ & \text { Merrimac, cold--- } \end{aligned}$	lowbush blueberry; mountain laurel	common chokecherry; smooth sumac	deerberry; sassafras	$\begin{aligned} & \text { pignut hickory; pin } \\ & \text { cherry; staghorn } \\ & \text { sumac } \end{aligned}$	\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen
$\begin{aligned} & \text { 434B: } \\ & \text { Merrimac, cold--- } \end{aligned}$	lowbush blueberry; mountain laurel	\|common chokecherry; smooth sumac	\|deerberry; sassafras	$\begin{aligned} & \text { pignut hickory; pin } \\ & \text { cherry; staghorn } \\ & \text { sumac } \end{aligned}$	```\|black cherry; eastern white pine; gray birch; northern red oak; quaking aspen```
$\begin{aligned} & \text { 434C: } \\ & \text { Merrimac, cold--- } \end{aligned}$	lowbush blueberry; mountain laurel	\|common chokecherry; smooth sumac	deerberry; sassafras	$\begin{aligned} & \text { pignut hickory; pin } \\ & \text { cherry; staghorn } \\ & \text { sumac } \end{aligned}$	\|black cherry;   eastern white pine; gray birch; northern red oak; quaking aspen
$435 \text { : }$ Scarboro	$\begin{array}{\|l} \text { cranberry; holly; } \\ \text { leatherleaf } \end{array}$	\|highbush blueberry; swamp birch	Atlantic white cedar; black spruce; coastal sweetpepperbush; tamarack	red spruce	pin oak; red maple

Table 12.-Conservation and Environmental Plantings-Continued

Table 12.-Conservation and Environmental Plantings-Continued

Map symbol   and soil name	Trees having predicted 20-year average height, in feet, of--				
	$<8$	8-15	16-25	26-35	>35
$443 \text { : }$   Loonmeadow	elderberry	silky willow	$\begin{aligned} & \text { \|black ash; pussy } \\ & \text { willow; swamp birch } \end{aligned}$	---	\|boxelder; green ash; river birch
448B:   Hogansburg	gray dogwood	redosier dogwood	\|common pricklyash; hickory; sugar maple	Arnold hawthorn; nannyberry; swamp white oak	```balsam poplar; eastern cottonwood; green ash; silver maple```
$449 \mathrm{~B}:$   Hogansburg	gray dogwood	redosier dogwood	common pricklyash; hickory; sugar maple	Arnold hawthorn; nannyberry; swamp white oak	```balsam poplar; eastern cottonwood; green ash; silver maple```
449C:   Hogansburg	gray dogwood	redosier dogwood	\|common pricklyash;   hickory; sugar maple	Arnold hawthorn; nannyberry; swamp white oak	```balsam poplar; eastern cottonwood; green ash; silver maple```
$450 \mathrm{~B}:$   Pyrities	gray dogwood	redosier dogwood	\|common pricklyash; hickory; sugar maple	Arnold hawthorn; nannyberry; swamp white oak	```balsam poplar; eastern cottonwood; green ash; silver maple```
$\begin{aligned} & \text { 450C: } \\ & \text { Pyrities } \end{aligned}$	gray dogwood	redosier dogwood	common pricklyash; hickory; sugar maple	Arnold hawthorn; nannyberry; swamp white oak	```balsam poplar; eastern cottonwood; green ash; silver maple```
450D:   Pyrities	gray dogwood	redosier dogwood	common pricklyash; hickory; sugar maple	Arnold hawthorn; nannyberry; swamp white oak	```balsam poplar; eastern cottonwood; green ash; silver maple```
$\begin{aligned} & \text { 451B: } \\ & \text { Pyrities } \end{aligned}$	gray dogwood	redosier dogwood	```common pricklyash; hickory; sugar maple```	Arnold hawthorn; nannyberry; swamp white oak	```balsam poplar; eastern cottonwood; green ash; silver maple```

Table 12.-Conservation and Environmental Plantings-Continued
Trees having predicted 20 -year average height, in feet, of--

Map symbol and soil name	Trees having predicted 20-year average height, in feet, of--				
	<8	8-15	16-25	26-35	>35
```451C: Pyrities```	gray dogwood	redosier dogwood	common pricklyash; hickory; sugar maple	Arnold hawthorn; nannyberry; swamp white oak	```\|balsam poplar; eastern cottonwood; green ash; silver maple```
$\begin{aligned} & \text { 451D: } \\ & \text { Pyrities--- } \end{aligned}$	gray dogwood	redosier dogwood	common pricklyash; hickory; sugar maple	Arnold hawthorn; nannyberry; swamp white oak	```\|balsam poplar; eastern cottonwood; green ash; silver maple```
$457 \text { : }$ Mudgepond--	elderberry	silky willow	black ash; pussy willow; swamp birch	---	```\|boxelder; green ash; river birch```
$458 \text { : }$ Mudgepond	elderberry	silky willow	\|black ash; pussy willow; swamp birch	---	$\begin{aligned} & \text { \|boxelder; green ash; } \\ & \text { river birch } \end{aligned}$
Alden---	elderberry	silky willow	black ash; pussy willow; swamp birch	---	```\|boxelder; green ash;```
$501:$ Ondawa	huckleberry	roundleaf dogwood	Chestnut oak; eastern redcedar; scrub oak	scarlet oak	\|eastern white pine; gray birch
$503 \text { : }$ Rumney-	elderberry	silky willow	\|black ash; pussy willow; swamp birch	-	```boxelder; green ash; river birch```
```508: Medomak```	elderberry	silky willow	black ash; pussy willow; swamp birch	---	```\|boxelder; green ash;```

Table 13.-Recreation (Part 1)
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)


Table 13.-Recreation (Part 1)-Continued

Map symbol   and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
6:							
Wilbraham---------		Depth to pan	1.00	Depth to pan	1.00	Depth to pan	1.00
						Gravel content	0.18
Menlo-----------	25	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Large stones	1.00	Large stones	1.00	Large stones	1.00
		Ponding	1.00	Ponding	1.00	Ponding	1.00
		Depth to pan	0.71	Depth to pan	0.71	Depth to pan	0.71
7 :							
Mudgepond-------	85	Very limited		Very limited		\| Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone Gravel content	1.00 0.22
8 :							
Mudgepond-------	45	Very limited		Very limited Depth to		Very limited	
		\| Depth to	1.00	Depth to saturated	1.00	Depth to	1.00
		Large stones content	1.00	Large stones content	1.00	Large stones content	1.00
						Gravel content	0.22
Alden-----------	35	Very limited		Very limited Depth to		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Large stones content	1.00	Large stones content	1.00	Large stones content	1.00
		Ponding	1.00	Ponding	1.00	Ponding	1.00
		Slow water movement	0.15	Slow water movement	0.15	Slow water movement	0.15
						Large stones content	0.01
9 :							
Scitico---------	40	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	11.00
		Slow water movement	1.00	Slow water movement	1.00	slow water movement	1.00
Shaker----------	30	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Slow water movement	0.99	Slow water movement	0.99	Slow water movement	0.99
Maybid----------	15	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Ponding	1.00	Ponding	1.00	Ponding	1.00
		Slow water movement	0.99	Slow water movement	0.99	Slow water movement	0.99
10:							
Raynham---------	80	Very limited Depth to		Very limited Depth to		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Slow water movement	0.96	Slow water movement	0.96	Slow water movement	0.96

Table 13.-Recreation (Part 1)-Continued


Table 13.-Recreation (Part 1)-Continued


Table 13.-Recreation (Part 1)-Continued

Map symbol and soil name	Pct.   of map unit	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	Value	Rating class and limiting features	\| Value	Rating class and limiting features	Value
25C:							
Brancroft-------	80	\| Very limited		\|Very limited		\|Very limited	
		Slow water movement	1.00	Slow water movement	1.00	Slope	1.00
		Depth to saturated zone	0.81	slope	0.63	Slow water movement	11.00
		Slope	0.63	Depth to saturated zone	0.48	Depth to saturated zone	0.81
26A:							
Berlin----------	80	Very limited		Very limited		Very limited	
		slow water movement	1.00	slow water movement	1.00	Slow water movement	1.00
		Depth to saturated zone	0.81	Depth to saturated zone	0.48	Depth to saturated zone	0.81
26B:							
Berlin----------	80	Very limited		Very limited		Very limited	
		Slow water movement	1.00	Slow water movement	1.00	Slow water movement	1.00
		Depth to saturated zone	0.81	Depth to saturated zone	0.48	Slope	1.00
						Depth to saturated zone	0.81
27A:	80	Not limited		\| Not limited			
Belgrade------						Somewhat limited slope	0.12
28A:	80			\|Very limited		Very limited	
Elmridge--------							
	80	Slow water movement	1.00	Slow water movement	1.00	slow water movement	1.00
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to saturated zone	0.39
28B:	80						
Elmridge--------				Very limited		Very limited	
		Slow water movement Depth to saturated zone	1.00	```Slow water movement Depth to saturated zone```	1.00	Slow water movement	1.00
			0.39		0.19	Slope	\| 1.00
						Depth to saturated zone	0.39
29A:	80	Not limited					
Agawam-				Not limited		Not limited	
29B:							
Agawam-	80	Not limited		\| Not limited		Very limited Slope	11.00
29C:							
Agawam--	80	Somewhat limited Slope	0.63	$\left\lvert\, \begin{gathered}\text { Somewhat limited } \\ \text { Slope }\end{gathered}\right.$	0.63	Very limited Slope	1.00
30A:							
Branford-----	80	Not limited		Not limited		Somewhat limited Gravel content	0.06

Table 13.-Recreation (Part 1)-Continued


Table 13.-Recreation (Part 1)-Continued


Table 13.-Recreation (Part 1)-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Camp areas		Picnic areas		Playgrounds			
		Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value		
38E:									
Hinckley	80	Slope	11.00	Slope	1.00	Slope	1.00		
		Gravel content	0.05	Gravel content	0.05	Gravel content	1.00		
						Large stones content	0.11		
39A:									
Groton-	85	Somewhat limited Gravel content	0.59	Somewhat limited Gravel content	0.59	Very limited Gravel content	1.00		
39C:									
Groton----------	85	Somewhat limited		Somewhat limited		Very limited			
		Gravel content	0.59	Gravel content	0.59	Gravel content	1.00		
		slope	0.04	Slope	0.04	Slope	1.00		
39E:									
Groton----------	85	Very limited		Very limited		Very limited			
		Slope	1.00	Slope	1.00	Gravel content	1.00		
		Gravel content	0.59	Gravel content	0.59	Slope	1.00		
40A:									
Ludlow----------	80	Somewhat limited 0.79		Somewhat limited		Somewhat limited			
				Depth to pan	0.79	Depth to pan	0.80		
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Gravel content	0.50		
						Depth to saturated zone	0.39		
40B:									
Ludlow----------	80	Somewhat limited    Depth to pan 0.79		Somewhat limited ${ }^{\text {d }}$ ( 0.79		Very limited			
				Slope	1.00				
		Depth to saturated zone	$0.39$			Depth to saturated zone	$0.19$	Depth to pan	0.80
				Gravel content	0.50				
				Depth to saturated zone	0.39				
41B:									
Ludlow----------	80	Somewhat limited    Depth to pan 0.79		Somewhat limited		Somewhat limited			
				Depth to pan	0.79	Slope	0.88		
		```Large stones content Depth to saturated zone```	0.53	```Large stones content Depth to saturated zone```	0.53	Depth to pan	0.80		
			0.39		0.19	Large stones content Gravel content Depth to saturated zone	0.53		
							0.50		
							0.39		
42C:									
Ludlow----------	80	Very limited Large stones content Depth to pan Depth to saturated zone slope				Very limited			
			1.00	Large stones content	1.00	Large stones content	1.00		
			0.79	Depth to pan	0.79	slope	1.00		
			0.39	Depth to saturated zone	0.19	Depth to pan	0.80		
			0.04	Slope	0.04	Gravel content	0.50		
						Depth to saturated zone	10.39		

Table 13.-Recreation (Part 1)-Continued

Table 13.-Recreation (Part 1)-Continued

Map symbol and soil name	Pct. of map unit	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
46C:							
Woodbridge------	80	Somewhat limited		Somewhat limited		Very limited	
		Slope	0.63	Slope	0.63	Slope	11.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
		Depth to pan	0.46	Depth to pan	0.46	Depth to pan	0.46
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to saturated zone Gravel content	$\left\lvert\, \begin{aligned} & 0.39 \\ & 0.17\end{aligned}\right.$
47C:							
Woodbridge------	80	Very limited		Very limited		Very limited	
		Large stones content	1.00	Large stones content	1.00	Large stones content	11.00
		Depth to pan	0.46	Depth to pan	0.46	Slope	1.00
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to pan	0.46
		Slope	0.04	Slope	0.04	Depth to saturated zone	$\left\lvert\, \begin{aligned} & 0.39 \\ & 0.16\end{aligned}\right.$
							0.16
48B:							
Georgia---------	50	Somewhat limited Slow water movement	0.15	Somewhat limited Slow water movement	0.15	Somewhat limited Slope	0.88
		Depth to saturated zone	0.07	Depth to saturated zone	0.03	Gravel content	0.20
						Slow water movement	0.15
						Depth to saturated zone	0.07
Amenia---------	35	Somewhat limited		Somewhat limited		Somewhat limited	
		Slow water movement	0.15	slow water movement	0.15	Slope	0.88
		Depth to saturated zone	0.07	Depth to saturated zone	0.03	Gravel content	0.20
						Slow water movement	0.15
						```Depth to saturated zone```	0.07
48C:							
Georgia-		Somewhat limited		Somewhat limited		Very limited	
	50	Slope	0.63	Slope	0.63	Slope	1.00
		```Slow water movement Depth to saturated zone```	0.15	```Slow water movement Depth to saturated zone```	0.15	Gravel content	0.20
			0.07		0.03	Slow water movement	0.15
						Depth to saturated zone	0.07
Amenia---------	35	Somewhat limited		Somewhat limited		\| Very limited	
		Slope	0.63	Slope	0.63	Slope	1.00
		```Slow water movement Depth to saturated zone```	0.15	```Slow water movement Depth to saturated zone```	0.15	Gravel content	0.20
			0.07		0.03	Slow water movement	0.15
						Depth to saturated zone	0.07

Table 13.-Recreation (Part 1)-Continued


Table 13.-Recreation (Part 1)-Continued


Table 13.-Recreation (Part 1)-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
55B :							
Watchaug--------	80	Somewhat limited Depth to saturated zone	0.39	Somewhat limited Depth to saturated zone	0.19	Very limited Slope	1.00
						Depth to saturated zone	0.39
						Gravel content	0.16
						Large stones content	0.01
56B :							
Watchaug--------	80	Somewhat limited		Somewhat limited		Somewhat limited	
		Large stones content	0.53	Large stones content	0.53	Slope	0.88
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Large stones content	0.53
						Depth to saturated zone	0.39
						Gravel content	0.16
						Large stones content	0.01
57B:							
Gloucester------	80	Not limited		Not limited		Very limited	
						Slope	1.00
						Gravel content	0.20
57C:							
Gloucester------	80	Somewhat limited Slope	0.63	Somewhat limited	0.63	Very limited	
				slope		slope	1.00
						Gravel content	0.20
57D:							
Gloucester------	80	Very limited slope	1.00	Very limited Slope	1.00	Very limited Slope	
						Gravel content	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.20 \end{aligned}\right.$
58B:							
Gloucester------	80	Somewhat limited Large stones content	0.53	Somewhat limited Large stones content	0.53	Very limited Slope	1.00
						Large stones content	0.53
						Gravel content	0.20
58C:							
Gloucester------	80	Somewhat limited		Somewhat limited		Very limited	
		slope	0.63	slope	0.63	slope	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content Gravel content	0.53
							0.20
59C:							
Gloucester--	80	```\|Very limited Large stones content Slope```		```Very limited Large stones content Slope```	1.00	Very limited	
			1.00			Large stones content	1.00
			0.04		0.04	Slope	1.00
						Gravel content	0.20

Table 13.-Recreation (Part 1)-Continued

Map symbol and soil name	Pct.   of   map   unit	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
59D:							
Gloucester	80	slope	1.00	Slope	1.00	Slope	1.00
		Large stones content	1.00	Large stones content	1.00	Large stones content	1.00
						Gravel content	0.20
60B :							
Canton--	45	Somewhat limited Gravel content	0.01	Somewhat limited Gravel content	0.01	Very limited Slope	1.00
Charlton---------	35	Not limited		Not limited		Very limited Slope	1.00
						Gravel content	0.43
60C:							
Canton----------	45	Somewhat limited		Somewhat limited		Very limited Slope	
		Slope	0.63	Slope	0.63		1.00
		Gravel content	0.01	Gravel content	0.01		
Charlton-------	35	Somewhat limited slope		Somewhat limitedSlope		Very limited	
			0.63		0.63	Slope	1.00
						Gravel content	0.43
60D:							
Canton---------	45	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \\ & \text { Gravel content } \end{aligned}$		Very limited		Very limited Slope	
			1.00	Slope	1.00		1.00
			0.01	Gravel content	0.01		
Charlton-------	35	Very limited Slope		Very limited Slope	1.00	Very limited	
			1.00			slope	1.00
						Gravel content	0.43
61B :							
Canton---------	45	Somewhat limited   Large stones content   Gravel content	0.53	Somewhat limited   Large stones content	0.53	Very limited slope	
							1.00
			0.01	Gravel content	0.01	Large stones content	0.53
Charlton--------	35	Somewhat limited Large stones content		Somewhat limited Large stones content		Very limited	
			0.53		0.53	Slope	1.00
						Large stones content	0.53
						Gravel content	0.43
61C:							
Canton----------	45	Somewhat limited		Somewhat limited		Very limited	
		Slope	0.63	slope	0.63	Slope	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
		Gravel content	0.01	Gravel content	0.01		
Charlton--------	35	```Somewhat limited Slope Large stones content```		Somewhat limited		Very limited	
			0.63	slope	0.63	Slope	1.00
			0.53	Large stones content	0.53	Large stones content	0.53
						Gravel content	0.43

Table 13.-Recreation (Part 1)-Continued

Map symbol and soil name	Pct. of map unit	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
62C:							
Canton	45	Large stones content	1.00	Large stones content	1.00	Large stones content	1.00
		Slope	0.04	Slope	0.04	slope	1.00
		Gravel content	0.01	Gravel content	0.01		
Charlton--------	35	Very limited		Very limited		Very limited	
		Large stones content	1.00	Large stones content	1.00	Large stones content	1.00
		Slope	0.04	Slope	0.04	Slope	1.00
						Gravel content	0.43
62D:							
Canton----------	45	Very limited		Very limited		Very limited	
				Slope	1.00	Slope	1.00
		Large stones content	1.00	Large stones content	1.00	Large stones content	1.00
		Gravel content	0.01	Gravel content	0.01		
Charlton--------	35	Very limited		Very limited		Very limited	
		Slope	1.00	Slope	1.00	Slope	1.00
		Large stones content	1.00	Large stones content	1.00	Large stones content	\| 1.00
						Gravel content	0.43
63B :		Not limited				Very limited	
Cheshire--------	80			Not limited		Slope	1.00
						Gravel content	0.15
						Large stones content	0.01
63C:							
Cheshire--------	80	Somewhat limited Slope	0.63	Somewhat limited Slope	0.63	Very limited	
						Slope	1.00
						Gravel content	0.15
						Large stones content	0.01
63D:							
Cheshire--------	80	Very limited Slope	1.00	\|Very limited Slope	1.00	Very limited	
						slope	1.00
						Gravel content	0.15
						Large stones content	0.01
64B :							
Cheshire--------	80	Somewhat limited		Somewhat limited		Very limited	
		Large stones content	0.53	Large stones content	0.53	Slope	1.00
						Large stones content	0.53
						Gravel content	0.15
						Large stones content	0.01

Table 13.-Recreation (Part 1)-Continued


Table 13.-Recreation (Part 1)-Continued

Map symbol and soil name	Pct.   of map unit	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value
68C:							
Narragansett----	80	Very limited		Very limited		Very limited	
		Large stones content	\| 1.00	Large stones content	1.00	Large stones content	1.00
		Slope	0.04	slope	0.04	Slope	1.00
						Large stones content	0.01
68D:							
Narragansett----	80	Very limited		Very limited		Very limited	
		Slope	11.00	Slope	1.00	Slope	1.00
		Large stones content	1.00	Large stones content	1.00	Large stones content	1.00
						Large stones content	0.01
69B:							
Yalesville------	75	Not limited		Not limited		Very limited	
						Depth to bedrock	0.05
69C:							
Yalesville------	75	Somewhat limited Slope	0.63	Somewhat limited   Slope	0.63	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \\ & \text { Depth to bedrock } \end{aligned}$	1.00
							0.05
70C:							
Branford--------	50	Somewhat limited Slope	0.04	Somewhat limited Slope	0.04	Very limited	
			0.04	Slope	0.04	Srave Gravel content	$\begin{aligned} & 1.00 \\ & 0.06 \end{aligned}$
Holyoke---------	30	Very limited		Very limited		Very limited	
		Depth to bedrock	11.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Large stones content	0.53	Large stones content	0.53	Slope	1.00
		slope	0.04	slope	0.04	Large stones content	0.53
71C:							
Brookfield-----	45	Somewhat limited \|		Somewhat limited		Very limited	
		Large stones content	0.53	Large stones content	0.53	Slope	1.00
		Slope	0.04	slope	0.04	Large stones content	0.53
Brimfield------	30	Very limited		\| Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Large stones content	0.53	Large stones content	0.53	Slope	1.00
		Slope	0.04	Slope	0.04	Large stones content	0.53
Rock Outcrop----	15	Not rated		Not rated		Not rated	
71E:							
Brookfield-----	45	Very limited		Very limited		Very limited	
		Slope	1.00	Slope	1.00	Slope	11.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53

Table 13.-Recreation (Part 1)-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value
71E:							
Brimfield-------	30	\|Very limited		Very limited		Very limited	
		slope	1.00	slope	1.00	Slope	1.00
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
Rock Outcrop--------	15	Not rated		Not rated		Not rated	
73C:							
Charlton--------	45	Somewhat limited   Large stones		Somewhat limited		\| Very limited	
		Large stones content	0.53	Large stones content	0.53	Slope	11.00
		Slope	0.04	Slope	0.04	Large stones content	0.53
						Gravel content	0.43
Chatfield-------	30	Somewhat limited ${ }^{\text {l }}$ \| 0.53		Somewhat limited		Very limited	
		Large stones content	0.53	Large stones content	0.53	slope	1.00
		Gravel content	0.25	Gravel content	0.25	Depth to bedrock	0.54
		Slope	0.04	Slope	0.04	Large stones content	0.53
73E:							
Charlton--------	45	Very limited		Very limited		Very limited	
		Slope	1.00	Slope	1.00	Slope	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
						Gravel content	0.43
Chatfield-------	30	Very limited		Very limited		Very limited	
		slope	1.00	Slope	1.00	slope	1.00
		Large stones content	0.53	Large stones content	0.53	Depth to bedrock	\| 0.54
		Gravel content	0.25	Gravel content	0.25	Large stones content	0.53
74C:							
Narragansett----	55	Somewhat limited		Somewhat limited		\| Very limited	
		Large stones content	0.53	Large stones content	0.53	Slope	11.00
		Slope	0.04	slope	0.04	Large stones content	0.53
						Large stones content	0.01
Hollis---------	20	Very limited		Very limited		Very limited Depth to bedrock slope	
		Depth to bedrock	1.00		1.00		1.00
		Large stones content	0.53	Large stones content	0.53		\| 1.00
		Gravel content	0.22	Gravel content	0.22	Large stones content	0.53
		Slope	0.04	Slope	0.04		

Table 13.-Recreation (Part 1)-Continued


Table 13.-Recreation (Part 1)-Continued


Table 13.-Recreation (Part 1)-Continued

Map symbol and soil name	Pct.   of map unit	Camp areas		Picnic areas		Playgrounds		
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value	
79E:								
Holyoke--------	25	Very limited		Very limited		Very limited		
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00	
		Slope	1.00	Slope	1.00	Slope	1.00	
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53	
80B :								
Bernardston-----	80	Somewhat limited		Somewhat limited		Very limited		
		Depth to pan	0.79	Depth to pan	0.79	slope	1.00	
		Depth to saturated zone	0.77	Depth to saturated zone	0.43	Depth to pan	0.80	
						Depth to saturated zone	$\left\lvert\, \begin{aligned} & 0.77 \\ & 0.18\end{aligned}\right.$	
							0.18	
80C:								
Bernardston-----	80	Somewhat limited		Somewhat limited		Very limited		
		Depth to pan	0.79	Depth to pan	0.79	Slope	1.00	
		Depth to saturated zone	0.77	Slope	0.63	Depth to pan	0.80	
		Slope	0.63	Depth to saturated zone	0.43	Depth to saturated zone Gravel content	$\left\lvert\, \begin{aligned} & 0.77 \\ & 0.18\end{aligned}\right.$	
81C:								
Bernardston-----	80	Very limited		Very limited		Very limited		
		Large stones content	1.00	Large stones content	1.00	Large stones content	1.00	
		Depth to pan	0.79	Depth to pan	0.79	Slope	1.00	
		Depth to saturated zone	0.77	Depth to saturated zone	0.43	Depth to pan	0.80	
		Slope	0.04	slope	0.04	Depth to saturated zone Gravel content	$\left\lvert\, \begin{aligned} & 0.77 \\ & 0.18\end{aligned}\right.$	
81D:								
Bernardston-----	80	Very limited		Very limited		Very limited		
		slope	1.00	Slope	1.00	Slope	1.00	
		Large stones content	1.00	Large stones content	\| 1.00	Large stones content	\| 1.00	
		Depth to pan	0.79	Depth to pan	0.79	Depth to pan	0.80	
		Depth to saturated zone	0.77	Depth to saturated zone	0.43	Depth to saturated zone Gravel content	$\left\lvert\, \begin{aligned} & 0.77 \\ & 0.18\end{aligned}\right.$	
82B:								
Broadbrook------	80	Somewhat limited    Depth to pan 0.84		Somewhat limited		Somewhat limited		
				0.84	Slope	0.88		
		Depth to saturated zone	0.39		Depth to saturated zone	0.19	Depth to pan	0.84
						Depth to saturated zone	0.39	
82C:								
Broadbrook------	80	Somewhat limited		Somewhat limited		Very limited		
		Depth to pan	0.84	Depth to pan	0.84	Slope	1.00	
		Slope	0.63	Slope	0.63	Depth to pan	0.84	
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to saturated zone	0.39	

Table 13.-Recreation (Part 1)-Continued

Map symbol and soil name	Pct.   of map unit	Camp areas		Picnic areas		Playgrounds			
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value		
82D:									
Broadbrook------	80	Very limited		Very limited		Very limited			
		Slope	1.00	Slope	1.00	Slope	1.00		
		Depth to pan	0.84	Depth to pan	0.84	Depth to pan	0.84		
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to saturated zone	0.39		
83B :									
Broadbrook------	80	Somewhat limited		Somewhat limited		Very limited			
		\| Depth to pan	0.84	Depth to pan	0.84	slope	1.00		
		Large stones content	0.53	Large stones content	0.53	Depth to pan	0.84		
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Large stones content	0.53		
						Depth to saturated zone	0.39		
83C:									
Broadbrook------	80	Somewhat limited		Somewhat limited		Very limited			
		Depth to pan	0.84	Depth to pan	0.84	Slope	1.00		
		Slope	0.63	Slope	0.63	Depth to pan	0.84		
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53		
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to saturated zone	0.39		
84B :									
Paxton----------	55	Somewhat limited		Somewhat limited		Very limited			
		Depth to pan	0.79	Depth to pan	0.79	slope	1.00		
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to pan	0.80		
						Depth to saturated zone	0.39		
						Gravel content	0.03		
						Large stones content	0.01		
Montauk---------	30	Somewhat limited		Somewhat limited		Very limited			
		Depth to pan	$0.84$		$0.84$	Slope	1.00		
		Depth to saturated zone	$0.07$	Depth to saturated zone	0.03	Depth to pan	0.84		
						Depth to saturated zone Gravel content	0.07 0.04		
84C:									
Paxton--------	55	Somewhat limited		Somewhat limited		Very limited			
		Depth to pan	0.79	Depth to pan	0.79		1.00		
		Slope	0.63	Slope	0.63	Depth to pan	0.80		
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to saturated zone	0.39		
						Gravel content	0.03		
						Large stones content	0.01		
Montauk---------	30	Somewhat limited		Somewhat limited		Very limited			
		Depth to pan	0.84	Depth to pan	0.84	Slope	1.00		
		slope	0.63	Slope	0.63	Depth to pan	0.84		
		Depth to saturated zone	0.07	Depth to saturated zone	0.03	Depth to saturated zone Gravel content	0.07 0.04		

Table 13.-Recreation (Part 1)-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \mid \text { map } \\ \text { unit } \end{gathered}\right.$	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
84D:							
Paxton---------	55	Very limited		Very limited		Very limited	
		Slope	1.00	Slope	1.00	slope	1.00
		Depth to pan	0.79	Depth to pan	0.79	Depth to pan	0.80
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to saturated zone	0.39
						Gravel content	0.03
						Large stones content	0.01
Montauk---------	30	Very limited		Very limited		Very limited	
		slope	1.00	Slope	1.00	Slope	1.00
		Depth to pan	0.84	Depth to pan	0.84	Depth to pan	0.84
		Depth to saturated zone	0.07	Depth to saturated zone	0.03	Depth to saturated zone Gravel content	$\left\lvert\, \begin{aligned} & 0.07 \\ & 0.04\end{aligned}\right.$
85B :							
Paxton---------	55	Somewhat limited		Somewhat limited		Very limited	
		Depth to pan	0.79	Depth to pan	0.79	slope	1.00
		Large stones content	0.53	Large stones content	0.53	Depth to pan	0.80
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Large stones content	0.53
						Depth to saturated zone Gravel content	$1 \begin{aligned} & 0.39 \\ & 0.03\end{aligned}$
Montauk---------	30	Somewhat limited		Somewhat limited		Very limited	
		Depth to pan	0.84	Depth to pan	0.84	Slope	1.00
		Large stones content	0.53	Large stones content	0.53	Depth to pan	0.84
		Depth to saturated zone	0.07	Depth to saturated zone	0.03	Large stones content	0.53
						Depth to saturated zone Gravel content	0.07
85C:							
Paxton---------	55	Somewhat limited		Somewhat limited		Very limited	
	55	Depth to pan	0.79	Depth to pan	0.79	slope	1.00
		Slope	0.63	Slope	0.63	Depth to pan	0.80
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to saturated zone Gravel content	$1 \begin{aligned} & 0.39 \\ & 0.03\end{aligned}$
Montauk---------	30	Somewhat limited \|		Somewhat limited		Very limited	
		Depth to pan	0.84	Depth to pan	0.84	Slope	1.00
		Slope	0.63	Slope	0.63	Depth to pan	0.84
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
		Depth to saturated zone	0.07	Depth to saturated zone	0.03	Depth to saturated zone Gravel content	$\left\lvert\, \begin{aligned} & 0.07 \\ & 0.04\end{aligned}\right.$

Table 13.-Recreation (Part 1)-Continued


Table 13.-Recreation (Part 1)-Continued

Map symbol and soil name	Pct.   of   map   unit	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
87D:							
Wethersfield-	80	slope	11.00	Slope	1.00	Slope	1.00
		Depth to pan	0.71	Depth to pan	0.71	Depth to pan	0.71
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to saturated zone	0.39
						Gravel content	0.16
						Large stones content	0.01
88B :							
Wethersfield----	80	Somewhat limited		Somewhat limited		Very limited	
		Depth to pan	0.71	Depth to pan	0.71	Slope	1.00
		Large stones content	0.53	Large stones content	0.53	Depth to pan	0.71
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Large stones content	0.53
						Depth to saturated zone	0.39
88C:							
Wethersfield----	80	Somewhat limited \|0.71		Somewhat limited		Very limited	
				Depth to pan	0.71	slope	1.00
		Slope	0.63	Slope	0.63	Depth to pan	0.71
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to saturated zone	0.39
89C:							
Wethersfield----	80	Very limited		Very limited		Very limited	
		Large stones content	1.00	Large stones content	11.00	Large stones content	11.00
		Depth to pan	0.71	Depth to pan	0.71	Slope	11.00
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to pan	0.71
		Slope	0.04	slope	0.04	Depth to saturated zone	0.39
89D:							
Wethersfield----	80	Very limited		\| Very limited		Very limited	
		Slope	11.00	Slope	1.00	Slope	11.00
		Large stones content	\| 1.00	Large stones content	\| 1.00	Large stones content	\| 1.00
		Depth to pan	0.71	Depth to pan	0.71	Depth to pan	0.71
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to saturated zone	0.39
90B :							
Stockbridge-	80	Somewhat limited Slow water movement	0.15	Somewhat limited Slow water movement	0.15	Very limited Slope	1.00
						Gravel content	0.43
						Slow water movement	0.15

Table 13.-Recreation (Part 1)-Continued


Table 13.-Recreation (Part 1)-Continued

Map symbol and soil name	Pct.   of map unit	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value
93C:							
Nellis----------	85	Somewhat limited		Somewhat limited		Very limited	
		Large stones content	0.53	Large stones	0.53	slope	1.00
		slope	0.04	Slope	0.04	Large stones content	0.53
						Gravel content	0.18
94C:							
Farmington------	40	Very limited		Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
		slope	0.04	slope	0.04	Slope	1.00
						Gravel content	0.17
Nellis----------	35	Somewhat limited		Somewhat limited		Very limited	
		Large stones content	0.53	Large stones content	0.53	slope	1.00
		slope	0.04	slope	0.04	Large stones	0.53
						Gravel content	0.18
94E:							
Farmington------	40	Very limited		Very limited		Very limited	
		Slope	1.00	Slope	1.00	Slope	1.00
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
						Gravel content	0.17
Nellis----------	35	Very limitedSlope		Very limited		Very limited	
			11.00	Slope	1.00	Slope	1.00
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53
						Gravel content	0.18
95C:							
Farmington------	60	Very limited Depth to bedrock slope		Very limited		Very limited	
			1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
			0.04	slope	0.04	Slope	1.00
						Gravel content	0.17
Rock Outcrop--	20	Not rated		Not rated		Not rated	
95E:							
Farmington------	60	Very limitedSlope		Very limited		Very limited	
			1.00	slope	1.00	slope	1.00
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00
						Gravel content	0.17
Rock Outcrop--	20	Not rated		Not rated		Not rated	
96:							
Ipswich--------	85	```Very limited Depth to saturated zone Salinity```		Very limited Ponding		Very limited	
			1.00		1.00	Depth to saturated zone	1.00
			\| 1.00	Depth to saturated zone	1.00	Salinity	\| 1.00
		Flooding	1.00	Salinity	1.00	Flooding	1.00
		Ponding	1.00	Flooding	0.60	Ponding	1.00

Table 13.-Recreation (Part 1)-Continued


Table 13.-Recreation (Part 1)-Continued

Map symbol and soil name	Pct.   of map unit	Camp areas		Picnic areas		Playgrounds		
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value	
403C:								
Taconic---------	70	Very limited		Very limited		Very limited		
		Depth to bedrock	1.00	Depth to bedrock	1.00	Depth to bedrock	1.00	
		Gravel content	0.39	Gravel content	0.39	slope	1.00	
		slope		Slope	0.01			
Rock Outcrop--------	25	Not rated		Not rated		Not rated		
$403 \mathrm{E}:$	70	Very limited		Very limited		Very limited		
Taconic		slope	1.00	slope	1.00	Slope	1.00	
		Depth to bedrock	1.00	Depth to bedrock Gravel content	1.00	Depth to bedrock	\| 1.00	
		Gravel content	0.39		0.39			
Rock Outcrop--------	20	Not rated		Not rated		Not rated		
403F:								
Taconic---------	70	Very limited 1   Slope 1.00		Very limited slope		Very limitedSlope		
				1.00	1.00			
		Depth to bedrock Gravel content	1.00		Depth to bedrock	1.00	Depth to bedrock	1.00
			0.39	Gravel content	0.39			
Rock Outcrop--------	20	Not rated		Not rated		Not rated		
405C:								
Dummerston------	85	Somewhat limited   Large stones content Gravel content		Somewhat limited		Very limited Slope		
			0.19	Large stones content	0.19		1.00	
		Gravel content	0.09	Gravel content	0.09	Large stones content	0.19	
		Slope	0.01	Slope	0.01			
405E:								
Dummerston------	85	Very limited		Very limited		Very limited		
		slope   Large stones   content   Gravel content	1.00	Slope	1.00	Slope	1.00	
			0.19	Large stones content	0.19	Large stones content	0.19	
			0.09	Gravel content	0.09			
407C:								
Lanesboro-------	85	Somewhat limited \| 0.53		Somewhat limited   Large stones$\| 0.53$		Very limited Slope		
		Large stones content	0.53	Large stones content	0.53		11.00	
		Depth to pan	0.46	Depth to pan	0.46	Large stones content	0.53	
		Depth to saturated zone	0.39 0.16	Depth to saturated zone	0.19 0.16	Depth to pan	0.46	
		Slope	0.16	Slope	0.16	Depth to saturated zone	0.39	
407E:								
Lanesboro-------	85	Very limited    Slope 1.00		Very limited		Very limited		
				slope	1.00	slope	1.00	
		Large stones content	0.53	Large stones content	0.53	Large stones content	0.53	
		Depth to pan	0.46	Depth to pan	0.46	Depth to pan	0.46	
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to saturated zone	0.39	

Table 13.-Recreation (Part 1)-Continued


Table 13.-Recreation (Part 1)-Continued


Table 13.-Recreation (Part 1)-Continued

Map symbol and soil name	Pct.	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value
420A:							
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to saturated zone	0.39
420B:							
Schroon---------	85	Somewhat limited Depth to saturated zone	0.39	Somewhat limited	0.19		0.88
				Depth to saturated zone		Slope	
						Depth to saturated zone	0.39
421A:							
Ninigret, cold---	85	Somewhat limited Depth to saturated zone	0.39	Somewhat limited	0.19	Somewhat limited	0.39
				Depth to saturated zone		Depth to saturated zone Gravel content	
423A:							
Sudbury, cold----	85	Somewhat limited Depth to saturated zone	0.07	Somewhat limited Depth to saturated zone	0.03	Somewhat limited Depth to saturated zone	0.07
424B:							
Shelburne-------	85	Somewhat limited		Somewhat limited		Very limited	
		Depth to pan	0.74	Depth to pan	0.74	Slope	11.00
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to pan	\| 0.74
						Depth to saturated zone	0.39
424C:							
Shelburne-------	85	Somewhat limited		Somewhat limited		Very limited	
		Depth to pan	0.74	Depth to pan	0.74	Slope	1.00
		Slope	0.63	Slope	0.63	Depth to pan	$0.74$
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to saturated zone	0.39
424D:							
Shelburne-------	85	Very limited		Very limited		Very limited	
		slope	1.00	slope	1.00	slope	1.00
		Depth to pan	0.74	Depth to pan	$0.74$	Depth to pan	0.74
		Depth to saturated zone	0.39	Depth to saturated zone	0.19	Depth to saturated zone	0.39
425B :							
Shelburne-------	85	Somewhat limited   Depth to pan   Large stones content   Depth to saturated zone		Somewhat limited Depth to pan Large stones content Depth to saturated zone		Very limited	
			0.74		0.74	\| slope	1.00
			0.53		0.53	Depth to pan	\| 0.74
			0.39		0.19	Large stones content Depth to saturated zone	$\left\lvert\, \begin{aligned} & 0.53 \\ & 0.39\end{aligned}\right.$

Table 13.-Recreation (Part 1)-Continued


Table 13.-Recreation (Part 1)-Continued


Table 13.-Recreation (Part 1)-Continued


Table 13.-Recreation (Part 1)-Continued


Table 13.-Recreation (Part 1)-Continued

Map symbol and soil name	Pct.   of map unit	Camp areas		Picnic areas		Playgrounds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
458:							
Alden-----------	35	Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to	1.00
		Large stones content	1.00	Large stones content	1.00	Large stones content	1.00
		Ponding	1.00	Ponding	1.00	Ponding	1.00
		Slow water movement	0.15	Slow water movement	0.15	Slow water movement	0.15
						Large stones content	0.01
501:							
Ondawa-	85	Very limited Flooding	1.00	Somewhat limited Slow water movement			
					0.15	Gravel content	1.00
		Slow water movement	0.15			Flooding	0.60
						Slow water movement	0.15
$503:$							
Rumney--	80	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00 0.40	Depth to saturated zone	1.00
		Flooding	1.00	Flooding	0.40	Flooding	1.00
						Gravel content	0.22
$508:$Medomak							
	85	Very limited Depth to saturated zone Flooding Ponding		Very limited Depth to saturated zone Ponding Flooding		Very limited	
			1.00		1.00	Depth to saturated zone	1.00
			1.00		1.00	Flooding	1.00
			1.00		0.40	Ponding	1.00

Table 14.-Recreation (Part 2)
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)


Table 14.-Recreation (Part 2)-Continued


Table 14.-Recreation (Part 2)-Continued

Map symbol and soil name	$\mid$ Pct.   of   map   unit	Paths and trails		Off-road motorcycle trails		Golf fairways	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
$48 \mathrm{C}:$   Georgia	50	Not limited		Not limited		Somewhat limited   Slope	0.63
Amenia-	35	Not limited		Not limited		Somewhat limited Slope	0.63
49B :   Georgia	50	Very limited Large stones content	1.00	Very limited Large stones content	1.00	Not limited	
Amenia-	35	Very limited Large stones content	1.00	\|Very limited Large stones content	1.00	Not limited	
$\begin{aligned} & \text { 49C: } \\ & \text { Georgia- } \end{aligned}$	50	Very limited Large stones content	1.00	\|Very limited Large stones content	1.00	$\left\lvert\, \begin{gathered}\text { Somewhat limited } \\ \text { Slope }\end{gathered}\right.$	0.63
Amenia-	35	\|Very limited Large stones content	1.00	\|Very limited Large stones content	1.00	$\left\lvert\, \begin{gathered}\text { Somewhat limited } \\ \text { Slope }\end{gathered}\right.$	0.63
50A: Sutton-	80	Not limited		Not limited		Not limited	
50B : Sutton	80	Not limited		Not limited		Not limited	
Sutton-	80	Somewhat limited Large stones content	0.53	Somewhat limited Large stones content	0.53	Not limited	
$\begin{aligned} & \text { 52C: } \\ & \text { Sutton-- } \end{aligned}$	80	Very limited Large stones content	1.00	\|Very limited Large stones content	11.00	$\left\lvert\, \begin{gathered} \text { Somewhat limited } \\ \text { Slope } \end{gathered}\right.$	0.04
53A:   Wapping	80	Not limited		Not limited		Not limited	
$\begin{aligned} & \text { 53B: } \\ & \text { Wapping-- } \end{aligned}$	80	Not limited		Not limited		Not limited	
54B : Wapping-	80	Somewhat limited Large stones content	0.53	Somewhat limited Large stones content	0.53	Not limited	
55A: Watchaug--	80	Not limited		Not limited		Somewhat limited Large stones content	0.01
55B:   Watchaug	80	Not limited		Not limited		Somewhat limited Large stones content	0.01

Table 14.-Recreation (Part 2)-Continued


Table 14.-Recreation (Part 2)-Continued

Map symbol and soil name	Pct.	Paths and trails		Off-road motorcycle trails		Golf fairways	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
97:							
Pawcatuck----------	85	Very limited		Very limited	\| 1.00	Very limited	
		Depth to	1.00	Depth to		Ponding	1.00
		Ponding	1.00	Ponding	1.00	Flooding	1.00
		Flooding	0.60	Flooding	0.60	Organic matter	1.00
						content Salinity	1.00
						Sulfur content	1.00
98:							
Westbrook----------	80	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	\| Ponding	1.00
		Ponding	1.00	Ponding	1.00	Flooding	1.00
		Flooding	0.60	Flooding	0.60	Salinity	1.00
						Sulfur content	1.00
						Depth to saturated zone	1.00
99:							
Westbrook, low salt-	80	Very limitedDepth to		Very limited		Very limited	
			1.00	Depth to saturated zon	1.00	Ponding	1.00
		Ponding	1.00	Ponding	11.00	Flooding	1.00
		Flooding	0.60	Flooding	0.60	Sulfur content	1.00
						Depth to saturated zone Salinity	1.00 1.00
							1.00
100 :							
Suncook-------------	80	Somewhat limited Too sandy	0.50	Somewhat limited Too sandy	0.50	Somewhat limited	0.89
						Flooding	0.60
101:   Occum		Not limited		\| Not limited			
	80					Somewhat limited Flooding	0.60
102:							
Pootatuck----------	80	Somewhat limited		Somewhat limited		Very limited	
			0.40	Flooding	0.40	Flooding	1.00
103:							
Rippowam-----------	80	Very limited		Very limited		Very limited	
		Depth to saturated zone Flooding	1.00	Depth to saturated zone Flooding	1.00	Flooding	1.00
			0.40		0.40	Depth to saturated zone	1.00
104:							
Bash--------------	80	Very limited		Very limited		Very limited	
		Depth to	1.00	Depth to	\| 1.00	Flooding	\| 1.00
		saturated zone Flooding	0.40	saturated zone Flooding	0.40		0.99
		Flooding		Flooding		saturated zone	
105:							
Hadley------------	80	Not limited		Not limited		Somewhat limited Flooding	0.60

Table 14.-Recreation (Part 2)-Continued


Table 14.-Recreation (Part 2)-Continued


Table 14.-Recreation (Part 2)-Continued


Table 14.-Recreation (Part 2)-Continued


Table 14.-Recreation (Part 2)-Continued

Map symbol and soil name	Pct.	Paths and trails		Off-road motorcycle trails		Golf fairways	
		Rating class and limiting features	Value	Rating class and limiting features	\| Value	Rating class and limiting features	Value
$260 \mathrm{D}:$							
Urban Land-	35	Not rated		Not rated		Not rated	
263B:							
Urban Land--	35	Not rated		Not rated		Not rated	
$263 C:$							
						slope	0.63
						Large stones content	0.01
Urban Land-	35	Not rated		Not rated		Not rated	
$266 \mathrm{~B}:$							
Urban Land--	35	Not rated		Not rated		Not rated	
$269 \mathrm{~B}:$							
						Depth to bedrock	0.05
Urban Land---	35	Not rated		Not rated		Not rated	
269C:							
Yalesville--	40	Not limited		Not limited		```\| Somewhat limited ```	$\left\lvert\, \begin{aligned} & 0.63 \\ & 0.05 \end{aligned}\right.$
Urban Land-----	35	Not rated		Not rated		Not rated	
273C:							
Urban Land---	35	Not rated		Not rated		Not rated	
Charlton------	25	Not limited		Not limited		$\left\lvert\, \begin{gathered}\text { Somewhat limited } \\ \text { Slope }\end{gathered}\right.$	0.04
Chatfield-------	15	Somewhat limited Large stones content	0.53	Somewhat limited Large stones content	0.53	Somewhat limited Depth to bedrock	0.54
						Gravel content Slope	$\left\lvert\, \begin{aligned} & 0.25 \\ & 0.04 \end{aligned}\right.$

Table 14.-Recreation (Part 2)-Continued


Table 14.-Recreation, Part 2-Continued

Map symbol and soil name	\| Pct.	Paths and trails		Off-road   motorcycle trails		Golf fairways	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
$\begin{aligned} & \text { 284C: } \\ & \text { Urban Land-- } \end{aligned}$	35	Not rated		Not rated		Not rated	
284D:							
		slope	0.50			Slope	1.00
						Depth to pan	0.79
						Large stones content	0.01
Urban Land--	35	Not rated		Not rated		Not rated	
$\begin{aligned} & \text { 287B: } \\ & \text { Wethersfield } \end{aligned}$	40	Not limited		Not limited		Somewhat limited	
						Depth to pan	0.71
						Large stones content	0.01
Urban Land--	35	Not rated		Not rated		Not rated	
287C:							
						Depth to pan	0.71
						Slope	0.63
						Large stones content	0.01
Urban Land--	35	Not rated		Not rated		Not rated	
Wethersfield----	287D:						
	40	Somewhat limited slope	0.50	Not limited		Slope	1.00
						Depth to pan	0.71
						Large stones content	0.01
Urban Land--------- - - -	35	Not rated		Not rated		Not rated	
290B:							
Stockbridge--------	40	Not limited		Not limited		Not limited	
Urban Land--	35	Not rated		Not rated		Not rated	
290C:							
Stockbridge-----	40	Not limited		Not limited		Somewhat limited Slope	0.63
Urban Land-	35	Not rated		Not rated		Not rated	
		Slope	0.50			Slope	1.00
Urban Land------	35	Not rated		Not rated		Not rated	

Table 14.-Recreation (Part 2)-Continued


Table 14.-Recreation (Part 2)-Continued

Map symbol and soil name	Pct.   of map unit	Paths and trails		Off-road motorcycle trails		Golf fairways	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
Mudgepond-------	55	Very limited		Very limited		Very limited	1.00
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	
		Large stones content	1.00	Large stones content	1.00		
Alden-----------	35	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	11.00
		Large stones content	1.00	Large stones content	1.00	Ponding	1.00
		Ponding	1.00	Ponding	\| 1.00	Large stones content	0.01
$501:$							
	85	Very limited Gravel content	1.00	Gravel content	1.00	Flooding	0.60
503 :							
Rumney-	80	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone Flooding	1.00	Flooding	1.00
		Flooding	0.40		0.40	Depth to saturated zone	1.00
508:							
Medomak -	85	```Very limited Depth to saturated zone Ponding```		```\|Very limited Depth to saturated zone Ponding```		Very limited Flooding	
			1.00		1.00		1.00
			1.00		1.00	Depth to saturated zone Ponding	1.00
		Flooding	0.40	Flooding	0.40		1.00

Table 15.-Wildlife Habitat
(See text for definitions of terms used in this table. Absence of an entry indicates that no rating is applicable.)


Table 15.-Wildlife Habitat-Continued


Table 15.-Wildlife Habitat-Continued

```Map symbol and soil name```	Potential for habitat elements							Potential as habitat for--		
	Grain and seed crops	Grasses and legumes	Wild herba- ceous plants	Hard- wood trees	$\begin{array}{\|} \text { Conif- } \\ \text { erous } \\ \text { plants } \end{array}$	Wetland plants	Shallow water areas	Open- land wildlife	Wood- land wild- life	$\begin{array}{\|c} \mid \text { Wetland } \\ \text { wild- } \\ \text { life } \end{array}$
29A: Agawam-	Good	Good	Good	Good	Good	Poor	Very poor	Good	Good	Very poor
29B: Agawam-	Good	Good	Good	Good	Good	Poor	Very poor	Good	Good	Very poor
$29 \mathrm{C}:$ Agawam-	Fair	Good	\| Good	\| Good	Good	Very poor	Very poor	Good	Good	Very poor
$\begin{aligned} & \text { 30A: } \\ & \text { Branford } \end{aligned}$	Good	Good	Good	Good	Good	Poor	\| Very	Good	Good	$\begin{aligned} & \text { \| Very } \\ & \text { poor } \end{aligned}$
30B: Branford	Good	Good	\| Good	\| Good	Good	Poor	Very poor	Good	Good	$\begin{aligned} & \text { \|Very } \\ & \text { \| poor } \end{aligned}$
$30 C:$ Branford	Fair	Good	Good	Good	Good	Very poor	Very poor	Good	Good	Very poor
31A: Copake	Good	Good	\| Good	Good	Good	Poor	Very poor	Good	Good	Very poor
31B: Copake	Good	Good	Good	Good	Good	Poor	Very poor	Good	Good	Very poor
31C: Copake	Fair	Good	\| Good	\| Good	Good	$\left\lvert\, \begin{aligned} & \text { Very } \\ & \text { poor } \end{aligned}\right.$	Very poor	Good	Good	Very poor
32A: Haven	Good	Good	\| Good	Good	Good	Poor	Very poor	Good	Good	\| Very poor
Enfield----------------	Good	Good	\| Good	Good	Good	\| Poor	Very poor	Good	Good	Very poor
32B: Haven	Good	Good	Good	Good	Good	Poor	Very poor	Good	Good	Very poor
Enfield----------------	Good	Good	\| Good	Good	Good	\| Poor	Very poor	Good	Good	Very poor
32C: Haven	Fair	Good	Good	Good	Good	$\begin{array}{\|l} \text { Very } \\ \text { poor } \end{array}$	\| Very poor	Good	Good	Very poor
Enfield----------------	Fair	Good	\| Good	Good	Good	\| Very poor	Very poor	Good	Good	Very poor
33A: Hartford	Good	Good	\| Good	Good	Good	Very poor	Very poor	Fair	Fair	Very poor

Table 15.-Wildlife Habitat-Continued

Map symbol and soil name	Potential for habitat elements							Potential as habitat for--		
	Grain and seed crops	Grasses and legumes	Wild herba- ceous plants	Hard- wood trees	$\begin{array}{\|c} \text { Conif- } \\ \text { erous } \\ \text { plants } \end{array}$	Wetland plants	Shallow water areas	Open- land wild- life	Woodland wildlife	$\begin{array}{\|c} \text { \| Wetland } \\ \text { wild- } \\ \text { life } \end{array}$
33B: Hartford	Good	Good	Good	Good	Good	Very poor	Very poor	Fair	Fair	Very poor
$34 \mathrm{~A}:$ Merrimac	Good	Good	Good	Good	Good	Very poor	Very poor	Fair	Fair	Very poor
34B: Merrimac	Good	Good	Good	Good	Good	Very poor	Very poor	Fair	Fair	Very poor
$34 C:$ Merrimac	Fair	Fair	Fair	Fair	Fair	Very poor	Very poor	Fair	Fair	$\left\lvert\, \begin{aligned} & \text { Very } \\ & \text { poor } \end{aligned}\right.$
35A: Penwood	Fair	Fair	Fair	Fair	Fair	Very poor	Very poor	Fair	Poor	Very poor
35B: Penwood	Fair	Fair	Fair	Fair	Fair	Very poor	Very poor	Fair	Poor	Very poor
$36 \mathrm{~A}:$ Windsor	Fair	Fair	Fair	Fair	Fair	Very poor	Very poor	Fair	Poor	Very poor
$36 \mathrm{~B}:$ Windsor	Fair	Fair	Fair	Fair	Fair	Very poor	Very poor	Fair	Poor	Very poor
$36 C:$ Windsor	Poor	Poor	Fair	Fair	Fair	Very poor	Very poor	Fair	Poor	Very poor
37A: Manchester	Poor	Poor	Fair	Fair	Fair	Very poor	Very poor	Poor	Poor	Very poor
37C: Manchester	Poor	Poor	Fair	Fair	Fair	Very poor	Very poor	Poor	Poor	Very poor
37E: Manchester	Very poor	Poor	Fair	Fair	Fair	Very poor	Very poor	Poor	Poor	Very poor
38A: Hinckley	Poor	Poor	Fair	Fair	Fair	Very poor	Very poor	Poor	Poor	Very poor
$38 \mathrm{C}:$ Hinckley	Poor	Poor	Fair	Fair	Fair	Very poor	Very poor	Poor	Poor	Very poor
$38 \mathrm{E}:$ Hinckley	Very poor	Poor	Fair	Fair	Fair	Very poor	Very poor	Poor	Poor	Very poor
39A: Groton	Poor	Poor	Fair	Fair	Fair	Very poor	Very poor	Poor	Poor	Very poor

Table 15.-Wildlife Habitat-Continued

Table 15.-Wildlife Habitat-Continued

Table 15.-Wildlife Habitat-Continued

Table 15.-Wildlife Habitat-Continued

Map symbol and soil name	Potential for habitat elements							Potential as habitat for--		
	Grain and seed crops	Grasses and legumes	Wild herba- ceous plants	Hard- wood trees	$\begin{array}{\|c} \text { Conif- } \\ \text { erous } \\ \text { plants } \end{array}$	Wetland plants	Shallow water areas	Open- land wild- life	Wood- land wild- life	```Wetland wild- life```
62C: Charlton	Very poor	Very poor	Good	Good	Good	Very poor	Very poor	Poor	Fair	Very poor
62D: Canton	Very poor	Very poor	Good	Good	Good	Very poor	Very poor	Poor	Fair	Very poor
Charlton---------------	Very poor	Very poor	\| Good	Good	\| Good	$\left\lvert\, \begin{aligned} & \text { Very } \\ & \text { poor } \end{aligned}\right.$	Very poor	Poor	\| Fair	Very poor
63B: Cheshire	Good	Good	\| Good	Good	Good	Poor	Very poor	Good	\| Good	Very poor
$63 C:$ Cheshire	Fair	Good	Good	Good	Good	Very poor	Very poor	Good	Good	Very poor
63D: Cheshire-	Poor	Fair	Good	Good	Good	Very poor	Very poor	Fair	Good	Very poor
64B: Cheshire	Very poor	Poor	Good	Good	Good	Poor	Very poor	Poor	Good	Very poor
$64 C:$ Cheshire	Very poor	Poor	Good	Good	Good	Very poor	Very poor	Poor	Good	Very poor
65C: Cheshire	Very poor	Very poor	Good	Good	Good	Very poor	Very poor	Poor	Fair	Very poor
65D: Cheshire	Very poor	Very poor	Good	Good	Good	Very poor	Very poor	Poor	Fair	Very poor
66B: Narragansett	Good	Good	Good	Good	\| Good	Poor	Very poor	Good	\| Good	Very poor
$66 \mathrm{C}:$ Narragansett	Fair	Good	Good	Good	Good	Very poor	Very poor	Good	Good	Very poor
67B: Narragansett	Very poor	Poor	Good	Good	\| Good	Poor	Very poor	Poor	\| Good	Very poor
$67 C:$ Narragansett	Very poor	Poor	Good	Good	Good	Very poor	Very poor	Poor	\| Good	Very poor
$68 \mathrm{C}:$ Narragansett	Very poor	Very poor	Good	Good	Good	Very poor	Very poor	Poor	Fair	Very poor
68D: Narraganset	Very poor	Very poor	Good	Good	Good	Very poor	Very poor	Poor	Fair	Very poor

Table 15.-Wildlife Habitat-Continued

Table 15.-Wildlife Habitat-Continued

Map symbol and soil name	Potential for habitat elements							Potential as habitat for-		
	Grain and seed crops	$\begin{gathered} \text { Grasses } \\ \text { and } \\ \text { legumes } \end{gathered}$	Wild herba- ceous plants	Hard- wood trees	$\begin{array}{\|} \text { Conif- } \\ \text { erous } \\ \text { plants } \end{array}$	Wetland plants	Shallow water areas	Open- land wildlife	Wood- land wild- life	```Wetland wild- life```
$\begin{aligned} & \text { 75E: } \\ & \text { Hollis---- } \end{aligned}$	Very poor	Very poor	Fair	Poor	Poor	Very poor	Very poor	Very poor	Poor	Very poor
Chatfield--	Very poor	$\left\lvert\, \begin{aligned} & \text { Very } \\ & \text { poor } \end{aligned}\right.$	Good	Fair	Fair	Very poor	\| Very poor	$\begin{aligned} & \text { \|Very } \\ & \text { \| poor } \end{aligned}$	Fair	Very poor
Rock Outcrop--	---	---	---	---	---	---	---	---	---	---
$76 \mathrm{E}:$ Rock Outcrop-	---	---	---	---	---	---	---	---	---	---
Hollis--	Very poor	Very poor	Fair	Poor	\| Poor	Very poor	Very poor	\| Very poor	Poor	Very poor
76F: Rock Outcrop--	---	---	---	---	---	---	---	---	---	---
Hollis--	Very poor	$\begin{aligned} & \text { Very } \\ & \text { poor } \end{aligned}$	Fair	Poor	\| Poor	$\begin{aligned} & \text { \|Very } \\ & \text { poor } \end{aligned}$	Very poor	$\begin{aligned} & \text { \|Very } \\ & \text { \| poor } \end{aligned}$	\| Poor	Very poor
77C: Cheshire	Very poor	Poor	Good	Good	Good	Very poor	Very poor	Poor	Good	Very poor
Holyoke-	Very poor	\| Poor	Fair	Poor	\| Poor	Very poor	\| Very poor	\| Poor	\| Poor	Very poor
77D: Cheshire	Very poor	Poor	Good	Good	Good	Very poor	Very poor	Poor	Good	Very poor
Holyoke-	Very poor	Poor	Fair	Poor	\| Poor	Very poor	Very poor	\| Poor	\| Poor	Very poor
$78 \mathrm{C}:$ Holyoke	Very poor	Poor	Fair	Poor	Poor	Very poor	Very poor	Poor	Poor	Very poor
Rock Outcrop--	---	---	---	---	---	---	---	---	---	---
78E: Holyoke-	Very poor	Poor	Fair	Poor	Poor	Very poor	Very poor	Poor	Poor	Very poor
Rock Outcrop---	---	---	---	---	---	---	---	---	---	---
79E: Rock Outcrop-----	---	---	---	---	---	---	---	---	---	---
Holyoke---------	Very poor	$\begin{aligned} & \text { \|Very } \\ & \mid \text { poor } \end{aligned}$	Fair	Poor	\| Poor	Very poor	Very poor	$\begin{aligned} & \text { \|Very } \\ & \text { \| poor } \end{aligned}$	\| Poor	Very poor
80B: Bernardston	Good	Good	Good	Good	Good	Poor	Very poor	Good	Good	Very poor
80C: Bernardston	Fair	\| Good	Good	Good	\| Good	Very poor	\| Very poor	\| Good	\| Good	\| Very poor

Table 15.-Wildlife Habitat-Continued

Table 15.-Wildlife Habitat-Continued

Table 15.-Wildlife Habitat-Continued

Map symbol and soil name	Potential for habitat elements							Potential as habitat for--		
	Grain and seed crops	Grasses and legumes	Wild herba- ceous plants	Hard- wood trees	Coniferous plants	Wetland plants	Shallow water areas	Open- land wild- life	Wood- land wild- life	$\begin{array}{\|c} \mid \text { Wetland } \\ \text { wild- } \\ \text { life } \end{array}$
```91D: Stockbridge```	Very poor	Poor	\| Good	\| Good	Good	Very poor	Very poor	Poor	Good	Very poor
92B:   Nellis	Good	Good	\| Good	\| Good	Good	Poor	\| Very poor	Good	Good	\| Very poor
92C:   Nellis	Fair	Good	Good	Good	Good	Very poor	Very poor	Fair	Good	$\begin{aligned} & \text { \|Very } \\ & \text { \| poor } \end{aligned}$
92D:   Nellis	Fair	Fair	Fair	\| Good	Good	Very poor	Very poor	Fair	Good	Very poor
93C:   Nellis	Very poor	Fair	Good	Good	Good	Very poor	Very poor	Poor	Good	Very poor
94C:   Farmington	Very poor	Poor	Fair	Poor	Poor	Very poor	Very poor	Poor	Poor	Very poor
Nellis-----------------	Fair	Good	Good	Good	Good	Very poor	Very poor	Fair	Good	Very poor
$94 \mathrm{E}:$   Farmington	Very poor	Poor	Fair	Poor	Poor	Very poor	Very poor	Poor	Poor	Very poor
Nellis------------------	Very poor	Fair	\| Good	\| Good	Good	Very poor	$\begin{aligned} & \text { \|Very } \\ & \text { poor } \end{aligned}$	Poor	Good	$\begin{aligned} & \text { \|Very } \\ & \text { \| poor } \end{aligned}$
95C:										
Farmington-------------	Poor	Poor	\| Fair	Poor	Poor	Very poor	\| Very poor	Poor	Poor	$\begin{aligned} & \text { \| Very } \\ & \text { poor } \end{aligned}$
Rock Outcrop------------	---	---	---	---	---	---	---	---	---	---
95E:   Farmington	Very poor	Poor	Fair	Poor	Poor	Very poor	Very poor	Poor	Poor	Very poor
Rock Outcrop------------	---	---	---	---	---	---	---	---	---	---
96:										
Ipswich---------------	Very poor	Very poor	\| Very poor	Very poor	Very poor	Good	\| Good	Very poor	Very poor	\| Good
97 :										
Pawcatuck---------------	Very poor	\| Very poor	\| Very poor	\| Very poor	\| Very poor	Good	\| Good	\| Very poor	\| Very poor	\| Good
$98 \text { : }$   Westbrook	Very poor	Very poor	$\begin{aligned} & \text { Very } \\ & \text { poor } \end{aligned}$	$\begin{aligned} & \text { Very } \\ & \text { poor } \end{aligned}$	Very poor	Good	\| Good	Very poor	Very poor	\| Good
99 :   Westbrook, low salt	Very poor	Very poor	\| Very poor	\| Very poor	\| Very poor	Good	\| Good	\| Very poor	\| Very poor	Good

Table 15.-Wildlife Habitat-Continued


Table 15.-Wildlife Habitat-Continued

Map symbol and soil name	Potential for habitat elements							Potential as habitat for-		
	Grain and seed crops	Grasses and legumes	Wild herba- ceous plants	Hard-   wood   trees	$\left\lvert\, \begin{array}{r} \text { Conif- } \\ \text { erous } \\ \text { plants } \end{array}\right.$	Wetland plants	Shallow water areas	Open-   land   wild-   life	Wood-   land   wild-   life	$\left\lvert\, \begin{gathered} \text { Wetland } \\ \text { wild- } \\ \text { life } \end{gathered}\right.$
228B:   Elmridge   Urban Land	Good	\| Good	Good	Good	Good	Poor	\| Very poor	Good	Good	Very poor
		---	---	---	---	---	---	--	--	--
229B:	Good	Good	Good	Good	Good	Poor	Very poor	Good	Good	Very poor
Agawam----------------										
Urban Land--------------	---	---	---	---	---	--	---	---	---	--
229C:	Fair	Good	Good	Good	Good	Very poor	Very poor	Good	Good	Very poor
Agawam-----------------										
Urban Land-------------	---	---	---	---	-	---	---	--	---	--
$\begin{aligned} & \text { 230B: } \\ & \text { Branford. } \end{aligned}$	Good	Good	Good	Good	Good	Poor	Very poor	Good	Good	Very poor
Urban Land--------------	---	---	---	---	--	---	---	--	---	--
$230 \mathrm{C}:$	Fair	Good	Good	Good	Good	Very poor	\| Very poor	Good	Good	Very poor
Urban Land-------------	---	---	---	---	---	---	---	--	-	---
232B:	Good	\| Good	Good	Good	Good	Poor	Very poor	Good	Good	$\left\lvert\, \begin{aligned} & \text { Very } \\ & \text { poor } \end{aligned}\right.$
Haven------------------										
Urban Land--------------	---	---	---	---	-	-	---	---	---	--
234B:	Good	Good	Good	\| Good	Good	Very poor	Very poor	Fair	Fair	Very poor
Merrimac---------------										
Urban Land-------------	---	---	---	---	---	---	---	--	---	---
235B:Penwood	Fair	Fair	Fair	Fair	Fair	Very poor	Very poor			Very poor
								Poor	Poor	
Urban Land-------------	---	-	-	-	--	---	---	---	---	---
236B:	Fair	Fair	Fair	Fair	Fair	Very poor	Very poor	Poor	Poor	Very poor
Windsor----------------										
Urban Land-------------	---	--	-	---	---	-	--	---	---	---
237A:										
Manchester-------------	Poor	Poor	Fair	Fair	Fair	Very poor	$\left\lvert\, \begin{aligned} & \text { Very } \\ & \text { poor } \end{aligned}\right.$	\| Poor	Poor	$\begin{aligned} & \text { \|Very } \\ & \text { \| poor } \end{aligned}$
Urban Land-------------	---	---	---	---	---	---	---	---	--	--

Table 15.-Wildlife Habitat-Continued


Table 15.-Wildlife Habitat-Continued


Table 15.-Wildlife Habitat-Continued


Table 15.-Wildlife Habitat-Continued


Table 15.-Wildlife Habitat-Continued

Map symbol and soil name	Potential for habitat elements							Potential as habitat for--		
	Grain and seed crops	Grasses and legumes	Wild   herba-   ceous   plants	Hard-   wood   trees	$\begin{array}{\|} \text { Conif- } \\ \text { erous } \\ \text { plants } \end{array}$	Wetland plants	Shallow water areas	Open-   land wildlife	Woodland wildlife	$\begin{aligned} & \left\lvert\, \begin{array}{c} \text { Wetland } \\ \text { wild- } \\ \text { life } \end{array}\right. \end{aligned}$
310 : Udorthents, Periodically Flooded----------------	Poor	Poor	Fair	Fair	Fair	Very poor	Very poor	Poor	Fair	Very poor
401C:   Macomber	Poor	Good	Good	Fair	Fair	Very poor	Very poor	Good	Fair	$\begin{aligned} & \text { Very } \\ & \text { poor } \end{aligned}$
Taconic----------------	Very poor	Poor	\| Fair	Poor	Poor	\| Very poor	Very poor	Poor	Poor	Very poor
402D:   Macomber	Very poor	Fair	Fair	Fair	Fair	\|Very poor	Very poor	Good	Fair	Very poor
Taconic----------------	Very poor	Fair	\| Fair	Poor	Poor	$\left\lvert\, \begin{aligned} & \text { Very } \\ & \text { poor } \end{aligned}\right.$	Very poor	Poor	Poor	$\begin{aligned} & \text { Very } \\ & \text { poor } \end{aligned}$
Rock Outcrop------------	---	---	---	---	---	---	---	---	---	---
$\begin{aligned} & \text { 403C: } \\ & \text { Taconic. } \end{aligned}$	Very poor	Poor	Fair	Poor	Poor	Very poor	Very poor	Poor	Poor	Very poor
Rock Outcrop------------	---	---	---	---	---	---	---	---	---	---
403E:   Taconic	Very poor	Very poor	Poor	Poor	Poor	\|Very poor	Very poor	Poor	Poor	Very poor
Rock Outcrop-----------	---	---	---	---	---	---	---	---	---	---
403F:   Taconic	Very poor	Very poor	Very poor	Poor	Poor	Very poor	Very poor	Poor	Poor	Very poor
Rock Outcrop------------	---	---	---	---	---	---	---	---	---	-
405C:   Dummerston	Poor	Poor	\| Good	Good	Good	Very poor	Very poor	Good	Good	Very poor
405E:   Dummerston	Very poor	Very poor	Poor	Good	Good	Very poor	Very poor	Good	Good	Very poor
407C:   Lanesboro	Very poor	Poor	\| Good	Good	Good	Very poor	Very poor	Poor	Good	Very poor
407E:   Lanesboro	Very poor	Poor	Poor	Good	Good	\|Very poor	Very poor	Poor	Good	Very poor
$\begin{aligned} & \text { 408C: } \\ & \text { Fullam- } \end{aligned}$	Poor	Poor	Fair	Good	Good	$\left\lvert\, \begin{aligned} & \text { Very } \\ & \text { poor } \end{aligned}\right.$	Very poor	Good	Fair	Fair
409B:   Brayton	Very poor	Poor	Fair	Fair	Fair	Poor	Very poor	Poor	Fair	$\begin{aligned} & \text { Very } \\ & \text { poor } \end{aligned}$

Table 15.-Wildlife Habitat-Continued


Table 15.-Wildlife Habitat-Continued


Table 15.-Wildlife Habitat-Continued


Table 15.-Wildlife Habitat-Continued


Table 15.-Wildlife Habitat-Continued

	Potential for habitat elements							Potential as habitat for--		
Map symbol and soil name	Grain   and   seed   crops	Grasses and legumes	Wild   herba-   ceous   plants	Hard-   wood   trees	$\begin{array}{\|c} \text { Conif- } \\ \text { erous } \\ \text { plants } \end{array}$	Wetland plants	Shallow water areas	Open-   land   wild-   life	Woodland wildlife	```Wetland wild- life```
$503:$   Rumney--	Poor	Fair	Fair	Poor	Poor	Good	Fair	Fair	Fair	Good
$\begin{aligned} & 508 \text { : } \\ & \text { Medomak- } \end{aligned}$	Very poor	Poor	Poor	Poor	Poor	Good	Fair	Poor	Poor	Fair

Table 16.-Connecticut Inland Wetlands

The state of Connecticut defines inland wetlands based on soils. The Connecticut Inland Wetlands and Watercourses Act defines wetland soils to include "any of the soil types designated as poorly drained, very poorly drained, alluvial, and floodplain by the National Cooperative Soil Survey, as may be amended from time to time, of the Natural Resources Conservation Service of the United States Department of Agriculture".

Map units may be dominated by Connecticut inland wetland soils, but have minor components of non-wetland soils. Non-wetland map units may contain minor components of Connecticut inland wetland soils. On site investigation is necessary to determine the presence or absence of wetland soils in a particular area.

The following map units meet the definition of Connecticut Inland Wetland Soils:

Map symbol	Map unit name
2	Ridgebury fine sandy loam
3	Ridgebury, Leicester, and Whitman soils, extremely stony
4	Leicester fine sandy loam
5	Wilbraham silt loam
6	Wilbraham and Menlo soils, extremely stony
7	Mudgepond silt loam
8	Mudgepond and Alden soils, extremely stony
9	Scitico, Shaker, and Maybid soils
10	Raynham silt loam
12	Raypol silt loam
13	Walpole sandy loam
14	Fredon silt loam
15	Scarboro muck
16	Halsey silt loam
17	Timakwa and Natchaug soils
18	Catden and Freetown soils
96	Ipswich mucky peat
97	Pawcatuck mucky peat
98	Westbrook mucky peat
99	Westbrook mucky peat, low salt
100	Suncook loamy fine sand
101	Occum fine sandy loam
102	Pootatuck fine sandy loam
103	Rippowam fine sandy loam
104	Bash silt loam
105	Hadley silt loam
106	Winooski silt loam
107	Limerick and Lim soils
108	Saco silt loam
109	Fluvaquents-Udifluvents complex, frequently flooded
409B	Brayton mucky silt loam, 0 to 8 percent slopes, very stony
414	Fredon silt loam, cold
433	Moosilauke sandy loam
435	Scarboro muck, cold
436	Halsey silt loam, cold
437	Wonsqueak mucky peat
438	Bucksport muck
442	Brayton loam
443	Brayton-Loonmeadow complex, extremely stony
457	Mudgepond silt loam, cold
458	Mudgepond and Alden soils, extremely stony, cold
501	Ondawa fine sandy loam
503	Rumney fine sandy loam
508	Medomak silt loam

Table 17.-Building Site Development (Part 1)
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)


Table 17.-Building Site Development (Part 1)-Continued


Table 17.-Building Site Development (Part 1)-Continued

Map symbol and soil name	Pct. of map	Dwellings without basements		Dwellings with basements		Small commercial buildings	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
$49 \mathrm{C}:$   Ameni	35	Somewhat limitedSlope	0.63	Very limited	1.00	Very limited	1.00
				Depth to		slope	
		Depth to saturated zone	0.07	Slope	0.63	Depth to saturated zone	0.07
50A:							
Sutton-	80	Somewhat limited Depth to saturated zone	0.39	Very limited Depth to saturated zone	1.00	Somewhat limited Depth to saturated zone	0.39
50B :							
Sutton-----------	80	Somewhat limited Depth to saturated zone		Very limited Depth to saturated zone	1.00	Somewhat limited	
			0.39			Slope	0.50
						Depth to saturated zone	0.39
51B :							
Sutton----------	80	Somewhat limited	0.39	Very limited	1.00	Somewhat limited	
		Depth to saturated zone		Depth to saturated zone		Depth to saturated zone Slope	0.39 0.12
52C:							
Sutton-	80	Somewhat limited		Very limited		Very limited	
		Depth to saturated zone	0.39	Depth to saturated zone	1.00	Slope	1.00
		slope	0.04	Slope	0.04	Depth to saturated zone	0.39
53A:							
Wapping--	80	Somewhat limited Depth to saturated zone	0.39	Very limited Depth to saturated zone	1.00	Somewhat limited Depth to saturated zone	0.39
53B :							
Wapping-	80	Somewhat limited Depth to saturated zone	0.39	Very limited Depth to saturated zone	1.00	Somewhat limited Slope	0.50
						Depth to saturated zone	0.39
54B :							
Wapping-	80	Somewhat limited Depth to saturated zone	0.39	Very limited Depth to saturated zone	1.00	```Somewhat limited Depth to saturated zone slope```	0.39 0.12
55A:							
Watchaug---	80	Somewhat limited Depth to saturated zone	0.39	Very limited Depth to saturated zone	1.00	Somewhat limited Depth to saturated zone	0.39
55B:							
Watchaug--------	80	Somewhat limited Depth to saturated zone	0.39	Very limited Depth to saturated zone		Somewhat limited Slope	
					1.00		0.50
						Depth to saturated zone	0.39

Table 17.-Building Site Development (Part 1)-Continued

Map symbol and soil name	Pct. of	Dwellings without basements		Dwellings with basements		Small commercial buildings	
		Rating class and limiting features	\|Value	Rating class and   limiting features	Value	Rating class and limiting features	Value
56B :   Watchaug	80	Somewhat limited Depth to saturated zone	0.39	Very limited Depth to saturated zone	1.00	```Somewhat limited Depth to saturated zone Slope```	$\left\lvert\, \begin{aligned} & 0.39 \\ & 0.12 \end{aligned}\right.$
Gloucester----	80	Not limited		Not limited		Somewhat limited slope	0.50
Gloucester----	80	Somewhat limited slope	0.63	Somewhat limited Slope	0.63	Very limited Slope	1.00
57D:   Gloucester	80	Very limited Slope	1.00	Very limited slope	1.00	Very limited Slope	1.00
Gloucester--	80	Not limited		Not limited		Somewhat limited slope	0.50
58C:   Gloucester	80	Somewhat limited slope	0.63	Somewhat limited Slope	0.63	Very limited Slope	1.00
59C:   Gloucester-	80	Somewhat limited slope	0.04	Somewhat limited slope	0.04	Very limited Slope	1.00
59D:   Gloucester	80	Very limited Slope	1.00	Very limited slope	1.00	Very limited slope	1.00
Canton	45	Not limited		Not limited		Somewhat limited slope	0.50
Charlton--	35	Not limited		Not limited		Somewhat limited Slope	0.50
60C: Canton	45	Somewhat limited slope	0.63	Somewhat limited slope	0.63	Very limited slope	1.00
Charlton----	35	Somewhat limited Slope	0.63	Somewhat limited Slope	0.63	```Very limited Slope```	1.00
60D:   Canton	45	Very limited Slope	1.00	Very limited Slope	1.00	Very limited slope	1.00
Charlton---	35	Very limited Slope	1.00	Very limited Slope	1.00	Very limited Slope	1.00
61B:   Canton	45	Not limited		Not limited		Somewhat limited Slope	0.50
Charlton-------	35	Not limited		Not limited		Somewhat limited Slope	0.50

Table 17.-Building Site Development (Part 1)-Continued

Map symbol and soil name	Pct. of	Dwellings without basements		Dwellings with basements		Small commercial buildings	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
61C:							
Canton-	45	Somewhat limited Slope	0.63	Somewhat limited Slope	0.63	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00
Charlton-	35	Somewhat limited Slope	0.63	Somewhat limited Slope	0.63	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00
62C:							
Canton-	45	Somewhat limited Slope	0.04	Somewhat limited Slope	0.04	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00
Charlton--	35	Somewhat limited Slope	0.04	Somewhat limited Slope	0.04	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00
62D:							
Canton---	45	Very limited slope	1.00	Very limited Slope	1.00	$\begin{aligned} & \text { \|Very limited } \\ & \text { Slope } \end{aligned}$	1.00
Charlton-	35	```Very limited Slope```	1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00
63B: Cheshire	80	Not limited		Not limited		Somewhat limited Slope	0.50
63C:   Cheshire	80	Somewhat limited slope	0.63	Somewhat limited Slope	0.63	Very limited Slope	1.00
63D :   Cheshire--	80	Very limited slope	1.00	Very limited Slope	1.00	Very limited   Slope	1.00
64B:   Cheshire	80	Not limited		Not limited		Somewhat limited Slope	0.50
$64 C:$   Cheshire-	80	Somewhat limited slope	0.63	Somewhat limited   Slope	0.63	Very limited slope	1.00
65C:   Cheshire	80	Somewhat limited Slope	0.04	```Somewhat limited```	0.04	```\|Very limited```	1.00
65D: Cheshire	80	Very limited slope	1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00
$\begin{aligned} & \text { 66B: } \\ & \text { Narragansett--- } \end{aligned}$	80	Not limited		Not limited		Somewhat limited Slope	0.12
$\begin{aligned} & \text { 66C: } \\ & \text { Narragansett--- } \end{aligned}$	80	Somewhat limited Slope	0.63	$\left\lvert\, \begin{gathered}\text { Somewhat limited } \\ \text { Slope }\end{gathered}\right.$	0.63	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00
67B:   Narragansett---	80	Not limited		Not limited		Somewhat limited Slope	0.50

Table 17.-Building Site Development (Part 1)-Continued


Table 17.-Building Site Development (Part 1)-Continued

Map symbol and soil name	Pct. of	Dwellings without basements		Dwellings with basements		Small commercial buildings			
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value		
102:									
Pootatuck----------	80	Very limited		Very limited		Very limited			
		Flooding	1.00	Flooding	\| 1.00	Flooding	1.00		
		Depth to saturated zone	0.39	Depth to saturated zone	\| 1.00	Depth to saturated zone	0.39		
103:									
Rippowam-----------	80	Very limited		Very limited		Very limited			
		Flooding	1.00	Flooding	\| 1.00	Flooding	1.00		
		Depth to saturated zone	1.00	Depth to saturated zone	\| 1.00	Depth to saturated zone	1.00		
104:									
Bash---------------	80	Very limited		Very limited		Very limited			
		Flooding	1.00	Flooding	1.00	Flooding	1.00		
		Depth to saturated zone	1.00	Depth to saturated zone	\| 1.00	Depth to saturated zone	\| 1.00		
105:									
Hadley------------	80	Very limited Flooding	1.00	\|Very limited	1.00	Very limited Flooding	1.00		
				Depth to saturated zone	0.03				
106:									
Winooski------------	80	Very limited		Very limited		Very limited			
		Flooding \|1.00		Flooding	1.00	Flooding	1.00		
		Depth to saturated zone	0.07	Depth to saturated zone	\| 1.00	Depth to saturated zone	0.07		
107 :									
Limerick----------	50	Very limited   Flooding   Depth to saturated zone				Very limited			
			1.00		1.00	Flooding	1.00		
			1.00		11.00	```Depth to saturated zone```	1.00		
Lim----------------	30	```Very limited Flooding Depth to saturated zone```		\| Very limited		Very limited			
			1.00	Flooding	\| 1.00	Flooding	1.00		
			\| 1.00	Depth to saturated zone	\| 1.00	Depth to saturated zone	1.00		
108:									
Saco---------------	80	Very limited		Very limited		Very limited			
		Flooding   Depth to saturated zone Ponding	1.00	Flooding	1.00	Flooding	1.00		
			1.00	Depth to	\| 1.00	Depth to	1.00		
			1.00	saturated zone Ponding	11.00	saturated zone Ponding	1.00		
109 :									
Fluvaquents, Frequently Flooded-									
	50	Very limited    Flooding 1.00		Very limited		Very limited			
				Flooding	11.00				
		Depth to saturated zone	\| 1.00			Depth to saturated zone	\| 1.00	Depth to saturated zone	1.00
Udifluvents, Frequently Flooded-									
	35	Very limited Flooding	1.00	Very limited Flooding	1.00	Very limited Flooding	1.00		

Table 17.-Building Site Development (Part 1)-Continued


Table 18.-Building Site Development (Part 2)
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)


Table 18.-Building Site Development (Part 2)-Continued

Map symbol and soil name	$\left\|\begin{array}{c} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{array}\right\|$	Local roads and		Shallow excavations		Lawns and landscaping	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
7:							
Mudgepond----------	85	\| Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zo	1.00	Depth to saturated zone	1.00
		Frost action	1.00	Cutbanks cave	1.00		
8:							
Mudgepond----------	45	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Frost action	1.00	Cutbanks cave	1.00		
Alden--------------	35	\| Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Frost action	1.00	Cutbanks cave	1.00	Ponding	1.00
		Ponding	1.00	Ponding	1.00	Large stones content	0.01
9 :							
Scitico------------	40	Very limited		Very limited		\|Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Frost action	1.00	Cutbanks cave	0.10		
		Low strength	1.00	Too clayey	0.02		
		Shrink-swell	0.99				
Shaker-------------	30	Very limited \|		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Frost action	1.00	Too clayey	0.12		
				Cutbanks cave	0.10		
Maybid-------------	15	\|Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Frost action	1.00	Ponding	1.00	Ponding	1.00
		Low strength	1.00	Cutbanks cave	0.10		
		Ponding	1.00				
		Shrink-swell	0.99				
10:							
Raynham------------	80	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$		Very limited		Very limited	
			1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Frost action	1.00	Cutbanks cave	0.10		
12:							
Raypol-------------	80	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	\| 1.00
		Frost action	1.00	Cutbanks cave	1.00		
13:							
Walpole------------	80	\|Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	11.00
		Frost action	0.50	Cutbanks cave	1.00		

Table 18.-Building Site Development (Part 2)-Continued


Table 18.-Building Site Development (Part 2)-Continued

Map symbol and soil name	$\left\|\begin{array}{\|c\|} \text { Pct. } \\ \text { of } \\ \text { map } \end{array}\right\|$	Local roads and		Shallow excavations		Lawns and landscaping	
		Rating class and limiting features	\|Value	Rating class and limiting features	\| Value	Rating class and limiting features	\|Value
48C:							
Amenia-------------	35	Somewhat limited		\| Very limited		Somewhat limited	
		slope	0.63	Depth to saturated zone	1.00	slope	0.63
		Frost action	0.50	Cutbanks cave	1.00		
		Depth to saturated zone	0.03	Slope	0.63		
49B:							
Georgia------------	50	Somewhat limited		\| Very limited		Not limited	
		Frost action	0.50	Depth to saturated zone	1.00		
		Depth to saturated zone	0.03	Cutbanks cave	1.00		
Amenia-------------	35	Somewhat limited Frost action		\| Very limited		Not limited	
			0.50	Depth to saturated zone	1.00		
		Depth to saturated zone	0.03	Cutbanks cave	1.00		
49C:							
Georgia-----------\|	50	Somewhat limited Slope		Very limited		Somewhat limited	0.63
			0.63	Depth to saturated zone	1.00	slope	
		Frost action	0.50	Cutbanks cave	1.00		
		Depth to saturated zone	0.03	Slope	0.63		
49C:							
Amenia------------	35	Somewhat limited Slope		Very limited		Somewhat limited	0.63
			0.63	Depth to saturated zone	1.00	Slope	
		Frost action	0.50	Cutbanks cave	1.00		
		Depth to saturated zone	0.03	Slope	0.63		
50A:							
Sutton-------------	80	Somewhat limited Frost action		\| Very limited		Not limited	
			0.50	Depth to saturated zone	1.00		
		Depth to saturated zone	0.19	Cutbanks cave	1.00		
50B:							
Sutton-------------	80	Somewhat limited Frost action		Very limited			
			0.50	Depth to saturated zone	1.00	Not limited	
		Depth to saturated zone	0.19	Cutbanks cave	1.00		
51B:							
Sutton----------	80	Somewhat limited Frost action		Very limited		Not limited	
			0.50	Depth to saturated zone Cutbanks cave	1.00		
		Depth to saturated zone	0.19		1.00		

Table 18.-Building Site Development (Part 2)-Continued


Table 18.-Building Site Development (Part 2)-Continued

Map symbol and soil name	Pct.   of   map   unit	Local roads and streets		Shallow excavations		Lawns and landscaping	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
85B :							
Montauk---------	30	Somewhat limited Frost action	0.50	Very limited	1.00	Somewhat limited Depth to pan	0.84
		Depth to saturated zone	0.03	Cutbanks cave	1.00		
				Dense layer	0.50		
85C:							
Paxton---------	55	Somewhat limited		Very limited		Somewhat limited	
		slope	0.63	Depth to saturated zone	1.00	Depth to pan	0.79
		Frost action	0.50	Cutbanks cave	1.00	Slope	0.63
		Depth to saturated zone	0.19	slope	0.63	Large stones content	0.01
				Dense layer	0.50		
Montauk---------	30	Somewhat limited Slope		Very limited		Somewhat limited	0.84
		slope	0.63	Depth to saturated zone	1.00	Depth to pan	
		Frost action	0.50	Cutbanks cave	1.00	Slope	0.63
		Depth to saturated zone	0.03	Slope	0.63		
				Dense layer	0.50		
86C:							
Paxton----------	55	Somewhat limited Frost action		\| Very limited		Somewhat limited	
			0.50	Depth to saturated zone	1.00	Depth to pan	0.79
		Depth to saturated zone	0.19	Cutbanks cave	1.00	Slope	0.04
		slope	0.04	Dense layer	0.50	Large stones content	0.01
				Slope	0.04		
Montauk---------	30			Very limited		Somewhat limited	0.84
		Frost action	0.50	Depth to saturated zone	1.00	Depth to pan	
		Slope	0.04	Cutbanks cave	1.00	Slope	0.04
		Depth to saturated zone	0.03	Dense layer	0.50		
				Slope	0.04		
86D:							
Paxton----------	55	Very limited		Very limited		Very limited	
		Slope	1.00	Slope	1.00	Slope	1.00
		Frost action	0.50	Depth to saturated zone	1.00	Depth to pan	0.79
		Depth to saturated zone	0.19	Cutbanks cave	11.00	Large stones content	0.01
				Dense layer	0.50		
86D:							
Montauk---------	30	Very limitedSlope		\|Very limited		Very limited	
							1.00
		Frost action	0.50	Depth to saturated zone	1.00	Depth to pan	0.84
		Depth to saturated zone	0.03	Cutbanks cave	11.00		
				Dense layer	0.50		

Table 18.-Building Site Development (Part 2)-Continued


Table 18.-Building Site Development (Part 2)-Continued


Table 18.-Building Site Development (Part 2)-Continued


Table 18.-Building Site Development (Part 2)-Continued

Map symbol and soil name	$\left\|\begin{array}{c} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{array}\right\|$	Local roads and streets		Shallow excavations		Lawns and landscaping	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
99:							
Westbrook, low salt-\|	80	Very limited		Very limited		Very limited	
		Ponding	1.00	Ponding	1.00	Ponding	1.00
		Depth to saturated zone	1.00	Flooding	1.00	Flooding	1.00
		Frost action	1.00	Depth to saturated	1.00	Sulfur content	1.00
		Flooding	1.00	Organic matter content	\| 1.00	Depth to saturated zone	1.00
		Shrink-swell	1.00			Salinity	1.00
100:							
Suncook------------- \|	80	Very limited		Very limited		Somewhat limited	
		Flooding	1.00	Cutbanks cave	1.00	Droughty	0.89
				Flooding	0.60	Flooding	0.60
				Depth to saturated zone	0.09		
101:							
Occum--------------- \|	80	Very limited		Very limited		Somewhat limited	
		Flooding	1.00	Cutbanks cave	1.00		
		Frost action	0.50	Flooding	0.60		0.60
				Depth to saturated zone	0.09		
102 :							
Pootatuck----------	80	Very limited    Flooding 1.00		Very limited		Very limited Flooding	
				Depth to saturated zone	1.00	Flooding	
		Frost action	0.50	Cutbanks cave	1.00		
		Depth to saturated zone	0.19	Flooding	0.80		
103:							
Rippowam-----------	80	Very limited    Depth to 1.00		Very limited		\|Very limited Flooding	1.00
		Depth to saturated zone	1.00	Depth to saturated zone	1.00		
		Frost action	1.00	Cutbanks cave	1.00	Depth to saturated zone	1.00
		Flooding	1.00	Flooding	0.80		
104:							
Bash-------------	80	Very limited Flooding		Very limited		Very limited Flooding	
			1.00	Depth to saturated zone	1.00		1.00
		```Depth to saturated zone Frost action```	0.99	Flooding	0.80	Depth to saturated zone	0.99
			0.50	Cutbanks cave	0.10		
105:Hadley			$\left\lvert\, \begin{aligned} & 1.00 \\ & 1.00 \end{aligned}\right.$				
	80	Very limited Frost action Flooding		Very limited Cutbanks cave Flooding Depth to saturated zone		Somewhat limited Flooding	
					1.00		0.60
					0.60		
					0.03		

Table 18.-Building Site Development (Part 2)-Continued

Map symbol and soil name	Pct.	Local roads and streets		Shallow excavations		Lawns and landscaping	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
```106: Winooski```	80	Very limited		Very limited		Very limited	
		Frost action	1.00	Depth to	1.00	Flooding	11.00
		Flooding	1.00	Flooding	0.80		
		Depth to saturated zone	0.03	Cutbanks cave	0.10		
107:							
Limerick----------	50	\| Very limited		\| Very limited		\| Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Flooding	1.00
		Frost action	1.00	Flooding	0.80	Depth to saturated zone	11.00
		Flooding	1.00	Cutbanks cave	0.10		
Lim----------------	30	\| Very limited		Very limited		\| Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Flooding	1.00
		Frost action	1.00	Cutbanks cave	1.00	Depth to saturated zone	\| 1.00
		Flooding	1.00	Flooding	0.80		
108:	80	\| Very limited		\| Very limited		\| Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Flooding	1.00
		Frost action	1.00	Cutbanks cave	1.00	Depth to saturated zone	1.00
		Flooding	1.00	Ponding	1.00	Ponding	1.00
		Ponding	1.00	Flooding	0.80		
109 :							
Fluvaquents, Frequently Flooded-	50	\| Very limited		\| Very limited		\| Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Flooding	1.00
		Frost action	1.00	Cutbanks cave	1.00	Depth to saturated zone	\| 1.00
		Flooding	1.00	Flooding	0.80		
Udifluvents, Frequently Flooded-	35						
				Very limited		\|Very limited	
		Flooding	$1.00$	Cutbanks cave		Flooding	1.00
		Frost action	$0.50$	Flooding	$0.80$		
221A:							
Ninigret----------	40					Not limited	
		Frost action	0.50	Depth to saturated zone	\| 1.00		
		Depth to saturated zone	0.19	Cutbanks cave	11.00		
Urban land---------	35	Not rated		Not rated		Not rated	
224A:							
Deerfield---------- \|	40	Somewhat limited Depth to saturated zone	0.03	```\| Very limited Depth to saturated zone Cutbanks cave```	$\left\lvert\, \begin{aligned} & 1.00 \\ & 1.00 \end{aligned}\right.$	Somewhat limited Droughty	0.17

Table 18.-Building Site Development (Part 2)-Continued


Table 18.-Building Site Development (Part 2)-Continued

Map symbol and soil name	Pct.   of   map   unit	Local roads and		Shallow excavations		Lawns and landscaping	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
310 :							
		Flooding	1.00	Cutbanks cave	1.00	Flooding	1.00
		slope	1.00	slope	1.00	Slope	1.00
		Frost action	0.50	Depth to saturated zone	0.89	Large stones content	0.01
				Flooding	0.80		
401C:							
Macomber-----------	55	Somewhat limited slope		Very limited		Somewhat limited Gravel content	
			0.63	Depth to hard bedrock	1.00		0.82
		Frost action	0.50	Slope	0.63	Slope	0.63
		Depth to hard bedrock	0.46	Cutbanks cave	0.10	Depth to bedrock	0.46
						Droughty	0.01
Taconic------------	30	Very limited		Very limited		Very limited	
		Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	Depth to bedrock	1.00
		Frost action	0.50	slope	0.01	Droughty	1.00
		Slope	0.01			Gravel content	0.39
						Slope	0.01
402D:							
Macomber----------	50	Very limited Slope				Very limited	
			1.00	Depth to hard bedrock	1.00	Slope	1.00
		Frost action	0.50	Slope	1.00	Gravel content	0.82
		Depth to hard bedrock	0.46	Cutbanks cave	0.10	Depth to bedrock	0.46
						Droughty	0.01
Taconic-----------	25	Very limited		Very limited		Very limited	
		Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	Depth to bedrock	1.00
		Slope	1.00	slope	1.00	Slope	1.00
		Frost action	0.50			Droughty	1.00
						Gravel content	0.39
Rock outcrop--------	15	Not rated		Not rated		Not rated	
403C:							
Taconic-----------	70	Very limited		Very limited		Very limited	
		Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	Depth to bedrock	1.00
		Frost action	0.50	Slope	0.01	Droughty	1.00
		slope	0.01			Gravel content	0.39
						slope	0.01
Rock outcrop--------	25	Not rated		Not rated		Not rated	
403E:							
Taconic-----------	70	Very limited   Depth to hard bedrock   slope   Frost action		```Very limited Depth to hard bedrock slope```		Very limited Depth to bedrock	
			1.00		1.00		1.00
			1.00		1.00	Slope	1.00
			0.50			Droughty	1.00
						Gravel content	0.39

Table 18.-Building Site Development (Part 2)-Continued


Table 18.-Building Site Development (Part 2)-Continued

Map symbol and soil name	Pct.   of map unit	Local roads and		Shallow excavations		Lawns and landscaping	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
412C:							
Bice------------	85	Somewhat limited		Very limited		Somewhat limited	0.16
		Frost action	0.50	Cutbanks cave	1.00	slope	
		Slope	0.16	slope	0.16		
412D:							
Bice	85	\| Very limited		Very limited		Very limited	
		Slope	1.00	Slope	1.00	slope	1.00
		Frost action	0.50	Cutbanks cave	1.00		
413C:							
Bice	45	Somewhat limited		Very limited		Somewhat limited	0.01
				Cutbanks cave	\| 1.00	slope	
		Slope	0.01	Slope	0.01		
Millsite--------	40	Somewhat limited Frost action		Very limited		Somewhat limited	0.35
			0.50	Depth to hard bedrock	1.00	Depth to bedrock	
		Depth to hard bedrock	0.35	Cutbanks cave	0.10	Slope	0.01
		slope	0.01	Slope	0.01		
413E:							
Bice	45	\|Very limited		Very limited		Very limited Slope	\| 1.00
			1.00	Slope	1.00		
		Frost action	0.50	Cutbanks cave	11.00		
Millsite--------	40	Very limited Slope		Very limited		Very limited	1.00
			1.00	Depth to hard bedrock	1.00	Slope	
		Frost action	0.50	Slope	1.00	Depth to bedrock	0.35
		Depth to hard bedrock	0.35	Cutbanks cave	0.10		
414 :							
Fredon, cold-	85	```Very limited Depth to saturated zone Frost action```		```Very limited Depth to saturated zone Cutbanks cave```		Very limited	1.00
			1.00		\| 1.00	Depth to saturated zone	
			1.00		1.00		
415C:							
Millsite-	40	Somewhat limited Frost action		Very limited		Somewhat limited	
			0.50	Depth to hard bedrock	1.00	Depth to bedrock	0.35
		Depth to hard bedrock	0.35	Cutbanks cave	0.10	Slope	0.01
		slope	0.01	Slope	0.01		
Westminster------	40	Very limited		\| Very limited		Very limited	
		Depth to hard bedrock	1.00	Depth to hard bedrock	\| 1.00	Depth to bedrock	11.00
		Frost action	1.00	Slope	0.01	Slope	0.91
		slope	0.01				0.01
Rock outcrop----	15	Not rated		Not rated		Not rated	

Table 18.-Building Site Development (Part 2)-Continued


Table 18.-Building Site Development (Part 2)-Continued

Map symbol and soil name	Pct.   of map unit	Local roads and		Shallow excavations		Lawns and landscaping	
		Rating class and limiting features	Value	Rating class and limiting features	\| Value	Rating class and limiting features	Value
508 :							
Medomak	85	Very limited		Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to	11.00	Flooding	1.00
		Frost action	1.00	Cutbanks cave	1.00	Depth to saturated zone	1.00
		Flooding	1.00	Ponding	11.00	Ponding	1.00
		Ponding	1.00	Flooding	0.80		

Table 19.-Sewage Disposal
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)


Table 19.-Sewage Disposal-Continued

Map symbol and soil name	Pct.   of   map   unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
8 :					
Mudgepond-------	45	\| Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zo	1.00
		Slow water movement	0.50	Seepage	1.00
Alden-----------	35	Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Slow water movement	1.00	Ponding	1.00
		Ponding	1.00	Seepage	0.50
9 :					
Scitico---------	40	Very limited		Very limited	1.00
		Slow water movement	1.00	Depth to saturated zone	
		Depth to saturated zone	1.00		
Shaker---------	30	Very limited		Very limited	
		Slow water movement	1.00	Depth to saturated zone	1.00
		Depth to saturated zone	1.00	Seepage	1.00
Maybid----------	15	Very limited		Very limited	
		Slow water movement	1.00	Depth to saturated zone	1.00
		Depth to ${ }^{\text {saturated zon }}$	1.00	Ponding	1.00
		Ponding	1.00		
10:					
Raynham---------	80	\|Very limited		Very limited	
		Slow water movement	1.00	Depth to saturated zone	1.00
		Depth to saturated zone	1.00	Seepage	0.32
12:					
Raypol---------	80	Very limited		Very limited	
		Depth to saturated zone	1.00	Seepage	1.00
		Seepage	1.00	Depth to saturated zone	1.00
		Slow water movement	0.50		
13:					
Walpole---------	80	```Very limited Depth to saturated zone Seepage```		Very limited Seepage	
			1.00		1.00
			1.00	Depth to saturated zone	1.00
		Filtering capacity	1.00		

Table 19.-Sewage Disposal-Continued


Table 19.-Sewage Disposal-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \end{gathered}\right.$	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
36A:					
		Seepage	1.00	Seepage	1.00
		Filtering capacity	1.00		
36B:					
Windsor------------	80	Very limited		Very limited	
		Seepage	1.00	Seepage	1.00
		Filtering capacity	1.00	Slope	0.92
36C:					
Windsor------------- \|	80	Very limited		Very limited	
		Seepage	1.00	Slope	1.00
		Filtering	1.00	Seepage	1.00
		Slope	0.63		
37A:					
Manchester--------- \|	80	\| Very limited		Very limited	
		Seepage	1.00	Seepage	1.00
		Filtering capacity	1.00		
37C:					
Manchester---------	80	Very limited		Very limited	
		Seepage	1.00	Seepage	1.00
		Filtering capacity	1.00	Slope	1.00
		Slope	0.04		
37E:					
Manchester--------	80	Very limited		Very limited	
		slope	1.00	slope	1.00
		Seepage	1.00	Seepage	1.00
		Filtering capacity	1.00		
38A:					
Hinckley----------	80	Very limited		Very limited	
		Seepage	1.00	Seepage	1.00
		Filtering capacity	1.00		
38C:					
Hinckley----------	80	Very limited    Seepage		Very limited	
				Seepage	1.00
		Filtering capacity	1.00	Slope	1.00
		Slope	0.04		
38E:					
Hinckley----------	80	\|Very limited slope Seepage Filtering capacity		Very limited Slope   Seepage	
			1.00		1.00
			1.00		1.00
			1.00		

Table 19.-Sewage Disposal-Continued


Table 19.-Sewage Disposal-Continued


Table 19.-Sewage Disposal-Continued

Map symbol and soil name	Pct.   of   map   unit	Septic tank absorption fields		Sewage lagoons					
		Rating class and limiting features	Value	Rating class and limiting features	Value				
47C:									
Woodbridge------	80	\| Very limited		Very limited					
		saturated zone		slope	1.00				
		Slow water movement	0.50	Depth to saturated zone	0.75				
		Slope	0.04	Seepage	0.50				
48B :									
Georgia---------	50	Very limited		\|Very limited					
		Depth to saturated zone	1.00	Depth to saturated zone	1.00				
		Slow water movement	1.00	Slope	0.68				
				Seepage	0.50				
Amenia----------	35	Very limited		Very limited					
		Depth to saturated zone	1.00	Depth to saturated zone	1.00				
		Slow water movement	1.00	Slope	0.68				
				Seepage	0.50				
48C:									
Georgia---------	50	\| Very limited		\|Very limited					
		Depth to saturated zone	1.00	Slope	1.00				
		Slow water movement Slope	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.63 \end{aligned}\right.$	Depth to saturated zone	1.00				
				Seepage	0.50				
Amenia---------	35			Very limited Slope					
		Depth to saturated zone	1.00		1.00				
		Slow water movement	1.00	Depth to saturated zone	1.00				
49B :									
Georgia---------	50	Very limited		Very limited					
		```Depth to saturated zone Slow water movement```	1.00	Depth to saturated zone	1.00				
			\| 1.00	slope Seepage	0.92				
					0.50				
Amenia----------	35	Very limited Depth to saturated zone Slow water movement	11.00	Very limited					
				Depth to saturated zone	1.00				
			11.00	slope	0.92				
				Seepage	0.50				
	50	Very limited 1.00		$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	1.00				
		Slow water movement Slope	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.63\end{aligned}\right.$	Depth to saturated zone Seepage	$\begin{aligned} & 1.00 \\ & 0.50 \end{aligned}$				

Table 19.-Sewage Disposal-Continued

Table 19.-Sewage Disposal-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
55B:					
Watchaug--------	80	Very limited		Very limited	
		saturated zone	1.00	Depth to	1.00
				saturated zone	
		Seepage	1.00	Seepage	1.00
		Slow water movement	0.50	Slope	0.92
56B:					
Watchaug--------	80	Very limited		Very limited	
		Depth to	1.00	Depth to	1.00
		Seepage	1.00	Seepage	1.00
		Slow water movement	0.50	slope	0.68
57B:					
Gloucester------	80	Very limited		Very limited	
		Seepage	1.00	Seepage	1.00
		Filtering capacity	1.00	Slope	0.92
57C:					
Gloucester------	80	Very limited		Very limited	
		Seepage	1.00	Slope	1.00
		Filtering capacity Slope	1.00	Seepage	1.00
			0.63		
57D:					
Gloucester------	80	Very limited		Very limited	
		slope	1.00	Slope	1.00
		Seepage	1.00	Seepage	1.00
		Filtering capacity	1.00		
58B :					
Gloucester------	80	Very limited		Very limited	
		Seepage	1.00	Seepage	1.00
		Filtering capacity	\| 1.00	slope	0.92
58C:					
Gloucester------	80	Very limited		Very limited	
		Seepage	1.00	slope	1.00
		Filtering capacity	1.00	Seepage	1.00
		slope	0.63		
59C:					
Gloucester------	80				
		Seepage Filtering capacity slope	1.00	Seepage Slope	$\left\lvert\, \begin{aligned} & 1.00 \\ & \mid 1.00 \end{aligned}\right.$
			1.00		
			0.04		

Table 19.-Sewage Disposal-Continued

Map symbol and soil name	Pct. of map unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value
59D:					
Gloucester---------	80	\| Very limited		Very limited	
		slope	1.00	slope	1.00
		Seepage	1.00	Seepage	1.00
		Filtering capacity	1.00		
60B :					
Canton-------------	45	Very limited Seepage		Very limited	
			1.00	Seepage	1.00
				slope	0.92
Charlton-----------	35	\|Very limited		Very limited	
			1.00	Seepage	1.00
				Slope	0.92
60C:					
Canton-------------	45	$\begin{array}{\|l} \text { Very limited } \\ \text { Seepage } \\ \text { Slope } \end{array}$		Very limited	
			1.00	Slope	1.00
			0.63	Seepage	1.00
Charlton------------	35	$\left\lvert\, \begin{gathered} \text { Very limited } \\ \text { Seepage } \\ \text { Slope } \end{gathered}\right.$		Very limited	
			1.00	Slope	1.00
			0.63	Seepage	1.00
60D:					
Canton-------------	45	$\left\lvert\, \begin{gathered} \text { Very limited } \\ \text { Slope } \\ \text { Seepage } \end{gathered}\right.$		Very limited	
			1.00	Slope	1.00
			1.00	Seepage	1.00
Charlton-----------	35	$\begin{array}{\|c} \text { Very limited } \\ \text { Slope } \\ \text { Seepage } \end{array}$		Very limited	
			1.00	slope	1.00
			1.00	Seepage	1.00
61B :					
Canton-------------	45	\|Very limited Seepage		Very limited	
			1.00	Seepage	1.00
				Slope	0.92
Charlton-----------	35	\|Very limited Seepage		Very limited	
			1.00	Seepage	1.00
				slope	0.92
61C:					
Canton-------------	45	\| Very limited		\|Very limited	
		Seepage	1.00	Slope	1.00
		slope	0.63	Seepage	1.00
Charlton-----------	35	\| Very limited		\| Very limited	
		Seepage	1.00	Slope	1.00
		slope	0.63	Seepage	1.00
62C:					
Canton-------------	45	\| Very limited		Very limited	
		Seepage	1.00	Seepage	1.00
		slope	0.04	slope	1.00
Charlton-----------	35	Very limited		Very limited	
		Seepage	1.00	slope	1.00
		Slope	0.04	Seepage	1.00

Table 19.-Sewage Disposal-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \end{gathered}\right.$	Septic tank absorption fields		Sewage lagoons					
		Rating class and limiting features	\|Value		Rating class and limiting features	Value			
62D:									
Canton-------------	45	\| Very limited		Very limited					
		Slope	1.00	slope	1.00				
		Seepage	\| 1.00	Seepage	1.00				
Charlton-----------	35	Very limited		Very limited					
		Slope	1.00	slope	1.00				
		Seepage	1.00	Seepage	1.00				
63B :									
Cheshire-----------	80	Very limited Seepage	1.00	Very limited					
				slope	0.92				
63C:									
Cheshire----------	80	Very limited		Very limited					
		\| Seepage	1.00	slope	1.00				
		slope	0.63	Seepage	1.00				
63D:									
Cheshire-----------	80	Very limited		Very limited					
		Slope	1.00	slope	1.00				
		Seepage	1.00	Seepage	1.00				
64B :									
Cheshire-----------	80	Very limited Seepage	1.00	Very limited					
				Seepage	1.00				
				slope	0.92				
64C:									
Cheshire-----------	80	\|Very limited Seepage Slope		\| Very limited					
			1.00	Slope	1.00				
			0.63	Seepage	1.00				
65C:									
Cheshire-----------	80	Very limited Seepage Slope		Very limited					
			1.00	slope	1.00				
			0.04	Seepage	1.00				
65D :									
Cheshire-----------	80	Very limited		\|Very limited					
		slope	1.00	slope	1.00				
		Seepage	1.00	Seepage	1.00				
66B:									
Narragansett-------	80	Very limited Seepage Slow water movement		$\begin{array}{\|l} \text { Very limited } \\ \text { Seepage } \\ \text { Slope } \end{array}$					
			1.00		1.00				
			0.50		0.68				
66C:									
Narragansett-------	80	Very limited		Very limited					
				slope	1.00				
		slope	0.63	Seepage	1.00				
		Slow water movement	0.50						
67B: \|				${ }^{\text {60 }}$ \| ${ }^{\text {a }}$					
Narragansett-------	80	Very limited Seepage Slow water movement		\|Very limited Seepage Slope					
			1.00		1.00				
			0.50		0.92				

Table 19.-Sewage Disposal-Continued

Map symbol and soil name	Pct. of	Septic tank absorption fields		Sewage lagoons		
		Rating class and limiting features	Value	Rating class and limiting features	\|Value	
67C:						
Narragansett-------	80	Very limited		Very limited		
		Seepage	1.00	slope	1.00	
		Slope	0.63	Seepage	1.00	
		Slow water movement	0.50			
68C:						
Narragansett------- \|	80	\|Very limited			\| Very limited	
		Seepage	1.00	Seepage	1.00	
		Slow water movement	0.50	Slope	\| 1.00	
		slope	0.04			
68D:						
Narragansett-------	80	Very limited		\| Very limited		
		Slope	1.00	Slope	1.00	
		Seepage	1.00	Seepage	1.00	
		Slow water movement	0.50			
69B:						
Yalesville---------	75	Very limited Depth to bedrock				
			1.00	Depth to hard bedrock	1.00	
		Seepage	1.00	Seepage	1.00	
				Slope	0.92	
69C:						
Yalesville---------	75	Very limited Depth to bedrock		\| Very limited		
			1.00	Depth to hard bedrock	11.00	
		Seepage	1.00	slope	1.00	
		Slope	0.63	Seepage	1.00	
70C:						
Branford-----------	50	\|Very limited		\| Very limited		
		Seepage	1.00	Seepage	1.00	
		Slope	0.04	Slope	1.00	
Holyoke------------	30	Very limited Depth to bedrock		\| Very limited		
			1.00	Depth to hard bedrock	1.00	
		Slope	0.04	Slope	1.00	
				Seepage	0.50	
71C:						
Brookfield---------	45	Very limited		\| Very limited		
				Slope	1.00	
		Slope	0.04	Seepage	11.00	
Brimfield---------	30	\|Very limited Depth to bedrock		Very limited		
			1.00	Depth to hard bedrock	\| 1.00	
		Seepage	1.00	Slope	1.00	
		Slope	0.04	Seepage	1.00	
Rock outcrop-------	15	Not rated		\| Not rated		

Table 19.-Sewage Disposal-Continued

Map symbol and soil name	Pct. of map unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
71E:					
Brookfield------	45	\| Very limited		Very limited	
		Slope	1.00	Slope	1.00
		Seepage	1.00	Seepage	1.00
71E:					
Brimfield-------	30	\|Very limited Depth to bedrock		\| Very limited	
			1.00	Depth to hard bedrock	1.00
		Slope	1.00	slope	1.00
		Seepage	1.00	Seepage	1.00
Rock outcrop--------	15	Not rated		Not rated	
73C:					
Charlton--------	45	Very limitedSeepageSlope		\|Very limited	
			1.00	Slope	1.00
			0.04	Seepage	1.00
Chatfield-------	30	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Seepage	1.00	Slope	1.00
		slope	0.04	Seepage	1.00
73E:					
Charlton--------	45	Very limited		Very limited	
		Slope	1.00	Slope	1.00
		Seepage	1.00	Seepage	1.00
Chatfield-------	30	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Slope	1.00	slope	1.00
		Seepage	1.00	Seepage	1.00
74C:					
Narragansett----	55	Very limited		\|Very limited	
		Seepage	1.00	Seepage	1.00
		Slow water movement	0.50	slope	1.00
		slope	0.04		
Hollis----------	20	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Seepage	1.00	Slope	1.00
		slope	0.04	Seepage	1.00
75C:					
Hollis----------	35	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Seepage	1.00	Slope	1.00
		slope	0.04	Seepage	1.00
Chatfield------	30	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Seepage	1.00	Slope	1.00
		Slope	0.04	Seepage	1.00

Table 19.-Sewage Disposal-Continued

Table 19.-Sewage Disposal-Continued

Table 19.-Sewage Disposal-Continued

Map symbol and soil name	Pct. of map unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
82B:					
Broadbrook------	80	Very limited		Somewhat limited	
		Depth to saturated zone Slow water	1.00	Depth to saturated zone	0.75
			0.50	slope	0.68
		Slow water movement		Seepage	
					0.50
82C:					
Broadbrook------	80	Very limited		Very limited	
		Depth to saturated zone slope	11.00	Slope	1.00
			0.63	Depth to saturated zone	0.75
		Slow water movement	0.50	Seepage	0.50
82D:					
Broadbrook------	80	\| Very limited		Very limited	
		Depth to saturated zone slope	1.00	Slope	1.00
			11.00	Depth to saturated zone Seepage	0.75
		Slow water movement	0.50		0.50
83B :					
Broadbrook-	80	Very limited		Somewhat limited Slope	
				0.92	
		saturated zone			
		Slow water movement	0.50	Depth to saturated zone Seepage	0.75
					0.50
83C:					
Broadbrook--	80	Very limited		Very limited Slope	
		Depth to saturated zone slope	1.00		1.00
			0.63	Depth to saturated zone	0.75
		Slow water movement	0.50	Seepage	0.50
84B :					
Paxton---------	55	Very limited Depth to saturated zone Slow water movement		Somewhat limited	
			1.00	Slope	0.92
			0.50	Depth to saturated zone	0.75
				Seepage	0.50
Montauk-	30	Very limitedDepth tosaturated zone		Very limited Seepage	
			1.00		1.00
				Slope	0.92
				Depth to saturated zone	0.44

Table 19.-Sewage Disposal-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
84C:					
Paxton----------	55	Very limited		\| Very limited	
		Depth to saturated zone	1.00	Slope	11.00
		Slope	0.63	Depth to saturated zone	0.75
		Slow water movement	0.50	Seepage	0.50
Montauk--------	30	Very limited		Very limited	
		Depth to saturated zone Slope	1.00	Slope	1.00
			0.63	Seepage	1.00
				Depth to saturated zone	0.44
84D :					
Paxton---------	55	Very limited		Very limited	
		Depth to saturated zone	1.00	slope	1.00
		slope	1.00	Depth to	0.75
				saturated zone	
		Slow water movement	0.50	Seepage	0.50
Montauk---------	30	Very limited		Very limited	
		Depth to saturated zone slope	1.00	slope	1.00
			1.00	Seepage	1.00
				Depth to saturated zone	0.44
85B :					
Paxton---------	55	\|Very limited		Somewhat limited	
		Depth to saturated zone	1.00	Slope	0.92
		Slow water movement	0.50	Depth to saturated zone Seepage	0.75
					0.50
85B :					
Montauk---------	30	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$		Very limited	
			1.00	Seepage	1.00
				Slope	0.92
				Depth to saturated zone	0.44
85C:					
Paxton---------	55	```\| Very limited Depth to saturated zone slope```		Very limited Slope	
			1.00		1.00
			0.63	Depth to saturated zone	0.75
		Slow water movement	0.50	Seepage	0.50

Table 19.-Sewage Disposal-Continued

Table 19.-Sewage Disposal-Continued

Table 19.-Sewage Disposal-Continued

Table 19.-Sewage Disposal-Continued

Table 19.-Sewage Disposal-Continued

Map symbol and soil name	Pct. of map unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
$100:$					
Suncook	80	Very limited		Very limited	
		Flooding	1.00	Flooding	1.00
		Seepage	1.00	Seepage	1.00
		Filtering capacity	1.00		
		Depth to saturated zone	0.24		
101:					
Occum-----------	80	Very limited		Very limited	
		Flooding	1.00	Flooding	1.00
		Seepage	1.00	Seepage	1.00
		Depth to saturated zone	0.24		
102:					
Pootatuck-------	80	Very limited		Very limited	
		Flooding	1.00	Flooding	1.00
		Depth to saturated zone	1.00	Seepage	1.00
		Seepage	1.00	Depth to saturated zone	1.00
103:					
Rippowam-------	80	Very limited		Very limited	
		Flooding	1.00	Flooding	1.00
		Depth to saturated zone	1.00	Seepage	1.00
		Seepage	1.00	Depth to saturated zone	1.00
104:					
Bash-----------	80	Very limited		Very limited	
		Flooding	1.00	Flooding	1.00
		Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Slow water movement	0.68	Seepage	0.50
105:					
Hadley---------	80	Very limited		Very limited	
		Flooding	1.00	Flooding	1.00
		Seepage	1.00	Seepage	1.00
		Depth to saturated zone	0.08		
106:					
Winooski--------	80	Very limited		Very limited	
		Flooding	1.00	Flooding	1.00
		Depth to saturated zone Seepage	1.00 1.00	Depth to saturated zone Seepage	11.00
		Slow water movement	0.50		

Table 19.-Sewage Disposal-Continued

Map symbol and soil name	\| Pct. of	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value
$107 \text { : }$					
Limerick	50	Flooding	1.00	Flooding	1.00
		Depth to saturated zone 1.00		Depth to saturated zone	1.00
		Slow water movement	0.50	Seepage	0.50
Lim----------------	30	Very limited Flooding Depth to saturated zone Seepage		Very limited	
			1.00	Flooding Seepage	1.00
			1.00		1.00
			1.00	Depth to saturated zone	1.00
		Slow water movement	0.50		
108:					
Saco---------------	80	Very limited		Very limited	
		Flooding Depth to saturated zone Seepage	1.00	Flooding	1.00
			1.00	Seepage	1.00
			1.00	Depth to saturated zone Ponding	1.00
		Ponding	1.00		1.00
		Slow water movement	0.50		
109:					
Fluvaquents, Frequently Flooded-	50	Very limited		Very limited \|	
		Flooding	1.00	Flooding	1.00
		Depth to saturated zone Seepage	1.00	Depth to saturated zone	1.00
			1.00		1.00
		Slow water movement	0.50		
Udifluvents, Frequently Flooded-		Very limited			
	35			Very limited	
		Flooding	1.00	Flooding	1.00
		Filtering capacity	1.00	Seepage	1.00
		Seepage	1.00		
221A:					
Ninigret-----------	40	```Very limited Depth to saturated zone Seepage```	1.00	Very limited Seepage	1.00
			1.00	Depth to saturated zone slope	1.00
Urban land---------- \|	35	Not rated		Not rated	

Table 19.-Sewage Disposal-Continued

Table 19.-Sewage Disposal-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
$230 \mathrm{C}:$					
		Seepage	1.00	Slope	1.00
		Slope	0.63	Seepage	1.00
Urban land-	35	Not rated		Not rated	
Haven-----------	40	\|Very limited Seepage Slow water movement		Very limited	
				Seepage	1.00
			0.50	slope	0.32
Urban land----------	35	Not rated		Not rated	
234B: Merrimac					
	40	Very limited Seepage	1.00	\| Very limited	1.00
				slope	0.32
Urban land---------	35	Not rated		Not rated	
$\begin{aligned} & \text { 235B: } \\ & \text { Penwood } \end{aligned}$					
	40	Very limited Seepage Filtering capacity	1.001.00	\|Very limited	
				Seepage	1.00
				Slope	0.32
Urban land---------	35	Not rated		Not rated	
236B:Windsor					
	40	Very limited Seepage Filtering capacity	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	\|Very limited	
				Seepage	1.00
				slope	0.32
Urban land----------	35	Not rated		Not rated	
237A:Manchester					
	40	Very limited Seepage Filtering capacity	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	Very limited Seepage	1.00
Urban land----------	35	Not rated		Not rated	
237C:					
Manchester------	40	Very limited Seepage Filtering capacity Slope		$\begin{array}{\|l} \text { Very limited } \\ \text { Seepage } \\ \text { Slope } \end{array}$	
			1.00		1.00
			1.00		\| 1.00
Urban land---------	35	Not rated		Not rated	
238A:Hinckley			$\text { \| } 1.00$		
	40	Very limited Seepage Filtering capacity		Very limited Seepage	
					1.00

Table 19.-Sewage Disposal-Continued

Map symbol and soil name	Pct. of	Septic tank absorption fields		Sewage lagoons						
		Rating class and limiting features	\|Value	Rating class and limiting features	Value					
238A:										
238C:										
Hinckley----------	40	Very limited		Very limited						
		Filtering capacity 1.00		slope	1.00					
Urban land----------	35	Not rated		Not rated						
240B:										
Ludlow-------------	40	Very limited Depth to saturated zon Slow water movement	1.000.50	Somewhat limited Depth to saturated zone Seepage	0.75					
					0.50					
				Slope	0.32					
Urban land----------	35	Not rated		Not rated						
243B: Rainbow										
	40	Very limited Depth to saturated zone Slow water movement	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50\end{aligned}\right.$	Somewhat limited Depth to saturated zone Seepage	0.75					
					0.50					
				Slope	0.32					
Urban land--------- - \|	35	Not rated		Not rated						
245B:										
Woodbridge---------	40	Very limited Depth to saturated zone Slow water movement	$1 \begin{aligned} & 1.00 \\ & 0.50\end{aligned}$	Somewhat limited Depth to saturated zone Seepage						
					0.75					
					0.50					
				Slope	0.32					
Urban land---------	35	Not rated		Not rated						
$245 \mathrm{C}:$ Woodbridge										
	40	Very limited Depth to saturated zone Slope	11.00	$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$						
					1.00					
			0.63	Depth to saturated zone Seepage	0.75					
		Slow water movement	0.50		0.50					
Urban land----------	35	\| Not rated		Not rated						
Georgia------------	40	Very limited Depth to saturated zone Slow water movement	1.00	$\begin{array}{\|l} \text { Very limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	1.00					
			1.00	Slope	0.68					
				Seepage	0.50					

Table 19.-Sewage Disposal-Continued

Table 19.-Sewage Disposal-Continued

Map symbol and soil name	Pct. of map unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
263C:					
Cheshire--------	40	Very limited		Very limited	
		Seepage	1.00	Slope	1.00
		slope	0.63	Seepage	1.00
Urban land----------	35	Not rated		Not rated	
266B:					
Narragansett----	40	Very limited Seepage Slow water movement		Very limited	1.00
			1.00	Seepage	
			0.50	slope	0.92
Urban land--------- \|	35	Not rated		Not rated	
269B:					
Yalesville------	40	Very limited Depth to bedrock		Very limited	
			1.00	Depth to hard bedrock	1.00
		Seepage	1.00	Seepage	1.00
				Slope	0.92
Urban land--	35	Not rated		Not rated	
269C:					
Yalesville------	40	Very limited Depth to bedrock		Very limited	
			1.00	Depth to hard bedrock	1.00
		Seepage	1.00	Slope	1.00
		slope	0.63	Seepage	1.00
Urban land----------	35	Not rated		Not rated	
273C:					
Urban land---------	35	Not rated		Not rated	
Charlton--------	25	Very limited Seepage slope		Very limited	
			1.00	Slope	1.00
			0.04	Seepage	1.00
Chatfield-------	15	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Seepage	1.00	slope	1.00
		slope	0.04	Seepage	1.00
273E:					
Urban land-	35	Not rated		Not rated	
Charlton-------	25	Very limited Slope Seepage		Very limited	
			1.00	Slope	1.00
			1.00	Seepage	1.00
Chatfield-------	15	Very limited Depth to bedrock		Very limited	
			1.00	Depth to hard bedrock	1.00
		Slope	1.00	Slope	1.00
		Seepage	1.00	Seepage	1.00

Table 19.-Sewage Disposal-Continued

Table 19.-Sewage Disposal-Continued

Map symbol and soil name	Pct. of map unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value
284D:					
287B:					
Wethersfield-------	40	Very limited		Somewhat limited	
		Depth to saturated zone	1.00	Slope	0.92
		Slow water movement	0.50	Depth to saturated zone Seepage	0.75 0.50
Urban land----------	35	Not rated		Not rated	
287C: Wethersfield					
	40	```Very limited Depth to saturated zone slope```		$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	
			1.00		1.00
			0.63	Depth to saturated zone	0.75
		Slow water movement	0.50	Seepage	0.50
Urban land----------	35	Not rated		Not rated	
287D:					
Wethersfield-------	40	```Very limited Depth to saturated zone slope```		$\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$	
			1.00		1.00
			1.00	Depth to saturated zone Seepage	0.75
		Slow water movement	0.50		0.50
Urban land----------	35	Not rated		Not rated	
$\begin{aligned} & \text { 290B: } \\ & \text { Stockbridge. } \end{aligned}$					
	40	Very limited Slow water movement		Somewhat limitedSlope	
			1.00		0.92
				Seepage	0.50
Urban land---------	35	Not rated		Not rated	
$\begin{aligned} & \text { 290C: } \\ & \text { Stockbridge } \end{aligned}$					
	40	Very limited Slow water movement slope	1.00	Very limited	
				slope	1.00
			0.63	Seepage	0.50
Urban land---------	35	Not rated		Not rated	
290D:					
Stockbridge--------	40	$\begin{array}{\|c} \text { Very limited } \\ \text { Slope } \\ \text { Slow water } \\ \text { movement } \end{array}$		\| Very limited	
			$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	Slope	1.00
				Seepage	0.50
Urban land---------	35	Not rated		Not rated	

Table 19.-Sewage Disposal-Continued

Table 19.-Sewage Disposal-Continued

Table 19.-Sewage Disposal-Continued

Table 19.-Sewage Disposal-Continued

Table 19.-Sewage Disposal-Continued

```Map symbol and soil name```	Pct.   of   map   unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
415E:					
Millsite-----------	40	\| Very limited		\| Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Slope	1.00	Slope	1.00
		Seepage	1.00	Seepage	1.00
Westminster--------	40	\| Very limited		\| Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Slope	1.00	Slope	1.00
		Seepage	1.00	Seepage	1.00
Rock outcrop--------	15	Not rated		Not rated	
416E:					
Rock outcrop--------	70	Not rated		Not rated	
Westminster--------	20	\|Very limited		\|Very limited	
		Depth to bedrock	1.00	```Depth to hard bedrock```	1.00
		Slope	1.00	slope	1.00
		Seepage	1.00	Seepage	1.00
416F:					
Rock outcrop--------	70	Not rated		Not rated	
Westminster--------	20	\| Very limited		\| Very limited	
		Depth to bedrock	1.00	Depth to hard bedrock	1.00
		Slope	1.00	Slope	1.00
		Seepage	1.00	Seepage	1.00
417B:					
Bice--------------	85	$\begin{aligned} & \text { Very limited } \\ & \text { Seepage } \end{aligned}$		\| Very limited	
			1.00	Seepage	1.00
				slope	0.92
417C:					
Bice--------------	85	\| Very limited		\| Very limited	
		Seepage	1.00	Slope	1.00
		slope	0.16	Seepage	1.00
417D:					
Bice	85	\| Very limited		\| Very limited	
		Slope	1.00	Slope	1.00
		Seepage	1.00	Seepage	1.00
418C:					
Schroon-----------	85	\| Very limited		\| Very limited	
		Depth to	1.00	Depth to	1.00
		Seepage	1.00	Seepage	1.00
		Slope	0.04	Slope	1.00
420A:					
Schroon------------	85	\| Very limited		\| Very limited	
		Depth to saturated zone Seepage	$1 \begin{aligned} & 1.00 \\ & 1.00\end{aligned}$	Depth to saturated zone Seepage	$1 \begin{aligned} & 1.00 \\ & 1.00\end{aligned}$

Table 19.-Sewage Disposal-Continued


Table 19.-Sewage Disposal-Continued


Table 19.-Sewage Disposal-Continued

Map symbol   and soil name	Pct.   of   map   unit	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
433 :					
Moosilauke------	80	Very limited	1.00	Very limited	1.00
		Depth to		Seepage	
		Seepage	1.00	Depth to saturated zone	1.00
		Filtering	1.00		
434A:					
Merrimac, cold---	80	Very limited Seepage	1.00	Very limited Seepage	1.00
$\begin{aligned} & \text { 434B: } \\ & \text { Merrimac, cold--- } \end{aligned}$					
	80	Very limited Seepage	1.00	Very limited	
				Seepage	1.00
				Slope	0.92
434C:					
Merrimac, cold---	80	Very limited Seepage slope		Very limited	
			1.00	slope	1.00
			0.63	Seepage	1.00
435:					
Scarboro--------	80	Very limited		Very limited	
		Depth to   saturated zone	1.00	Seepage	1.00
		Seepage	1.00	Depth to saturated zone	1.00
		Filtering	1.00	Ponding	1.00
		Ponding	1.00	Organic matter content	1.00
436 :					
Halsey---------	80	```Very limited Depth to saturated zone Seepage```		Very limited Seepage	
			1.00		1.00
			1.00	Depth to	1.00
				saturated zone	
		Ponding	1.00	Ponding	1.00
437:					
Wonsqueak-------	85	Very limited		\| Very limited	
		Depth to saturated zone	1.00	```Depth to saturated zone```	1.00
			1.00		1.00
		Slow water movement Flooding	0.68	Ponding	1.00
			0.40	Organic matter	1.00
				Flooding	0.40
438:					
Bucksport-------	85	Very limited		Very limited	
		Depth to saturated zone	\| 1.00	Depth to saturated zone	1.00
		Subsidence	1.00	Seepage	1.00
		Seepage	1.00	Ponding	1.00
		Ponding	1.00	Organic matter content	1.00
		Flooding	0.40	Flooding	0.40

Table 19.-Sewage Disposal-Continued


Table 19.-Sewage Disposal-Continued


Table 19.-Sewage Disposal-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Septic tank absorption fields		Sewage lagoons	
		Rating class and limiting features	Value	Rating class and limiting features	Value
458 :					
Alden----------	35	Very limited		\| Very limited	
		Depth to	1.00	Depth to	1.00
		saturated zone		saturated zone	
		Slow water movement	1.00	Ponding	1.00
		Ponding	1.00	Seepage	0.50
501:					
Ondawa----------	85	Very limited		\| Very limited	
		Flooding	1.00	Flooding	1.00
		Slow water movement	1.00	Seepage	0.50
		Depth to saturated zone	0.24		
503 :					
Rumney---------	80	```Very limited Flooding Depth to saturated zone Seepage```		\| Very limited	
			1.00	Flooding	1.00
			1.00	Seepage	1.00
			1.00	Depth to saturated zone	1.00
508:					
Medomak---------	85	Very limited Flooding Depth to saturated zone Seepage		Very limited	
			1.00	\| Flooding	1.00
			1.00	Seepage	1.00
			1.00	Depth to saturated zone	1.00
		Ponding	1.00	Ponding	1.00
		Slow water movement	0.50		

Table 20.-Source of Sand and Gravel
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The ratings given for the thickest layer are for the thickest layer above and excluding the bottom layer. The numbers in the value columns range from 0.00 to 0.99 . The greater the value, the greater the likelihood that the bottom layer or thickest layer of the soil is a source of sand or gravel. See text for further explanation of ratings in this table.)

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
2 :					
Ridgebury-------	80	Poor		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.00
3 :					
Ridgebury-------	40	Poor		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.00
Leicester-------	35	Fair		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.14	Thickest layer	0.00
Whitman----------	15	Poor		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.00	Thickest layer	0.00
4 :					
Leicester-------	80	Fair		Poor	
		Thickest layer	0.00	Bottom layer	
		Bottom layer	0.14	Thickest layer	$0.00$
$5:$					
Wilbraham-------	80	Poor		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.00	Thickest layer	0.00
6:					
Wilbraham-------	60	Poor		Poor	
		Thickest layer	$0.00$	Bottom layer	0.00
		Bottom layer	$0.00$	Thickest layer	0.00
Menlo-----------	25	Poor		Poor	
		Thickest layer	$0.00$	Bottom layer	$0.00$
		Bottom layer	$0.00$	Thickest layer	$0.00$
7:					
Mudgepond-------	85	Fair		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.21	Thickest layer	0.00
8 :					
Mudgepond-------	45	Fair		Poor	
		Thickest layer		Bottom layer	0.00
		Bottom layer	0.21	Thickest layer	0.00
9 :					
Scitico---------	40	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00

Table 20.-Source of Sand and Gravel-Continued

Map symbol and soil name	Pct.   of map unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
9 :					
Shaker----------	30	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Maybid----------	15	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Alden------------	35	Fair		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.14	Thickest layer	0.00
10:					
Raynham---------	80	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
12:					
Raypol---------	80	Fair		Fair	
		Thickest layer	0.14	Thickest layer	0.09
		Bottom layer	0.14	Bottom layer	0.10
13 :					
Walpole---------	80	Poor		Fair	
		Bottom layer	0.00	Bottom layer	0.15
		Thickest layer	0.00	Thickest layer	0.15
14 :					
Fredon----------	85	Fair		Fair	
		Thickest layer	0.14	Thickest layer	0.08
		Bottom layer	0.14	Bottom layer	0.43
15 :					
Scarboro--------	80	Fair		Fair	
		\| Thickest layer		Thickest layer	
		Bottom layer	$0.14$	Bottom layer	$0.36$
16:					
Halsey---------	80	Fair		Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.36	Bottom layer	0.31
17 :					
Timakwa---------	45	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Natchaug--------	40	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
18:					
Catden----------	40	Poor		Poor	
		Thickest layer	0.00	Organic matter content	0.00
		Bottom layer	0.00	Thickest layer	0.00
				Bottom layer	0.00

Table 20.-Source of Sand and Gravel-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
18:					
Freetown--------	40	Poor   Bottom layer	0.00	Poor	
				Organic matter	0.00
		Thickest layer	0.00	Thickest layer	0.00
				Bottom layer	0.00
20A:					
Ellington-------	80	Fair		Fair	
		Thickest layer Bottom layer	0.00	Thickest layer	0.00
			0.14	Bottom layer	0.11
21A:					
Ninigret--------	60	Poor		Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.03
Tisbury--------	25	Poor		Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.07	Bottom layer	0.10
22A:					
Hero------------	85	Fair		Fair	
		Thickest layer	$0.29$	Thickest layer	$0.00$
		Bottom layer	$0.50$	Bottom layer	$0.11$
22B:					
Hero------------	85	Fair		Fair	
		Thickest layer	0.29	Thickest layer   Bottom layer	0.00
		Bottom layer	0.50		0.11
23A:					
Sudbury---------	80	Fair		Fair	
		Thickest layer	0.00	Thickest layer	$0.00$
		Bottom layer	0.43	Bottom layer	$0.10$
24A:					
Deerfield-------	80	\|Poor		Fair	
		Bottom layer	0.00	Thickest layer	0.10
		Thickest layer	0.00	Bottom layer	0.13
25A:					
Brancroft-------	80	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Brancroft-------	80	Poor		Poor	
		Bottom layer	0.00	Bottom layer	
		Thickest layer	0.00	Thickest layer	0.00
25C:					
Brancroft-------	80	\|Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
26A:					
Berlin----------	80	Poor		Poor	
		Bottom layer		Bottom layer	
		Thickest layer	0.00	Thickest layer	$0.00$

Table 20.-Source of Sand and Gravel-Continued


Table 20.-Source of Sand and Gravel-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct } . \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
46C:					
Woodbridge------	80	Poor		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.00	Thickest layer	0.00
47C:					
Woodbridge------	80	Poor		\| Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	$0.00$	Thickest layer	$0.00$
48B :					
Georgia---------	50	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Amenia----------	35	Poor		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.00	Thickest layer	0.00
48C:					
Georgia---------	50	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	$0.00$
Amenia----------	35	Poor		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.00	Thickest layer	0.00
49B:					
Georgia---------	50	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Amenia----------	35	Poor		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.00	Thickest layer	0.00
49C:					
Georgia--------	50	Poor		Poor	
		Bottom layer	$0.00$	Bottom layer	
		Thickest layer	$0.00$	Thickest layer	$0.00$
49C:					
Amenia----------	35	Poor		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.00	Thickest layer	0.00
50A:					
Sutton----------	80	Poor		Poor	
		Bottom layer		Bottom layer	
		Thickest layer	0.07	Thickest layer	0.00
50B:					
Sutton	80	Poor		Poor	
		Bottom layer	0.07	Bottom layer	0.00
		Thickest layer	0.07	Thickest layer	0.00
51B :					
Sutton----------	80	Poor		\| Poor	
		Bottom layer	0.07	Bottom layer	0.00
		Thickest layer	0.07	Thickest layer	0.00

Table 20.-Source of Sand and Gravel-Continued


Table 20.-Source of Sand and Gravel-Continued

Map symbol and soil name	Pct.   of   map unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
59C:					
Gloucester	80	Good		Fair	
		Thickest layer	0.47	Thickest layer	0.15
		Bottom layer	0.83	Bottom layer	0.22
59D:					
Gloucester------	80	\| Good		Fair	
		Thickest layer	0.47	Thickest layer	0.15
		Bottom layer	0.83	Bottom layer	0.22
60B:					
Canton----------	45	Fair		Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.36	Bottom layer	0.09
Charlton--------	35	Fair Thickest layer Bottom layer		Poor	
			0.00	Bottom layer	0.00
			0.14	Thickest layer	0.00
60C:					
Canton----------	45	Fair		Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.36	Bottom layer	0.09
Charlton---------	35	Fair		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.14	Thickest layer	0.00
60D:					
Canton----------	45	Fair		Fair	
		\| Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.36	Bottom layer	0.09
Charlton--------	35	Fair		Poor	
		Thickest layer	$0.00$	Bottom layer	$0.00$
		Bottom layer	$0.14$	Thickest layer	$10.00$
61B:					
Canton----------	45	Fair		Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.36	Bottom layer	0.09
Charlton---------	35	Fair		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.14	Thickest layer	0.00
61C:					
Canton----------	45	Fair		Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.36	Bottom layer	0.09
Charlton--------	35	Fair   Thickest layer   Bottom layer		Poor	
			0.00	Bottom layer	0.00
			0.14	Thickest layer	0.00
62C:					
Canton---------	45	Fair		Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.36	Bottom layer	0.09
Charlton-------	35	Fair   Thickest layer Bottom layer		Poor	
			0.00	\| Bottom layer	0.00
			0.14	Thickest layer	0.00

Table 20.-Source of Sand and Gravel-Continued

Map symbol and soil name	Pct.   of map unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
62D:					
Canton----------	45	Fair		Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.36	Bottom layer	0.09
Charlton--------	35	Fair		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.14	Thickest layer	0.00
63B :					
Cheshire--------	80	Fair		Poor	
		Bottom layer	0.14	Bottom layer	0.00
		Thickest layer	0.14	Thickest layer	0.00
63C:					
Cheshire--------	80	Fair		Poor	
		Bottom layer	$0.14$	Bottom layer	
		Thickest layer	$0.14$	Thickest layer	$0.00$
63D:					
Cheshire--------	80	Fair		Poor	
		Bottom layer	0.14	Bottom layer	0.00
		Thickest layer	0.14	Thickest layer	0.00
64B :					
Cheshire--------	80	Fair		Poor	
		Bottom layer		Bottom layer	
		Thickest layer	$0.14$	Thickest layer	$0.00$
64C:					
Cheshire--------	80	Fair		Poor	
		Bottom layer	0.14	Bottom layer	0.00
		Thickest layer	0.14	Thickest layer	0.00
65C:					
Cheshire--------	80	Fair		Poor	
		Bottom layer	$0.14$	Bottom layer	
		\| Thickest layer	$0.14$	Thickest layer	0.00
65D :					
Cheshire--------	80	Fair		Poor	
		Bottom layer	0.14	Bottom layer	0.00
		Thickest layer	0.14	Thickest layer	0.00
66B :					
Narragansett----	80	Poor		Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.07	Bottom layer	0.07
66C:					
Narragansett----	80	Poor		Fair	
		Thickest layer		Thickest layer	
		Bottom layer	$0.07$	Bottom layer	0.07
Narragansett----	80	Poor		Fair	
		Thickest layer	0.00	Thickest layer	0.00
		\| Bottom layer	0.07	Bottom layer	0.07

Table 20.-Source of Sand and Gravel-Continued

Map symbol and soil name	Pct.   of   map   unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
67C:					
Narragansett---	80	Poor		Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.07	Bottom layer	0.07
68C:					
Narragansett----	80	Poor		\|Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.07	Bottom layer	0.07
68D :					
Narragansett----	80	Poor		\| Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.07	Bottom layer	0.07
69B:					
Yalesville------	75	Fair		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.36	Bottom layer	0.00
69C:					
Yalesville------	75	Fair		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.36	Bottom layer	0.00
70C:					
Branford--------	50	Poor		Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.07	Bottom layer	0.12
70C:					
Holyoke---------	30	Poor   Thickest layer Bottom layer		Poor	
			0.00	Bottom layer	0.00
			0.00	Thickest layer	0.00
71C:					
Brookfield------	45	Fair Thickest layer Bottom layer		Fair	
			0.00	Thickest layer	0.00
			0.14	Bottom layer	0.01
Brimfield------	30	Poor Thickest layer Bottom layer		Poor	
			0.00	Bottom layer	0.00
			0.00	Thickest layer	0.00
Rock outcrop--------	15	Not rated		Not rated	
71E:					
Brookfield-----	45	Fair		Fair	
		\| Thickest layer		Thickest layer	0.00
		Bottom layer	0.14	Bottom layer	0.01
Brimfield-------	30	Poor Thickest layer Bottom layer		Poor	
			0.00	Bottom layer	0.00
			0.00	Thickest layer	0.00
Rock outcrop-	15	Not rated		Not rated	

Table 20.-Source of Sand and Gravel-Continued


Table 20.-Source of Sand and Gravel-Continued

Map symbol and soil name	Pct.   of   map   unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
Rock outcrop--------	55	Not rated		Not rated	
Hollis----------	25	Poor   Thickest layer   Bottom layer		Poor	
			0.00	Thickest layer	0.00
			0.00	Bottom layer	0.00
77C:					
Cheshire--------	45	Fair		Poor	
		Bottom layer	0.14	Thickest layer	0.00
		Thickest layer	0.14	Bottom layer	0.00
Holyoke---------	35	Poor		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.00
77D:					
Cheshire-------	45	Fair    Bottom layer 0.14		Poor	
				Thickest layer	0.00
		Thickest layer	0.14	Bottom layer	0.00
Holyoke---------	35	Poor   Thickest layer   Bottom layer		Poor	
			0.00	Thickest layer	0.00
			0.00	Bottom layer	0.00
78C:					
Holyoke---------	50	Poor		Poor	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.00
78C:					
Rock outcrop--	25	Not rated		Not rated	
78E:					
Holyoke--------	50	Poor ${ }^{\text {Pottom layer }}$		Poor	
			0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.00
Rock outcrop--------	25	Not rated		Not rated	
79 E :					
Rock outcrop---	55	Not rated		Not rated	
Holyoke----------	25	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
80B :					
Bernardston-----	80	Poor		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.09	Bottom layer	0.00
80C:					
Bernardston-----	80	\|Poor		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.09	Bottom layer	0.00

Table 20.-Source of Sand and Gravel-Continued

Map symbol   and soil name	Pct.   of   map   unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
81C:					
Bernardston-----	80	Poor		Poor	
		Thickest layer 0.00   Bottom layer 0.09		Thickest layer	0.00
				Bottom layer	0.00
81D:					
Bernardston-----	80	Poor		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.09	Bottom layer	0.00
82B :					
Broadbrook-------	80	Poor		Poor	
		Bottom layer   Thickest layer	0.00	Thickest layer	0.00
			0.00	Bottom layer	0.00
82C:					
Broadbrook------	80	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
82D:					
Broadbrook------	80	Poor		Poor	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.00
83B :					
Broadbrook------	80	Poor		\| Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.00
83C:					
Broadbrook------	80	Poor		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.00
84B :					
Paxton----------	55	Poor		\| Poor	
		\| Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.00
Montauk---------	30	Poor Thickest layer Bottom layer		\| Fair	
			0.00	Thickest layer	0.00
			0.00	Bottom layer	0.04
84C:					
Paxton----------	55	Poor		\| Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.00
Montauk---------	30	Poor		\| Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.04
84D :					
Paxton---------	55	Poor		\| Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Montauk---------	30	Poor \|0.00		Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.04

Table 20.-Source of Sand and Gravel-Continued

Map symbol and soil name	$\mid$ Pct.   of   $\mid$ map   unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
85B :					
Paxton-------------	55	\| Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Montauk-------------	30	\| Poor		Fair	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.04
85C:					
Paxton-------------	55	\| Poor		\| Poor	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.00
Montauk-------------	30	\| Poor		Fair	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.04
86C:					
Paxton------------	55	\| Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
Montauk------------	30	\| Poor		Fair	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.04
86D :					
Paxton-------------	55	\| Poor		Poor	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.00
Montauk-------------	30	Poor		Fair	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.04
87B:					
Wethersfield-------	80	\| Poor		\| Poor	
		Bottom layer	$0.00$	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.00
87C:					
Wethersfield-------	80			Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.00	Thickest layer	0.00
87D:					
Wethersfield-------	80	\| Poor		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.00
88B :					
Wethersfield-------	80	\| Poor		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.00
88C:					
Wethersfield-------\|	80	\| Poor		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.00

Table 20.-Source of Sand and Gravel-Continued

Map symbol and soil name	$\begin{array}{\|c} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{array}$	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
89C:					
Wethersfield-------	80	Poor		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.00
89D:					
Wethersfield-------	80	Poor		Poor	
		Thickest layer	$0.00$	Thickest layer	0.00
		Bottom layer	$0.00$	Bottom layer	$10.00$
90B:					
Stockbridge--------	80	Fair		Poor	
				Bottom layer	0.00
		Bottom layer	0.50	Thickest layer	0.00
90C:					
Stockbridge--------	80	Fair		Poor	
		Thickest layer	0.19	Bottom layer	0.00
		Bottom layer	0.50	Thickest layer	0.00
90D:					
Stockbridge--------	80	Fair		Poor	
		Thickest layer	$0.19$	Bottom layer	$0.00$
		Bottom layer	$0.50$	Thickest layer	$0.00$
91B :					
Stockbridge--------	80	Fair		Poor	
		Thickest layer	0.19	Bottom layer	0.00
		Bottom layer	0.50	Thickest layer	0.00
91C:					
Stockbridge--------	80	Fair		Poor	
		Thickest layer		Thickest layer	
		Bottom layer	$0.50$	Bottom layer	$0.00$
91D:					
Stockbridge--------	80	Fair		Poor	
		Thickest layer	0.19	Thickest layer	0.00
		Bottom layer	0.50	Bottom layer	0.00
92B:					
Nellis------------	85	Fair		Poor	
		Thickest layer	0.21	Thickest layerBottom layer	0.00
		Bottom layer	0.36		0.00
92C:					
Nellis-------------	85	Fair		Poor	
		Thickest layer	0.21	Thickest layer	0.00
		Bottom layer	0.36	Bottom layer	0.00
92D:					
Nellis-------------	85	Fair		Poor	
		Thickest layer	0.21	Bottom layer	0.00
		Bottom layer	0.36	Thickest layer	0.00
93C:					
Nellis-------------	85	Fair    Thickest layer 0.21		Poor	
				Thickest layer	0.00
		Bottom layer	0.36	Bottom layer	0.00

Table 20.-Source of Sand and Gravel-Continued

Map symbol and soil name	Pct.   of   map unit	Potential source of gravel		Potential source of sand		
		Rating class	Value	Rating class	Value	
94C:						
Farmington---------	40	Poor		Poor		
		Thickest layer	0.00	Bottom layer	0.00	
		Bottom layer	0.07	Thickest layer	0.00	
Nellis-------------	35	Fair		Poor		
		Thickest layer	0.21	Thickest layer	0.00	
		Bottom layer	0.36	Bottom layer	0.00	
94E:						
Farmington---------	40	Poor		Poor		
		Thickest layer	0.00	Thickest layer	0.00	
		Bottom layer	0.07	Bottom layer	0.00	
Nellis-------------	35	Fair   Thickest layer Bottom layer		Poor		
			0.21	Thickest layer	0.00	
			0.36	Bottom layer	0.00	
95C:						
Farmington---------	60	Poor		Poor		
		Thickest layer	0.00	Thickest layer	0.00	
		Bottom layer	0.07	Bottom layer	0.00	
95C:						
Rock outcrop-------	20	Not rated		Not rated		
$\begin{aligned} & \text { 95E: } \\ & \text { Farmington } \end{aligned}$						
	60	Poor   Thickest layer Bottom layer		Poor		
			0.00	Thickest layer	0.00	
			0.07	Bottom layer	0.00	
Rock outcrop--------	20	Not rated		Not rated		
96:						
Ipswich-----------	85	Poor		Poor		
		Thickest layer	0.00	Bottom layer	0.00	
		Bottom layer	0.00	Thickest layer	0.00	
				Organic matter content	0.00	
97 :						
Pawcatuck----------	85	Poor		Fair		
		Thickest layer	0.00	Thickest layer	0.00	
		Bottom layer	0.00	Bottom layer	0.04	
98: \|						
Westbrook----------- \|	80	Poor		Poor		
		Thickest layer	0.00	Bottom layer	0.00	
		Bottom layer	0.00	Thickest layer	0.00	
99 :						
Westbrook, low salt-	80	Poor		Poor		
		Thickest layer	0.00	Bottom layer	0.00	
		Bottom layer	0.00		0.00	
100 :						
Suncook------------	80	\|Poor $\mid 0.0$		\|Fair		
		\| Thickest layer	0.00	Thickest layer	0.10	
		Bottom layer	0.00	Bottom layer	0.10	

Table 20.-Source of Sand and Gravel-Continued

Map symbol and soil name	Pct. of map	Potential source of gravel		Potential source of sand		
		Rating class	Value	Rating class	Value	
101:						
Occum--------------	80	Poor		Fair		
		Thickest layer	0.00	Thickest layer	0.00	
		Bottom layer	0.07	Bottom layer	0.36	
102:						
Pootatuck----------	80	Poor		Fair		
		Thickest layer	0.00	Thickest layer	0.00	
		Bottom layer	0.00	Bottom layer	0.36	
103:						
Rippowam----------	80	Poor		Fair		
		Thickest layer	0.00	Thickest layer	0.00	
		Bottom layer	$0.00$	Bottom layer	$0.50$	
104:						
Bash---------------	80	Poor		Poor		
		Thickest layer	0.00	Thickest layer	0.00	
		Bottom layer	0.00	Bottom layer	0.00	
105:						
Hadley------------	80	Poor		Poor		
		Thickest layer	0.00	Thickest layer	0.00	
		Bottom layer	0.00	Bottom layer	0.00	
106:						
Winooski------------	80	\|Poor	0.00		Poor	
		Bottom layer		Thickest layer	0.00	
		Thickest layer	$0.00$	Bottom layer	0.00	
107:						
Limerick-----------	50	Poor		Poor		
		Bottom layer	0.00	Bottom layer	0.00	
		Thickest layer	0.00	Thickest layer	0.00	
Lim---------------	30	Poor Thickest layer Bottom layer		Fair		
			$0.04$	Thickest layer	0.04	
			$0.07$	Bottom layer	0.09	
108:						
Saco----------------	80	\| Poor		Fair		
		Bottom layer	$0.00$	Thickest layer	$0.00$	
		Thickest layer	0.00	Bottom layer	0.10	
109 :						
Fluvaquents,						
Frequently Flooded-	50	Poor		Poor		
		Bottom layer	0.00	Thickest layer	0.00	
		Thickest layer	0.00	Bottom layer	0.00	
Udifluvents, Frequently Flooded-						
	35	Fair		Fair		
		Bottom layer	0.29	Thickest layer	0.08	
		Thickest layer	0.29	Bottom layer	0.17	
221A:						
Ninigret----------	40	\| Poor $\quad$ Bottom layer		Fair		
			0.00	Thickest layer	0.00	
		Thickest layer	0.00	Bottom layer	0.03	
Urban land---------	35	Not rated		Not rated		

Table 20.-Source of Sand and Gravel-Continued


Table 20.-Source of Sand and Gravel-Continued

Map symbol and soil name	Pct.   of map unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
310:					
Udorthents,					
		Thickest layer	$0.43$	Bottom layer	$0.00$
		Bottom layer	$0.43$	Thickest layer	$0.00$
401C:					
Macomber--------	55	Good		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	1.00	Bottom layer	0.00
Taconic---------	30	Good		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.77	Thickest layer	0.00
402D:					
Macomber-------	50	Good		Poor	
		Thickest layer	$0.00$	Bottom layer	0.00
		Bottom layer	$1.00$	Thickest layer	0.00
Taconic--------	25	Good		Poor	
		Thickest layer	$0.00$	Bottom layer	
		Bottom layer	$0.77$	Thickest layer	$0.00$
Rock outcrop--------	15	Not rated		Not rated	
403C:					
Taconic--------	70	Good		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.77	Thickest layer	0.00
Rock outcrop--------	25	Not rated		Not rated	
403E:					
Taconic--------	70	Good		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.77	Bottom layer	0.00
403E:					
Rock outcrop--------	20	Not rated		Not rated	
403F:					
Taconic--------	70	Good		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.77	Thickest layer	0.00
Rock outcrop--------	20	Not rated		Not rated	
405C:					
Dummerston------	85	Poor		\| Poor	
		Thickest layer	0.07	Bottom layer	0.00
		Bottom layer	0.07	Thickest layer	0.00
405E:					
Dummerston------	85	Poor		Poor	
		\| Thickest layer	0.07	Bottom layer	0.00
		Bottom layer	0.07	Thickest layer	0.00

Table 20.-Source of Sand and Gravel-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
407C:					
Lanesboro---------- \|	85	Fair		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.14	Bottom layer	0.00
407E:					
Lanesboro-----------	85	Fair		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.14	Bottom layer	0.00
408C:					
Fullam-------------	85	Poor		\| Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
409B:					
Brayton------------	85	Fair		\| Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.14	Thickest layer	0.00
412B:					
Bice--------------	85	Poor		\| Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
412C:					
Bice--------------	85	Poor		Poor	
		Bottom layer	0.00	Bottom layer	
		Thickest layer	$0.00$	Thickest layer	$0.00$
412D:					
Bice--------------	85	Poor		Poor	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.00
413C:					
Bice--------------	45	Poor		Poor	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.00
Millsite----------	40	Poor		Poor	
		Thickest layer	0.00	Thickest layer	$0.00$
		Bottom layer	0.00	Bottom layer	0.00
413E:					
Bice--------------	45	Poor		Poor	
		Bottom layer	0.00	Thickest layer	0.00
		Thickest layer	0.00	Bottom layer	0.00
Millsite-----------	40	Poor		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.00
414:					
Fredon, cold--------	85	Fair		Fair	
		Thickest layer	$0.14$	Thickest layer	0.08
		Bottom layer	0.14	Bottom layer	0.43
415C:					
Millsite-----------	40	Poor		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.00

Table 20.-Source of Sand and Gravel-Continued

Map symbol and soil name	$\mid$ Pct.   of   map   unit	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
415C:					
Westminster--------	40	Poor		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.00	Thickest layer	0.00
Rock outcrop-------	15	Not rated		Not rated	
415E:					
Millsite----------	40	\|Poor		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.00	Thickest layer	0.00
Westminster--------	40	Poor		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.00	Thickest layer	0.00
Rock outcrop--------	15	Not rated		Not rated	
416E:					
Rock outcrop-------	70	Not rated		Not rated	
Westminster--------	20	Poor		Poor	
		Bottom layer	0.00	Bottom layer	0.00
		Thickest layer	0.00	Thickest layer	0.00
416F:					
Rock outcrop-	70	Not rated		Not rated	
416F:					
Westminster--------	20	Poor		Poor	
			0.00		0.00
		Bottom layer	0.00	Bottom layer	0.00
417B:					
Bice---------------	85	Poor		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.00		0.00
417C:					
Bice--------------	85	Poor		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.00
417D:					
Bice---------------	85	Poor		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.00
418C:					
Schroon------------ \|	85	\| Fair		Fair	
		Bottom layer	0.07	Thickest layer	0.00
		Thickest layer	0.14	Bottom layer	0.03
420A:					
Schroon------------	85	Fair		Fair	
		Bottom layer	0.07	Thickest layer	0.00
		Thickest layer	0.14	Bottom layer	0.03

Table 20.-Source of Sand and Gravel-Continued


Table 20.-Source of Sand and Gravel-Continued


Table 20.-Source of Sand and Gravel-Continued


Table 20.-Source of Sand and Gravel-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential source of gravel		Potential source of sand	
		Rating class	Value	Rating class	Value
450D:					
Pyrities-	80	Poor		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.00
451B:					
Pyrities--------	80	Poor		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.00	Thickest layer	0.00
451C:					
Pyrities--------	80	Poor		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.00	Thickest layer	0.00
451D:					
Pyrities--------	80	Poor		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.00	Thickest layer	0.00
457 :					
Mudgepond-------	80	Fair		Poor	
		Thickest layer		Thickest layer	
		Bottom layer	$0.21$	Bottom layer	$0.00$
458:					
Mudgepond-------	55	Fair		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.21	Bottom layer	0.00
458 :					
Alden-----------	35	Fair		Poor	
		Bottom layer		Thickest layer	
		Thickest layer	$0.14$	Bottom layer	$0.00$
501:					
Ondawa----------	85	Poor		Poor	
		Thickest layer	0.00	Bottom layer	0.00
		Bottom layer	0.00	Thickest layer	0.00
503 :					
Rumney----------	80	Poor		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.00
508 :					
Medomak--------	85	Poor		Poor	
		Thickest layer	0.00	Thickest layer	0.00
		Bottom layer	0.00	Bottom layer	0.00

Table 21.-Construction Materials
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.00 to 0.99 . The smaller the value, the greater the limitation. See text for further explanation of ratings in this table.)


Table 21.-Construction Materials-Continued


Table 21.-Construction Materials-Continued

Map symbol and soil name	\| Pct.	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value
15:					
Scarboro--------	80	Poor		Poor	
		Wetness depth	0.00	Too sandy	0.00
				Wetness depth	0.00
				Hard to reclaim (rock fragments)	0.82
				Rock fragments	0.97
				Too acid	0.98
16:					
Halsey----------	80	Poor	0.00	Poor	
		Wetness depth		Wetness depth	0.00
				Hard to reclaim (rock fragments)	0.50
				Rock fragments	0.97
17:					
Timakwa---------	45	Poor		Poor	
		Wetness depth	0.00	Wetness depth	0.00
		Shrink-swell	0.44	Organic matter content high	0.00
				Too acid	0.88
Natchaug--------	40	Poor		Poor	
		Wetness depth	0.00	Wetness depth	0.00
		Shrink-swell	0.95	Rock fragments	0.88
18:					
Catden----------	40	Poor		Poor	
		Wetness depth	0.00	Wetness depth	0.00
		Shrink-swell	0.00	Organic matter content high Too acid	0.00 0.88
Freetown--------	40	Poor		Poor	
		Wetness depth	0.00	Wetness depth	0.00
		Shrink-swell	0.00	Organic matter content high	0.00 0.12
					0.12
20A:					
Ellington-------	80	Fair		Poor	
		Wetness depth	0.53	Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.50
				Wetness depth	0.53
				Too acid	0.98
21A:					
Ninigret--------	60	Fair   Wetness depth		Poor	
			0.53	Too sandy	0.00
				Rock fragments	0.00
				Wetness depth	0.53
				Hard to reclaim (rock fragments)	0.82

Table 21.-Construction Materials-Continued

$\begin{aligned} & \text { Map symbol } \\ & \text { and soil name } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \end{gathered}\right.$	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value
21A:					
Tisbury--------	25	Wetness depth	0.53	Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.50
				Wetness depth	0.53
				Too acid	0.98
22A:					
Hero	85	Fair	0.53	Poor	
		Wetness depth		Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.00
				Wetness depth	0.53
22B:					
Hero-----------	85	Fair	0.53	Poor	
		Wetness depth		Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.00
				Wetness depth	0.53
23A:					
Sudbury---------	80	Fair		Poor	
		Wetness depth	0.76	Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.08
				Wetness depth	0.76
24A:					
Deerfield-------	80	FairWetness depth	0.76	Poor	
				Too sandy	0.00
				Wetness depth	0.76
25A:					
Brancroft-------	80	Poor	0.00	Fair	
		Low strength		Wetness depth	0.29
		Wetness depth	0.29		
25B :					
Brancroft-------	80	Poor		Fair	
		Low strength	$0.00$	Wetness depth	0.29
		Wetness depth	0.29		
25C:					
Brancroft-------	80	Poor		Fair	
			0.00	Wetness depth	0.29
		Wetness depth	0.29	Slope	0.37
26A:					
Berlin--------	80	Poor		Fair	
		Low strength	0.00	Wetness depth	0.29
		Wetness depth	0.29	Too clayey	0.55

Table 21.-Construction Materials-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct } \\ \text { of } \\ \text { map } \end{gathered}\right.$	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value
26B:					
Berlin----------	80	Poor		Fair	
		Low strength	0.00	Wetness depth	0.29
		Wetness depth	0.29	Too clayey	0.55
27A:					
Belgrade--------	80	Fair		Fair	
		Wetness depth	0.91	Wetness depth	0.91
28A:					
Elmridge--------	80	Poor		Poor	
		Low strength	0.00	Too clayey	0.00
		Wetness depth	0.53	Wetness depth	0.53
		Shrink-swell	0.86		
28B :					
Elmridge--------	80	Poor		Poor	
		Low strength	0.00	Too clayey	0.00
		Wetness depth	0.53	Wetness depth	0.53
		Shrink-swell	0.86		
29A:					
Agawam----------	80	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.50
29B:					
Agawam----------	80	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.50
29C:					
Agawam----------	80	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Slope	0.37
				Hard to reclaim (rock fragments)	0.50
30A:					
Branford--------	80	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.32
				Too acid	0.98
30B:					
Branford--------	80	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.32
				Too acid	0.98

Table 21.-Construction Materials-Continued

$\begin{aligned} & \text { Map symbol } \\ & \text { and soil name } \end{aligned}$	Pct.   of	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value
30C:					
Branford--------	80	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.32
				Slope	0.37
				Too acid	0.98
31A:					
Copake----------	85	Good		Poor	
				Hard to reclaim (rock fragments)	0.00
				Rock fragments	0.12
31B:					
Copake----------	85	Good		Poor	
				Hard to reclaim (rock fragments)	0.00
				Rock fragments	0.12
31C:					
Copake----------	85	Good		Poor	
				Hard to reclaim (rock fragments)	0.00
				Rock fragments	0.12
				Slope	0.37
32A:					
Haven-----------	60	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.02
				Too acid	0.98
Enfield---------	25	Good		Fair	
				Hard to reclaim (rock fragments)	0.68
32B:					
Haven-----------	60	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.02
				Too acid	0.98
Enfield---------	25	Good		Fair	
				Hard to reclaim (rock fragments)	0.68
32C:					
Haven-----------	60	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.02
				Slope	0.37
				Too acid	0.98

Table 21.-Construction Materials-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value
				Slope	0.37
				Hard to reclaim (rock fragments)	0.68
Hartford	80	Good		Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.50
				Too acid	0.98
33B:					
Hartford--------	80	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.50
				Too acid	0.98
34A:					
Merrimac--------	80	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.00
34B:					
Merrimac--------	80	Good		\| Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.00
34C:					
Merrimac--------	80	Good		\| Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.00
				Slope	0.37
35A:					
Penwood---------	80	Good		Poor	
				Too sandy	0.00
				Too acid	0.98
35B :					
Penwood---------	80	Good		\| Poor	
				Too sandy	0.00
				Too acid	0.98
36A:					
Windsor---------	80	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.97

Table 21.-Construction Materials-Continued


Table 21.-Construction Materials-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \end{gathered}\right.$	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value
39A:					
Groton-	85	Good		Poor	
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.00
39C:					
Groton----------	85	Good		Poor	
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.00
				Slope	0.96
39E:					
Groton----------	85	Poor		Poor	
		Slope	0.00	Slope	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.00
40A:					
Ludlow---------	80	Fair		Poor	
		Wetness depth	0.53	Hard to reclaim (dense layer)	0.00
				Rock fragments	0.28
				Wetness depth	0.53
				Too acid	0.98
40B:					
Ludlow---------	80	Fair		Poor	
		Wetness depth	0.53	Hard to reclaim (dense layer)	0.00
				Rock fragments	0.28
				Wetness depth	0.53
				Too acid	0.98
41B :					
Ludlow----------	80	Fair   Wetness depth		Poor	
			0.53	Hard to reclaim (dense layer)	0.00
				Rock fragments	0.28
				Wetness depth	$0.53$
				Too acid	0.98
42C:					
Ludlow----------	80	Fair   Wetness depth		Poor	
			0.53	Hard to reclaim (dense layer)	0.00
				Rock fragments	0.28
				Wetness depth	0.53
				Slope	0.96
				Too acid	0.98
43A:					
Rainbow---------	80	Fair   Wetness depth		Fair	
			0.53	Hard to reclaim   (dense layer)   Wetness depth   Rock fragments   Too acid	$\left\lvert\, \begin{aligned} & 0.20 \\ & 0.53 \\ & 0.97 \\ & 0.98 \end{aligned}\right.$

Table 21.-Construction Materials-Continued

Map symbol and soil name	$\begin{gathered} \text { Pct. } \\ \text { of } \end{gathered}$	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value
43B :					
Rainbow---------	80	Fair	0.53	Fair	0.20
		Wetness depth		Hard to reclaim	
				Wetness depth	0.53
				Rock fragments	0.97
				Too acid	0.98
44B :					
Rainbow---------	80	Fair	0.53	Fair	
		Wetness depth		Hard to reclaim (dense layer)	0.20
				Wetness depth	0.53
				Rock fragments	0.97
				Too acid	0.98
45A :					
Woodbridge------	80	Fair	0.53	Poor	
		Wetness depth		Hard to reclaim (dense layer)	0.00
				Rock fragments	0.28
				Wetness depth	0.53
				Too acid	0.98
45B :					
Woodbridge------	80	Fair	0.53	Poor	
		Wetness depth		Hard to reclaim (dense layer)	0.00
				Rock fragments	0.28
				Wetness depth	0.53
				Too acid	0.98
45C :					
Woodbridge------	80	Fair	0.53	Poor	
		Wetness depth		Hard to reclaim (dense layer)	0.00
				Rock fragments	0.28
				Slope	0.37
				Wetness depth	0.53
				Too acid	0.98
46B :					
Woodbridge------	80	Fair	0.53	Poor	
		Wetness depth		Hard to reclaim (dense layer)	0.00
				Rock fragments	0.28
				Wetness depth	0.53
				Too acid	0.98
46C:					
Woodbridge------	80	Fair		Poor	
		Wetness depth	0.53	Hard to reclaim (dense layer)	0.00
				Rock fragments	0.28
				Slope	0.37
				Wetness depth	0.53
				Too acid	0.98

Table 21.-Construction Materials-Continued


Table 21.-Construction Materials-Continued

Map symbol and soil name	Pct.   of   map   unit	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value
51B:					
Sutton----------	80	Fair		Fair	
		Wetness depth	0.53	Rock fragments	0.03
				Wetness depth	0.53
				Too acid	0.98
52C:					
Sutton----------	80	Fair		Fair	
		Wetness depth	0.53	Rock fragments	0.03
				Wetness depth	0.53
				Slope	0.96
				Too acid	0.98
53A:					
Wapping---------	80	Fair		Fair	
		Wetness depth	0.53	Hard to reclaim (rock fragments)	0.18
				Wetness depth	0.53
				Rock fragments	0.97
53B:					
Wapping---------	80	Fair		Fair	
		Wetness depth	0.53	Hard to reclaim (rock fragments)	0.18
				Wetness depth	0.53
				Rock fragments	0.97
54B :					
Wapping---------	80	Fair		Fair	
		Wetness depth	0.53	Hard to reclaim (rock fragments)	0.18
				Wetness depth	0.53
				Rock fragments	0.97
55A:					
Watchaug--------	80	Fair   Wetness depth		Fair	
			0.53	Rock fragments	0.28
				Wetness depth	0.53
55B :					
Watchaug--------	80	Fair		Fair	
		Wetness depth	0.53	Rock fragments	0.28
				Wetness depth	0.53
56B:					
Watchaug--------	80	Fair $\quad$ Wetness depth		Fair	
			0.53	Rock fragments	0.28
				Wetness depth	0.53
57B:					
Gloucester------	80	Fair		Poor	
			0.99	Too sandy	0.00
		Stone content		Rock fragments	$0.00$
				Hard to reclaim (rock fragments)	0.00

Table 21.-Construction Materials-Continued

Map symbol and soil name	Pct.   of   map   unit	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value
57C:					
Gloucester------	80	Fair		Poor	
		Stone content	0.99	Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.00
				Slope	0.37
57D:					
Gloucester------	80	Fair		Poor	
		Slope	0.50	Slope	0.00
		Stone content	0.99	Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.00
58B :					
Gloucester------	80	Fair		Poor	
		Stone content	0.99	Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.00
58C:					
Gloucester------	80	Fair		Poor	
		Stone content	0.99	Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.00
				Slope	0.37
59C:					
Gloucester------	80	Fair		Poor	
		Stone content	0.99	Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.00
				Slope	0.96
59D:					
Gloucester------	80	Fair		Poor	
		Slope	0.50	Slope	0.00
		Stone content	0.99	Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.00
60B :					
Canton	45	Good		Fair	
				Rock fragments	0.12
				Hard to reclaim   (rock fragments)	0.32
				Too acid	0.88
Charlton---------	35	Good		Poor	
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.68

Table 21.-Construction Materials-Continued


Table 21.-Construction Materials-Continued


Table 21.-Construction Materials-Continued


Table 21.-Construction Materials-Continued


Table 21.-Construction Materials-Continued

Map symbol and soil name	Pct.   of   map	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value
73C:					
Charlton-----------	45	Good		Poor	
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.68
				Slope	0.96
Chatfield----------	30	Poor	0.00	Fair	
		Depth to bedrock		Rock fragments	0.12
				Depth to bedrock	0.46
				Slope	0.96
73E:					
Charlton-----------	45	PoorSlope		\| Poor	
			0.00	Slope	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.68
Chatfield----------	30	Poor		Poor	
		Depth to bedrock	0.00	Slope	0.00
		slope	0.00	Rock fragments	0.12
				Depth to bedrock	0.46
74C:					
Narragansett-------	55	Good		Poor	
				Rock fragments	0.00
				Too sandy	0.04
				Hard to reclaim (rock fragments)	0.68
				Too acid	0.76
				Slope	0.96
Hollis-------------	20	Poor		Poor	
		Depth to bedrock	0.00	Depth to bedrock	0.00
				Rock fragments	0.28
				Slope	0.96
75C:					
Hollis-------------	35	Poor		Poor	
		Depth to bedrock	0.00	Depth to bedrock	0.00
				Rock fragments	0.28
				Slope	0.96
Chatfield----------	30	Poor Depth to bedrock		\| Fair	
			0.00	Rock fragments	0.12
				Depth to bedrock	0.46
				Slope	0.96
Rock outcrop--------	15	Not rated		Not rated	
75E:					
Hollis------------	35	Poor   Depth to bedrock Slope		$\mid$ Poor $\mid 0.00$	
			0.00		
			0.00	Depth to bedrock	0.00
				Rock fragments	0.28

Table 21.-Construction Materials-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct } . \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value
75E:					
Chatfield-------	30	Poor		Poor	
		Depth to bedrock	0.00	Slope	0.00
		Slope	0.00	Rock fragments	0.12
				Depth to bedrock	0.46
Rock outcrop--------	15	Not rated		Not rated	
76 E :					
Rock outcrop--------	55	Not rated		Not rated	
Hollis----------	25	Poor		Poor	
		Depth to bedrock	0.00	Depth to bedrock	0.00
		Slope	0.02	Slope	0.00
				Rock fragments	0.28
76F:					
Rock outcrop--------	55	Not rated		Not rated	
Hollis---------	25	Poor		Poor	
		Depth to bedrock	0.00	Slope	0.00
		Slope	0.00	Depth to bedrock	0.00
				Rock fragments	0.28
77C:					
Cheshire--------	45	Good		Fair	
				Rock fragments	0.12
				Slope	0.96
				Too sandy	0.98
				Too acid	0.98
Holyoke---------	35	Poor Depth to bedrock		Poor	
			0.00	Depth to bedrock	0.00
				Rock fragments	0.12
				Slope	0.96
77D:					
Cheshire--------	45	Poor		Poor	
		Slope	0.00	Slope	0.00
				Rock fragments	0.12
				Too sandy	0.98
				Too acid	0.98
Holyoke---------	35	Poor Depth to bedrock Slope		Poor	
			0.00	Slope	0.00
			0.00	Depth to bedrock	0.00
				Rock fragments	0.12
78C:					
Holyoke--------	50	Poor		Poor	
		Depth to bedrock	0.00	Depth to bedrock	0.00
				Rock fragments	0.12
				Slope	0.96
Rock outcrop--------	25	Not rated		Not rated	

Table 21.-Construction Materials-Continued


Table 21.-Construction Materials-Continued


Table 21.-Construction Materials-Continued

Map symbol and soil name	Pct.   of   map   unit	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value
84C:					
Montauk---------	30	Fair		Poor	
		Wetness depth	0.76	Hard to reclaim	0.00
				Slope	0.37
				Rock fragments	0.50
				Wetness depth	0.76
				Too acid	0.98
84D:					
Paxton---------	55	Fair		Poor	
		Slope	0.50	Slope	0.00
		Wetness depth	0.53	Hard to reclaim (dense layer)	0.00
				Rock fragments	0.28
				Wetness depth	0.53
				Too acid	0.98
Montauk---------	30	Fair		Poor	
		Slope	0.50	Slope	0.00
		Wetness depth	0.76	Hard to reclaim	0.00
				Rock fragments	0.50
				Wetness depth	0.76
				Too acid	0.98
85B :					
Paxton----------	55	Fair		Poor	
		Wetness depth	0.53	Hard to reclaim (dense layer)	0.00
				Rock fragments	0.28
				Wetness depth	0.53
				Too acid	0.98
Montauk---------	30	Fair		Poor	
		Wetness depth	0.76	Hard to reclaim (dense layer)	0.00
				Rock fragments	0.50
				Wetness depth	0.76
				Too acid	0.98
85C:					
Paxton----------	55	Fair   Wetness depth		Poor	
			0.53	Hard to reclaim (dense layer)	0.00
				Rock fragments	0.28
				Slope	0.37
				Wetness depth	0.53
				Too acid	0.98
Montauk---------	30	Fair		Poor	
		Wetness depth	0.76	Hard to reclaim (dense layer)	0.00
				Slope	0.37
				Rock fragments	0.50
				Wetness depth	0.76
				Too acid	0.98

Table 21.-Construction Materials-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value
86C:					
Paxton----------	55		0.53	Poor	
		Wetness depth		Hard to reclaim	0.00
				Rock fragments	0.28
				Wetness depth	0.53
				Slope	0.96
				Too acid	0.98
Montauk---------	30	Fair		Poor	
		Wetness depth	0.76	Hard to reclaim (dense layer)	0.00
				Rock fragments	0.50
				Wetness depth	0.76
				slope	0.96
				Too acid	0.98
86D:					
Paxton	55	Poor		\| Poor	
		Slope	0.00	Slope	0.00
		Wetness depth	0.53	Hard to reclaim	0.00
				(dense layer)	
				Rock fragments	0.28
				Wetness depth	0.53
				Too acid	0.98
Montauk---------	30	PoorSlope		Poor	
			0.00	Slope	0.00
		Wetness depth	0.76	Hard to reclaim (dense layer)	0.00
				Rock fragments	0.50
				Wetness depth	0.76
				Too acid	0.98
87B:					
Wethersfield----	80	Fair		Fair	
		Wetness depth	0.53	Rock fragments	0.28
				Hard to reclaim (dense layer)	0.29
				Wetness depth	0.53
				Too acid	0.98
87C:					
Wethersfield----	80	Fair		Fair	
			0.53	Rock fragments	0.28
				Hard to reclaim (dense layer)	0.29 0.37
				Slope	0.37
				Wetness depth	0.53
				Too acid	0.98
87D:					
Wethersfield----	80	Fair		Poor	
		Slope		Slope	0.00
		Wetness depth	0.53	Rock fragments	0.28
				Hard to reclaim (dense layer)	0.29
				Wetness depth	0.53
				Too acid	0.98

Table 21.-Construction Materials-Continued

Map symbol and soil name	$\begin{array}{\|} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{array}$	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value
88B :					
Wethersfield----	80		0.53	Fair	
		Wetness depth		Rock fragments	0.28
				Hard to reclaim (dense layer)	0.29
				Wetness depth	0.53
				Too acid	0.98
88C:					
Wethersfield-----	80	Fair		Fair	
		Wetness depth	0.53	Rock fragments	0.28
				Hard to reclaim (dense layer)	0.29
				Slope	0.37
				Wetness depth	0.53
				Too acid	0.98
89C:					
Wethersfield----	80	Fair		Fair	
		Wetness depth	0.53	Rock fragments	0.28
				Hard to reclaim	0.29
				(dense layer)	
				Wetness depth	0.53
				slope	0.96
				Too acid	0.98
89D:					
Wethersfield----	80	Poor		Poor	
		Slope	0.00	Slope	0.00
		Wetness depth	0.53	Rock fragments	0.28
				Hard to reclaim   (dense layer)	0.29
				Wetness depth	0.53
				Too acid	0.98
90B :					
Stockbridge-----		Good		Fair	
	80			Rock fragments	0.03
				Hard to reclaim (rock fragments)	0.68
90C:					
Stockbridge-----	80	Good		Fair	
				Rock fragments	0.03
				Slope	0.37
				Hard to reclaim (rock fragments)	0.68
90D:					
Stockbridge-----	80	Fair		Poor	
		Slope	0.50	Slope	0.00
				Rock fragments	0.03
				Hard to reclaim (rock fragments)	0.68
91B :					
Stockbridge-----	80	Good		Fair	
				Rock fragments	0.03
				Hard to reclaim (rock fragments)	0.68

Table 21.-Construction Materials-Continued

Map symbol and soil name	$\begin{array}{\|} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{array}$	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value
91C:					
Stockbridge-----	80	Good		Fair	
				Rock fragments	0.03
				Slope	0.37
				Hard to reclaim (rock fragments)	0.68
91D:					
Stockbridge-----	80	Poor		Poor	
		Slope	0.00	Slope	0.00
				Rock fragments	0.03
				Hard to reclaim (rock fragments)	0.68
92B:					
Nellis----------	85	Good		Poor	
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.82
92C:					
Nellis----------	85	\| Good		Poor	
				Rock fragments	0.00
				Slope	0.37
				Hard to reclaim (rock fragments)	0.82
92D:					
Nellis---------	85	Fair		Poor	
		Slope	0.50	Slope	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.82
93C:					
Nellis----------	85	Good		Poor	
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.82
				Slope	0.96
94C:					
Farmington------	40	Poor		Poor	
		Depth to bedrock	0.00	Depth to bedrock	0.00
				Rock fragments	0.12
				Slope	0.96
Nellis----------	35	Good		Poor	
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.82
				slope	0.96
94E:					
Farmington-----	40	$\qquad$		Poor	
			0.00	Slope	0.00
			0.00	Depth to bedrock	0.00
				Rock fragments	0.12

Table 21.-Construction Materials-Continued

$\begin{aligned} & \text { Map symbol } \\ & \text { and soil name } \end{aligned}$	\| Pct.	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	\| Value	Rating class and limiting features	Value
94E:					
Nellis-------------	35	Poor		Poor	
		Slope	0.00	Slope	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.82
95C:					
Farmington---------	60	Poor	0.00	Poor	
		Depth to bedrock		Depth to bedrock	0.00
				Rock fragments	0.12
				Slope	0.96
Rock outcrop--------	20	Not rated		Not rated	
95E:					
Farmington---------	60	Poor		Poor	
		Depth to bedrockSlope	0.000.00	Slope	0.00
				Depth to bedrockRock fragments	$\begin{array}{\|l\|l} 0.00 \\ 0.12 \end{array}$
Rock outcrop-------	20	Not rated		Not rated	
96:					
Ipswich------------	85	Poor		Poor	
		Wetness depth Shrink-swell	0.00	Wetness depth	0.00
			0.00	Organic matter content high Salinity	0.00
					0.00
97 :					
Pawcatuck----------	85	Poor		Poor	
		Wetness depth	0.00	Wetness depth	0.00
		Shrink-swell	0.09	Salinity	0.00
				Organic matter content high	0.00
98:					
Westbrook----------	80	Poor		Poor	
		Wetness depth Shrink-swell	$\left\lvert\, \begin{aligned} & 0.00 \\ & 0.02 \end{aligned}\right.$	Wetness depth Salinity   Organic matter content high	$\left\lvert\, \begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}\right.$
99 :					
Westbrook, low salt-	80	Poor		Poor	
		Wetness depth	0.00		0.00
		Shrink-swell	0.02	Organic matter content high Salinity	0.00
					0.00
100:					
Suncook------------	80	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.97

Table 21.-Construction Materials-Continued


Table 21.-Construction Materials-Continued


Table 21.-Construction Materials-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \end{gathered}\right.$	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value
229C:					
Agawam-------------	40	Good		\| Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Slope	0.37
				Hard to reclaim (rock fragments)	0.50
Urban land--------- \|	35	Not rated		Not rated	
230B:					
Branford-----------	40	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.32
				Too acid	0.98
Urban land---------	35	Not rated		Not rated	
230C:					
Branford----------	40	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.32
				Slope	0.37
				Too acid	0.98
Urban land----------	35	Not rated		Not rated	
232B:					
Haven--------------	40	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.02
				Too acid	0.98
Urban land---------	35	Not rated		Not rated	
234B:					
Merrimac----------	40	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.00
Urban land-	35	Not rated		Not rated	
235B:					
Penwood------------ \|	40	\| Good		Poor	
				Too sandy	0.00
				Too acid	0.98
Urban land----------	35	Not rated		Not rated	

Table 21.-Construction Materials-Continued


Table 21.-Construction Materials-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \end{gathered}\right.$	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value
284D:					
Paxton----------	40	Fair		Poor	
		Slope	0.50	Slope	0.00
		Wetness depth	0.53	Hard to reclaim (dense layer)	0.00
				Rock fragments	0.28
				Wetness depth	0.53
				Too acid	0.98
Urban land-	35	Not rated		Not rated	
287B:					
Wethersfield----	40	Fair	0.53	Fair	
		Wetness depth		Rock fragments	0.28
				Hard to reclaim (dense layer)	0.29
				Wetness depth	0.53
				Too acid	0.98
Urban land---------	35	Not rated		Not rated	
$\begin{aligned} & \text { 287C: } \\ & \text { Wethersfield---- } \end{aligned}$					
	40	Fair		Fair	
		Wetness depth	0.53	Rock fragments	0.28
				Hard to reclaim (dense layer)	0.29
				Slope	0.37
				Wetness depth	0.53
				Too acid	0.98
Urban land-	35	Not rated		Not rated	
287D:					
Wethersfield----	40	FairSlope		Poor	
			0.50	Slope	0.00
		Wetness depth	0.53	Rock fragments	0.28
				Hard to reclaim (dense layer)	0.29
				Wetness depth	0.53
				Too acid	0.98
Urban land-	35	Not rated		Not rated	
290B:					
Stockbridge-	40	Good		Fair	
				Rock fragments	0.03
				Hard to reclaim (rock fragments)	0.68
Urban land-	35	Not rated		Not rated	

Table 21.-Construction Materials-Continued


Table 21.-Construction Materials-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \end{gathered}\right.$	Potential source of roadfill		Potential source of topsoil					
		Rating class and limiting features	Value	Rating class and limiting features	Value				
305:									
Pits---------------	25	Poor		Poor					
		Slope	0.00	Too sandy	0.00				
				Hard to reclaim   (rock fragments)	0.00				
				Rock fragments	0.00				
				Slope	0.00				
306:									
Udorthents--------- \|	50	Fair		Poor					
		Stone content	0.73	Hard to reclaim (dense layer)	0.00				
		Slope	0.82	Slope	$\begin{array}{\|l\|l} 0.00 \\ 0.00 \end{array}$				
				Rock fragments					
				Hard to reclaim (rock fragments)	0.50				
Urban land----------	35	Not rated		Not rated					
307:									
Urban land---------	80	Not rated		Not rated					
308 :									
Udorthents---------	80	Fair		Poor					
		Stone content	0.73	Hard to reclaim (dense layer)	0.00				
		Slope	0.82	Slope	0.00				
				Rock fragments	0.00				
				Hard to reclaim (rock fragments)	0.50				
309 :									
Udorthents---------	80	FairStone content		Poor					
			0.73	Hard to reclaim (dense layer)	0.00				
		Slope	0.82	Slope	0.00				
					0.00				
				Hard to reclaim (rock fragments)	0.50				
310 :									
Udorthents, Periodically									
Flooded	85	Fair   Stone content		Poor ${ }^{\text {Hard to meclaim }{ }^{\text {a }} 000}$					
			0.73	Hard to reclaim (dense layer)	0.00				
		Slope	0.82	Slope	0.00				
				Rock fragments	0.00				
				Hard to reclaim (rock fragments)	0.50				
401C:									
Macomber-----------	55	Poor   Depth to bedrock		Poor    Rock fragments 0.00					
			0.00						
				Slope	0.37				
				Depth to bedrock	0.54				
				Too acid	0.92				

Table 21.-Construction Materials-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \end{gathered}\right.$	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value
401C:					
Taconic------------	30	Poor	0.00	Poor	
		Depth to bedrock		Rock fragments	0.00
				Depth to bedrock	0.00
				Too acid	0.88
402D:					
Macomber----------	50	Poor		Poor	
		Depth to bedrock	0.00	Slope	0.00
		slope	0.50	Rock fragments	0.00
				Depth to bedrock	0.54
				Too acid	0.92
Taconic-----------	25	Poor		Poor	
		Depth to bedrock	0.00	Slope	0.00
		slope	0.50	Rock fragments	0.00
				Depth to bedrock	0.00
				Too acid	0.88
Rock outcrop--------	15	Not rated		Not rated	
403C:					
Taconic------------	70	Poor		Poor	
		Depth to bedrock	0.00	Rock fragments	0.00
				Depth to bedrock	0.00
				Too acid	0.88
Rock outcrop--------	25	Not rated		Not rated	
403E:					
Taconic-----------	70	Poor		Poor	
		Depth to bedrock Slope		Rock fragments	0.00
			$0.00$		0.00
				Depth to bedrock	0.00
				Too acid	0.88
Rock outcrop-------	20	Not rated		Not rated	
403F:					
Taconic-----------	70	Poor		Poor	
		Depth to bedrock	0.00	Slope	0.00
		Slope	0.00	Rock fragments	0.00
				Depth to bedrock	0.00
				Too acid	0.88
Rock outcrop-------	20	Not rated		Not rated	
405C:					
Dummerston---------	85	Fair		Fair	
		Stone content	0.96	Rock fragments	0.03
				Hard to reclaim (rock fragments) Too acid	$\left\lvert\, \begin{aligned} & 0.98 \\ & 0.98\end{aligned}\right.$

Table 21.-Construction Materials-Continued


Table 21.-Construction Materials-Continued


Table 21.-Construction Materials-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { \|unit } \end{gathered}\right.$	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value
416E:					
Westminster-----	20	Poor		Poor	
		Depth to bedrock	0.00	Depth to bedrock	0.00
		slope	0.00	Slope	0.00
				Rock fragments	0.50
				Too acid	0.76
416F:					
Rock outcrop-------	70	Not rated		Not rated	
Westminster-----	20	Poor		Poor	
		Depth to bedrock	0.00	Slope	0.00
		Slope	0.00	Depth to bedrock	0.00
				Rock fragments	0.50
				Too acid	0.76
417B:					
Bice------------	85	Good		Fair	
				Rock fragments	0.50
				Hard to reclaim (rock fragments)	0.95
417C:					
Bice-----------	85	Good		Fair	
				Rock fragments	0.50
				Slope	0.84
				Hard to reclaim (rock fragments)	0.95
417D:					
Bice-----------	85	Fair		Poor	
		Slope	0.50	Slope	0.00
				Rock fragments	0.50
				Hard to reclaim (rock fragments)	0.95
418C:					
Schroon---------	85	Fair		Fair	
		Wetness depth	0.53	Rock fragments   Wetness depth slope	0.12
					0.53
					0.96
420A:					
Schroon---------	85	Fair		Fair	
		Wetness depth	0.53	Rock fragments	0.12
				Wetness depth	0.53
420B:					
Schroon	85	Fair		Fair	
		Wetness depth	0.53	Rock fragments   Wetness depth	$\left\lvert\, \begin{aligned} & 0.12 \\ & 0.53 \end{aligned}\right.$

Table 21.-Construction Materials-Continued


Table 21.-Construction Materials-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { of } \end{gathered}\right.$	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value
$426 \mathrm{D}:$					
Shelburne	85	Slope	0.00	Slope	0.00
		Wetness depth	0.53	Hard to reclaim (dense layer)	0.26
		Stone content	0.92	Rock fragments	0.50
				Wetness depth	0.53
				Too acid	0.98
427B:					
Ashfield--------	85	Fair	0.14	Poor	
		Wetness depth		Hard to reclaim (dense layer)	0.00
				Wetness depth	0.14
				Rock fragments	0.50
427C:					
Ashfield-------	85	Fair	0.14	Poor	
		Wetness depth		Hard to reclaim (dense layer)	0.00
				Wetness depth	0.14
				Slope	0.37
				Rock fragments	0.50
				Too acid	0.88
428A:					
Ashfield--------	85	Fair	0.14	Poor	
		Wetness depth		Hard to reclaim (dense layer)	0.00
				Wetness depth	0.14
				Rock fragments	$0.50$
				Too acid	0.88
428B:					
Ashfield--------	85	Fair   Wetness depth	0.14	Poor	
				Hard to reclaim (dense layer)	0.00
				Wetness depth	0.14
				Rock fragments	0.50
				Too acid	0.88
428C:					
Ashfield-------	85	Fair   Wetness depth		Poor	
			0.14	Hard to reclaim (dense layer)	0.00
				Wetness depth	0.14
				Slope	0.37
				Rock fragments	0.50
				Too acid	0.88
429A:					
Agawam, cold-	80	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.50

Table 21.-Construction Materials-Continued

Map symbol and soil name	Pct.   of   map   unit	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value
$429 \mathrm{~B}:$					
Agawam, cold	80	Good		Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.50
429C:					
Agawam, cold----	80	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Slope	0.37
				Hard to reclaim (rock fragments)	0.50
433:					
Moosilauke------	80	Poor		Poor	
		Wetness depth	0.00	Too sandy	0.00
				Wetness depth	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.82
434A:					
Merrimac, cold---	80	Good		Poor	
				Rock fragments	0.00
				Too sandy	0.00
				Hard to reclaim (rock fragments)	0.00
434B:					
Merrimac, cold---	80	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	0.00
434C:					
Merrimac, cold---	80	Good		Poor	
				Too sandy	0.00
				Rock fragments	0.00
				Hard to reclaim (rock fragments)	$1 \begin{aligned} & 0.00 \\ & 0.37\end{aligned}$
				Slope	0.37
435:					
Scarboro--------	80	Poor		Poor	
		Wetness depth	0.00	Too sandy	0.00
				Wetness depth	0.00
				Hard to reclaim (rock fragments)	0.82
				Rock fragments	0.97
				Too acid	0.98
436 :					
Halsey---------	80	Poor		Poor	
		Wetness depth	0.00	Wetness depth	0.00
				Hard to reclaim (rock fragments) Rock fragments	0.50 0.97

Table 21.-Construction Materials-Continued


Table 21.-Construction Materials-Continued


Table 21.-Construction Materials-Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{gathered}\right.$	Potential source of roadfill		Potential source of topsoil	
		Rating class and limiting features	Value	Rating class and limiting features	Value
501:					
Ondawa-	85	Good		Fair	
				Rock fragments	0.88
				Too acid	0.88
503 :					
Rumney----------	80	Poor	0.00	Poor	
		Wetness depth		Wetness depth	0.00
				Hard to reclaim (rock fragments)	0.32
				Rock fragments	0.88
508 :					
Medomak--------	85	PoorWetness depth		Poor	
			0.00	Wetness depth	0.00

Table 22.-Ponds and Embankments
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)


Table 22.-Ponds and Embankments-Continued


Table 22.-Ponds and Embankments-Continued


Table 22.-Ponds and Embankments-Continued


Table 22.-Ponds and Embankments-Continued


Table 22.-Ponds and Embankments-Continued

Map symbol and soil name	Pct.   of map unit	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
32A:							
Haven	60	Very limited Seepage	1.00	Somewhat limited Seepage	0.39	Very limited Depth to water	1.00
Enfield--	25	\|Very limited Seepage	1.00	Somewhat limited Seepage	0.50	Very limited Depth to water	1.00
32B:							
Haven-	60	Very limited Seepage	1.00	Somewhat limited Seepage	0.39	\|Very limited Depth to water	1.00
Enfield--	25	Very limited Seepage	1.00	Somewhat limited Seepage	0.50	Very limited Depth to water	1.00
$32 \mathrm{C}:$							
Haven-----------	60	Seepage	1.00	Somewhat limited	0.39	Very limited Depth to water	1.00
		Slope	0.01				
Enfield---------	25	Very limited Seepage slope	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.01 \end{aligned}\right.$	Somewhat limited Seepage	0.50	Very limited Depth to water	1.00
33A:							
Hartford--------	80	Very limited Seepage	1.00	Seepage	0.10	Depth to water	1.00
33B:							
Hartford--------	80	Very limited Seepage	1.00	Somewhat limited Seepage	0.10	Very limited Depth to water	1.00
34A:							
Merrimac--------	80	Very limited Seepage	1.00	Seepage	0.12	Depth to water	1.00
34B:							
Merrimac-------	80	\|Very limited Seepage		Somewhat limited		\|Very limited	
			1.00	Seepage	0.12	Depth to water	1.00
34C:							
Merrimac-------	80	Very limited Seepage slope		Somewhat limited		\| Very limited	
			1.00	Seepage	0.12	Depth to water	1.00
			0.01				
35A:							
Penwood---	80	Very limited Seepage	1.00	Somewhat limited Seepage	0.15	\|Very limited Depth to water	1.00
35B:							
Penwood---	80	Very limited Seepage	1.00	Somewhat limited Seepage	0.15	Very limited Depth to water	1.00
36A:							
Windsor----	80	\|Very limited Seepage	1.00	Somewhat limited Seepage	0.10	\|Very limited Depth to water	1.00
36B:							
Windsor--	80	Very limited Seepage	1.00	Somewhat limited Seepage	0.10	\|Very limited Depth to water	1.00

Table 22.-Ponds and Embankments-Continued

Map symbol and soil name	Pct.   of   map unit	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed			
		Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	Value		
$36 \mathrm{C}:$									
		slope	0.01						
Manchester------	80	Very limited		Somewhat limited		Very limited			
		Seepage	1.00	Seepage	0.11	Depth to water	11.00		
Manchester------	80	Very limited Seepage		Somewhat limited		Very limited			
			1.00	Seepage	0.11	Depth to water	11.00		
Manchester------	80	Very limited		\|Somewhat limited		Very limited			
		Seepage	11.00	Seepage	0.11	Depth to water	11.00		
		Slope	0.50						
38A:									
Hinckley-	80	Very limited Seepage	11.00	Somewhat limited Seepage	0.09	\|Very limited Depth to water	\| 1.00		
38C:									
Hinckley-	80	Very limited Seepage	1.00	Somewhat limited Seepage	0.09	\|Very limited Depth to water	1.00		
Hinckley---------	80	$\begin{array}{\|l} \text { Very limited } \\ \text { Seepage } \\ \text { slope } \end{array}$	1.00	Somewhat limitedSeepage	0.09	Very limited Depth to water	1.00		
			0.50						
39A:									
Groton-------------	85	Very limited Seepage	11.00	Somewhat limited Seepage	0.12	Very limited Depth to water	11.00		
39C:									
Groton-	85	Very limited Seepage	1.00	Somewhat limited Seepage	0.12	Very limited Depth to water	11.00		
39E:									
Groton-	85	Very limited Seepage slope	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \end{aligned}\right.$	Somewhat limited Seepage	0.12	Very limited Depth to water	\| 1.00		
40A:									
Ludlow--	80	Somewhat limited Seepage	0.70	```\|Very limited ```		\|Very limited Depth to water	1.00		
					0.99				
40B :									
Ludlow--	80	Somewhat limited Seepage	0.70	```Very limited Piping Depth to saturated zone Thin layer```	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.99 \\ & 0.95 \end{aligned}\right.$	Very limited Depth to water	1.00		

Table 22.-Ponds and Embankments-Continued


Table 22.-Ponds and Embankments-Continued


Table 22.-Ponds and Embankments-Continued


Table 22.-Ponds and Embankments-Continued


Table 22.-Ponds and Embankments-Continued

Map symbol and soil name	Pct.   of   map   unit	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
60B :							
Canton----------	45	$\mid$ Very limited	1.00	Somewhat limited	0.09	\|Very limited Depth to water	1.00
Charlton---------	35	Very limited Seepage	1.00	Not limited		Very limited Depth to water	1.00
60C:							
Canton----------	45	Very limited		Somewhat limited Seepage		Very limited	
		Seepage	1.00		0.09	Depth to water	1.00
Charlton--------	35	Very limited		Not limited		Very limited	
		Seepage	1.00			Depth to water	1.00
		slope	0.01				
60D:							
Canton----------	45	Very limited		Somewhat limited Seepage	0.09	Very limited	
		Seepage	1.00			Depth to water	1.00
		Slope	0.12				
Charlton--------	35	Very limited Seepage Slope		Not limited		Very limited Depth to water	
			1.00				1.00
			0.12				
61B:							
Canton----------	45	Very limited Seepage	1.00	Somewhat limited Seepage	0.09	Very limited Depth to water	1.00
Charlton------------	35	Very limited Seepage	1.00	Not limited		\|Very limited Depth to water	1.00
61C:							
Canton---------	45	Very limited Seepage Slope		Somewhat limited Seepage		Very limited Depth to water	
			$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.01 \end{aligned}\right.$		0.09		1.00
Charlton--------	35	Very limited Seepage slope	1.00	Not limited		Very limited Depth to water	
							1.00
			0.01				
62C:							
Canton--	45	Very limited Seepage	1.00	Somewhat limited Seepage	0.09	Very limited Depth to water	1.00
Charlton------------	35	Very limited Seepage	1.00	Not limited		Very limited Depth to water	1.00
62D:							
Canton---------	45	Very limited Seepage Slope		Somewhat limited Seepage		Very limited Depth to water	
			$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.28 \end{aligned}\right.$		0.09		1.00
Charlton-------	35	Very limited Seepage Slope	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.28 \end{aligned}\right.$	Not limited		\|Very limited Depth to water	1.00
63B :							
Cheshire-------	80	$\|$Very limited   Seepage	1.00	Not limited		Very limited Depth to water	1.00

Table 22.-Ponds and Embankments-Continued

Map symbol and soil name	Pct.   of map unit	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
63C:							
Cheshire--------	80	Very limited		Not limited		Very limited	1.00
		Seepage	1.00			Depth to water	
		slope	0.01				
63D:							
Cheshire--------	80	Very limited		Not limited		Very limited Depth to water	1.00
		Seepage	1.00				
		Slope	0.12				
64B :							
Cheshire--------	80	Very limited Seepage	1.00	Not limited		Very limited Depth to water	1.00
64C:							
Cheshire--------	80	Very limited	1.00	Not limited		Very limited Depth to water	1.00
		slope	0.01				
65C:							
Cheshire--------	80	Very limited Seepage	1.00	Not limited		Very limited	
						Depth to water	1.00
65D:							
Cheshire--------	80	Very limited Seepage slope	1.00	Not limited		Very limited Depth to water	1.00
			0.28				
66B:							
Narragansett-------	80	Very limited Seepage	1.00	Somewhat limited Seepage	0.07	Very limited Depth to water	1.00
66C:							
Narragansett----	80	Very limited Seepage slope	1.000.01	Somewhat limited Seepage	0.07	Very limited Depth to water	1.00
67 B :							
Narragansett-	80	Very limited Seepage	1.00	Somewhat limited Seepage	0.07	Very limited Depth to water	1.00
67C:							
Narragansett--	80	Very limited Seepage Slope	$\left\lvert\, \begin{aligned} & 1.00 \\ & 0.01 \end{aligned}\right.$	Somewhat limited Seepage	0.07	Very limited Depth to water	
							1.00
68C:							
Narragansett-------	80	Very limited Seepage	1.00	Somewhat limited Seepage	0.07	Very limited Depth to water	1.00
68D:							
Narragansett----	80	Very limited		Somewhat limited Seepage	0.07	Very limited Depth to water	
		Seepage	1.00				1.00
		Slope	0.12				
69B:							
Yalesville	75	$\begin{array}{\|l} \text { Very limited } \\ \text { Seepage } \\ \text { Depth to bedrock } \end{array}$		Somewhat limited Thin layer Seepage		Very limitedDepth to water	
			1.00		$\begin{aligned} & 0.65 \\ & 0.01 \end{aligned}$		1.0
			0.65				

Table 22.-Ponds and Embankments-Continued

$\begin{aligned} & \text { Map symbol } \\ & \text { and soil name } \end{aligned}$	Pct.   of   map   unit	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
69C:							
Yalesville---------	75	Very limited		Somewhat limited		\| Very limited	1.00
		Seepage	1.00	Thin layer	0.65	Depth to water	
		Depth to bedrock	0.65	Seepage	0.01		
		slope	0.01				
70C:							
Branford----------- \|	50	$\begin{aligned} & \text { Very limited } \\ & \text { Seepage } \end{aligned}$	1.00	Somewhat limited Seepage	0.12	Very limited Depth to water	1.00
Holyoke------------	30	Very limited Depth to bedrock		\|Very limited		Very limited	
			1.00	Thin layer	1.00	Depth to water	1.00
71C:							
Brookfield--------- \|	45	Very limited Seepage	1.00	Somewhat limited Seepage	0.01	Very limited Depth to water	11.00
Brimfield----------	30	Very limited Depth to bedrock		Very limited		Very limited	
			1.00	Thin layer	1.00	Depth to water	\| 1.00
Rock outcrop--------	15	\|Very limited Depth to bedrock		Not rated		Not rated	
			1.00				
71E:							
Brookfield---------	45	$\begin{aligned} & \text { Very limited } \\ & \text { Seepage } \\ & \text { Slope } \end{aligned}$		Somewhat limited		Very limited	
			1.00	Seepage	0.01	Depth to water	1.00
			0.50				
Brimfield----------	30	Very limited Depth to bedrock slope		Very limited		Very limited	
			1.00	Thin layer	1.00	Depth to water	1.00
			0.50				
Rock outcrop-------	15			Not rated		Not rated	
			1.00				
			0.50				
73C:							
Charlton-----------	45	\|Very limited Seepage		Not limited		Very limited	
			1.00			Depth to water	11.00
Chatfield----------	30	Very limited		Somewhat limited		Very limited	1.00
		Seepage	1.00	Thin layer	0.88	Depth to water	
		Depth to bedrock	0.88	Seepage	0.01		
73E:							
Charlton------------	45	$\begin{array}{\|l} \text { Very limited } \\ \text { Seepage } \\ \text { slope } \end{array}$		Not limited		\|Very limited Depth to water	
			1.00				1.00
			0.50				
Chatfield----------	30	```Very limited Seepage Depth to bedrock slope```		Somewhat limited Thin layer Seepage		\|Very limited Depth to water	
			1.00		0.88		1.00
			0.88		0.01		
			0.50				
74C:							
Narragansett-------	55	$\begin{array}{\|c} \text { Very limited } \\ \text { Seepage } \end{array}$	1.00	Somewhat limited Seepage	0.07	Very limited Depth to water	1.00
Hollis------------	20	Very limited Depth to bedrock	1.00	Very limited Thin layer	1.00	Very limited Depth to water	11.00

Table 22.-Ponds and Embankments-Continued


Table 22.-Ponds and Embankments-Continued


Table 22.-Ponds and Embankments-Continued


Table 22.-Ponds and Embankments-Continued

Map symbol and soil name	Pct.   of   map   unit	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds	
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
84D:							
Montauk	30	Seepage	1.00	Thin layer	0.96	Depth to water	1.00
		slope	0.12	Depth to saturated zone	0.95		
				Seepage	0.04		
85B:							
Paxton----------	55	Somewhat limited		Very limited		Very limited	1.00
		Seepage	0.70	Depth to saturated zo	0.99	Depth to water	
				Thin layer	0.95		
Montauk---------	30	\|Very limited Seepage		Somewhat limited		Very limited	1.00
			1.00	Thin layer	0.96	Depth to water	
				Depth to	0.95		
				saturated zone			
				Seepage	0.04		
85C:							
Paxton	55	Somewhat limited Seepage		Very limited		Very limited	
			0.70	Depth to saturated	0.99	Depth to water	1.00
		Slope	0.01	Thin layer	0.95		
Montauk---------	30	Very limited Seepage slope		Somewhat limited		Very limited	1.00
			1.00		0.96	Depth to water	
			0.01	Depth to	0.95		
				saturated zone			
				Seepage	0.04		
86C:							
Paxton---------	55	Somewhat limited		Very limited		Very limited	
		Seepage	0.70	Depth to saturated zone	0.99	Depth to water	1.00
				Thin layer	0.95		
Montauk---------	30	Very limited Seepage		Somewhat limited Thin layer		Very limited	1.00
			1.00		0.96	Depth to water	
				Depth to	0.95		
				saturated zone			
				Seepage	0.04		
86D:							
Paxton---------	55	Somewhat limited Seepage		Very limited		Very limited	
			0.70	Depth to	0.99	Depth to water	1.00
		Slope	0.28	Thin layer	0.95		
Montauk---------	30	Very limited Seepage Slope		Somewhat limited		Very limited	
			1.00		0.96	Depth to water	1.00
			0.28	Depth to saturated zone	0.95		
				Seepage	0.04		
87B:							
Wethersfield----	80	Somewhat limited Seepage		Very limited		Very limited	
			0.70		1.00	Depth to water	1.00
				Depth to saturated zone Thin layer	0.99		
					0.93		

Table 22.-Ponds and Embankments-Continued


Table 23.-Engineering Properties
(Absence of an entry indicates that the data were not estimated.)


Table 23.-Engineering Properties-Continued



Table 23.-Engineering Properties-Continued


Table 23.-Engineering Properties-Continued


Table 23.-Engineering Properties-Continued


Table 23.-Engineering Properties-Continued


Table 23.-Engineering Properties-Continued


Table 23.-Engineering Properties-Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid   limit	Plasindex
			Unified	AASHTO	$\begin{aligned} & \hline>10 \\ & \text { inches } \end{aligned}$	$\left\lvert\, \begin{gathered} 3-10 \\ \text { inches } \end{gathered}\right.$						
							4	10	40	200		
	In				Pct	Pct					Pct	
22B:   Hero	18-24	Gravelly silt   loam, silt   loam, loam, gravelly fine sandy loam	ML, SM	A-2, A-4	0-5	0-10	65-95	55-90	50-90	20-75	15-25	NP-5
	24-27	Gravelly sandy   loam, silt	ML, SM	A-4, A-2	0-5	0-10	65-95	55-90	40-90	20-75	15-25	NP-5
		loam, loam, gravelly fine sandy loam, gravelly silt										
	27-60	Stratified extremely	GM, GP-GM, SM, SP-SM	A-2, A-3, A-1	0-10	0-15	50-85	25-75	10-65	5-15	15-25	NP-5
		gravelly										
		coarse sand to gravelly loamy										
		fine sand										
23A:												
Sudbury------	0-1	$\begin{array}{\|l} \mid \text { Moderately } \\ \text { decomposed } \\ \text { plant material } \end{array}$	OL	A-8	0	0	100	100	100	100	---	---
	1-5	Sandy loam	ML, SM	A-2, A-4	0	0-10	90-100	80-100	50-95	30-65	0-15	NP
	5-17	```\| Gravelly sandy loam, fine sandy loam, sandy loam```	SM	A-2	0	0-20	70-100	60-100\|	35-95	25-35	0-15	NP
	17-25	$\|$Sandy loam,   fine sandy   loam, gravelly   sandy loam	SM	A-2	0	0-20	70-100	60-100	35-95	25-35	0-15	NP
	25-60	$\|$Stratified   gravel to sand	$\begin{array}{\|c} \text { SP-SM, SM, } \\ \text { GM, GP-GM } \end{array}$	A-2, A-3, A-1	0-20	0-40	40-100	20-90	15-75	5-20	0-15	NP
24A:Deerfield												
		Loamy fine sand \| Loamy sand,	SM	A-2	0	0	100	85-100	70-90	20-30	0-20	NP
	8-16		SM	A-2	0	0	100	85-100	55-90	15-25	0-20	NP
		Loamy sand, fine sand, loamy fine sand										
	16-28	```Loamy sand, fine sand, loamy fine sand```	SM	A-2	0	0	100	85-100	55-90	15-25	0-20	NP

Table 23.-Engineering Properties-Continued


Table 23.-Engineering Properties-Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid   limit	$\begin{array}{\|r} \text { Plas- } \\ \text { ticity } \\ \text { index } \\ \hline \end{array}$
			Unified	AASHTO	$\begin{gathered} \hline>10 \\ \text { inches } \end{gathered}$	$\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$						
							4	10	40	200		
	In				Pct	Pct					Pct	
$\begin{aligned} & \text { 36A: } \\ & \text { Windsor- } \end{aligned}$												
	0-1	Moderately decomposed	OL	A-8	0	0	100	100	100	100	---	---
	1-3	plant material   Loamy sand	SM	A-2	0	0	100	85-100	50-80	15-35	0-15	NP
	3-9	\|Loamy sand, loamy fine sand	SM	A-2	0	0	100	\|85-100	50-95	15-30	0-15	NP
	9-21	\|Loamy sand, loamy fine sand	\| SM	A-2	0	0	100	\|85-100	50-95	15-30	0-15	NP
	21-25	Sand, fine sand, loamy sand	SW-SM, SM	A-2, A-3	0	0	100	85-100	60-70	5-30	0-15	NP
	25-65	Sand, fine sand, loamy sand	SM, SW-SM	A-2, A-3	0	0	95-100	75-100	60-70	5-30	0-15	NP
36B:												
Windsor------	0-1	Moderately decomposed	OL	A-8	0	0	100	100	100	100	--	---
		plant material										
	$\begin{aligned} & 1-3 \\ & 3-9 \end{aligned}$	Loamy sand	$\begin{array}{\|l\|} \hline S M \\ \text { SM } \end{array}$	$\begin{aligned} & \mathrm{A}-2 \\ & \mathrm{~A}-2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	100 100	85-100	$50-80$ $50-95$	15-35	0-15	$\begin{aligned} & \text { NP } \\ & \hline \text { D } \end{aligned}$
		Loamy sand, loamy fine sand			0	0						
	9-21	Loamy sand, loamy fine sand	SM	A-2	0	0	100	\|85-100	50-95	15-30	0-15	NP
	21-25	Sand, fine sand, loamy sand	SM, SW-SM	A-2, A-3	0	0	100	85-100	60-70	5-30	0-15	NP
	25-65	\|Sand, fine sand, loamy sand	\|SW-SM, SM	A-3, A-2	0	0	95-100	75-100	60-70	5-30	0-15	NP
36C:												
Windsor-------	0-1	\| Moderately decomposed plant material	OL	A-8	0	0	100	100	100	100	---	---
	1-3	\| Loamy sand	SM	A-2	0	0	100	85-100	50-80	15-35	0-15	NP
	3-9	\|Loamy sand, loamy fine sand	\| SM	A-2	0	0	100	\| 85-100	50-95	15-30	0-15	NP

Table 23.-Engineering Properties-Continued


Table 23.-Engineering Properties-Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid   limit	Plasticity index		
			Unified	AASHTO	$\begin{gathered} >10 \\ \text { inches } \end{gathered}$	$\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$								
							4	10	40	200				
46B: Woodbridge	In	Gravelly fine   sandy loam, fine sandy loam, loam, sandy loam	ML, SM	A-2, A-4	Pct	Pct	\|80-100		65-90	45-90	Pct			
	43-65				0-5	0-15				20-50	10-25	- NP-5		
$\begin{aligned} & \text { 46C: } \\ & \text { Woodbridge- } \end{aligned}$			\| $\mathrm{SM}_{\text {ML, }}$	$\begin{array}{\|l\|} \mathrm{A}-4 \\ \mathrm{~A}-2, \\ \mathrm{~A}-4 \end{array}$	$\begin{aligned} & 0-5 \\ & 0-5 \end{aligned}$	$\begin{aligned} & 0-5 \\ & 0-15 \end{aligned}$	$\begin{array}{\|c} 90-100 \\ 80-100 \end{array}$	$80-90$$65-90$	70-90	35-45	10-25	NP-5		
	0-7	$\mid$ Fine sandy loam   $\mid$ Fine sandy												
	7-18								45-90	20-50	10-25	\| NP-5		
		loam, gravelly fine sandy												
		loam, loam, sandy loam												
	18-26	Fine sandy	\| ML, SM	A-2, A-4	0-5	0-15	80-100	65-90	45-90	20-50	10-25	\| NP-5		
		loam, gravelly fine sandy												
		loam, loam,												
	26-30	$\left\|\begin{array}{c}\text { Fine sandy } \\ \text { loam, gravelly } \\ \text { fine sandy } \\ \text { loam, loam, } \\ \text { sandy loam }\end{array}\right\|$	ML, SM	A-4, A-2	0-5	0-15	80-100	65-90	45-90	20-50	10-25	NP-5		
	26-30													
	30-43		ML, SM	A-2, A-4	0-5	0-15	80-100\|	65-90	45-90	20-50	10-25	NP-5		
			ML, SM	A-2, A-4	0-5	0-15	80-100\|	65-90	45-90	20-50	10-25	NP-5		
	43-65													
47C:														
Woodbridge---	$0-7$$7-18$	\|Fine sandy loam$\mid$ Fine sandy	\|SM ${ }_{\text {ML, }}$	$\begin{array}{\|l\|} \mathrm{A}-4 \\ \mathrm{~A}-2, \\ \mathrm{~A}-4 \end{array}$	$\begin{aligned} & 0-5 \\ & 0-5 \end{aligned}$	$\begin{aligned} & 0-5 \\ & 0-15 \end{aligned}$	$\begin{aligned} & 90-100 \\ & 80-100 \end{aligned}$	80-90	70-90	35-45	10-25	\| NP-5		
								65-90	45-90	20-50	10-25			
	18-26	$\left\|\begin{array}{l}\text { loam, gravelly } \\ \text { fine sandy } \\ \text { loam, loam, } \\ \text { sandy loam }\end{array}\right\|$	ML, SM											
		\|Fine sandy		\| ML, SM	A-2, A-4	0-5	0-15	\|80-100		65-90	45-90	20-50	10-25	NP-5
		```loam, gravelly fine sandy loam, loam, sandy loam```												

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid limit	$\begin{aligned} & \text { Plas- } \\ & \text { ticity } \\ & \text { index } \\ & \hline \end{aligned}$
			Unified	AASHTO	>10inches	$\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$						
							4	10	40	200		
	In		MLML,M	A-4A-2, A-4	Pct	Pct					Pct	
```48C: Georgia```												
	0-8	Silt loam			0	0-5	90-100	80-90	75-90	60-80	20-30	\|NP-5
	8-14	```Loam, silt loam, gravelly fine sandy loam```			0-5	0-5	70-100	60-90	55-90	30-85	20-30	\| NP-5
	14-24	$\left\lvert\, \begin{aligned} & \text { Loam, silt } \\ & \text { loam, gravelly } \\ & \text { fine sandy } \\ & \text { loam } \end{aligned}\right.$	ML, SM	A-2, A-4	0-5	0-5	70-100\|	60-90	55-90	30-85	20-30	\| NP-5
	24-60	\|Gravelly fine   sandy loam,   gravelly loam,   loam, silt   loam	SM, ML	A-2, A-4	0-5	0-5	70-100	60-90	55-90	30-85	20-30	NP-5
Amenia-------	$\begin{aligned} & 0-9 \\ & 9-16 \end{aligned}$	Silt loamSilt loam,$\left\|\begin{array}{l}\text { loam, gravelly } \\ \text { loam, gravelly } \\ \text { silt loam }\end{array}\right\|$	ML	A-4	0	0-5	90-100	80-90	75-90	60-80	20-30	NP-5
			ML, SM	A-4	0-5	0-5	70-100\|	60-90	55-90	40-75	20-30	NP-5
	16-25	$\left\lvert\, \begin{aligned} & \text { Silt loam, } \\ & \text { loam, gravelly } \\ & \text { loam, gravelly } \\ & \text { silt loam } \end{aligned}\right.$	ML, SM	A-4	0-5	0-5	70-100\|	60-90	55-90	40-75	20-30	\| NP-5
	25-60	Gravelly loam,   gravelly silt   loam, silt   loam	ML, SM	A-4	0-5	0-5	70-100\|	60-90	55-90	40-75	20-30	\| NP-5
49B:Georgia												
	$\begin{aligned} & 0-8 \\ & 8-14 \end{aligned}$	$\mid$ Silt loam   $\mid$ Loam, silt   loam, gravelly   fine sandy   loam	ML	A-4	0	0-5	90-100	80-90	75-90	60-80	20-30	\|NP-5
			\| SM, ML	A-2, A-4	0-5	0-5	70-100\|	60-90	\|55-90	30-85	20-30	NP-5
	14-24	$\left\lvert\, \begin{aligned} & \text { Loam, silt } \\ & \text { loam, gravelly } \\ & \text { fine sandy } \\ & \text { loam } \end{aligned}\right.$	\| ML, SM	A-4, A-2	0-5	0-5	70-100\|	60-90	55-90	30-85	20-30	NP-5
		\|Gravelly finesandy loam,gravelly loam,loam, siltloam	\| ML, SM	A-4, A-2	0-5	0-5	70-100\|	60-90	55-90	30-85	20-30	\| NP-5
	24-60											

Table 23.-Engineering Properties-Continued


Table 23.-Engineering Properties-Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid   limit	$\begin{aligned} & \text { Plas- } \\ & \text { ticity } \\ & \text { index } \end{aligned}$
			Unified	AASHTO	$\begin{gathered} >10 \\ \text { inches } \end{gathered}$	$\begin{gathered} \hline 3-10 \\ \text { inches } \end{gathered}$						
							4	10	40	200		
	In				Pct	Pct					Pct	
59C:												
Gloucester----	25-35	\| Very gravelly   loamy coarse sand, very gravelly loamy sand, very gravelly loamy fine sand	GW-GM, SW-SM	A-1	0-20	10-20	50-60	35-55	15-45	5-10	0-15	NP
	35-60	\| Very gravelly   loamy coarse   sand, very   gravelly loamy   sand, very   gravelly loamy   fine sand	GW-GM, SW-SM	A-1	0-20	10-20	50-60	35-55	15-45	5-10	0-15	NP
59D:												
Gloucester---	0-4	$\begin{aligned} & \text { Gravelly sandy } \\ & \text { loam } \end{aligned}$	SM	A-2, A-4	0-5	0-5	\| 95-100	80-90	55-75	30-50	0-20	NP
	4-12	```\|ravelly sandy loam, gravelly fine sandy loam```	SM	A-1, A-2	0-5	0-5	70-80	55-70	40-65	20-35	0-20	NP
	12-25	\|Very gravelly loamy sand, very gravelly loamy coarse sand, very gravelly loamy fine sand	GW-GM, SW-SM	A-1	0-15	10-15	50-60	35-55	15-45	5-10	0-15	NP
	25-35	\|Very gravelly   loamy coarse   sand, very   gravelly loamy   sand, very   gravelly loamy   fine sand	GW-GM, SW-SM	A-1	0-20	10-20	50-60	35-55	15-45	5-10	0-15	NP
	35-60	\|Very gravelly   loamy coarse sand, very gravelly loamy sand, very gravelly loamy fine sand	GW-GM, SW-SM	A-1	0-20	10-20	50-60	35-55	15-45	5-10	0-15	NP

Table 23.-Engineering Properties-Continued


Table 23.-Engineering Properties-Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid   limit	$\begin{array}{\|} \text { Plas- } \\ \text { ticity } \\ \text { index } \\ \hline \end{array}$
				AASHTO	$\begin{array}{\|c\|} \hline>10 \\ \text { inches } \end{array}$	$\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$						
							4	10	40	200		
	In		Unified		Pct	Pct					Pct	
60B:   Charlton	27-65		SM						50-70	20-40	10-25	NP-5
		```\|Gravelly fine sandy loam, gravelly sandy loam```		A-2, A-4	0-5	0-10	75-85	60-70				
```60C: Canton```												
	0-1	\|Moderately decomposed plant material	PT	A-8	0	0	100	100	100	100	---	---
	1-3	$\begin{array}{\|l} \text { Gravelly fine } \\ \text { sandy loam } \end{array}$	SM	A-2	0-5	0-10	80-90	70-75	60-70	25-35	10-25	NP-5
	3-15	$\left\lvert\, \begin{aligned} & \text { Gravelly loam, } \\ & \text { very fine } \\ & \text { sandy loam, } \\ & \text { fine sandy } \\ & \text { loam } \end{aligned}\right.$	ML, SM	A-2, A-4	0-5	0-10	80-90	70-80	60-70	30-50	10-25	NP-5
	15-24	$\begin{aligned} & \text { Gravelly loam, } \\ & \text { very fine } \\ & \text { sandy loam, } \\ & \text { fine sandy } \\ & \text { loam } \end{aligned}$	ML, SM	A-4, A-2	0-5	0-10	80-90	70-80	60-70	30-50	10-25	NP-5
	24-30	$\begin{aligned} & \text { Gravelly loam, } \\ & \text { very fine } \\ & \text { sandy loam, } \\ & \text { fine sandy } \\ & \text { loam } \end{aligned}$	ML, SM	A-2, A-4	0-5	0-10	80-90	70-80	60-70	30-50	10-25	NP-5
	30-60	$\|$Very gravelly   loamy sand,   loamy fine   sand, gravelly   loamy coarse   sand, gravelly   loamy sand	SM	A-1, A-2	0-15	0-15	60-85	45-75	30-75	10-25	0-15	NP
Charlton-----	$\begin{aligned} & 0-4 \\ & 4-7 \end{aligned}$	$\|$Fine sandy loam   $\mid$ Fine sandy   loam, gravelly   fine sandy   loam, sandy   loam	SM	A-2, A-4	0-5	0-5	95-100	80-90	80-85	30-45	15-25	NP-5
			SM	A-2, A-4	0-5	0-10	75-100\|	60-90	55-80	25-45	15-25	NP-5
	7-19	Fine sandy   loam, gravelly   fine sandy   loam, sandy   loam	SM	A-2, A-4	0-5	0-10	75-100	60-90	55-80	25-45	15-25	NP-5

Table 23.-Engineering Properties-Continued


Table 23.-Engineering Properties-Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid   limit	Plasticity index	
			Unified	AASHTO	$\begin{gathered} >10 \\ \text { inches } \end{gathered}$	$\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$							
							4	10	40	200			
	In				Pct	Pct					Pct		
73E:   Charlton	27-65	```\| Gravelly fine sandy loam, gravelly sandy loam```	SM	A-4, A-2		0-10	75-85	60-70	50-70	20-40	10-25	NP-5	
					0-5								
Chatfield------	0-1	\|Highly decomposed	OL	A-8	0	0	100	100	100	100	---	\| NP-5	
	1-6	$\begin{aligned} & \text { Gravelly fine } \\ & \text { sandy loam } \end{aligned}$	SM	A-4, A-2	0-5	0-5	70-85	55-75	45-75	15-40	10-25	NP-5	
	6-15	$\|$Loam, gravelly   loam, gravelly   sandy loam,   gravelly fine   sandy loam	ML, SM	$\mathrm{A}-2, \mathrm{~A}-4$	0	0-10	75-100\|	60-90	45-90	15-60	10-25	NP-10	
	15-29	Loam, fine   sandy loam,   gravelly sandy   loam, gravelly   fine sandy   loam	SM	A-2, A-4	0	0-10	70-100\|	60-90	40-90	15-50	10-25	NP-10	
	29-80	\| Unweathered bedrock			---	---	---	---	---	---	---	---	
$\begin{aligned} & \text { 74C: } \\ & \text { Narragansett } \end{aligned}$													
	0-6	Silt loam	ML	A-4	1-5	1-5	90-100	80-100	75-100	55-95	15-25	NP	
	6-15	$\|$Silt loam, very   fine sandy   loam, gravelly   loam, gravelly   silt loam	ML	A-4	1-5	1-5	\|85-100		65-100	60-100	35-95	15-25	NP-5
	15-24	$\left\|\begin{array}{c}\text { Silt loam, very } \\ \text { fine sandy } \\ \text { loam, gravelly } \\ \text { loam, gravelly } \\ \text { silt loam }\end{array}\right\|$	ML	A-4	1-5	1-5	85-100\|	65-100	65-100	35-95	15-25	NP-5	
	24-28	$\|$Gravelly silt   loam, very   fine sandy   loam, gravelly   loam, silt   loam	ML	A-4	1-5	1-5	85-100	65-100	65-100	35-95	15-25	NP-5	
	28-60	$\|$Very gravelly   loamy coarse   sand, gravelly   loamy sand,   gravelly sand	SM, SP-SM	A-1, A-2	1-15	1-15	70-95	45-85	30-85	10-35	0-15	NP	

Table 23.-Engineering Properties-Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid   limit	$\begin{array}{\|} \text { Plas- } \\ \text { ticity } \\ \text { index } \\ \hline \end{array}$
			Unified	AASHTO	$\begin{gathered} >10 \\ \text { inches } \end{gathered}$	$\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$						
							4	10	40	200		
	In				Pct	Pct					Pct	
$\begin{aligned} & \text { 74C: } \\ & \text { Hollis } \end{aligned}$												
	0-1	Highly decomposed plant material	OL	A-8	0	0	100	100	100	100	-- -	---
	1-6	Gravelly fine sandy loam	SM	A-2, A-4	0-3	0-10	65-85	55-75	45-75	20-40	15-25	NP-5
	6-9	Channery fine sandy loam, fine sandy	SM	A-2, A-4	0-5	0-10	65-100	55-90	50-90	25-50	15-25	NP-5
		loam, gravelly   fine sandy   loam										
	9-15	Gravelly fine sandy loam, fine sandy loam	SM	A-4, A-2	0-10	0-20	70-100	65-90	55-90	25-50	15-25	NP-5
	15-80				---	---	---	---	---	---	---	---
75C:												
Hollis--------	0-1	$\begin{array}{\|l} \text { Highly } \\ \text { decomposed } \end{array}$	OL	A-8	0	0	100	100	100	100	---	---
	1-6	plant material Gravelly fine sandy loam	SM	A-2, A-4	0-3	0-10	65-85	55-75	45-75	20-40	15-25	NP-5
	6-9	Channery fine sandy loam, fine sandy loam, gravelly fine sandy loam	SM	A-2, A-4	0-5	0-10	65-100	55-90	50-90	25-50	15-25	\| NP-5
	9-15	Gravelly fine sandy loam, fine sandy loam	SM	A-2, A-4	0-10	0-20	70-100	65-90	55-90	25-50	15-25	NP-5
	15-80				---	---	---	---	---	---	---	---
Chatfield-----	0-1	Highly decomposed plant material	OL	A-8	0	0	100	100	100	100	---	NP-5
	1-6	Gravelly fine sandy loam	SM	A-2, A-4	0-5	0-5	70-85	55-75	45-75	15-40	10-25	NP-5
	6-15	Loam, gravelly   loam, gravelly sandy loam, gravelly fine sandy loam	SM, ML	A-4, A-2	0	0-10	75-100	60-90	45-90	15-60	10-25	NP-10

Table 23.-Engineering Properties-Continued


Table 23.-Engineering Properties-Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid   limit	$\begin{aligned} & \text { Plas- } \\ & \text { ticity } \\ & \text { index } \end{aligned}$	
			Unified	AASHTO	$\begin{aligned} & \hline>10 \\ & \text { inches } \end{aligned}$	$\left.\begin{array}{\|c\|} \hline 3-10 \\ \text { inches } \end{array} \right\rvert\,$							
							4	10	40	200			
	In				Pct	Pct					Pct		
85B:Paxton													
	15-26	Fine sandy loam, loam, gravelly sandy loam	CL-ML, ML, SM\|	A-2, A-4	0-10	0-20	75-90	65-90	55-85	25-60	10-25	NP-5	
	26-65	Gravelly fine sandy loam, fine sandy loam, loam, gravelly sandy loam	CL-ML, ML, SM	A-2, A-4	0-10	0-20	75-90	65-90	\| 55-85	25-60	10-25	NP-5	
Montauk------	0-4	Fine sandy loam\|	SM	A-4	0-5	0-5	90-100	80-95	75-95	35-45	15-25	NP-5	
	4-14	```Fine sandy loam, gravelly sandy loam, loam```	ML, SM	A-2, A-4	0-10	0-20	75-100	65-95	50-95	25-60	15-25	NP-5	
	14-25	```Sandy loam, gravelly sandy loam, fine sandy loam, loam```	ML, SM	A-4, A-2	0-10	0-20	75-100	65-95	50-95	25-60	15-25	NP-5	
	25-39	Gravelly loamy coarse sand, loamy sand, gravelly sandy loam, sandy loam	SM, SC-SM	A-4, A-1, A-2	0-10	0-10	75-95	60-90	30-75	15-50	15-25	NP	
	39-60	Gravelly sandy   loam, sandy   loam, gravelly   loamy coarse   sand, loamy   sand	SM, SC-SM	\|A-1, A-2, A-4		0-10	0-10	75-95	60-90	30-75	15-50	15-25	NP
85C:Paxto													
	0-8	Fine sandy loam\|	SM	A-4	0-5	0-10	90-95	85-90	75-90	35-50	10-25	NP-5	
	8-15	```Fine sandy loam, loam, gravelly sandy loam```	CL-ML, ML, SM	A-2, A-4	0-10	0-20	75-90	65-90	155-85	25-60	10-25	NP-5	
	15-26	```Fine sandy loam, loam, gravelly sandy loam```	CL-ML, ML, SM	A-2, A-4	0-10	0-20	75-90	65-90	55-85	25-60	10-25	NP-5	

Table 23.-Engineering Properties-Continued


Table 23.-Engineering Properties-Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid   limit	$\begin{aligned} & \text { Plas- } \\ & \text { ticity } \\ & \text { index } \end{aligned}$
			Unified	AASHTO	$\begin{gathered} >10 \\ \text { inches } \end{gathered}$	$\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$						
							4	10	40	200		
	In				Pct	Pct					Pct	
```90B: Stockbridge```		Loam	\|SM, ML									
	0-10			A-4	0	0-5	85-90	75-90	160-90	45-65	20-30	NP-5
	10-20	$\left\lvert\, \begin{aligned} & \text { Loam, silt } \\ & \text { loam, gravelly } \\ & \text { loam } \end{aligned}\right.$	$\begin{gathered} \text { SC-SM, ML, } \\ \text { SM, CL-ML } \end{gathered}$	A-4, A-2	0	0-5	60-90	55-90	45-90	30-80	20-30	NP-10
	20-28	$\begin{aligned} & \text { Loam, silt } \\ & \text { loam, gravelly } \\ & \text { loam } \end{aligned}$	$\begin{aligned} & \text { CL-ML, SC-SM, } \\ & \text { SM, ML } \end{aligned}$	A-4, A-2	0	0-5	60-90	55-90	45-90	30-80	20-30	\| NP-10
	28-42	Gravelly loam, loam, silt loam	$\begin{array}{\|c} \mid C L-M L, ~ S M, ~ \\ \text { SC-SM, ML } \end{array}$	A-4, A-2	0	0-5	60-90	55-90	45-90	30-75	20-30	NP-10
	42-48		$\begin{array}{\|c} \mid C L-M L, ~ S M, ~ \\ \text { ML, SC-SM } \end{array}$	A-2, A-4	0	0-10	45-90	40-90	35-90	20-75	20-30	NP-10
	48-65	$\begin{array}{\|l} \text { Gravelly loam, } \\ \text { silt loam, } \\ \text { very gravelly } \\ \text { fine sandy } \\ \text { loam } \end{array}$	$\begin{array}{\|c} \mid C L-M L, ~ S M, ~ \\ \text { ML, SC-SM } \end{array}$	A-2, A-4	0	0-10	45-90	40-90	35-90	20-75	20-30	NP-10
```90C: Stockbridge---```												
	0-10	$\begin{aligned} & \text { Loam } \\ & \text { Loam, silt } \\ & \text { loam, gravelly } \end{aligned}$	$\begin{aligned} & \mid S M, \quad \text { ML } \\ & \mid S C-S M, ~ M L, ~ \\ & \mid S M, \quad C L-M L \end{aligned}$		0	$\begin{aligned} & 0-5 \\ & 0-5 \end{aligned}$	$\begin{array}{\|l} \mid 85-90 \\ \mid 60-90 \end{array}$	$\begin{array}{r} 75-90 \\ 55-90 \end{array}$		45-65	20-30	\| NP-5
	$\begin{aligned} & 10-20 \\ & 20-28 \end{aligned}$			$\mathrm{A}-4, \quad \mathrm{~A}-2$			$60-90$	55-90	45-90	30-80	20-30	\| NP-10
		Loam, silt   loam, gravelly   loam   Loam, silt   loam, gravelly   loam	$\begin{aligned} & \text { CL-ML, SC-SM, } \\ & \text { SM, ML } \end{aligned}$	A-4, A-2	0	0-5	60-90	55-90	45-90	30-80	20-30	NP-10
	28-42	$\begin{aligned} & \text { Gravelly loam, } \\ & \text { loam, silt } \\ & \text { loam } \end{aligned}$	$\left\lvert\, \begin{array}{cc} \text { CL-ML, } & \text { SM, } \\ \text { SC-SM, } \end{array}\right.$	A-4, A-2	0	0-5	60-90	55-90	45-90	30-75	20-30	NP-10
	42-48	\|Gravelly loam, silt loam, very gravelly fine sandy loam	$\begin{array}{\|c} \text { CL-ML, } \quad \text { SM, } \\ \mathrm{ML}, ~ S C-S M \end{array}$	A-2, A-4	0	0-10	45-90	10-90	35-90	20-75	20-30	NP-10
	48-65	Gravelly loam,silt loam,very gravellyfine sandyloam	$\begin{array}{\|c} \text { CL-ML }, ~ S M, ~ \\ \text { ML, SC-SM } \end{array}$	A-2, A-4	0	0-10	45-90	40-90	35-90	20-75	20-30	NP-10

Table 23.-Engineering Properties-Continued

Map symbol   and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid   limit		
			Unified	AASHTO	$\begin{gathered} >10 \\ \text { inches } \end{gathered}$	$\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$							
							4	10	40	200			
	In				Pct	Pct					Pct		
```90D: Stockbridge```	0-10	Loam	SM, ML	A-4	0	0-5	85-90	75-90	60-90	45-65	20-30	NP-5	
	10-20	Loam, silt	$\begin{gathered} \mathrm{SC}-\mathrm{SM}, \mathrm{ML}, \\ \mathrm{SM}, \mathrm{CL}-\mathrm{ML} \end{gathered}$	A-4, A-2	0	0-5	60-90	55-90	45-90	30-80	20-30	NP-10	
		$\begin{aligned} & \text { loam, gravelly } \\ & \text { loam } \end{aligned}$											
	20-28	Loam, silt	$\begin{aligned} & \text { CL-ML, SC-SM, } \\ & \text { SM, ML } \end{aligned}$	A-4, A-2	0	0-5	60-90	55-90	45-90	30-80	20-30	NP-10	
		\| loam, gravelly											
		loam											
	28-42	\|Gravelly loam, loam, silt	$\left\lvert\, \begin{gathered} \mathrm{CL}-\mathrm{ML}, \mathrm{SM}, \\ \mathrm{SC}-\mathrm{SM}, \mathrm{ML} \end{gathered}\right.$	A-4, A-2	0	0-5	60-90	55-90	45-90	30-75	20-30	NP-10	
		loam											
	42-48		$\begin{array}{\|l\|} \mid C L-M L, ~ S M, ~ \\ \text { ML, SC-SM } \end{array}$	A-2, A-4	0	0-10	45-90	40-90	35-90	20-75	20-30	NP-10	
		silt loam, very gravelly											
		fine sandy											
		loam											
	48-65		$\begin{array}{\|c} \mid C L-M L, ~ S M, \\ M L, ~ S C-S M \end{array}$	A-2, A-4	0	0-10	45-90	40-90	35-90	20-75	20-30	\| NP-10	
		silt loam,											
		very gravelly											
		fine sandy											
		loam											
91B:													
Stockbridge-----		0-10	Loam	\| SM, ML	A-4	0	0-5	85-90	75-90	60-90	45-65	20-30	NP-5
	10-20	Loam, silt \|	$\left\lvert\, \begin{gathered} \text { SC-SM, ML, } \\ \text { SM, CL-ML } \end{gathered}\right.$	A-4, A-2	0	0-5	60-90	55-90	45-90	30-80	20-30	NP-10	
		$\left\lvert\, \begin{aligned} & \text { loam, gravelly } \\ & \text { loam } \end{aligned}\right.$											
	20-28	Loam, silt	$\begin{aligned} & \text { CL-ML, SC-SM, } \\ & \text { SM, ML } \end{aligned}$	A-4, A-2	0	0-5	60-90	55-90	45-90	30-80	20-30	NP-10	
		loam, gravelly											
		loam Gravelly loam,							45-90			NP-10	
	28-42	$\begin{aligned} & \text { Gravelly loam, } \\ & \text { loam, silt } \\ & \text { loam } \end{aligned}$	$\begin{array}{\|c} \mid C L-M L, ~ S M, ~ \\ \text { SC-SM, } \end{array}$	A-4, A-2	0	0-5	60-90	55-90		30-75	20-30		
	42-48		CL-ML, SM, ML, SC-SM	A-2, A-4	0	0-10	45-90	40-90	35-90	20-75	20-30	NP-10	
		silt loam,											
		very gravelly											
		fine sandy											
	48-65	\|Gravelly loam,	$\begin{array}{\|c} \mid C L-M L, ~ S M, ~ \\ \text { ML, SC-SM } \end{array}$		0	0-10	45-90	40-90	35-90	20-75	20-30	NP-10	
		silt loam,		A-2, A-4									
		very gravelly fine sandy											
		fine sandy											

Table 23.-Engineering Properties-Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \mid \text { Liquid } \\ & \mid \text { limit } \end{aligned}$	Plasticity index
			Unified	AASHTO	$\begin{gathered} \hline>10 \\ \text { inches } \end{gathered}$	$\begin{array}{\|c\|} \hline 3-10 \\ \text { inches } \end{array}$						
							4	10	40	200		
	In				Pct	Pct					Pct	
```91C: Stockbridge---```		Loam										
	$\begin{array}{r} 0-10 \\ 10-20 \end{array}$		SM, ML	A-4	0	0-5	85-90	75-90	60-90	45-65	20-30	NP-5
		Loam, silt   loam, gravelly	$\left\lvert\, \begin{gathered} \text { SC-SM, ML }, \\ S M, ~ C L-M L ~ \end{gathered}\right.$	A-4, A-2	0	0-5	60-90	55-90	45-90	30-80	20-30	NP-10
	20-28	$\left\lvert\, \begin{aligned} & \text { Loam, silt } \\ & \text { loam, gravelly } \\ & \text { loam } \end{aligned}\right.$	$\begin{aligned} & \text { CL-ML, SC-SM, } \\ & \text { SM, ML } \end{aligned}$	A-4, A-2	0	0-5	60-90	55-90	45-90	30-80	20-30	NP-10
	28-42	$\begin{aligned} & \text { Gravelly loam, } \\ & \text { loam, silt } \\ & \text { loam } \end{aligned}$	$\begin{array}{\|c} \text { CL-ML, } \mathrm{SM}, \\ \text { SC-SM, } \end{array}$	A-4, A-2	0	0-5	60-90	55-90	45-90	30-75	20-30	\| NP-10
	42-48	```Gravelly loam, silt loam, very gravelly fine sandy loam```	$\begin{array}{\|c} \text { CL-ML, ML, } \\ \text { SC-SM, } \mathrm{SM} \end{array}$	A-2, A-4	0	0-10	45-90	40-90	35-90	20-75	20-30	NP-10
	48-65		$\begin{array}{\|c} \mid C L-M L, ~ S M, ~ \\ \text { ML, SC-SM } \end{array}$	A-2, A-4	0	0-10	45-90	40-90	35-90	20-75	20-30	NP-10
```91D: Stockbridge---```												
	0-10	$\begin{array}{\|l} \text { Loam } \\ \text { Loam, silt } \\ \text { loam, gravelly } \\ \text { loam } \end{array}$	$\begin{array}{\|l} \mid S M, ~ M L \\ \mid S C-S M, ~ M L, ~ \\ \mid S M, ~ C L-M L \end{array}$	$\left\lvert\, \begin{array}{ll} A-4 \\ A-4, & A-2 \end{array}\right.$	0	0-5	85-90	75-90	60-90	45-65	20-30	NP-5
	10-20				0	0-5	60-90	155-90	\|45-90	30-80	20-30	NP-10
	20-28	$\left\lvert\, \begin{aligned} & \text { Loam, silt } \\ & \text { loam, gravelly } \\ & \text { loam } \end{aligned}\right.$	$\begin{array}{\|c} \mid M L, ~ C L-M L, ~ \\ \text { SC-SM, SM } \end{array}$	A-4, A-2	0	0-5	60-90	55-90	45-90	30-80	20-30	NP-10
	28-42	$\begin{aligned} & \text { Gravelly loam, } \\ & \text { loam, silt } \\ & \text { loam } \end{aligned}$	$\begin{array}{\|c} \mid M L, ~ C L-M L, ~ \\ S M, ~ S C-S M \end{array}$	A-4, A-2	0	0-5	60-90	55-90	45-90	30-75	20-30	\| NP-10
	42-48		$\begin{array}{\|c} \text { CL-ML, SM, } \\ \mathrm{ML}, \mathrm{SC}-\mathrm{SM} \end{array}$	A-2, A-4	0	0-10	45-90	40-90	35-90	20-75	20-30	NP-10
	48-65	```\|Gravelly loam,```	$\begin{array}{\|c} \mid C L-M L, ~ S M, ~ \\ \text { ML, SC-SM } \end{array}$	A-2, A-4	0	0-10	45-90	40-90	35-90	20-75	20-30	NP-10

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Map symbol and soil name} \& \multirow[t]{3}{*}{Depth} \& \multirow[t]{3}{*}{USDA texture} \& \multicolumn{2}{|l|}{Classification} \& \multicolumn{2}{|l|}{Fragments} \& \multicolumn{4}{|c|}{\multirow[t]{2}{*}{Percentage passing sieve number--}} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Liquid \\
limit
\end{tabular}} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Plasticity \\
index
\end{tabular}} \\
\hline \& \& \& \multirow[b]{2}{*}{Unified} \& \multirow[b]{2}{*}{AASHTO} \& \multirow[t]{2}{*}{\[
\begin{gathered}
>10 \\
\text { inches }
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{gathered}
3-10 \\
\text { inches }
\end{gathered}
\]} \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& 4 \& 10 \& 40 \& 200 \& \& \\
\hline \& In \& \& \& \& Pct \& Pct \& \& \& \& \& Pct \& \\
\hline \multirow[t]{15}{*}{\[
\begin{aligned}
\& \text { 93C: } \\
\& \text { Nellis }
\end{aligned}
\]} \& \& \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{SM} \& \multirow[b]{2}{*}{A-4} \& \& \& \& \& \& \& \& \\
\hline \& 0-8 \& \& \& \& 0 \& 0-5 \& 85-95 \& 80-95 \& 75-95 \& 35-50 \& 15-25 \& NP-5 \\
\hline \& \multirow[t]{3}{*}{8-14} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Fine sandy \\
loam, silt \\
loam, gravelly \\
fine sandy \\
loam, very \\
fine sandy \\
loam, loam
\end{tabular}} \& \multirow[t]{3}{*}{ML, SM, CLML, SC-SM} \& \multirow[t]{3}{*}{A-2, A-4} \& \multirow[t]{3}{*}{0} \& \multirow[t]{3}{*}{0-5} \& \multirow[t]{3}{*}{65-90} \& \multirow[t]{3}{*}{55-90} \& \multirow[t]{3}{*}{50-90} \& \multirow[t]{3}{*}{20-80} \& \multirow[t]{3}{*}{15-25} \& \multirow[t]{3}{*}{NP-10} \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \multirow[t]{3}{*}{14-25} \& Fine sandy \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& \text { CL-ML, ML, } \\
\& \text { SC-SM, SM }
\end{aligned}
\]} \& \multirow[t]{3}{*}{A-2, A-4} \& \multirow[t]{3}{*}{0} \& \multirow[t]{3}{*}{0-5} \& \multirow[t]{3}{*}{65-90} \& \multirow[t]{3}{*}{55-90} \& \multirow[t]{3}{*}{50-90} \& \multirow[t]{3}{*}{20-80} \& \multirow[t]{3}{*}{15-25} \& \multirow[t]{3}{*}{NP-10} \\
\hline \& \& loam, loam, silt loam, very fine sandy loam, \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& gravelly fine sandy loam \& \& \& \& \& \& \& \& \& \& \\
\hline \& \multirow[t]{4}{*}{25-27} \& ```
Loam, silt
loam, gravelly
``` \& \multirow[t]{4}{*}{\[
\begin{array}{|c}
\text { CL-ML, ML, } \\
\text { SC-SM, SM }
\end{array}
\]} \& \multirow[t]{4}{*}{A-2, A-4} \& \multirow[t]{4}{*}{0} \& \multirow[t]{4}{*}{0-5} \& \multirow[t]{4}{*}{65-90} \& \multirow[t]{4}{*}{55-90} \& \multirow[t]{4}{*}{50-90} \& \multirow[t]{4}{*}{20-75} \& \multirow[t]{4}{*}{15-25} \& \multirow[t]{4}{*}{NP-10} \\
\hline \& \& fine sandy \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \begin{tabular}{l}
loam, very \\
fine sandy
\end{tabular} \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& loam, fine sandy loam \& \& \& \& \& \& \& \& \& \& \\
\hline \& \multirow[t]{4}{*}{27-60} \& \multirow[t]{4}{*}{|Sandy loam, \begin{tabular}{|l|} 
gravelly loam, \\
very gravelly \\
fine sandy \\
loam, loam
\end{tabular}} \& \multirow[t]{4}{*}{\[
\begin{aligned}
\& \text { CL-ML, GC-GM, } \\
\& \text { GM, ML }
\end{aligned}
\]} \& \multirow[t]{4}{*}{A-1, A-2, A-4} \& \multirow[t]{4}{*}{0} \& \multirow[t]{4}{*}{0-10} \& \multirow[t]{4}{*}{50-95} \& \multirow[t]{4}{*}{40-95} \& \multirow[t]{4}{*}{35-90} \& \multirow[t]{4}{*}{20-70} \& \multirow[t]{4}{*}{15-25} \& \multirow[t]{4}{*}{NP-10} \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \multirow[t]{11}{*}{```
94C:
Farmington
```} \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& 0-3 \& \multirow[t]{4}{*}{\begin{tabular}{l}
Fine sandy loam \\
Fine sandy \\
loam, loam, very fine sandy loam, silt loam, gravelly fine sandy loam
\end{tabular}} \& \multirow[t]{4}{*}{\[
\begin{array}{cc}
S M, \& S C-S M \\
\mid M L, \& S M, \quad \text { CL- } \\
\left\lvert\, \begin{array}{cl}
\text { ML, } \& \text { SC-SM }
\end{array}\right.
\end{array}
\]} \& A-4 \& 0-5 \& 0-5 \& 90-100 \& 80-90 \& 75-90 \& 35-45 \& 15-25 \& NP-5 \\
\hline \& \multirow[t]{3}{*}{} \& \& \& \multirow[t]{3}{*}{A-2, A-4} \& \multirow[t]{3}{*}{0-5} \& \multirow[t]{3}{*}{0-10} \& \multirow[t]{3}{*}{|65-100|} \& \multirow[t]{3}{*}{55-90} \& \multirow[t]{3}{*}{150-90} \& \multirow[t]{3}{*}{25-70} \& \multirow[t]{3}{*}{15-25} \& \multirow[t]{3}{*}{NP-10} \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \multirow[t]{5}{*}{\(8-17\)

$17-80$} \& Fine sandy \& \multirow[t]{5}{*}{$$
\left\lvert\, \begin{gathered}
\text { SM, ML, SC- } \\
\text { SM, CL-ML }
\end{gathered}\right.
$$} \& \multirow[t]{5}{*}{A-2, A-4} \& \multirow[t]{5}{*}{$0-10$

$-\ldots$} \& \multirow[t]{5}{*}{$0-10$

$-\ldots$} \& \multirow[t]{5}{*}{65-100} \& \multirow[t]{5}{*}{$60-90$

$-\ldots$} \& \multirow[t]{5}{*}{50-90} \& \multirow[t]{4}{*}{30-80} \& \multirow[t]{4}{*}{15-25} \& \multirow[t]{4}{*}{NP-10}

\hline \& \& loam, loam, silt loam, gravelly fine \& \& \& \& \& \& \& \& \& \&

\hline \& \& sandy loam, \& \& \& \& \& \& \& \& \& \&

\hline \& \& very fine sandy loam \& \& \& \& \& \& \& \& \& \&

\hline \& \& \multirow[t]{2}{*}{Bedrock} \& \& \& \& \& \& \& \& --- \& --- \& ---

\hline \& \& \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

| Map symbol and soil name | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | Liquid
 limit | Plasticity index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | >10 | 3-10 | | | | | | |
| | | | Unified | AASHTO | inches | inches | 4 | 10 | 40 | 200 | | |
| 109:
 Fluvaquents,
 Frequently
 Flooded----- | In | | | | Pct | Pct | | | | | Pct | |
| | | | | | | | | | | | | |
| | 38-45 | Fine sandy | | A-1, A-2, A-4 | 0 | 0-15 | 50-100 | 30-100 | 20-100 | 10-85 | 10-20 | NP |
| | | loam, silt | SP-SM, SM | | | | | | | | | |
| | | loam, very \| | | | | | | | | | | |
| | | gravelly loamy | | | | | | | | | | |
| | | sand, gravelly | | | | | | | | | | |
| | | sandy loam | | | | | | | | | | |
| | 45-55 | \|Very gravelly coarse sand, | $\begin{array}{\|c} \text { \|GP-GM, } \\ \text { SM } \\ \text { SP-SM, } \\ \hline \end{array}$ | $\begin{gathered} A-1, A-2, A- \\ 3, A-4 \end{gathered}$ | 0 | 0-15 | 50-100 | 30-100 | 15-95 | 5-75 | 10-20 | NP |
| | | gravelly sandy | | | | | | | | | | |
| | | loam, silt | | | | | | | | | | |
| | | | | | | | | | | | | |
| | 55-60 | $\begin{gathered} \text { \|Very gravelly } \\ \text { loamy sand, } \end{gathered}$ | \|GP-GM, ML, | A-1, A-2, A-4 | 0 | 0-15 | 50-100 | 30-100 | 20-100 | 10-85 | 10-20 | NP |
| | | fine sandy | | | | | | | | | | |
| | | loam, silt | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | sandy loam | | | | | | | | | | |
| Udifluvents, Frequently Flooded---- | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | 0-2 | \|Fine sandy loam | ML, SM | A-2, A-4 | 0 | 0 | 85-100 | 80-100\| | 70-100 | 25-55 | 10-20 | NP |
| | 2-4 | \|Very gravelly | | A-2, A-4, A- | 0 | 0-15 | 50-100 | 30-100\| | 15-95 | 5-75 | 10-20 | NP |
| | | coarse sand, | SM, GP-GM | 3, A-1 | | | | | | | | |
| | | silt loam,
 loamy fine | | | | | | | | | | |
| | | loamy fine sand | | | | | | | | | | |
| | 4-12 | | | A-2, A-4, A-1 | 0 | 0-15 | 50-100 | 30-100 | 20-100 | 10-85 | 10-20 | NP |
| | | loam, very | SM, GP-GM | A-2, A-1, $\mathrm{A}-1$ | | | | | | | | |
| | | \| gravelly loamy | | | | | | | | | | |
| | | \| sand, silt | | | | | | | | | | |
| | | loam | | | | | | | | | | |
| | 12-18 | | | A-1, A-2, A-4 | 0 | 0-15 | 50-100 | 30-100 | 20-100 | 10-85 | 10-20 | NP |
| | | sandy loam, | SM, GP-GM | | | | | | | | | |
| | | \| very gravelly | | | | | | | | | | |
| | | loamy sand | | | | | | | | | | |
| | 18-35 | \|Silt loam, very | SP-SM, ML, | A-1, A-3, A- | 0 | 0-15 | 50-100 | 30-100 | 15-95 | 5-75 | 10-20 | NP |
| | | gravelly | SM, GP-GM | $2, \mathrm{~A}-4$ | | | | | | | | |
| | | coarse sand, | | | | | | | | | | |
| | | loamy sand | | | | | | | | | | |
| | 35-38 | | | | 0 | 0-15 | 50-100 | 30-100 | 15-95 | 5-75 | 10-20 | NP |
| | | loamy sand, | SM, GP-GM | $2, \mathrm{~A}-4$ | | | | | | | | |
| | | very gravelly | | | | | | | | | | |
| | | coarse sand, | | | | | | | | | | |
| | | silt loam | | | | | | | | | | |

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

| Map symbol and soil name | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | Liquid
 limit | Plas-ticity index | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | Unified | AASHTO | $\begin{gathered} >10 \\ \text { inches } \end{gathered}$ | $\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$ | | | | | | |
| | | | | | | | 4 | 10 | 40 | 200 | | |
| | In | | | | Pct | Pct | | | | | Pct | |
| $\begin{aligned} & \text { 228B: } \\ & \text { Elmridge } \end{aligned}$ | | | | | | | | | | | | |
| | 0-6 | \|Fine sandy loam| | SM, ML | A-4 | 0 | 0 | 100 | \| 90-100| | 85-95 | 35-55 | 15-20 | NP |
| | 6-10 | Fine sandy
 loam, sandy
 loam, loam | CL-ML, SM, ML | A-4 | 0 | 0 | 100 | \| 90-100| | 65-100\| | 45-65 | 15-20 | NP-5 |
| | 10-18 | \|Fine sandy loam, sandy | SM, CL-ML, ML | A-4 | 0 | 0 | 100 | 90-100 | 65-90 | 45-65 | 15-20 | NP-5 |
| | 18-25 | \|Sandy loam, fine sandy loam, loam | SM, CL-ML, ML | A-4 | 0 | 0 | 100 | 90-100 | 65-90 | 45-65 | 15-20 | NP-5 |
| | | | | | | | | | | | | |
| | 25-65 | Silty clay, silty clay loam, clay | CL, CH | A-7 | 0 | 0 | 100 | 95-100 | 95-100 | 85-95 | 40-55 | 15-30 |
| | | | | | | | | | | | | |
| Urban land------ | 0-6 | Material | | | --- | --- | --- | --- | --- | --- | --- | --- |
| $229 \mathrm{~B}:$
 Agawam | | | $\begin{array}{ll} \mid \mathrm{ML}, & \mathrm{SM} \\ \mid \mathrm{ML}, & \mathrm{SM} \end{array}$ | | | | | | | | | |
| | 0-8 | Fine sandy loam
 Fine sandy
 \mid loam, very
 fine sandy
 loam, loam | | $\left\lvert\, \begin{array}{ll} A-4, & A-2 \\ A-2, & A-4 \end{array}\right.$ | | | 90-100\| | \| $80-100 \mid$ | 70-100 | 30-60 | 0-25 | NP-5 |
| | 8-14 | | | | 0 | 0 | 90-100\| | 75-100\| | 65-100 | 30-60 | 0-25 | NP-5 |
| | | | | | | | | | | | | |
| | 14-24 | $\begin{aligned} & \text { Fine sandy } \\ & \text { loam, very } \\ & \text { fine sandy } \\ & \text { loam } \end{aligned}$ | ML, SM | A-2, A-4 | 0 | 0 | \| 90-100| | 75-100 | 65-100 | 30-65 | 0-20 | NP-5 |
| | | | | | | | | | | | | |
| | 24-60 | $\left\|\begin{array}{l} \text { Stratified very } \\ \text { gravelly } \\ \text { coarse sand to } \\ \text { fine sand } \end{array}\right\|$ | SM, SP-SM | A-1, A-2, A-3 | 0 | 0-10 | 70-100\| | 25-100 | 5-95 | 1-25 | 0-15 | NP |
| | | | | | | | | | | | | |
| Urban land----- | 0-6 | \| Material | | | --- | --- | --- | --- | --- | -- | --- | --- |
| $229 \mathrm{C}:$
 Agawam | | | | | | | | | | | | |
| | 0-8 | Fine sandy loam
 \|Fine sandy
 loam, very
 fine sandy
 loam, loam | $\begin{array}{lll}\mid M L & S M \\ \mid M L, ~ & S M\end{array}$ | $\begin{array}{ll} A-4, & A-2 \\ A-2, & A-4 \end{array}$ | 00 | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | 90-100\| | \| 80-100| | 70-100 | 30-60 | 0-25 | NP-5 |
| | 8-14 | | | | | | 90-100 | 75-100 | 65-100 | 30-60 | 0-25 | \| NP-5 |
| | | | | | | | | | | | | |
| | 14-24 | $\left\lvert\, \begin{aligned} & \text { Fine sandy } \\ & \text { loam, very } \\ & \text { fine sandy } \\ & \text { loam } \end{aligned}\right.$ | \| ML, SM | A-2, A-4 | 0 | 0 | 90-100 | 75-100 | 65-100 | 30-65 | 0-20 | NP-5 |
| | | | | | | | | | | | | |

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

| Map symbol and soil name | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | Liquid
 limit | $\begin{aligned} & \text { Plas- } \\ & \text { ticity } \\ & \text { index } \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | Unified | AASHTO | $\begin{gathered} >10 \\ \text { inches } \end{gathered}$ | $\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$ | | | | | | |
| | | | | | | | 4 | 10 | 40 | 200 | | |
| | In | | | | Pct | Pct | | | | | Pct | |
| ```250B: Sutton``` | 0-6 | | SC-SM, SM | A-4, A-2 | 0 | 0-5 | 90-100 | 80-90 | 70-90 | 30-45 | 15-25 | NP-5 |
| | 6-12 | Fine sandy loam \|Fine sandy
 loam, gravelly
 fine sandy
 loam, sandy
 loam, loam | ML, CL-ML, SC-SM, SM | A-2, A-4 | 0 | 0-5 | \| 60-100| | 55-90 | 40-90 | 20-55 | 15-25 | NP-5 |
| | | | | | | | | | | | | |
| | | $\left\|\begin{array}{l}\text { Fine sandy } \\ \text { loam, gravelly } \\ \text { fine sandy } \\ \text { loam, sandy } \\ \text { loam, loam }\end{array}\right\|$ | $\begin{array}{\|c} \mid S M, ~ C L-M L, ~ \\ \text { SC-SM, ML } \end{array}$ | A-4, A-2 | 0-5 | 0-5 | 65-100 | 55-90 | 40-90 | 20-55 | 15-25 | NP-5 |
| | 12-24 | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | 24-28 | $\left\|\begin{array}{c}\text { Fine sandy } \\ \text { loam, gravelly } \\ \text { fine sandy } \\ \text { loam, sandy } \\ \text { loam, loam }\end{array}\right\|$ | ML, SM, CLML, SC-SM | A-4, A-2 | 0-5 | 0-5 | 65-100 | 55-90 | 40-90 | 20-55 | 15-25 | NP-5 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | 28-36 | Gravelly fine sandy loam, gravelly sandy loam, sandy loam | SC-SM, SM | A-2 | 0-5 | 0-10 | 65-100 | 60-90 | 55-85 | 30-40 | 15-20 | NP-5 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | 36-65 | | SM, SC-SM | A-4, A-2 | 0-5 | 0-10 | 65-100 | 60-90 | 45-85 | 25-50 | 15-20 | NP-5 |
| | | loam, gravelly | | | | | | | | | | |
| | | fine sandy | | | | | | | | | | |
| | | loam, sandy | | | | | | | | | | |
| | | loam | | | | | | | | | | |
| Urban land----- | 0-6 | \| Material | | | --- | --- | --- | --- | --- | --- | -- - | --- |
| | | | | | | | | | | | | |
| 253B:Wapping-------- | | | | | | | | | | | | |
| | 0-11 | Very fine sandyloam | ML, SM | A-4 | 0 | 0 | \| 95-100| | 75-100 | 70-100 | 40-75 | 15-25 | NP-5 |
| | | | | | | | | | | | | |
| | 11-16 | \|Very fine sandy loam, loam, silt loam | ML, SM | A-4 | 0 | 0 | \| 95-100| | 75-100 | 70-95 | 40-80 | 15-25 | NP-5 |
| | | | | | | | | | | | | |
| | 16-20 | $\left\lvert\, \begin{aligned} & \text { Very fine sandy } \\ & \text { loam, loam, } \\ & \text { silt loam } \end{aligned}\right.$ | ML, SM | A-4 | 0 | 0 | \|95-100| | 75-100 | 70-95 | 40-80 | 15-25 | \| NP-5 |
| | | | | | | | | | | | | |
| | $20-28$$28-36$ | ```Gravelly sandy loam, gravelly fine sandy loam``` | SM | A-1, A-2 | 0-5 | 0-5 | 70-85 | 55-75 | 40-70 | 20-35 | 15-25 | \| NP-5 |
| | | | | | | | | | | | | |
| | | ```\|Gravelly loamy sand, gravelly sandy loam, gravelly fine sandy loam``` | \| SM | A-1, A-2 | 0-5 | 0-5 | 70-85 | 55-75 | 35-65 | 15-20 | 0-20 | NP-5 |
| | 28-36 | | | | | | | | | | | |

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

| Map symbol and soil name | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | Liquid
 limit | Plas-
 ticity
 index | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | Unified | AASHTO | $\begin{gathered} \hline>10 \\ \text { inches } \end{gathered}$ | $\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$ | | | | | | |
| | | | | | | | 4 | 10 | 40 | 200 | | |
| | In | | SM, MLML, SM | $\begin{array}{ll} A-4, & A-2 \\ A-2, & A-4, \\ A-1 \end{array}$ | Pct | Pct | | | | | Pct | |
| $\begin{aligned} & \text { 269C: } \\ & \text { Yalesville---- } \end{aligned}$ | | | | | | | | | | | | |
| | $8-14$ | \|Fine sandy loam Fine sandy loam, loam, sandy loam, gravelly fine sandy loam | | | 0 | 0-5 | 90-95 | 80-95 | 75-95 | 30-55 | 15-25 | NP-5 |
| | | | | | 0-5 | 0-5 | 65-95 | 55-95 | 35-95 | 20-65 | 15-25 | NP-5 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | 14-25 | ```Loam, fine sandy loam, sandy loam, gravelly fine sandy loam``` | ML, SM | A-2, A-4, A-1 | 0-5 | 0-5 | 65-95 | 55-95 | 35-95 | 20-65 | 15-25 | NP-5 |
| | | | | | | | | | | | | |
| | 25-36 | Gravelly sandy | GM, ML, SM | \|A-1, A-2, A-4| | 0-10 | 0-10 | 50-95 | 40-90 | 25-90 | 15-60 | 15-25 | NP-5 |
| | | loam, loam, | | | | | | | | | | |
| | | very gravelly
 fine sandy | | | | | | | | | | |
| | | loam | | | | | | | | | | |
| | 36-80 | Unweathered bedrock | | | --- | --- | --- | --- | --- | --- | --- | --- |
| | | | | | | | | | | | | |
| Urban land----- | 0-6 | \| Material | | | --- | --- | --- | --- | --- | --- | --- | --- |
| 273C:Urban land- | 0-6 | | | | | | | | | | | |
| | | Material | | | - | --- | --- | --- | -- | --- | - | --- |
| Charlton------ | $0-4$$4-7$ | Fine sandy loam Fine sandy
 loam, gravelly fine sandy
 loam, sandy
 loam | SM | A-2, A-4 | 0-5 | 0-5 | 95-100 | 80-90 | 80-85 | 30-45 | 15-25 | NP-5 |
| | | | | A-2, A-4 | 0-5 | 0-10 | 75-100\| | 60-90 | 55-80 | 25-45 | 15-25 | NP-5 |
| | | | | | | | | | | | | |
| | 7-19 | $\|$Fine sandy
 loam, gravelly
 fine sandy
 loam, sandy
 loam | SM | A-4, A-2 | 0-5 | 0-10 | 75-100 | 60-90 | 55-80 | 25-45 | 15-25 | NP-5 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | 19-27 | \|Gravelly finesandy loam,fine sandyloam, sandyloam | SM | A-4, A-2 | 0-5 | 0-10 | 75-100 | 60-90 | 55-80 | 25-45 | 15-25 | NP-5 |
| | | | | | | | | | | | | |
| | 27-65 | Gravelly fine
 sandy loam,
 gravelly sandy
 loam | SM | A-2, A-4 | 0-5 | 0-10 | 75-85 | 60-70 | 50-70 | 20-40 | 10-25 | NP-5 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

| Map symbol and soil name | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | Liquid
 limit | Plasticity index | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | Unified | AASHTO | $\begin{gathered} \hline>10 \\ \text { inches } \end{gathered}$ | $\left.\begin{array}{\|c\|} \hline 3-10 \\ \text { inches } \end{array} \right\rvert\,$ | | | | | | |
| | | | | | | | 4 | 10 | 40 | 200 | | |
| | In | | \| ML | $\begin{array}{\|ll} A-4 \\ A-4, & A-2 \end{array}$ | Pct | Pct | | | | | Pct | |
| $\begin{aligned} & \text { 287B: } \\ & \text { Wethersfield---- } \end{aligned}$ | | | | | | | | | | | | |
| | 0-3 | Loam | | | | | 90-100 | 80-90 | 75-90 | 50-70 | 15-25 | \| NP-5 |
| | $3-13$ | ```Loam, gravelly loam, gravelly fine sandy loam``` | | | 0-5 | 0-5 | $85-100$ | 65-90 | 60-90 | 25-70 | 15-25 | \|NP-5 |
| | | | | | | | | | | | | |
| | 13-27 | | SM, ML | A-4, A-2 | 0-5 | 0-5 | \|85-100| | 65-90 | 60-90 | 25-70 | 15-25 | \|NP-5 |
| | 27-65 | Gravelly loam,
 loam, gravelly
 fine sandy
 loam | ML, SM | A-2, A-4 | 0-5 | 0-15 | 80-90 | 65-85 | 55-85 | 25-65 | 15-25 | \| NP-5 |
| | | | | | | | | | | | | |
| Urban land----- | 0-6 | \| Material | | | --- | --- | - | --- | --- | -- | --- | --- |
| 287C: | | | | | | | | | | | | |
| Wethersfield---- | 0-3 | Loam
 Loam, gravelly
 loam, gravelly
 fine sandy
 loam | ML | A-4 | $\begin{aligned} & 0-5 \\ & 0-5 \end{aligned}$ | 0-5 | 90-100 | 80-90 | 75-90 | 50-70 | 15-25 | \| NP-5 |
| | 3-13 | | ML, SM | A-4, A-2 | | 0-5 | \| 85-100| | 65-90 | \|60-90 | 25-70 | 15-25 | NP-5 |
| | | | | | | | | | | | | |
| | 13-27 | ```Gravelly loam, loam, gravelly fine sandy loam``` | ML, SM | A-4, A-2 | 0-5 | 0-5 | \|85-100| | 65-90 | 60-90 | 25-70 | 15-25 | NP-5 |
| | 27-65 | $\begin{aligned} & \text { Gravelly loam, } \\ & \text { loam, gravelly } \\ & \text { fine sandy } \\ & \text { loam } \end{aligned}$ | ML, SM | A-2, A-4 | 0-5 | 0-15 | 80-90 | 65-85 | 55-85 | 25-65 | 15-25 | NP-5 |
| Urban land----- | 0-6 | \| Material | | | --- | --- | --- | --- | --- | -- | --- | --- |
| $\begin{aligned} & \text { 287D: } \\ & \text { Wethersfield---- } \end{aligned}$ | | | | | | | | | | | | |
| | | \mid Loam
 \mid Loam, gravelly
 loam, gravelly
 fine sandy
 loam | ML | $\left\lvert\, \begin{array}{ll} A-4 \\ A-4, & A-2 \end{array}\right.$ | 0-5 | 0-5 | 90-100 | 80-90 | 75-90 | 50-70 | 15-25 | \| NP-5 |
| | $3-13$ | | ML, SM | | 0-5 | 0-5 | \|85-100| | \|65-90 | 60-90 | 25-70 | 15-25 | \| NP-5 |
| | 13-27 | Gravelly loam, loam, gravelly fine sandy loam | ML, SM | A-4, A-2 | 0-5 | 0-5 | \| 85-100 | 65-90 | 60-90 | 25-70 | 15-25 | \| NP-5 |

Table 23.-Engineering Properties-Continued

| Map symbol and soil name | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | Liquid
 limit | $\begin{aligned} & \text { Plas- } \\ & \text { ticity } \\ & \text { index } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Unified | | $\begin{gathered} >10 \\ \text { inches } \end{gathered}$ | $\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$ | | | | | | |
| | | | | AASHTO | | | 4 | 10 | 40 | 200 | | |
| | In | | \| ML, SM | A-2, A-4 | Pct | Pct | | | | | Pct | |
| $\begin{aligned} & \text { 287D: } \\ & \text { Wethersfield---- } \end{aligned}$ | 27-65 | ```Gravelly loam, loam, gravelly fine sandy loam``` | | | 0-5 | 0-15 | 80-90 | 65-85 | 55-85 | 25-65 | 15-25 | NP-5 |
| Urban land----- | 0-6 | Material | | | --- | - | --- | --- | --- | --- | --- | --- |
| $\begin{aligned} & \text { 290B: } \\ & \text { Stockbridge } \end{aligned}$ | | | | | | | | | | | | |
| | 0-10 | Loam
 Loam, silt
 loam, gravelly
 loam | $\begin{array}{\|l\|} \mid M L, ~ S M \\ \text { SM, CL-ML }, \\ \text { SC-SM, ML } \end{array}$ | $\left\lvert\, \begin{array}{ll} A-4 \\ A-4, & A-2 \end{array}\right.$ | 00 | $\begin{aligned} & 0-5 \\ & 0-5 \end{aligned}$ | $\begin{array}{\|l\|} 85-90 \\ 60-90 \end{array}$ | $\text { \| } 75-90$ | \|60-90 | $\begin{array}{\|l\|} 45-65 \\ 30-80 \end{array}$ | $\left\lvert\, \begin{array}{l\|l} 20-30 \\ 20-30 \end{array}\right.$ | $\begin{array}{\|l\|} \left\lvert\, \begin{array}{l} \text { NP- } \end{array}\right. \\ \mid \mathrm{NP}-10 \end{array}$ |
| | 10-20 | | | | | | | | | | | |
| | 20-28 | $\left\lvert\, \begin{aligned} & \text { Loam, silt } \\ & \text { loam, gravelly } \\ & \text { loam } \end{aligned}\right.$ | $\begin{gathered} \text { SM, SC-SM, } \\ \text { ML, CL-ML } \end{gathered}$ | A-4, A-2 | 0 | 0-5 | 60-90 | 55-90 | 45-90 | 30-80 | 20-30 | NP-10 |
| | 28-42 | $\begin{aligned} & \text { Gravelly loam, } \\ & \text { loam, silt } \\ & \text { loam } \end{aligned}$ | $\begin{array}{\|c} \mid \mathrm{ML}, ~ C L-M L, ~ \\ \mathrm{SM}, ~ S C-S M \end{array}$ | A-4, A-2 | 0 | 0-5 | 60-90 | 55-90 | 45-90 | 30-75 | 20-30 | NP-10 |
| | 42-48 | $\begin{aligned} & \text { Gravelly loam, } \\ & \text { silt loam, } \\ & \text { very gravelly } \\ & \text { fine sandy } \\ & \text { loam } \end{aligned}$ | $\begin{array}{\|c} \mid \mathrm{ML}, ~ C L-M L, ~ \\ \mathrm{SM}, ~ S C-S M \end{array}$ | A-2, A-4 | 0 | 0-10 | 45-90 | 40-90 | 35-90 | 20-75 | 20-30 | NP-10 |
| | 48-65 | ```Gravelly loam, silt loam, very gravelly fine sandy loam``` | $\begin{array}{\|c\|} \hline \text { CL-ML, SM, } \\ \text { ML, SC-SM } \end{array}$ | A-2, A-4 | 0 | 0-10 | 45-90 | 40-90 | 35-90 | 20-75 | 20-30 | NP-10 |
| Urban land------ | 0-6 | \| Material | | | --- | --- | --- | --- | --- | --- | --- | --- |
| ```290C: Stockbridge``` | | | | | | | | | | | | |
| | 0-10 | Loam | $\begin{array}{\|l\|} \mid S M, ~ M L \\ \text { SC-SM, ML, } \\ \text { SM, CL-ML } \end{array}$ | $\begin{array}{\|ll} A-4 \\ A-4, & A-2 \end{array}$ | 0 | $\begin{aligned} & 0-5 \\ & 0-5 \end{aligned}$ | $\begin{aligned} & 85-90 \\ & 60-90 \end{aligned}$ | 75-90 | 60-90 | 45-65 | 20-30 | NP-5 |
| | 10-20 | Loam, silt
 loam, gravelly
 loam
 \mid Loam, silt
 loam, gravelly
 loam | | | | | | | 45-90 | 30-80 | 20-30 | \| NP-10 |
| | 20-28 | | $\begin{aligned} & \text { CL-ML, SC-SM, } \\ & \text { SM, ML } \end{aligned}$ | A-4, A-2 | 0 | 0-5 | 60-90 | 55-90 | 45-90 | 30-80 | 20-30 | NP-10 |
| | 28-42 | ```Gravelly loam, loam, silt loam Gravelly loam, silt loam, very gravelly fine sandy loam``` | $\left\lvert\, \begin{gathered} \text { ML, CL-ML, } \\ \text { SM, } \quad \text { SC-SM } \\ \text { SM, ML, } S C- \\ S M, \quad C L-M L \end{gathered}\right.$ | $\begin{cases}A-4, & A-2 \\ A-2, & A-4\end{cases}$ | 0 | 0-5 | 60-90 | 55-90 | 45-90 | 30-75 | 20-30 | NP-10 |
| | 42-48 | | | | 0 | 0-10 | 45-90 | 40-90 | \|35-90 | 20-75 | 20-30 | NP-10 |

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

| Map symbol
 and soil name | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | Liquid
 limit | $\begin{array}{\|r} \text { Plas- } \\ \text { ticity } \\ \text { index } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Unified | AASHTO | $\begin{aligned} & >10 \\ & \text { inches } \end{aligned}$ | $\left\lvert\, \begin{gathered} 3-10 \\ \text { inches } \end{gathered}\right.$ | | | | | | |
| | | | | | | | 4 | 10 | 40 | 200 | | |
| | In | | | | Pct | Pct | | | | | Pct | |
| $302 \text { : }$ | | | | | | | | | | | | |
| $\begin{aligned} & 303: \\ & \text { Pits, quarries-- } \end{aligned}$ | | | | | | | | | | | | |
| | 0-1 | Unweathered bedrock | | | --- | --- | --- | --- | --- | - | --- | --- |
| ```304: Udorthents``` | 0-5 | Loam | $\begin{array}{\|l} \text { CL-ML, ML, } \\ \text { SC-SM, } \end{array}$ | A-4 | | | | | | 45-75 | 15-25 | |
| | | | | | 0 | 0-10 | 90-100 | 80-100 | 70-100\| | | | NP-10 |
| | 5-21 | $\begin{array}{\|l} \text { Gravelly loam, } \\ \text { extremely } \\ \text { gravelly } \\ \text { coarse sand, } \\ \text { silty clay } \\ \text { loam } \end{array}$ | SM, SC-SM, ML, CL-ML, GC-GM, GM | $\left\lvert\, \begin{array}{cc} A-3, & A-2, \\ 1, & A-4 \end{array}\right.$ | 0-20 | 0-25 | 45-100\| | 30-100 | 10-100\| | 5-95 | 15-30 | NP-10 |
| | | | | | | | | | | | | |
| | 21-80 | \|Very gravelly
 sandy loam,
 extremely
 gravelly
 coarse sand,
 silty clay
 loam | SM, SC-SM, ML, CL-ML, GM, GC-GM | $\begin{aligned} & A-1, A-2, A- \\ & 3, A-4 \end{aligned}$ | 0-20 | 0-25 | 45-100\| | 30-100 | 10-100\| | 5-95 | 15-30 | NP-10 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| ```305: Udorthents``` | | | | | | | | | | | | |
| | 0-5 | Loam | $\begin{array}{\|c} \mid \mathrm{CL}-\mathrm{ML}, \mathrm{ML}, \\ \mathrm{SC}-\mathrm{SM}, \mathrm{SM} \end{array}$ | A-4 | 0 | 0-10 | 90-100 | 80-100 | 70-100\| | 45-75 | 15-25 | NP-10 |
| | | | | | | | | | | | | |
| | 5-21 | ```Gravelly loam, extremely gravelly coarse sand, silty clay loam``` | SM, SC-SM, ML, CL-ML, GC-GM, GM | $\left\lvert\, \begin{array}{cc} A-3, A-2, & A- \\ 1, A-4 \end{array}\right.$ | 0-20 | 0-25 | 45-100 | 30-100\| | 10-100\| | 5-95 | 15-30 | NP-10 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | 21-80 | ```\| Very gravelly``` | $\begin{aligned} & \text { SM, } \quad \text { SC-SM, } \\ & \text { ML, CL-ML, } \\ & \text { GM, GC-GM } \end{aligned}$ | $\begin{aligned} & A-4, A-1, A- \\ & 2, A-3 \end{aligned}$ | 0-20 | 0-25 | 45-100 | 30-100 | 10-100 | 5-95 | 15-30 | NP-10 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| Pits----------- | 0-65 | $\begin{aligned} & \text { Very gravelly } \\ & \text { sand } \end{aligned}$ | \| GW | A-1 | 0-5 | 0-20 | 25-65 | 20-50 | 10-30 | 0-10 | 0-15 | NP |
| | | | | | | | | | | | | |

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

| Map symbol and soil name | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | Liquid
 limit | $\begin{array}{\|l} \text { Plas- } \\ \text { ticity } \\ \text { index } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Unified | AASHTO | $\begin{aligned} & \hline>10 \\ & \text { inches } \end{aligned}$ | $\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$ | | | | | | |
| | | | | | | | 4 | 10 | 40 | 200 | | |
| | In | | | | Pct | Pct | | | | | Pct | |
| $\begin{aligned} & \text { 416F: } \\ & \text { Westminster- } \end{aligned}$ | | | | | | | | | | | | |
| | 0-1 | \|Slightly decomposed plant material Moderately decomposed plant material | OL | A-8 | 0 | 0 | 100 | 100 | 100 | 100 | --- | --- |
| | 1-2 | | OL | A-8 | 0 | 0 | 100 | 100 | 100 | 100 | --- | --- |
| | 2-5 | \|Fine sandy loam Fine sandy | SM | A-4 | 0-5 | 0-5 | 90-95 | 85-90 | 80-90 | 40-50 | 15-25 | NP-5 |
| | 5-12 | | ML, SM | A-4, A-2 | 0-10 | 0-10 | 80-90 | 70-90 | 65-90 | 30-60 | 15-25 | NP-5 |
| | | loam, gravelly
 fine sandy
 loam, loam | | | | | | | | | | |
| | 12-16 | \|Fine sandy | ML, SM | A-4, A-2 | 0-10 | 0-10 | 80-90 | 70-90 | 65-90 | 30-60 | 15-25 | NP-5 |
| | | loam, gravelly fine sandy loam, loam | | | | | | | | | | |
| | 16-80 | Bedrock | | | --- | --- | --- | --- | --- | --- | - | --- |
| $\begin{gathered} \text { 417B: } \\ \text { Bice } \end{gathered}$ | | | | | | | | | | | | |
| | 0-1 | $\begin{array}{\|l} \text { Slightly } \\ \text { decomposed } \\ \text { plant material } \end{array}$ | OL | A-8 | 0 | 0 | 100 | 100 | 100 | 100 | --- | --- |
| | | plant material Fine sandy loam | | A-4, A-2 | 0 | 0-5 | 90-95 | 80-90 | 75-90 | 30-50 | 20-25 | |
| | $\begin{aligned} & 1-7 \\ & 7-16 \end{aligned}$ | \mid Fine sandy loam \mid Fine sandy | ML, SM CL-ML, ML, SM, SC-SM | A-2, A-4 | 0 | 0-10 | 75-95 | 70-90 | 40-90 | 25-70 | 20-25 | NP-10 |
| | | Fine sandy
 loam, gravelly
 sandy loam, gravelly
 coarse sandy
 loam, silt
 loam, sandy
 loam | SM, SC-SM | | | | | | | | | |
| | | | | | | | | | | | | |
| | 16-24 | Gravelly fine sandy loam, gravelly sandy loam, sandy loam, loam, fine sandy loam | $\begin{aligned} & \text { SC-SM, CL-ML, } \\ & \text { ML, SM } \end{aligned}$ | A-2, A-4 | 0 | 0-10 | 75-95 | 70-90 | 50-90 | 30-60 | 20-25 | NP-10 |
| | | | | | | | | | | | | |
| | 24-60 | ```Sandy loam, loam, gravelly fine sandy loam, gravelly sandy loam, fine sandy loam``` | $\begin{array}{\|c} \text { CL-ML, ML, } \\ \text { SC-SM, } \end{array}$ | A-2, A-4 | 0 | 0-10 | 75-95 | 70-90 | 50-90 | 30-60 | 20-25 | NP-10 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

| Map symbol and soil name | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | Liquidlimit | Plasticity index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Unified | AASHTO | $\begin{aligned} & >10 \\ & \text { inches } \end{aligned}$ | $\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$ | | | | | | |
| | | | | | | | 4 | 10 | 40 | 200 | | |
| | In | | | | Pct | Pct | | | | | Pct | |
| 417D: | | | | | | | | | | | | |
| | 24-60 | Gravelly fine sandy loam, sandy loam, fine sandy loam, loam, gravelly sandy loam | $\begin{array}{\|c} \text { CL-ML, ML, } \\ \text { SC-SM, } \end{array}$ | A-2, A-4 | 0 | 0-10 | 75-95 | 70-90 | 50-90 | 30-60 | 20-25 | NP-10 |
| 418C:
 Schroon | | | | | | | | | | | | |
| | 0-1 | \|Slightly decomposed | PT | A-8 | 0 | 0 | 100 | 100 | 100 | 100 | --- | --- |
| | 1-2 | \| Moderately decomposed | PT | A-8 | 0 | 0 | 100 | 100 | 100 | 100 | | --- |
| | | | | | | | | | | | --- | |
| | 2-3 | $\begin{array}{\|l} \mid \text { Highly } \\ \text { decomposed } \\ \text { plant material } \end{array}$ | PT | A-8 | 0 | 0 | 100 | 100 | 100 | 100 | --- | --- |
| | | | | | | | | | | | | |
| | $\begin{aligned} & 3-9 \\ & 9-14 \end{aligned}$ | \mid Fine sandy loam
 Fine sandy
 loam, sandy
 loam, loam,
 gravelly fine
 sandy loam | | A-4 | 0 | 0-5 | 90-100 | 80-95 | 65-95 | 35-50 | 15-25 | NP-5 |
| | | | | A-2, A-4 | 0 | 0-5 | \| 65-95 | 55-95 | 35-90 | 20-55 | 15-25 | \| NP-5 |
| | | | | | | | | | | | | |
| | 14-23 | $\|$Fine sandy
 loam, loam,
 sandy loam,
 gravelly fine
 sandy loam | SM, ML | A-4, A-2 | 0 | 0-5 | 65-95 | 55-95 | 35-90 | 20-55 | 15-25 | \| NP-5 |
| | 23-30 | $\begin{array}{\|l} \text { Sandy loam, } \\ \text { fine sandy } \\ \text { loam, loam, } \\ \text { gravelly fine } \\ \text { sandy loam } \end{array}$ | ML, SM | A-2, A-4 | 0 | 0-5 | 65-95 | 55-95 | 35-90 | 20-55 | 15-25 | NP-5 |
| | | | | | | | | | | | | |
| | 30-60 | \|Sandy loam, fine sandy loam, coarse sandy loam, gravelly sandy loam | SM | A-4, A-2 | 0 | 0-5 | 65-100\| | 55-95 | 35-90 | 25-45 | 10-25 | NP-10 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

| Map symbol and soil name | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | Liquid
 limit | $\begin{aligned} & \text { Plas- } \\ & \text { ticity } \\ & \text { index } \\ & \hline \end{aligned}$ | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | >10 | 3-10 | | | | | | |
| | | | Unified | AASHTO | inches | inches | 4 | 10 | 40 | 200 | | |
| 424C:
 Shelburne | In | Fine sandy loam, loam, gravelly sandy loam, gravelly fine sandy loam | ML, SM | | $\begin{aligned} & \text { Pct } \\ & 0-10 \end{aligned}$ | $\begin{aligned} & \text { Pct } \\ & 0-10 \end{aligned}$ | 90-100 | 70-90 | 50-90 | 35-55 | Pct 15-25 | NP-10 |
| | 55-80 | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | 32-43 | | ML, SM | A-4 | 0-10 | 0-10 | | | | | | |
| | | $\|$Fine sandy
 loam, loam,
 gravelly sandy
 loam, gravelly
 fine sandy
 loam | | | | | \|90-100| | 70-90 | 50-90 | 35-55 | 15-25 | NP-10 |
| | | | | | | | | | | | | |
| | 43-55 | \|Fine sandy | ML, SM | A-4 | 0-10 | 0-10 | 90-100 | 70-90 | 50-90 | 35-55 | 15-25 | \| NP-10 |
| | | loam, loam, gravelly sandy | | | | | | | | | | |
| | | loam, gravelly | | | | | | | | | | |
| | | fine sandy | | | | | | | | | | |
| | | loam | | | | | | | | | | |
| 424D:
 Shelburne | | | | | 0 | 0 | | | | | --- | --- |
| | 0-1 | Slightly | OL | A-8 | | | 100 | 100 | 100 | 100 | | |
| | | decomposed
 plant material | | | | | | | | | | |
| | 1-2 | Fine sandy loam\| | SM | A-4 | 0-5 | 0-5 | 95-100 | 85-95 | 80-90 | 35-50 | 15-25 | NP-5 |
| | 2-7 | Fine sandy | ML, SM | A-4 | 0-10 | 0-10 | 80-95 | 70-90 | 50-90 | 35-55 | 15-25 | \|NP-5 |
| | | loam, loam, gravelly sandy loam, gravelly fine sandy | | | | | | | | | | |
| | | loam | | | | | | 70-90 | | | | |
| | 7-21 | Gravelly fine sandy loam, fine sandy | ML, SM | A-4 | 0-10 | 0-10 | 80-95 | | 50-90 | 35-55 | 15-25 | \| NP-5 |
| | | loam, gravelly sandy loam, loam | | | | | | | | | | |
| | 21-27 | Bouldery finesandy loam,gravelly finesandy loam,gravelly sandyloam, finesandy loam,loam | ML, SM | A-4, A-2 | 0-25 | 0-10 | 80-95 | 70-90 | 50-90 | 30-55 | 15-25 | \| NP-5 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

| Map symbol and soil name | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | $\begin{aligned} & \mid \text { Liquid } \\ & \mid \text { limit } \end{aligned}$ | Plasticity index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | >10 | 3-10 | | | | | | |
| | | | Unified | AASHTO | inches | inches | 4 | 10 | 40 | 200 | | |
| 425B:
 Shelburne | In | | | | Pct | Pct | | | | | Pct | |
| | | | | | | | | | | | | |
| | 21-27 | | ML, SM | A-4, A-2 | 0-25 | 0-10 | 80-95 | 70-90 | 50-90 | 30-55 | 15-25 | NP-5 |
| | | sandy loam, | M, SM | A-4, A-2 | | | | | | | | |
| | | gravelly fine | | | | | | | | | | |
| | | sandy loam, | | | | | | | | | | |
| | | gravelly sandy | | | | | | | | | | |
| | | loam, fine | | | | | | | | | | |
| | | sandy loam, | | | | | | | | | | |
| | | loam | | | | | | | | | | |
| | 27-32 | Gravelly fine sandy loam, | ML, SM | A-4 | 0-10 | 0-10 | 90-100 | 70-90 | 50-90 | 35-55 | 15-25 | NP-10 |
| | | sandy loam,
 fine sandy | | | | | | | | | | |
| | | loam, gravelly sandy loam, | | | | | | | | | | |
| | 32-43 | Fine sandy | ML, SM | A-4 | 0-10 | 0-10 | 90-100 | 70-90 | 50-90 | 35-55 | 15-25 | NP-10 |
| | 32-43 | loam, loam, gravelly sandy | ML, SM | | | | 90-100 | \|70-90 | 50-90 | 35-55 | 15-25 | NP-10 |
| | | \| loam, gravelly | | | | | | | | | | |
| | | fine sandy | | | | | | | | | | |
| | 43-55 | | | A-4 | 0-10 | 0-10 | 90-100 | 70-90 | 50-90 | 35-55 | 15-25 | NP-10 |
| | 43-55 | loam, loam, | ML, SM | A-4 | 0-10 | 0-10 | 90-100 | 70-90 | 50-90 | 35-55 | 15-25 | NP-10 |
| | | \| gravelly sandy | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | fine sandy | | | | | | | | | | |
| | | loam | | | | | | | | | | |
| | 55-80 | \|Fine sandy | ML, SM | A-4 | 0-10 | 0-10 | 90-100 | 70-90 | 50-90 | 35-55 | 15-25 | NP-10 |
| | | loam, loam, | ML, SM | | | | | | | | | |
| | | gravelly sandy | | | | | | | | | | |
| | | loam, gravelly | | | | | | | | | | |
| | | fine sandy | | | | | | | | | | |
| | | loam | | | | | | | | | | |
| 425C: | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| Shelburne----- | 0-1 | ```Slightly decomposed plant material``` | OL | A-8 | 0 | 0 | 100 | 100 | 100 | 100 | --- | -- |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | 1-2 | Fine sandy loam | SM | A-4 | 0-5 | 0-5 | 95-100 | 85-95 | 80-90 | 35-50 | 15-25 | NP-5 |
| | 2-7 | Fine sandy | ML, SM | A-4 | 0-10 | 0-10 | 80-95 | 70-90 | 50-90 | 35-55 | 15-25 | NP-5 |
| | | loam, loam, gravelly sandy | | | | | | | | | | |
| | | gravelly sandy | | | | | | | | | | |
| | | fine sandy | | | | | | | | | | |
| | | loam | | | | | | | | | | |

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

| Map symbol and soil name | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \|Liquid
 limit | $\begin{aligned} & \text { Plas- } \\ & \text { ticity } \\ & \text { index } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Unified | AASHTO | $\begin{array}{\|c\|} \hline>10 \\ \text { inches } \end{array}$ | $\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$ | | | | | | |
| | | | | | | | 4 | 10 | 40 | 200 | | |
| $\begin{aligned} & \text { 428A: } \\ & \text { Ashfield----- } \end{aligned}$ | In | ```Fine sandy loam, loam, silt loam, gravelly fine sandy loam``` | ML, SM, SC-
 SM, CL-ML | A-4, A-2 | Pct | | | | | | Pct | |
| | 24-29 | | | | 0-5 | 0-10 | 85-95 | 70-90 | 60-85 | 30-70 | 15-25 | NP-5 |
| | | | | | 0-5 | 0-10 | 85-95 | 70-90 | 60-85 | 30-70 | 15-25 | NP-5 |
| | | | | | | | | | | | | |
| | 29-44 | $\left\|\begin{array}{l}\text { Fine sandy } \\ \text { loam, gravelly } \\ \text { loam, gravelly } \\ \text { sandy loam, } \\ \text { gravelly fine } \\ \text { sandy loam }\end{array}\right\|$ | $\begin{gathered} \text { CL-ML, ML, } \\ \text { SC-SM, SM } \end{gathered}$ | A-4, A-2 | 0-5 | 0-10 | 85-95 | 70-90 | 40-85 | 20-70 | 15-25 | NP-5 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | 44-58 | $\left\|\begin{array}{l}\text { Sandy loam, } \\ \text { fine sandy } \\ \text { loam, gravelly } \\ \text { loam, gravelly } \\ \text { sandy loam, } \\ \text { gravelly fine } \\ \text { sandy loam }\end{array}\right\|$ | $\begin{array}{\|c} \text { CL-ML, ML, } \\ \text { SC-SM, SM } \end{array}$ | A-4, A-2 | 0-5 | 0-10 | 85-95 | 70-90 | 40-85 | 20-70 | 15-25 | NP-5 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | 58-80 | $\left\lvert\, \begin{gathered} \text { Fine sandy } \\ \text { loam, gravelly } \end{gathered}\right.$ | $\begin{array}{\|c} \text { CL-ML, ML } \\ \text { SC-SM, } \end{array}$ | A-2, A-4 | 0-5 | 0-10 | 85-95 | 70-90 | 40-85 | 20-70 | 15-25 | NP-5 |
| | | loam, gravelly | | | | | | | | | | |
| | | sandy loam, | | | | | | | | | | |
| | | gravelly fine | | | | | | | | | | |
| | | sandy loam | | | | | | | | | | |
| $\begin{aligned} & \text { 428B: } \\ & \text { Ashfield. } \end{aligned}$ | | | | | | | | | | | | |
| | 0-1 | $\left\lvert\, \begin{aligned} & \text { Slightly } \\ & \text { decomposed } \\ & \text { plant material } \end{aligned}\right.$ | OL | A-8 | 0 | 0 | 100 | 100 | 100 | 100 | --- | -- |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | 1-2 | \|Moderately decomposed | OL | A-8 | 0 | 0 | 100 | 100 | 100 | 100 | --- | --- |
| | | | | | | | | | | | | |
| | 2-3 | Highly decomposed plant material | OL | A-8 | 0 | 0 | 100 | 100 | 100 | 100 | --- | --- |
| | | | | | | | | | | | | |
| | $\begin{aligned} & 3-7 \\ & 7-12 \end{aligned}$ | Fine sandy loam Fine sandy loam, loam, silt loam, gravelly fine sandy loam | ML,$\mid M L$ | A-4 | 0 | 0-5 | 90-95 | 80-90 | 75-90 | 35-50 | 15-25 | NP-5 |
| | | | | A-4 | 0 | 0-5 | 90-95 | 80-90 | 75-90 | 35-70 | 15-25 | NP-5 |
| | | | | | | | | | | | | |
| | 12-18 | | $\begin{aligned} & \text { CL-ML, SC-SM, } \\ & \text { ML, SM } \end{aligned}$ | A-2, A-4 | 0 | 0-10 | 85-95 | 70-90 | 60-85 | 30-70 | 15-25 | NP-5 |
| | | loam, loam, | | | | | | | | | | |
| | | silt loam, | | | | | | | | | | |
| | | gravelly fine | | | | | | | | | | |
| | | \| sandy loam | | | | | | | | | | |

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

| Map symbol and soil name | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | Liquid
 limit | Plasticity index | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | Unified | AASHTO | $\begin{aligned} & \hline>10 \\ & \text { inches } \end{aligned}$ | $\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$ | | | | | | |
| | | | | | | | 4 | 10 | 40 | 200 | | |
| 429A:
 Agawam, cold---- | In$24-60$ | ```Stratified very gravelly coarse sand to fine sand``` | SM, SP-SM | A-1, A-2, A-3 | Pct | Pct | | | | | Pct | |
| | | | | | | | | | | | | |
| | | | | | 0 | 0-10 | 70-100 | \|25-100| | 5-95 | 1-25 | 0-15 | NP |
| $\begin{aligned} & \text { 429B: } \\ & \text { Agawam, cold---- } \end{aligned}$ | $\begin{aligned} & 0-8 \\ & 8-14 \end{aligned}$ | | | $\begin{array}{ll} \mathrm{A}-2, & \mathrm{~A}-4 \\ \mathrm{~A}-2, & \mathrm{~A}-4 \end{array}$ | | | | | | | | |
| | | | | | 0 | 0 | 90-100 | 80-100\| | 70-100 | 30-60 | 0-25 | NP-5 |
| | | | ML, SM | | 0 | 0 | 90-100 | 75-100\| | 65-100 | 30-60 | 0-25 | \| NP-5 |
| | $8-14$ | | | | | | | | | | | |
| | 14-24 | $\left\lvert\, \begin{aligned} & \text { Fine sandy } \\ & \text { loam, very } \\ & \text { fine sandy } \\ & \text { loam } \end{aligned}\right.$ | ML, SM | A-2, A-4 | 0 | 0 | 90-100\| | 75-100 | 65-100 | 30-65 | 0-20 | NP-5 |
| | | | | | | | | | | | | |
| | 24-60 | ```\| Stratified very``` | SM, SP-SM | \|A-1, A-2, A-3 | 0 | 0-10 | 70-100 | 25-100\| | 5-95 | 1-25 | 0-15 | NP |
| | | | | | | | | | | | | |
| $\begin{aligned} & \text { 429C: } \\ & \text { Agawam, cold---- } \end{aligned}$ | | | | | | | | | | | | |
| | | | ML, SM | A-2, A-4 | 0 | 0 | 90-100 | 80-100\| | 70-100 | 30-60 | 0-25 | NP-5 |
| | $0-8$ $8-14$ | | ML, SM | | | 0 | 90-100\| | 75-100 | 65-100 | 30-60 | 0-25 | NP-5 |
| | | $\|$Fine sandy
 loam, very
 fine sandy
 loam, loam | | A-2, A-4 | 0 | | | | | | | |
| | 14-24 | $\|$Fine sandy
 loam, very
 fine sandy
 loam | ML, SM | A-2, A-4 | 0 | 0 | \|90-100| | 75-100 | \|65-100| | 30-65 | 0-20 | NP-5 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | 24-60 | $\left\lvert\, \begin{aligned} & \text { Stratified very } \\ & \text { gravelly } \\ & \text { coarse sand to } \\ & \text { fine sand } \end{aligned}\right.$ | SM, SP-SM | $\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-3\|$ | 0 | 0-10 | 70-100 | 25-100 | 5-95 | 1-25 | 0-15 | NP |
| | | | | | | | | | | | | |
| 433 : | | | | | | | | | | | | |
| Moosilauke----- | 0-1 | $\left\lvert\, \begin{aligned} & \text { Slightly } \\ & \text { decomposed } \\ & \text { plant material } \end{aligned}\right.$ | PT | A-8 | 0 | 0 | 100 | 100 | 100 | 100 | --- | --- |
| | 1-6 | Loam | ML | A-4 A-2, A-4 | 0 | 0-5 | 90-100 | \|80-100| | 70-100 | 50-75 | 0-15 | NP |
| | | ```Fine sandy loam, sandy loam, gravelly sandy loam``` | SM, ML | A-2, A-4 | 0 | 0-9 | 80-100 | 65-100 | 45-100 | 25-55 | 0-15 | NP |

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

| Map symbol and soil name | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | Liquid
 limit | Plasticity index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Unified | AASHTO | $\begin{gathered} >10 \\ \text { inches } \end{gathered}$ | $\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$ | | | | | | |
| | | | | | | | 4 | 10 | 40 | 200 | | |
| 436:
 Halsey | In | Loamy sand, gravelly loamy sand, very gravelly loamy sand, sand Sand, loamy sand, gravelly loamy sand, very gravelly loamy sand | SW-SM, SM | $\left\|\begin{array}{\|cc}\text { A-1, } & \text { A-2, } \\ \\ \\ \\ A-3\end{array}\right\|$ | Pct | Pct | 55-100\| | 40-85 | 25-65 | 5-25 | Pct | NP-5 |
| | | | | | 0 | 0-15 | | | | | 15-20 | |
| | 28-38 | | | | | | | | | | | |
| | 38-60 | | SM, SW-SM | | 0 | 0-15 | 55-90 | 40-85 | 25-65 | 5-25 | 15-20 | NP-5 |
| $437 \text { : }$
 Wonsqueak | 0-2 | Mucky peat | | | 0 | 0 | 100 | 100 | 100 | 100 | --- | --- |
| | 2-11 | Muck | PT | A-8 | 0 | 0 | 100 | 100 | 100 | 100 | --- | - |
| | 11-22 | Muck | PT | A-8 | 0 | 0 | 100 | 100 | 100 | 100 | --- | --- |
| | 22-25 | Mucky silt
 loam, silt | ML, SM | A-4, A-2 | 0 | 0-10 | 85-100 | 75-100 | 70-95 | 30-75 | 15-25 | NP-5 |
| | | loam, loam, fine sandy loam, gravelly fine sandy | | | | | | | | | | |
| | 25-45 | Gravelly fine sandy loam, fine sandy | ML, SM | A-2, A-4 | 0 | 0-10 | 85-100 | 75-100 | 70-95 | 30-75 | 15-25 | NP-5 |
| | | loam, loam, silt loam | | | | | | | | | | |
| | 45-60 | Fine sandy
 loam, gravelly
 fine sandy
 loam, loam,
 silt loam | ML, SM | A-2, A-4 | 0 | 0-10 | 85-100 | 75-100 | 70-95 | 30-75 | 15-25 | NP-5 |
| 438: | | | | | | | | | | | | |
| Bucksport----- | 0-9 | Muck | PT | A-8 | 0 | 0 | 100 | 100 | 100 | 100 | --- | --- |
| | 9-33 | Muck | PT | A-8 | 0 | 0 | 100 | 100 | 100 | 100 | --- | --- |
| | 33-50 | Muck | PT | A-8 | 0 | 0 | 100 | 100 | 100 | 100 | --- | --- |
| | 50-59 | Muck | PT | A-8 | 0 | 0 | 100 | 100 | 100 | 100 | - | --- |
| | 59-63 | ```Sandy loam, fine sandy loam, gravelly sand, loam``` | ML, SM, SP-SM | A-1, A-2, A-4 | 0 | 0-10 | 75-100 | 65-100 | 45-90 | 10-70 | 10-25 | NP-5 |
| | | | | | | | | | | | | |

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

| Map symbol and soil name | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | Liquid
 limit | Plasticity index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Unified | AASHTO | $\begin{gathered} \hline>10 \\ \text { inches } \end{gathered}$ | $\begin{gathered} 3-10 \\ \text { inches } \end{gathered}$ | | | | | | |
| | | | | | | | 4 | 10 | 40 | 200 | | |
| $\begin{aligned} & \text { 450C: } \\ & \text { Pyrities } \end{aligned}$ | In | | | | Pct | Pct | | | | Pct | | |
| | 26-45 | $\begin{gathered} \text { Loam, gravelly } \\ \text { fine sandy } \end{gathered}$ | \| ML, SM | A-2, A-4 | 0-4 | 0-4 | 70-100 | 55-90 | 50-85 | 30-75 | 25-35 | NP-10 |
| | | | | | | | | | | | | |
| | 45-65 | $\left\lvert\, \begin{aligned} & \text { Fine sandy } \\ & \text { loam, gravelly } \\ & \text { loam } \end{aligned}\right.$ | $\begin{aligned} & \text { CL-ML, SM, } \\ & \left\lvert\, \begin{array}{l} \text { ML, SC-SM, } \\ \text { SC } \end{array}\right. \end{aligned}$ | A-2, A-4 | 0-7 | 0-7 | 70-100\| | 45-95 | 40-90 | 25-60 | 20-30 | NP-10 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| Pyrities | 0-1 | $\left\lvert\, \begin{array}{\|l} \text { Slightly } \\ \text { decomposed } \\ \text { plant material } \end{array}\right.$ | \| PT | A-8 | 0 | 0 | 100 | 100 | 100 | 100 | --- | --- |
| | | | | A-4 | 0-4 | 0-4 | | | | | | NP-10 |
| | $\begin{aligned} & 1-8 \\ & 8-13 \end{aligned}$ | $\begin{aligned} & \text { Loam } \\ & \mid \text { Loam, gravelly } \\ & \text { fine sandy } \end{aligned}$ | MLSM, ML | A-2, A-4 | 0-4 | 0-4 | 70-100 | 55-90 | 50-85 | 30-75 | 25-35 | NP-10 |
| | | | | | | | | | | | | |
| | 13-26 | $\begin{aligned} & \text { Loam, gravelly } \\ & \text { fine sandy } \\ & \text { loam } \end{aligned}$ | \| ML, SM | A-4, A-2 | 0-4 | 0-4 | 70-100 | 55-90 | 50-85 | 30-75 | 25-35 | NP-10 |
| | | | | | | | | | | | | |
| | 26-45 | $\begin{array}{\|l} \text { Loam, gravelly } \\ \text { fine sandy } \\ \text { loam } \end{array}$ | ML, SM | A-2, A-4 | 0-4 | 0-4 | 70-100\| | 55-90 | 50-85 | 30-75 | 25-35 | NP-10 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | 45-65 | $\begin{aligned} & \text { Fine sandy } \\ & \text { loam, gravelly } \\ & \text { loam } \end{aligned}$ | $\begin{aligned} & \text { CL-ML, SM, } \\ & \text { ML, SC-SM, } \\ & \text { SC } \end{aligned}$ | A-2, A-4 | 0-7 | 0-7 | 70-100\| | 45-95 | 40-90 | 25-60 | 20-30 | NP-10 |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| $\begin{aligned} & \text { 451B: } \\ & \text { Pyrities } \end{aligned}$ | | | | | | | | | | | | |
| | 0-1 | $\left\lvert\, \begin{array}{\|l} \text { Slightly } \\ \text { decomposed } \\ \text { plant material } \end{array}\right.$ | PT | A-8 | 0 | 0 | 100 | 100 | 100 | 100 | -- | - |
| | | | | | | | | | | | | |
| | $\begin{aligned} & 1-8 \\ & 8-13 \end{aligned}$ | \| Loam Loam, gravelly | ML | A-4 | 0-4 | 0-4 | 90-100 | 80-90 | 75-90 | 45-75 | 25-35 | NP-10 |
| | | $\begin{aligned} & \text { Loam, gravelly } \\ & \text { fine sandy } \end{aligned}$ | \|SM, ML | A-4, A-2 | 0-4 | 0-4 | 70-100 | 55-90 | \| 50-85 | 30-75 | 25-35 | NP-10 |
| | | loam | | | | | | | | | | |
| | 13-26 | $\begin{aligned} & \text { Loam, gravelly } \\ & \text { fine sandy } \\ & \text { loam } \end{aligned}$ | ML, SM | A-2, A-4 | 0-4 | 0-4 | 70-100 | 55-90 | 50-85 | 30-75 | 25-35 | NP-10 |
| | 26-45 | $\begin{aligned} & \text { Loam, gravelly } \\ & \text { fine sandy } \\ & \text { loam } \end{aligned}$ | \| ML, SM | A-4, A-2 | 0-4 | 0-4 | $\left\lvert\, \begin{gathered}70-100 \\ 70-100\end{gathered}\right.$ | 55-90 | 50-85 | 30-75 | 25-35 | NP-10 |
| | | | | | | | | | | | | |
| | 45-65 | $\left\lvert\, \begin{aligned} & \text { Fine sandy } \\ & \text { loam, gravelly } \\ & \text { loam } \end{aligned}\right.$ | $\begin{array}{\|l} \text { CL-ML, SM, } \\ \text { ML, SC-SM, } \\ \text { SC } \end{array}$ | A-2, A-4 | 0-7 | 0-7 | | 45-95 | 40-90 | 25-60 | 20-30 | NP-10 |
| | | | | | | | 70-100 | | | | | |
| | | | | | | | | | | | | |

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

Table 23.-Engineering Properties-Continued

(Entries under "Erosion factors-T" apply to the entire profile. Absence of an entry indicates that data were not estimated.)

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$ | Linear extensibility | Organic
 matter | Erosion Factors | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 6 : | | | | | | | | | | | | | |
| Wilbraham | 0-4 | 10-47 | 50-75 | 3-15 | 1.00-1.30 | 0.6-2 | 4.00-14.00 | \|0.17-0.21| | 0.0-2.9 | 3.0-8.0 | . 28 | . 37 | 3 |
| | 4-8 | 10-62 | 35-75 | 3-15 | 1.40-1.65 | 0.6-2 | 4.00-14.00 | \|0.11-0.21| | 0.0-2.9 | 0.0-1.0 | . 49 | . 64 | |
| | 8-20 | 10-62 | 35-75 | 3-15 | 1.40-1.70 | 0.6-2 | 4.00-14.00 | 0.11-0.21\| | 0.0-2.9 | 0.0-0.5 | . 49 | . 64 | |
| | 20-65 | 10-62 | 35-75 | 3-15 | 1.80-2.10 | 0.0015-0.2 | 0.01-1.40 | \|0.08-0.12| | 0.0-2.9 | 0.0-0.5 | . 43 | . 64 | |
| Menlo- | 0-5 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 2-6 | 14.00-42.00 | \|0.08-0.45| | 0.0-20.0 | 20-50 | --- | --- | 3 |
| | 5-16 | 10-43 | 50-75 | 7-15 | 0.65-1.20 | 0.6-2 | 4.00-14.00 | \|0.14-0.20| | 0.0-2.9 | 8.0-11 | . 10 | . 15 | |
| | 16-22 | 10-67 | 30-75 | 3-15 | 1.30-1.55 | 0.6-2 | 4.00-14.00 | \|0.10-0.20| | 0.0-2.9 | 1.0-2.0 | . 37 | . 49 | |
| | 22-27 | 10-67 | 30-75 | 3-15 | 1.40-1.65 | 0.6-2 | 4.00-14.00 | \|0.10-0.20| | 0.0-2.9 | 0.5-1.0 | . 43 | . 55 | |
| | 27-40 | 10-67 | 30-75 | 3-15 | 1.80-2.10 | 0.0015-0.2 | 0.01-1.40 | \|0.08-0.12| | 0.0-2.9 | 0.0-0.5 | . 43 | . 64 | |
| | 40-60 | 10-67 | 30-75 | 3-15 | 1.80-2.10 | 0.0015-0.2 | 0.01-1.40 | \|0.08-0.12| | 0.0-2.9 | 0.0-0.5 | . 43 | . 64 | |
| 7 : | | | | | | | | | | | | | |
| Mudgepond | 0-11 | 28-30 | 50-60 | 10-22 | 1.10-1.40 | 0.6-2 | 4.00-14.00 | \|0.16-0.20| | 0.0-2.9 | 3.0-8.0 | . 20 | . 28 | 5 |
| | 11-16 | 28-73 | 20-55 | 7-17 | 1.20-1.50 | 0.6-6 | 4.00-42.00 | \|0.08-0.20| | 0.0-2.9 | 0.5-2.0 | . 32 | . 49 | |
| | 16-26 | 28-75 | 20-55 | 5-17 | 1.30-1.55 | 0.6-6 | 4.00-42.00 | \|0.08-0.20| | 0.0-2.9 | 0.5-2.0 | . 32 | . 49 | |
| | 26-35 | 28-75 | 20-55 | 5-17 | 1.40-1.60 | 0.6-6 | 4.00-42.00 | \|0.08-0.20| | 0.0-2.9 | 0.5-2.0 | . 32 | . 49 | |
| | 35-65 | 38-72 | 25-45 | 3-17 | 1.50-1.80 | 0.6-2 | 4.00-14.00 | \|0.07-0.17| | 0.0-2.9 | 0.0-1.0 | . 32 | . 49 | |
| 8 : | | | | | | | | | | | | | |
| Mudgepond | 0-11 | 28-30 | 50-60 | 10-22 | 1.10-1.40 | 0.6-2 | 4.00-14.00 | \|0.16-0.20| | 0.0-2.9 | 3.0-8.0 | . 20 | . 28 | 5 |
| | 11-16 | 28-73 | 20-55 | 7-17 | 1.20-1.50 | 0.6-6 | 4.00-42.00 | \|0.08-0.20| | 0.0-2.9 | 0.5-2.0 | . 32 | . 49 | |
| | 16-26 | 28-75 | 20-55 | 5-17 | 1.30-1.55 | 0.6-6 | 4.00-42.00 | \|0.08-0.20| | 0.0-2.9 | 0.5-2.0 | . 32 | . 49 | |
| | 26-35 | 28-75 | 20-55 | 5-17 | 1.40-1.60 | 0.6-6 | 4.00-42.00 | \|0.08-0.20| | 0.0-2.9 | 0.5-2.0 | . 32 | . 49 | |
| | 35-65 | 38-72 | 25-45 | 3-17 | 1.50-1.80 | 0.6-2 | 4.00-14.00 | \|0.07-0.17| | 0.0-2.9 | 0.0-1.0 | . 32 | . 49 | |
| Alden- | 0-4 | 9-33 | 52-65 | 15-26 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | \|0.16-0.21| | 0.0-5.9 | 10-15 | . 10 | . 15 | 5 |
| | 4-13 | 9-54 | 28-65 | 18-26 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | \|0.13-0.21| | 0.0-5.9 | 3.0-8.0 | . 28 | . 24 | |
| | 13-23 | 9-54 | 28-65 | 18-26 | 1.20-1.50 | 0.6-2 | 4.00-14.00 | \|0.13-0.21| | 0.0-5.9 | 0.5-1.0 | . 28 | . 24 | |
| | 23-29 | 9-54 | 28-65 | 18-26 | 1.20-1.50 | 0.6-2 | 4.00-14.00 | 0.13-0.21 | 0.0-5.9 | 0.5-1.0 | . 28 | . 24 | |
| | 29-43 | 14-42 | 40-60 | 18-26 | 1.40-1.65 | 0.2-0.6 | 1.40-4.00 | 0.10-0.19 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 43-60 | 14-42 | 40-60 | 18-26 | 1.40-1.65 | 0.2-0.6 | 1.40-4.00 | 0.10-0.19 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 9 : | | | | | | | | | | | | | |
| Scitico | 0-8 | 4-40 | 50-70 | 10-26 | 1.05-1.25 | 0.6-2 | 4.00-14.00 | 0.19-0.21 | 0.0-5.9 | 2.0-7.0 | . 28 | . 32 | 3 |
| | 8-11 | 3-20 | 42-65 | 20-55 | 1.40-1.70 | 0.06-0.6 | 0.42-4.00 | 0.15-0.21 | 0.0-9.0 | 0.0-0.5 | . 37 | . 43 | |
| | 11-18 | 10-20 | 50-65 | 20-55 | 1.40-1.70 | 0.06-0.6 | 0.42-4.00 | 0.15-0.21 | 0.0-9.0 | 0.0-0.5 | . 43 | . 49 | |
| | 18-30 | 5-15 | 35-55 | 35-60 | 1.50-1.75 | 0.0015-0.2 | 0.01-1.40 | 0.14-0.20 | 3.0-9.0 | 0.0-0.5 | . 32 | . 37 | |
| | 30-38 | 5-15 | 35-55 | 35-60 | 1.50-1.80 | 0.0015-0.06 | 0.01-0.42 | 0.14-0.20 | 3.0-9.0 | 0.0-0.5 | . 32 | . 37 | |
| | 38-52 | 5-15 | 35-55 | 35-60 | 1.55-1.80 | 0.0015-0.06 | 0.01-0.42 | 0.14-0.20 | 3.0-9.0 | 0.0-0.5 | . 32 | . 37 | |
| | 52-65 | 5-15 | 35-55 | 35-60 | 1.55-1.80 | 0.0015-0.06\| | 0.01-0.42 | 0.14-0.20 | 3.0-9.0 | 0.0-0.5 | . 32 | . 37 | |

Table 24.-Physical Properties of the Soils-Continued

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated hydraulic conductivity | $\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$ | Linear extensibility | Organic
 matter | Erosion Factors | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 15 : | | | | | | | | | | | | | |
| Scarboro-------- | 0-12 | 0-0 | 0-0 | 0-0 | 0.30-0.55\| | 2-6 | 14.00-42.00 | 0.08-0.40\| | 0.0-20.0 | 50-95 | --- | | 3 |
| | 12-17 | 74-83 | 10-25 | 1-5 | 1.25-1.45 | 2-20 | 14.00-141.00 | 0.08-0.11 | 0.0-2.9 | 3.0-15 | . 05 | . 05 | |
| | 17-31 | 75-93 | 5-25 | 0-2 | 1.35-1.55\| | 6-100 | 42.00-703.00 | 0.04-0.08 | 0.0-2.9 | 0.0-1.0 | . 24 | . 28 | |
| | 31-72 | 75-93 | 5-25 | 0-2 | 1.35-1.55\| | 6-100 | 42.00-703.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 24 | . 28 | |
| 16: | | | | | | | | | | | | | |
| Halsey---------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55\| | 6-20 | 42.00-141.00 | 0.08-0.40\| | 0.0-20.0 | 55-70 | --- | | 3 |
| | 1-8 | 18-42 | 52-65 | 6-17 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.16-0.21\| | 0.0-2.9 | 3.0-8.0 | . 28 | . 32 | |
| | 8-16 | 18-54 | 40-65 | 6-17 | 1.25-1.45\| | 0.6-2 | 4.00-14.00 | 0.12-0.21\| | 0.0-2.9 | 0.5-1.5 | . 43 | . 55 | |
| | 16-28 | 50-58 | 30-45 | 5-12 | 1.25-1.50\| | 2-6 | 14.00-42.00 | 0.10-0.17\| | 0.0-2.9 | 0.5-1.5 | . 43 | . 49 | |
| | 28-38 | 80-95 | 3-12 | 2-8 | 1.40-1.60\| | 6-20 | 42.00-141.00 | 0.02-0.07\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 24 | |
| | 38-60 | 80-95 | 3-12 | 2-8 | 1.40-1.60\| | 6-20 | 42.00-141.00 | 0.02-0.07 | 0.0-2.9 | 0.0-0.5 | . 15 | . 24 | |
| 17: | | | | | | | | | | | | | |
| Timakwa--------- | 0-10 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 0.6-100 | 4.00-703.00 | 0.35-0.45 | 0.0-20.0 | 55-75 | --- | --- | 2 |
| | 10-21 | 0-0 | 0-0 | 0-0 | 0.30-0.55\| | 0.6-100 | 4.00-703.00 | 0.35-0.45 | 0.0-20.0 | 55-75 | --- | --- | |
| | 21-24 | 0-0 | 0-0 | 0-0 | 0.30-0.55\| | 0.6-100 | 4.00-703.00 | 0.35-0.45 | 0.0-20.0 | 55-75 | --- | --- | |
| | 24-37 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 0.6-100 | 4.00-703.00 | 0.35-0.45 | 0.0-20.0 | 55-75 | --- | -- - | |
| | 37-47 | 80-96 | 5-15 | 0-5 | 1.40-1.75 | 6-100 | 42.00-703.00 | 0.02-0.11\| | 0.0-2.9 | 0.0-2.0 | . 15 | . 17 | |
| | 47-60 | 80-96 | 5-15 | 0-5 | 1.40-1.75\| | 6-100 | 42.00-703.00 | 0.02-0.12\| | 0.0-2.9 | 0.0-2.0 | . 15 | . 17 | |
| Natchaug-------- | 0-2 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 0.6-100 | 4.00-703.00 | 0.35-0.45 | 0.0-20.0 | 55-75 | - | --- | 2 |
| | 2-4 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 0.6-100 | 4.00-703.00 | 0.35-0.45 | 0.0-20.0 | 55-75 | --- | --- | |
| | 4-6 | 0-0 | 0-0 | 0-0 | 0.30-0.55\| | 0.6-100 | 4.00-703.00 | 0.35-0.45 | 0.0-20.0 | 55-75 | --- | --- | |
| | 6-11 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 0.6-100 | 4.00-703.00 | 0.35-0.45 | 0.0-20.0 | 55-75 | --- | --- | |
| | 11-18 | 0-0 | 0-0 | 0-0 | 0.30-0.55\| | 0.6-100 | 4.00-703.00 | 0.35-0.45 | 0.0-20.0 | 55-75 | --- | --- | |
| | 18-24 | 0-0 | 0-0 | 0-0 | 0.30-0.55\| | 0.6-100 | 4.00-703.00 | 0.35-0.45 | 0.0-20.0 | 55-75 | --- | --- | |
| | 24-33 | 4-73 | 20-70 | 7-18 | 1.45-1.75 | 0.2-2 | 1.40-14.00 | 0.08-0.18\| | 0.0-2.9 | 0.0-2.0 | . 37 | . 43 | |
| | 33-36 | 4-73 | 20-70 | 7-18 | 1.45-1.75 | 0.2-2 | 1.40-14.00 | 0.08-0.18\| | 0.0-2.9 | 0.0-2.0 | . 37 | . 43 | |
| | 36-80 | 4-73 | 20-70 | 7-18 | 1.45-1.75\| | 0.2-2 | 1.40-14.00 | 0.08-0.18\| | 0.0-2.9 | 0.0-1.0 | . 37 | . 43 | |
| 18: | | | | | | | | | | | | | |
| Catden---------- | 0-2 | 0-0 | 0-0 | 0-0 | 0.30-0.55\| | 0.6-6 | 4.00-42.00 | 0.35-0.45\| | 0.0-20.0 | 55-75 | --- | | 3 |
| | 2-18 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 0.6-6 | 4.00-42.00 | 0.35-0.45 | 0.0-20.0 | 55-75 | --- | --- | |
| | 18-47 | 0-0 | 0-0 | 0-0 | 0.30-0.55\| | 0.6-6 | 4.00-42.00 | 0.35-0.45 | 0.0-20.0 | 55-75 | --- | --- | |
| | 47-49 | 0-0 | 0-0 | 0-0 | 0.30-0.55\| | 0.6-6 | 4.00-42.00 | 0.35-0.45\| | 0.0-20.0 | 55-75 | --- | --- | |
| | 49-61 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 0.6-6 | 4.00-42.00 | 0.35-0.45\| | 0.0-20.0 | 55-75 | --- | --- | |
| Freetown-------- | 0-4 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 0.6-6 | 4.00-42.00 | 0.35-0.45 | 0.0-20.0 | 55-75 | --- | --- | 3 |
| | 4-10 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 0.6-6 | 4.00-42.00 | 0.35-0.45\| | 0.0-20.0 | 55-75 | --- | --- | |
| | 10-22 | 0-0 | 0-0 | 0-0 | 0.30-0.55\| | 0.6-6 | 4.00-42.00 | 0.35-0.45\| | 0.0-20.0 | 55-75 | -- | - | |
| | 22-35 | 0-0 | 0-0 | 0-0 | 0.30-0.55\| | 0.6-6 | 4.00-42.00 | 0.35-0.45\| | 0.0-20.0 | 55-75 | -- - | --- | |
| | 35-41 | 0-0 | 0-0 | 0-0 | 0.30-0.55\| | 0.6-6 | 4.00-42.00 | 0.35-0.45\| | 0.0-20.0 | 55-75 | -- | --- | |
| | 41-55 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 0.6-6 | 4.00-42.00 | 0.35-0.45\| | 0.0-20.0 | 55-75 | --- | --- | |
| | 55-71 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 0.6-6 | 4.00-42.00 | 0.35-0.45\| | 0.0-20.0 | 55-75 | -- | --- | |
| | 71-91 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 0.6-6 | 4.00-42.00 | 0.35-0.45\| | 0.0-20.0\| | 55-75 | -- | - | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated hydraulic conductivity | $\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$ | $\left\lvert\, \begin{gathered} \text { Linear } \\ \text { extensi- } \\ \text { bility } \end{gathered}\right.$ | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g/cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 20A: | | | | | | | | | | | | | |
| Ellington------- | 0-8 | 18-45 | 52-70 | 3-12 | 1.20-1.40 | 0.6-6 | 4.00-42.00 | \|0.18-0.21 | 0.0-2.9 | 2.0-5.0 | . 43 | . 49 | 3 |
| | 8-18 | 23-62 | 35-65 | 3-12 | 1.30-1.60 | 0.6-6 | 4.00-42.00 | \|0.12-0.21 | 0.0-2.9 | 0.5-1.5 | . 37 | . 49 | |
| | 18-26 | 23-62 | 35-65 | 3-12 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | \|0.12-0.21 | 0.0-2.9 | 0.0-0.5 | . 43 | . 49 | |
| | $26-65$ | 73-98 | 2-25 | 0-2 | 1.40-1.65 | 6-100 | 42.00-703.00 | \|0.02-0.11 | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 | |
| 21A: | | | | | | | | | | | | | |
| Ninigret-------- | 0-8 | 53-70 | 27-35 | 3-12 | 1.00-1.25 | 0.6-6 | 4.00-42.00 | 0.13-0.15 | 0.0-2.9 | 2.0-5.0 | . 32 | . 37 | 3 |
| | 8-16 | 28-70 | 27-60 | 3-12 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.13-0.20 | 0.0-2.9 | 0.5-1.5 | . 43 | . 49 | |
| | 16-26 | 28-70 | 27-60 | 3-12 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.13-0.20 | 0.0-2.9 | 0.0-0.5 | . 49 | . 55 | |
| | 26-65 | 73-100 | 0-25 | 0-2 | 1.45-1.70 | 6-100 | 42.00-703.00 | 0.01-0.11 | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| Tisbury--------- | 0-8 | 9-46 | 51-79 | 3-12 | 1.00-1.30 | 0.6-2 | 4.00-14.00 | 0.18-0.21 | 0.0-2.9 | 2.0-6.0 | . 43 | . 49 | 3 |
| | 8-18 | 9-69 | 28-79 | 3-12 | 1.30-1.60 | 0.6-2 | 4.00-14.00 | \|0.14-0.21 | 0.0-2.9 | 0.5-1.5 | . 55 | . 64 | |
| | 18-26 | 9-69 | 28-79 | 3-12 | 1.30-1.60 | 0.6-2 | 4.00-14.00 | 0.14-0.21 | 0.0-2.9 | 0.0-0.5 | . 55 | . 64 | |
| | 26-60 | 77-100 | 0-20 | 0-3 | 1.40-1.65 | 6-100 | 42.00-703.00 | 0.01-0.08 | 0.0-2.9 | 0.0-0.5 | . 17 | . 20 | |
| 22A: | | | | | | | | | | | | | |
| Hero------------ | 0-9 | 37-58 | 35-48 | 7-15 | 1.10-1.40 | 0.6-6 | 4.00-42.00 | 0.11-0.14 | 0.0-2.9 | 2.0-5.0 | . 15 | . 28 | 3 |
| | 9-18 | 25-70 | 25-60 | 5-15 | 1.30-1.55 | 0.6-6 | 4.00-42.00 | \|0.09-0.18 | 0.0-2.9 | 0.5-2.0 | . 32 | . 43 | |
| | 18-24 | 25-70 | 25-60 | 5-15 | 1.30-1.55 | 0.6-6 | 4.00-42.00 | \|0.09-0.18 | 0.0-2.9 | 0.5-1.5 | . 32 | . 49 | |
| | 24-27 | 25-70 | 25-60 | 5-15 | 1.30-1.55 | 0.6-6 | 4.00-42.00 | 0.07-0.18 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 27-60 | 80-90 | 5-10 | 3-10 | 1.40-1.70 | 6-100 | 42.00-703.00 | 0.01-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 15 | |
| 22B: | | | | | | | | | | | | | |
| Hero------------ | 0-9 | 37-58 | 35-48 | 7-15 | 1.10-1.40 | 0.6-6 | 4.00-42.00 | 0.11-0.14 | 0.0-2.9 | 2.0-5.0 | . 15 | . 28 | 3 |
| | 9-18 | 25-70 | 25-60 | 5-15 | 1.30-1.55 | 0.6-6 | 4.00-42.00 | \|0.09-0.18 | 0.0-2.9 | 0.5-2.0 | . 32 | . 43 | |
| | 18-24 | 25-70 | 25-60 | 5-15 | 1.30-1.55 | 0.6-6 | 4.00-42.00 | \|0.09-0.18 | 0.0-2.9 | 0.5-1.5 | . 32 | . 49 | |
| | 24-27 | 25-70 | 25-60 | 5-15 | 1.30-1.55 | 0.6-6 | 4.00-42.00 | 0.07-0.18 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 27-60 | 80-90 | 5-10 | 3-10 | 1.40-1.70 | 6-100 | 42.00-703.00 | 0.01-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 15 | |
| 23A: | | | | | | | | | | | | | |
| Sudbury--------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 45-95 | --- | --- | 5 |
| | 1-5 | 46-68 | 30-48 | 2-6 | 1.10-1.40 | 2-6 | 14.00-42.00 | \|0.10-0.13 | 0.0-2.9 | 2.0-6.0 | . 24 | . 28 | |
| | 5-17 | 63-73 | 20-35 | 2-7 | 1.15-1.45 | 2-6 | 14.00-42.00 | \|0.07-0.15 | 0.0-2.9 | 0.5-2.0 | . 24 | . 32 | |
| | $17-25$ | 63-73 | 20-35 | 2-7 | 1.15-1.45 | 2-6 | 14.00-42.00 | \|0.07-0.15 | 0.0-2.9 | 0.0-0.5 | . 28 | . 32 | |
| | 25-60 | 79-98 | 2-8 | 0-3 | 1.30-1.45 | 6-100 | 42.00-703.00 | 0.01-0.06 | 0.0-2.9 | 0.0-0.5 | . 15 | . 28 | |
| 24A: | | | | | | | | | | | | | |
| Deerfield------- | 0-8 | 73-83 | 10-20 | 2-7 | 1.45-1.65 | 6-20 | 42.00-141.00 | 0.09-0.11 | 0.0-2.9 | 1.0-4.0 | . 15 | . 15 | 2 |
| | 8-16 | 81-94 | 5-12 | 1-7 | 1.45-1.65 | 6-20 | 42.00-141.00 | 0.05-0.11 | 0.0-2.9 | 0.5-1.0 | . 15 | . 20 | |
| | 16-28 | 81-94 | 5-12 | 1-7 | 1.40-1.60 | 6-20 | 42.00-141.00 | \|0.05-0.11 | 0.0-2.9 | 0.0-0.5 | . 17 | . 20 | |
| | 28-34 | 80-100 | 0-15 | 0-5 | 1.40-1.60 | 6-100 | 42.00-703.00 | \|0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 | |
| | 34-60 | 80-100 | 0-15 | 0-5 | 1.40-1.60 | 6-100 | 42.00-703.00 | \|0.03-0.08 | 0.0-2.9 | 0.0-0.0 | . 15 | . 15 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated hydraulic conductivity | $\left.\begin{array}{\|c\|} \text { Available } \\ \text { water } \\ \text { capacity } \end{array} \right\rvert\,$ | Linear extensibility | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 25A: | | | | | | | | | | | | | |
| Brancroft------- | 0-6 | 2-32 | 50-74 | 18-24 | 1.20-1.40 | 0.2-2 | 1.40-14.00 | 0.19-0.21\| | 0.0-6.0 | 3.0-6.0 | . 28 | . 28 | 5 |
| | 6-17 | 10-15 | 50-72 | 18-35 | 1.20-1.40 | 0.06-0.6 | 0.42-4.00 | 0.19-0.21\| | 0.0-6.0 | 1.0-2.0 | . 43 | . 43 | |
| | 17-22 | 10-15 | 50-72 | 18-35 | 1.20-1.40 | 0.06-0.6 | 0.42-4.00 | 0.19-0.21\| | 0.0-6.0 | 0.5-1.0 | . 49 | . 49 | |
| | 22-32 | 10-15 | 50-72 | 18-35 | 1.40-1.65 | 0.0015-0.2 | 0.01-1.40 | 0.19-0.21\| | 0.0-6.0 | 0.0-0.5 | . 49 | . 49 | |
| | 32-43 | 10-15 | 50-72 | 18-35 | 1.50-1.65 | 0.0015-0.06 | 0.01-0.42 | 0.19-0.21\| | 0.0-6.0 | 0.0-0.5 | . 49 | . 49 | |
| | 43-66 | 10-15 | 50-72 | 18-35 | 1.50-1.65 | 0.0015-0.06 | 0.01-0.42 | 0.19-0.21\| | 0.0-6.0 | 0.0-0.5 | . 49 | . 49 | |
| 25B: | | | | | | | | | | | | | |
| Brancroft------- | 0-6 | 2-32 | 50-74 | 18-24 | 1.20-1.40 | 0.2-2 | 1.40-14.00 | 0.19-0.21\| | 0.0-6.0 | 3.0-6.0 | . 28 | . 28 | 5 |
| | 6-17 | 10-15 | 50-72 | 18-35 | 1.20-1.40 | 0.06-0.6 | 0.42-4.00 | 0.19-0.21\| | 0.0-6.0 | 1.0-2.0 | . 43 | . 43 | |
| | 17-22 | 10-15 | 50-72 | 18-35 | 1.20-1.40 | 0.06-0.6 | 0.42-4.00 | 0.19-0.21\| | 0.0-6.0 | 0.5-1.0 | . 49 | . 49 | |
| | 22-32 | 10-15 | 50-72 | 18-35 | 1.40-1.65 | 0.0015-0.2 | 0.01-1.40 | 0.19-0.21\| | 0.0-6.0 | 0.0-0.5 | . 49 | . 49 | |
| | 32-43 | 10-15 | 50-72 | 18-35 | 1.50-1.65 | 0.0015-0.06 | 0.01-0.42 | 0.19-0.21\| | 0.0-6.0 | 0.0-0.5 | . 49 | . 49 | |
| | 43-66 | 10-15 | 50-72 | 18-35 | 1.50-1.65 | 0.0015-0.06 | 0.01-0.42 | 0.19-0.21\| | 0.0-6.0 | 0.0-0.5 | . 49 | . 49 | |
| 25C: | | | | | | | | | | | | | |
| Brancroft------- | 0-6 | 2-32 | 50-74 | 18-24 | 1.20-1.40 | 0.2-2 | 1.40-14.00 | 0.19-0.21 | 0.0-6.0 | 3.0-6.0 | . 28 | . 28 | 5 |
| | 6-17 | 10-15 | 50-72 | 18-35 | 1.20-1.40 | 0.06-0.6 | 0.42-4.00 | 0.19-0.21\| | 0.0-6.0 | 1.0-2.0 | . 43 | . 43 | |
| | 17-22 | 10-15 | 50-72 | 18-35 | 1.20-1.40 | 0.06-0.6 | 0.42-4.00 | 0.19-0.21\| | 0.0-6.0 | 0.5-1.0 | . 49 | . 49 | |
| | 22-32 | 10-15 | 50-72 | 18-35 | 1.40-1.65 | 0.0015-0.2 | 0.01-1.40 | 0.19-0.21\| | 0.0-6.0 | 0.0-0.5 | . 49 | . 49 | |
| | 32-43 | 10-15 | 50-72 | 18-35 | 1.50-1.65 | 0.0015-0.06 | 0.01-0.42 | 0.19-0.21\| | 0.0-6.0 | 0.0-0.5 | . 49 | . 49 | |
| | 43-66 | 10-15 | 50-72 | 18-35 | 1.50-1.65 | 0.0015-0.06 | 0.01-0.42 | 0.19-0.21\| | 0.0-6.0 | 0.0-0.5 | . 49 | . 49 | |
| 26A: | | | | | | | | | | | | | |
| Berlin---------- | | 6-32 | 50-70 | 18-24 | 1.20-1.40 | 0.2-2 | 1.40-14.00 | 0.17-0.21\| | 0.0-6.0 | 3.0-6.0 | . 28 | . 37 | 5 |
| | 6-12 | 12-15 | 50-70 | 18-35 | 1.20-1.40 | 0.06-0.6 | 0.42-4.00 | 0.17-0.21\| | 0.0-6.0 | 1.0-2.0 | . 43 | . 49 | |
| | 12-20 | 12-15 | 50-70 | 18-35 | 1.25-1.45 | 0.06-0.6 | 0.42-4.00 | 0.17-0.21\| | 0.0-6.0 | 0.5-1.0 | . 43 | . 49 | |
| | 20-34 | 5-17 | 50-65 | 18-45 | 1.30-1.50 | 0.0015-0.2 | 0.01-1.40 | 0.15-0.21\| | 0.0-6.0 | 0.0-0.5 | . 43 | . 49 | |
| | 34-48 | 5-17 | 50-65 | 18-45 | 1.50-1.65 | 0.0015-0.06 | 0.01-0.42 | 0.15-0.21\| | 0.0-6.0 | 0.0-0.5 | . 43 | . 49 | |
| | 48-65 | 5-17 | 50-65 | 18-45 | 1.50-1.65 | 0.0015-0.06 | 0.01-0.42 | 0.15-0.21\| | 0.0-6.0 | 0.0-0.5 | . 43 | . 49 | |
| 26B: | | | | | | | | | | | | | |
| Berlin---------- | 0-6 | 6-32 | 50-70 | 18-24 | 1.20-1.40 | 0.2-2 | 1.40-14.00 | 0.17-0.21\| | 0.0-6.0 | 3.0-6.0 | . 28 | . 37 | 5 |
| | 6-12 | 12-15 | 50-70 | 18-35 | 1.20-1.40 | 0.06-0.6 | 0.42-4.00 | 0.17-0.21\| | 0.0-6.0 | 1.0-2.0 | . 43 | . 49 | |
| | 12-20 | 12-15 | 50-70 | 18-35 | 1.25-1.45 | 0.06-0.6 | 0.42-4.00 | 0.17-0.21\| | 0.0-6.0 | 0.5-1.0 | . 43 | . 49 | |
| | 20-34 | 5-17 | 50-65 | 18-45 | 1.30-1.50 | 0.0015-0.2 | 0.01-1.40 | 0.15-0.21\| | 0.0-6.0 | 0.0-0.5 | . 43 | . 49 | |
| | 34-48 | 5-17 | 50-65 | 18-45 | 1.50-1.65 | 0.0015-0.06 | 0.01-0.42 | 0.15-0.21\| | 0.0-6.0 | 0.0-0.5 | . 43 | . 49 | |
| | 48-65 | 5-17 | 50-65 | 18-45 | 1.50-1.65 | 0.0015-0.06 | 0.01-0.42 | 0.15-0.21\| | 0.0-6.0 | 0.0-0.5 | . 43 | . 49 | |
| 27A: | | | | | | | | | | | | | |
| Belgrade-------- | 0-8 | 21-35 | 50-74 | 5-15 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.19-0.21 | 0.0-2.9 | 2.0-5.0 | . 43 | . 43 | 5 |
| | 8-16 | 15-60 | 35-70 | 5-15 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.15-0.21\| | 0.0-2.9 | 1.0-2.0 | . 55 | . 55 | |
| | 16-27 | 15-60 | 35-70 | 5-15 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.15-0.21\| | 0.0-2.9 | 0.5-1.0 | . 64 | . 64 | |
| | 27-45 | 15-60 | 35-65 | 5-20 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.15-0.21\| | 0.0-2.9 | 0.0-0.5 | . 64 | . 64 | |
| | 45-60 | 15-60 | 38-65 | 2-20 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.15-0.21\| | 0.0-2.9 | 0.0-0.5 | . 64 | . 64 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated hydraulic conductivity | $\begin{gathered} \text { Available } \\ \text { water } \\ \text { capacity } \end{gathered}$ | Linear extensibility | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 28A: | | | | | | | | | | | | | |
| | 0-6 | 54-68 | 30-38 | 2-8 | 1.30-1.50 | 2-6 | 14.00-42.00 | 0.13-0.15 | 0.0-2.9 | 2.0-6.0 | . 24 | . 28 | 3 |
| | 6-10 | 47-68 | 30-45 | 2-10 | 1.35-1.60 | 2-6 | 14.00-42.00 | 0.11-0.18 | 0.0-2.9 | 0.5-1.5 | . 37 | . 37 | |
| | 10-18 | 47-68 | 30-45 | 2-10 | 1.35-1.60 | 2-6 | 14.00-42.00 | 0.11-0.18 | 0.0-2.9 | 0.0-1.0 | . 43 | . 43 | |
| | 18-25 | 47-68 | 30-45 | 2-10 | 1.35-1.60 | 2-6 | 14.00-42.00 | 0.11-0.18 | 0.0-2.9 | 0.0-0.5 | . 43 | . 43 | |
| | 25-65 | 10-20 | 20-55 | 35-60 | 1.55-1.80 | 0.0015-0.06 | 0.01-0.42 | 0.14-0.20 | 3.0-9.0 | 0.0-0.5 | . 32 | . 32 | |
| 28B: | | | | | | | | | | | | | |
| Elmridge-------- | 0-6 | 54-68 | 30-38 | 2-8 | 1.30-1.50 | 2-6 | 14.00-42.00 | 0.13-0.15 | 0.0-2.9 | 2.0-6.0 | . 24 | . 28 | 3 |
| | 6-10 | 47-68 | 30-45 | 2-10 | 1.35-1.60 | 2-6 | 14.00-42.00 | 0.11-0.18 | 0.0-2.9 | 0.5-1.5 | . 37 | . 37 | |
| | 10-18 | 47-68 | 30-45 | 2-10 | 1.35-1.60 | 2-6 | 14.00-42.00 | 0.11-0.18 | 0.0-2.9 | 0.0-1.0 | . 43 | . 43 | |
| | 18-25 | 47-68 | 30-45 | 2-10 | 1.35-1.60 | 2-6 | 14.00-42.00 | 0.11-0.18 | 0.0-2.9 | 0.0-0.5 | . 43 | . 43 | |
| | 25-65 | 10-20 | 20-55 | 35-60 | 1.55-1.80 | 0.0015-0.06 | 0.01-0.42 | 0.14-0.20 | 3.0-9.0 | 0.0-0.5 | . 32 | . 32 | |
| 29A: | | | | | | | | | | | | | |
| Agawam---------- | 0-8 | 53-71 | 25-37 | 4-10 | 1.10-1.20 | 2-6 | 14.00-42.00 | 0.12-0.15 | 0.0-2.9 | 1.0-5.0 | . 28 | . 32 | 3 |
| | 8-14 | 50-69 | 30-40 | 1-10 | 1.20-1.40 | 2-6 | 14.00-42.00 | 0.11-0.18 | 0.0-2.9 | 0.5-2.0 | . 37 | . 43 | |
| | 14-24 | 54-69 | 30-40 | 1-6 | 1.30-1.40 | 2-6 | 14.00-42.00 | \|0.11-0.17 | 0.0-2.9 | 0.0-0.5 | . 32 | . 55 | |
| | 24-60 | 87-100 | 0-12 | 0-1 | 1.30-1.50 | 20-100 | 141.00-703.00 | 0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| 29B: | | | | | | | | | | | | | |
| Agawam---------- | 0-8 | 53-71 | 25-37 | 4-10 | 1.10-1.20 | 2-6 | 14.00-42.00 | 0.12-0.15 | 0.0-2.9 | 1.0-5.0 | . 28 | . 32 | 3 |
| | 8-14 | 50-69 | 30-40 | 1-10 | 1.20-1.40 | 2-6 | 14.00-42.00 | 0.11-0.18 | 0.0-2.9 | 0.5-2.0 | . 37 | . 43 | |
| | 14-24 | 54-69 | 30-40 | 1-6 | 1.30-1.40 | 2-6 | 14.00-42.00 | \|0.11-0.17 | 0.0-2.9 | 0.0-0.5 | . 32 | . 55 | |
| | 24-60 | 87-100 | 0-12 | 0-1 | 1.30-1.50 | 20-100 | 141.00-703.00 | 0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| 29C: | | | | | | | | | | | | | |
| Agawam---------- | 0-8 | 53-71 | 25-37 | 4-10 | 1.10-1.20 | 2-6 | 14.00-42.00 | 0.12-0.15 | 0.0-2.9 | 1.0-5.0 | . 28 | . 32 | 3 |
| | 8-14 | 50-69 | 30-40 | 1-10 | 1.20-1.40 | 2-6 | 14.00-42.00 | 0.11-0.18 | 0.0-2.9 | 0.5-2.0 | . 37 | . 43 | |
| | 14-24 | 54-69 | 30-40 | 1-6 | 1.30-1.40 | 2-6 | 14.00-42.00 | 0.11-0.17 | 0.0-2.9 | 0.0-0.5 | . 32 | . 55 | |
| | 24-60 | 87-100 | 0-12 | 0-1 | 1.30-1.50 | 20-100 | 141.00-703.00 | 0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| 30A: | | | | | | | | | | | | | |
| Branford-------- | 0-8 | 23-46 | 51-65 | 3-12 | 1.20-1.40 | 0.6-6 | 4.00-42.00 | 0.17-0.21 | 0.0-2.9 | 2.0-5.0 | . 43 | . 49 | 3 |
| | 8-18 | 23-69 | 28-65 | 3-12 | 1.25-1.45 | 0.6-6 | 4.00-42.00 | 0.11-0.21 | 0.0-2.9 | 0.5-1.5 | . 49 | . 55 | |
| | 18-24 | 23-69 | 28-65 | 3-12 | 1.30-1.50 | 0.6-6 | 4.00-42.00 | 0.09-0.21 | 0.0-2.9 | 0.0-0.5 | . 49 | . 64 | |
| | 24-65 | 73-100 | 0-25 | 0-2 | 1.40-1.65 | 6-100 | 42.00-703.00 | 0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 15 | . 20 | |
| 30B: | | | | | | | | | | | | | |
| Branford-------- | | 23-46 | 51-65 | 3-12 | 1.20-1.40 | 0.6-6 | 4.00-42.00 | 0.17-0.21 | 0.0-2.9 | 2.0-5.0 | . 43 | . 49 | 3 |
| | 8-18 | 23-69 | 28-65 | 3-12 | 1.25-1.45 | 0.6-6 | 4.00-42.00 | 0.11-0.21 | 0.0-2.9 | 0.5-1.5 | . 49 | . 55 | |
| | 18-24 | 23-69 | 28-65 | 3-12 | 1.30-1.50 | $0.6-6$ | 4.00-42.00 | 0.09-0.21 | 0.0-2.9 | $0.0-0.5$ | . 49 | . 64 | |
| | 24-65 | 73-100 | 0-25 | 0-2 | 1.40-1.65 | 6-100 | 42.00-703.00 | \|0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 15 | . 20 | |
| | | | | | | | | | | | | | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$ | Linear extensibility | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g/cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 30C: | | | | | | | | | | | | | |
| Branford- | 0-8 | 23-46 | 51-65 | 3-12 | 1.20-1.40\| | 0.6-6 | 4.00-42.00 | 0.17-0.21\| | 0.0-2.9 | 2.0-5.0 | . 43 | . 49 | 3 |
| | 8-18 | 23-69 | 28-65 | 3-12 | 1.25-1.45 | 0.6-6 | 4.00-42.00 | 0.11-0.21\| | 0.0-2.9 | 0.5-1.5 | . 49 | . 55 | |
| | 18-24 | 23-69 | 28-65 | 3-12 | 1.30-1.50\| | 0.6-6 | 4.00-42.00 | 0.09-0.21\| | 0.0-2.9 | 0.0-0.5 | . 49 | . 64 | |
| | 24-65 | 73-100 | 0-25 | 0-2 | 1.40-1.65 | 6-100 | 42.00-703.00 | 0.02-0.10\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 20 | |
| 31A: | | | | | | | | | | | | | |
| Copake | 0-6 | 55-65 | 18-35 | 10-17 | 1.40-1.60 | 2-6 | 14.00-42.00 | 0.12-0.15 | 0.0-2.9 | 2.0-5.0 | . 15 | . 20 | 3 |
| | 6-13 | 43-72 | 20-40 | 8-17 | 1.40-1.60\| | 0.6-6 | 4.00-42.00 | 0.10-0.18\| | 0.0-2.9 | 0.5-2.0 | . 24 | . 32 | |
| | 13-21 | 28-72 | 20-55 | 8-17 | 1.25-1.55 | 0.6-6 | 4.00-42.00 | 0.08-0.20\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 21-31 | 28-72 | 20-55 | 8-17 | 1.25-1.55\| | 0.6-6 | 4.00-42.00 | 0.08-0.20 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 31-56 | 79-91 | 1-20 | 1-8 | 1.50-1.70\| | 6-100 | 42.00-703.00 | 0.01-0.07\| | 0.0-2.9 | 0.0-0.5 | . 10 | . 20 | |
| | 56-65 | 79-91 | 1-20 | 1-8 | 1.50-1.70\| | 6-100 | 42.00-703.00 | 0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 10 | . 20 | |
| | 65-75 | 79-91 | 1-20 | 1-8 | 1.50-1.70\| | 6-100 | 42.00-703.00 | 0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 10 | . 20 | |
| | 75-80 | 79-91 | 1-20 | 1-8 | 1.50-1.70 | 6-100 | 42.00-703.00 | 0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 10 | . 20 | |
| 31B: | | | | | | | | | | | | | |
| Copake | 0-6 | 55-65 | 18-35 | 10-17 | 1.40-1.60\| | 2-6 | 14.00-42.00 | 0.12-0.15 | 0.0-2.9 | 2.0-5.0 | . 15 | . 20 | 3 |
| | 6-13 | 43-72 | 20-40 | 8-17 | 1.40-1.60\| | 0.6-6 | 4.00-42.00 | 0.10-0.18\| | 0.0-2.9 | 0.5-2.0 | . 24 | . 32 | |
| | 13-21 | 28-72 | 20-55 | 8-17 | 1.25-1.55 | 0.6-6 | 4.00-42.00 | 0.08-0.20\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 21-31 | 28-72 | 20-55 | 8-17 | 1.25-1.55 | 0.6-6 | 4.00-42.00 | 0.08-0.20 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 31-56 | 79-91 | 1-20 | 1-8 | 1.50-1.70\| | 6-100 | 42.00-703.00 | 0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 10 | . 20 | |
| | 56-65 | 79-91 | 1-20 | 1-8 | 1.50-1.70\| | 6-100 | 42.00-703.00 | 0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 10 | . 20 | |
| | 65-75 | 79-91 | 1-20 | 1-8 | 1.50-1.70 | 6-100 | 42.00-703.00 | 0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 10 | . 20 | |
| | 75-80 | 79-91 | 1-20 | 1-8 | 1.50-1.70 | 6-100 | 42.00-703.00 | 0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 10 | . 20 | |
| 31C: | | | | | | | | | | | | | |
| Copake | | 55-65 | 18-35 | 10-17 | 1.40-1.60 | | 14.00-42.00 | 0.12-0.15 | 0.0-2.9 | 2.0-5.0 | . 15 | . 20 | 3 |
| | 6-13 | 43-72 | 20-40 | 8-17 | 1.40-1.60 | 0.6-6 | \| 4.00-42.00 | 0.10-0.18\| | 0.0-2.9 | 0.5-2.0 | . 24 | . 32 | |
| | 13-21 | 28-72 | 20-55 | 8-17 | 1.25-1.55 | 0.6-6 | 4.00-42.00 | 0.08-0.20\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 21-31 | 28-72 | 20-55 | 8-17 | 1.25-1.55 | 0.6-6 | 4.00-42.00 | 0.08-0.20 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 31-56 | 79-91 | 1-20 | 1-8 | 1.50-1.70\| | 6-100 | 42.00-703.00 | 0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 10 | . 20 | |
| | 56-65 | 79-91 | 1-20 | 1-8 | 1.50-1.70\| | 6-100 | 42.00-703.00 | 0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 10 | . 20 | |
| | 65-75 | 79-91 | 1-20 | 1-8 | 1.50-1.70\| | 6-100 | 42.00-703.00 | 0.01-0.07\| | 0.0-2.9 | 0.0-0.5 | . 10 | . 20 | |
| | 75-80 | 79-91 | 1-20 | 1-8 | 1.50-1.70 | 6-100 | 42.00-703.00 | 0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 10 | . 20 | |
| 32A: | | | | | | | | | | | | | |
| Haven- | 0-7 | 2-44 | 51-80 | 5-18 | 1.10-1.40\| | 0.6-2 | 4.00-14.00 | 0.16-0.21 | 0.0-2.9 | 2.0-6.0 | . 32 | . 43 | 3 |
| | 7-14 | 2-44 | 25-80 | 5-18 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.13-0.21\| | 0.0-2.9 | 0.5-2.0 | . 49 | . 64 | |
| | 14-20 | 2-44 | 25-80 | 5-18 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.13-0.21 | 0.0-2.9 | 0.5-1.0 | . 49 | . 64 | |
| | 20-24 | 54-70 | 25-28 | 5-18 | 1.25-1.50\| | 0.6-2 | 4.00-14.00 | 0.13-0.17\| | 0.0-2.9 | 0.0-0.5 | . 37 | . 43 | |
| | 24-60 | 92-100 | 0-5 | 0-3 | 1.40-1.65 | 20-100 | 141.00-703.00 | 0.01-0.06\| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$ | Linear extensibility | Organic matter | \|Erosion Factors | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 32A: | | | | | | | | | | | | | |
| Enfield--------- | 0-3 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 2-20 | 14.00-141.00 | \|0.08-0.40| | --- | 50-80 | --- | --- | 3 |
| | 3-4 | 0-0 | 0-0 | 0-0 | 0.30-0.55\| | 2-20 | 14.00-141.00 | \|0.08-0.40| | --- | 50-80 | --- | --- | |
| | 4-12 | 8-51 | 51-80 | 3-12 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | \|0.18-0.21| | 0.0-2.9 | 2.0-6.0 | . 43 | . 49 | |
| | 12-20 | 8-75 | 22-80 | 3-12 | 1.30-1.60\| | 0.6-2 | 4.00-14.00 | \|0.14-0.21| | 0.0-2.9 | 0.5-2.0 | . 55 | . 64 | |
| | 20-26 | 8-75 | 22-80 | 3-12 | 1.30-1.60\| | 0.6-2 | 4.00-14.00 | \|0.14-0.21| | 0.0-2.9 | 0.5-2.0 | . 55 | . 64 | |
| | 26-30 | 8-75 | 22-80 | 3-12 | 1.30-1.60\| | 0.6-2 | 4.00-14.00 | \|0.14-0.21| | 0.0-2.9 | 0.0-0.5 | . 64 | . 64 | |
| | 30-37 | 85-94 | 3-28 | 0-6 | 1.30-1.60\| | 0.6-2 | 4.00-14.00 | \|0.01-0.11| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |
| | 37-65 | 73-100 | 0-25 | 0-2 | 1.40-1.65 | 6-100 | 42.00-703.00 | \|0.01-0.08| | 0.0-2.9 | 0.0-0.5 | . 17 | . 20 | |
| 32B: | | | | | | | | | | | | | |
| Haven----------- | 0-7 | 2-44 | 51-80 | 5-18 | 1.10-1.40\| | 0.6-2 | 4.00-14.00 | \|0.16-0.21| | 0.0-2.9 | 2.0-6.0 | . 32 | . 43 | 3 |
| | 7-14 | 2-44 | 25-80 | 5-18 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | \|0.13-0.21| | 0.0-2.9 | 0.5-2.0 | . 49 | . 64 | |
| | 14-20 | 2-44 | 25-80 | 5-18 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | \|0.13-0.21| | 0.0-2.9 | 0.5-1.0 | . 49 | . 64 | |
| | 20-24 | 54-70 | 25-28 | 5-18 | 1.25-1.50\| | 0.6-2 | 4.00-14.00 | \|0.13-0.17| | 0.0-2.9 | 0.0-0.5 | . 37 | . 43 | |
| | 24-60 | 92-100 | 0-5 | 0-3 | 1.40-1.65 | 20-100 | 141.00-703.00 | \|0.01-0.06| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |
| Enfield--------- | 0-3 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 2-20 | 14.00-141.00 | \|0.08-0.40| | --- | 50-80 | --- | --- | 3 |
| | 3-4 | 0-0 | 0-0 | 0-0 | 0.30-0.55\| | 2-20 | 14.00-141.00 | \|0.08-0.40| | --- | 50-80 | --- | --- | |
| | 4-12 | 8-51 | 51-80 | 3-12 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | \|0.18-0.21| | 0.0-2.9 | 2.0-6.0 | . 43 | . 49 | |
| | 12-20 | 8-75 | 22-80 | 3-12 | 1.30-1.60\| | 0.6-2 | 4.00-14.00 | \|0.14-0.21| | 0.0-2.9 | 0.5-2.0 | . 55 | . 64 | |
| | 20-26 | 8-75 | 22-80 | 3-12 | 1.30-1.60\| | 0.6-2 | 4.00-14.00 | \|0.14-0.21| | 0.0-2.9 | 0.5-2.0 | . 55 | . 64 | |
| | 26-30 | 8-75 | 22-80 | 3-12 | 1.30-1.60\| | 0.6-2 | 4.00-14.00 | \|0.14-0.21| | 0.0-2.9 | 0.0-0.5 | . 64 | . 64 | |
| | 30-37 | 85-94 | 3-28 | 0-6 | 1.30-1.60\| | 0.6-2 | 4.00-14.00 | \|0.01-0.11| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |
| | 37-65 | 73-100 | 0-25 | 0-2 | 1.40-1.65 | 6-100 | 42.00-703.00 | \|0.01-0.08| | 0.0-2.9 | 0.0-0.5 | . 17 | . 20 | |
| 32C: | | | | | | | | | | | | | |
| Haven----------- | | 2-44 | 51-80 | 5-18 | 1.10-1.40\| | 0.6-2 | 4.00-14.00 | \|0.16-0.21| | 0.0-2.9 | 2.0-6.0 | . 32 | . 43 | 3 |
| | 7-14 | 2-44 | 25-80 | 5-18 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | \|0.13-0.21| | 0.0-2.9 | 0.5-2.0 | . 49 | . 64 | |
| | 14-20 | 2-44 | 25-80 | 5-18 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | \|0.13-0.21| | 0.0-2.9 | 0.5-1.0 | . 49 | . 64 | |
| | 20-24 | 54-70 | 25-28 | 5-18 | 1.25-1.50\| | 0.6-2 | 4.00-14.00 | \|0.13-0.17| | 0.0-2.9 | 0.0-0.5 | . 37 | . 43 | |
| | 24-60 | 92-100 | 0-5 | 0-3 | 1.40-1.65 | 20-100 | 141.00-703.00 | \|0.01-0.06| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |
| Enfield--------- | 0-3 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 2-20 | 14.00-141.00 | \|0.08-0.40| | --- | 50-80 | --- | --- | 3 |
| | 3-4 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 2-20 | 14.00-141.00 | 0.08-0.40 | -- | 50-80 | -- | --- | |
| | 4-12 | 8-51 | 51-80 | 3-12 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.18-0.21 | 0.0-2.9 | 2.0-6.0 | . 43 | . 49 | |
| | 12-20 | 8-75 | 22-80 | 3-12 | 1.30-1.60\| | 0.6-2 | 4.00-14.00 | 0.14-0.21 | 0.0-2.9 | 0.5-2.0 | . 55 | . 64 | |
| | 20-26 | 8-75 | 22-80 | 3-12 | 1.30-1.60\| | 0.6-2 | 4.00-14.00 | 0.14-0.21 | 0.0-2.9 | 0.5-2.0 | . 55 | . 64 | |
| | 26-30 | 8-75 | 22-80 | 3-12 | 1.30-1.60 | 0.6-2 | 4.00-14.00 | 0.14-0.21 | 0.0-2.9 | 0.0-0.5 | . 64 | . 64 | |
| | 30-37 | 85-94 | 3-28 | 0-6 | 1.30-1.60\| | 0.6-2 | 4.00-14.00 | 0.01-0.11 | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |
| | 37-65 | 73-100 | 0-25 | 0-2 | 1.40-1.65 | 6-100 | 42.00-703.00 | 0.01-0.08 | 0.0-2.9 | 0.0-0.5 | . 17 | . 20 | |
| 33A: | | | | | | | | | | | | | |
| Hartford-------- | | 53-70 | 27-40 | 3-7 | 1.25-1.50 | 2-6 | 14.00-42.00 | 0.10-0.12 | 0.0-2.9 | 2.0-5.0 | . 20 | . 28 | 3 |
| | 8-20 | 48-69 | 30-48 | 1-4 | 1.30-1.50\| | 2-6 | 14.00-42.00 | 0.07-0.12 | 0.0-2.9 | 0.5-1.5 | . 24 | . 37 | |
| | 20-26 | 48-84 | 15-48 | 1-4 | 1.30-1.50\| | 2-6 | 14.00-42.00 | \|0.04-0.12| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 26-65 | 72-97 | 3-27 | 0-1 | 1.40-1.60\| | 6-100 | 42.00-703.00 | \|0.02-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 28 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$ | Linear extensibility | Organic matter | Erosion Factors | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g/cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 33B: | | | | | | | | | | | | | |
| Hartford- | 0-8 | 53-70 | 27-40 | 3-7 | 1.25-1.50\| | 2-6 | 14.00-42.00 | 0.10-0.12\| | 0.0-2.9 | 2.0-5.0 | . 20 | . 28 | 3 |
| | 8-20 | 48-69 | 30-48 | 1-4 | 1.30-1.50\| | 2-6 | 14.00-42.00 | 0.07-0.12\| | 0.0-2.9 | 0.5-1.5 | . 24 | . 37 | |
| | 20-26 | 48-84 | 15-48 | 1-4 | 1.30-1.50\| | 2-6 | 14.00-42.00 | 0.04-0.12\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 26-65 | 72-97 | 3-27 | 0-1 | 1.40-1.60\| | 6-100 | 12.00-703.00 | 0.02-0.10\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 28 | |
| 34A: | | | | | | | | | | | | | |
| Merrimac | 0-9 | 45-70 | 27-48 | 3-7 | 1.10-1.20\| | 2-6 | 14.00-42.00 | 0.10-0.12\| | 0.0-2.9 | 1.0-5.0 | . 24 | . 28 | 3 |
| | 9-16 | 48-69 | 30-48 | 1-4 | 1.20-1.40\| | 2-6 | 14.00-42.00 | 0.10-0.14\| | 0.0-2.9 | 0.5-1.0 | . 28 | . 37 | |
| | 16-24 | 48-69 | 30-48 | 1-4 | 1.20-1.40\| | 2-6 | 14.00-42.00 | 0.07-0.12\| | 0.0-2.9 | 0.5-1.0 | . 24 | . 32 | |
| | 24-60 | 88-100 | 0-9 | 0-3 | 1.30-1.50\| | 6-100 | 42.00-703.00 | 0.02-0.05\| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |
| 34B: | | | | | | | | | | | | | |
| Merrimac- | 0-9 | 45-70 | 27-48 | 3-7 | 1.10-1.20\| | 2-6 | 14.00-42.00 | 0.10-0.12\| | 0.0-2.9 | 1.0-5.0 | . 24 | . 28 | 3 |
| | 9-16 | 48-69 | 30-48 | 1-4 | 1.20-1.40\| | 2-6 | 14.00-42.00 | 0.10-0.14\| | 0.0-2.9 | 0.5-1.0 | . 28 | . 37 | |
| | 16-24 | 48-69 | 30-48 | 1-4 | 1.20-1.40\| | 2-6 | 14.00-42.00 | 0.07-0.12\| | 0.0-2.9 | 0.5-1.0 | . 24 | . 32 | |
| | 24-60 | 88-100 | 0-9 | 0-3 | 1.30-1.50\| | 6-100 | 12.00-703.00 | 0.02-0.05\| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |
| 34C: | | | | | | | | | | | | | |
| Merrimac-- | 0-9 | 45-70 | 27-48 | 3-7 | 1.10-1.20\| | 2-6 | 14.00-42.00 | 0.10-0.12\| | 0.0-2.9 | 1.0-5.0 | . 24 | . 28 | 3 |
| | 9-16 | 48-69 | 30-48 | 1-4 | 1.20-1.40\| | 2-6 | 14.00-42.00 | \|0.10-0.14| | 0.0-2.9 | 0.5-1.0 | . 28 | . 37 | |
| | 16-24 | 48-69 | 30-48 | 1-4 | 1.20-1.40\| | 2-6 | 14.00-42.00 | 0.07-0.12\| | 0.0-2.9 | 0.5-1.0 | . 24 | . 32 | |
| | 24-60 | 88-100 | 0-9 | 0-3 | 1.30-1.50\| | 6-100 | 42.00-703.00 | 0.02-0.05\| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |
| 35A: | | | | | | | | | | | | | |
| Penwood--------- | | 74-83 | 14-25 | 1-3 | 1.45-1.60\| | 6-100 | 42.00-703.00 | 0.05-0.08 | 0.0-2.9 | 2.0-4.0 | . 17 | . 20 | 3 |
| | 8-18 | 72-85 | 12-28 | 0-3 | 1.45-1.60\| | 6-100 | 42.00-703.00 | \|0.05-0.11| | 0.0-2.9 | 0.5-1.0 | . 24 | . 28 | |
| | 18-30 | 88-98 | 2-10 | 0-2 | 1.45-1.60\| | 6-100 | 142.00-703.00 | \|0.03-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| | 30-60 | 88-98 | 2-10 | 0-2 | 1.45-1.70\| | 6-100 | 12.00-703.00 | 0.03-0.07\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| 35B: | | | | | | | | | | | | | |
| Penwood--------- | 0-8 | 74-83 | 14-25 | 1-3 | 1.45-1.60\| | 6-100 | 42.00-703.00 | 0.05-0.08\| | 0.0-2.9 | 2.0-4.0 | . 17 | . 20 | 3 |
| | 8-18 | 72-85 | 12-28 | 0-3 | 1.45-1.60\| | 6-100 | 12.00-703.00 | \|0.05-0.11| | 0.0-2.9 | 0.5-1.0 | . 24 | . 28 | |
| | 18-30 | 88-98 | 2-10 | 0-2 | 1.45-1.60\| | 6-100 | 12.00-703.00 | \|0.03-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| | 30-60 | 88-98 | 2-10 | 0-2 | 1.45-1.70\| | 6-100 | 42.00-703.00 | 0.03-0.07\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| | | | | | | | | | | | | | |
| Windsor--------- | 0-1 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 6-20 | 12.00-141.00 | 0.08-0.40\| | 0.0-20.0 | 45-95 | -- | -- | 2 |
| | 1-3 | 64-86 | 10-25 | 1-4 | 1.45-1.60\| | 6-20 | 42.00-141.00 | 0.05-0.08\| | 0.0-2.9 | 1.0-4.0 | . 17 | . 17 | |
| | 3-9 | 74-86 | 10-25 | 1-4 | 1.45-1.60\| | 6-20 | 42.00-141.00 | 0.05-0.11\| | 0.0-2.9 | 0.5-1.0 | . 10 | . 10 | |
| | 9-21 | 74-86 | 10-25 | 1-4 | 1.45-1.60\| | 6-20 | \|42.00-141.00 | 0.05-0.11\| | 0.0-2.9 | 0.5-1.0 | . 10 | . 10 | |
| | $21-25$ | 77-95 | 5-20 | 0-3 | 1.45-1.60\| | 6-100 | 42.00-703.00 | 0.04-0.08\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | |
| | 25-65 | 78-95 | 5-20 | 0-2 | 1.45-1.60\| | 6-100 | 42.00-703.00 | 0.04-0.08\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |

Table 24.-Physical Properties of the Soils-Continued

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion Factors | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 38E: | | | | | | | | | | | | | |
| Hinckley-------- | 0-8 | 54-69 | 27-38 | 4-8 | 0.90-1.10\| | 6-20 | 42.00-141.00 | 0.07-0.11 | 0.0-2.9 | 2.0-7.0 | . 15 | . 28 | 2 |
| | 8-20 | 75-83 | 12-24 | 1-5 | \|1.20-1.40| | 6-20 | 42.00-141.00 | 0.03-0.10 | 0.0-2.9 | 0.5-1.5 | . 10 | . 17 | |
| | 20-27 | 87-93 | 2-12 | 1-5 | \|1.20-1.40| | 6-20 | 42.00-141.00 | 0.02-0.05 | 0.0-2.9 | 0.0-0.5 | . 05 | . 15 | |
| | 27-42 | 88-93 | 4-12 | 0-3 | \|1.30-1.50| | 20-100 | 141.00-703.00\| | 0.01-0.04 | 0.0-2.9 | 0.0-0.5 | . 10 | . 28 | |
| | 42-60 | 88-93 | 4-12 | 0-3 | \|1.30-1.50| | 20-100 | \|141.00-703.00| | 0.01-0.04 | 0.0-2.9 | 0.0-0.5 | . 10 | . 28 | |
| 39A: | | | | | | | | | | | | | |
| Groton---------- | 0-8 | 54-68 | 30-38 | 2-8 | \|1.30-1.50| | 2-6 | 14.00-42.00 | 0.07-0.11 | 0.0-2.9 | 1.0-4.0 | . 10 | . 17 | 2 |
| | 8-18 | 50-68 | 30-42 | 2-8 | \|1.30-1.50| | 2-6 | 14.00-42.00 | 0.04-0.12 | 0.0-2.9 | 0.5-1.0 | . 17 | . 37 | |
| | 18-24 | 53-83 | 15-42 | 2-5 | \|1.30-1.60| | 2-20 | 14.00-141.00 | 0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 10 | . 24 | |
| | 24-30 | 55-83 | 15-40 | 2-5 | \|1.30-1.60| | 6-20 | 42.00-141.00 | \|0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 10 | . 24 | |
| | 30-52 | 78-95 | 5-20 | 0-2 | \|1.40-1.70| | 6-100 | 42.00-703.00 | 0.01-0.06 | 0.0-2.9 | 0.0-0.5 | . 10 | . 20 | |
| | 52-72 | 78-95 | 5-20 | 0-2 | \|1.40-1.70| | 6-100 | 42.00-703.00 | 0.01-0.06 | 0.0-2.9 | 0.0-0.5 | . 10 | . 20 | |
| 39C: | | | | | | | | | | | | | |
| Groton---------- | 0-8 | 54-68 | 30-38 | 2-8 | \|1.30-1.50| | 2-6 | 14.00-42.00 | 0.07-0.11 | 0.0-2.9 | 1.0-4.0 | . 10 | . 17 | 2 |
| | 8-18 | 50-68 | 30-42 | 2-8 | \| 1.30-1.50| | 2-6 | 14.00-42.00 | 0.04-0.12 | 0.0-2.9 | 0.5-1.0 | . 17 | . 37 | |
| | 18-24 | 53-83 | 15-42 | 2-5 | \|1.30-1.60| | 2-20 | 14.00-141.00 | 0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 10 | . 24 | |
| | 24-30 | 55-83 | 15-40 | 2-5 | \|1.30-1.60| | 6-20 | 42.00-141.00 | 0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 10 | . 24 | |
| | 30-52 | 78-95 | 5-20 | 0-2 | \|1.40-1.70| | 6-100 | 42.00-703.00 | 0.01-0.06 | 0.0-2.9 | 0.0-0.5 | . 10 | . 20 | |
| | 52-72 | 78-95 | 5-20 | 0-2 | \|1.40-1.70| | 6-100 | 42.00-703.00 | 0.01-0.06 | 0.0-2.9 | 0.0-0.5 | . 10 | . 20 | |
| 39E: | | | | | | | | | | | | | |
| Groton---------- | | 54-68 | 30-38 | 2-8 | \|1.30-1.50| | 2-6 | 14.00-42.00 | 0.07-0.11 | 0.0-2.9 | 1.0-4.0 | . 10 | . 17 | 2 |
| | 8-18 | 50-68 | 30-42 | 2-8 | \|1.30-1.50| | 2-6 | 14.00-42.00 | 0.04-0.12 | 0.0-2.9 | 0.5-1.0 | . 17 | . 37 | |
| | 18-24 | 53-83 | 15-42 | 2-5 | 1.30-1.60\| | 2-20 | 14.00-141.00 | 0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 10 | . 24 | |
| | 24-30 | 55-83 | 15-40 | 2-5 | \|1.30-1.60| | 6-20 | 42.00-141.00 | \|0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 10 | . 24 | |
| | 30-52 | 78-95 | 5-20 | 0-2 | \|1.40-1.70| | 6-100 | 42.00-703.00 | 0.01-0.06 | 0.0-2.9 | 0.0-0.5 | . 10 | . 20 | |
| | 52-72 | 78-95 | 5-20 | 0-2 | \|1.40-1.70| | 6-100 | 42.00-703.00 | 0.01-0.06 | 0.0-2.9 | 0.0-0.5 | . 10 | . 20 | |
| 40A: | | | | | | | | | | | | | |
| Ludlow---------- | 0-8 | 20-44 | 51-65 | 5-15 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.17-0.20 | 0.0-2.9 | 2.0-8.0 | . 28 | . 37 | 3 |
| | 8-20 | 25-60 | 35-60 | 5-15 | \| 1.20-1.45| | 0.6-2 | 4.00-14.00 | 0.10-0.20 | 0.0-2.9 | 0.5-2.0 | . 32 | . 43 | |
| | 20-26 | 25-60 | 35-60 | 5-15 | \|1.25-1.45| | 0.6-2 | 4.00-14.00 | 0.10-0.20 | 0.0-2.9 | 0.0-1.0 | . 37 | . 49 | |
| | 26-65 | 25-60 | 35-60 | 5-15 | 1.70-2.00\| | 0.0015-0.2 | 0.01-1.40 | 0.05-0.16 | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| 40B : | | | | | | | | | | | | | |
| Ludlow---------- | | 20-44 | 51-65 | 5-15 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.17-0.20 | 0.0-2.9 | 2.0-8.0 | . 28 | . 37 | 3 |
| | 8-20 | 25-60 | 35-60 | 5-15 | \|1.20-1.45| | 0.6-2 | 4.00-14.00 | 0.10-0.20 | 0.0-2.9 | 0.5-2.0 | . 32 | . 43 | |
| | 20-26 | 25-60 | 35-60 | 5-15 | \|1.25-1.45| | 0.6-2 | 4.00-14.00 | 0.10-0.20 | 0.0-2.9 | 0.0-1.0 | . 37 | . 49 | |
| | 26-65 | 25-60 | 35-60 | 5-15 | 1.70-2.00\| | 0.0015-0.2 | 0.01-1.40 | 0.05-0.16 | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated hydraulic conductivity | $\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$ | Linear extensibility | Organic matter | \|Erosion Factors | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g/cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 41B : | | | | | | | | | | | | | |
| Ludlow- | 0-8 | 20-44 | 51-65 | 5-15 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | \|0.17-0.20| | 0.0-2.9 | 2.0-8.0 | . 20 | . 37 | 3 |
| | 8-20 | 25-60 | 35-60 | 5-15 | \|1.20-1.45| | 0.6-2 | 4.00-14.00 | \|0.10-0.20| | 0.0-2.9 | 0.5-2.0 | . 32 | . 43 | |
| | 20-26 | 25-60 | 35-60 | 5-15 | \|1.25-1.45| | 0.6-2 | 4.00-14.00 | \|0.10-0.20| | 0.0-2.9 | 0.0-1.0 | . 37 | . 49 | |
| | 26-65 | 25-60 | 35-60 | 5-15 | 1.70-2.00 | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.16| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| 42C: | | | | | | | | | | | | | |
| Ludlow- | 0-8 | 20-44 | 51-65 | 5-15 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | \|0.17-0.20| | 0.0-2.9 | 2.0-8.0 | . 17 | . 37 | 3 |
| | 8-20 | 25-60 | 35-60 | 5-15 | 1.20-1.45 | 0.6-2 | 4.00-14.00 | \|0.10-0.20| | 0.0-2.9 | 0.5-2.0 | . 32 | . 43 | |
| | 20-26 | 25-60 | 35-60 | 5-15 | \|1.25-1.45| | 0.6-2 | 4.00-14.00 | \|0.10-0.20| | 0.0-2.9 | 0.0-1.0 | . 37 | . 49 | |
| | 26-65 | 25-60 | 35-60 | 5-15 | 1.70-2.00 | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.16| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| 43A: | | | | | | | | | | | | | |
| Rainbow- | 0-6 | 13-44 | 51-75 | 5-12 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | \|0.17-0.21| | 0.0-2.9 | 2.0-6.0 | . 28 | . 37 | 3 |
| | 6-18 | 13-71 | 27-75 | 2-12 | \| 1.25-1.45 | 0.6-2 | 4.00-14.00 | \|0.12-0.21| | 0.0-2.9 | 0.5-2.0 | . 43 | . 49 | |
| | 18-26 | 13-71 | 27-75 | 2-12 | 1.25-1.50\| | 0.6-2 | 4.00-14.00 | \|0.12-0.21| | 0.0-2.9 | 0.0-0.5 | . 49 | . 55 | |
| | 26-65 | 40-71 | 27-48 | 2-12 | 1.70-2.00\| | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.12| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| $43 \mathrm{~B}:$ | | | | | | | | | | | | | |
| Rainbow-- | 0-6 | 13-44 | 51-75 | 5-12 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | \|0.17-0.21| | 0.0-2.9 | 2.0-6.0 | . 28 | . 37 | 3 |
| | 6-18 | 13-71 | 27-75 | 2-12 | 1.25-1.45 | 0.6-2 | 4.00-14.00 | \|0.12-0.21| | 0.0-2.9 | 0.5-2.0 | . 43 | . 49 | |
| | 18-26 | 13-71 | 27-75 | 2-12 | 1.25-1.50\| | 0.6-2 | 4.00-14.00 | \|0.12-0.21| | 0.0-2.9 | 0.0-0.5 | . 49 | . 55 | |
| | 26-65 | 40-71 | 27-48 | 2-12 | 1.70-2.00\| | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.12| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 44B: | | | | | | | | | | | | | |
| Rainbow- | | 13-44 | 51-75 | 5-12 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | \|0.17-0.21| | 0.0-2.9 | 2.0-6.0 | . 28 | . 37 | 3 |
| | 6-18 | 13-71 | 27-75 | 2-12 | \|1.25-1.45| | 0.6-2 | 4.00-14.00 | \|0.12-0.21| | 0.0-2.9 | 0.5-2.0 | . 43 | . 49 | |
| | $18-26$ | 13-71 | 27-75 | 2-12 | \| 1.25-1.50| | 0.6-2 | 4.00-14.00 | \|0.12-0.21| | 0.0-2.9 | 0.0-0.5 | . 49 | . 55 | |
| | 26-65 | 40-71 | 27-48 | 2-12 | 1.70-2.00\| | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.12| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 45A: | | | | | | | | | | | | | |
| Woodbridge------- | 0-7 | 57-68 | 20-40 | 3-12 | 1.00-1.25\| | 0.6-2 | 4.00-14.00 | \|0.12-0.14| | 0.0-2.9 | 2.0-6.0 | . 17 | . 24 | 3 |
| | 7-18 | 48-70 | 27-40 | 3-12 | 1.35-1.60 | 0.6-2 | 4.00-14.00 | \|0.08-0.17| | 0.0-2.9 | 1.0-3.0 | . 24 | . 37 | |
| | 18-26 | 48-70 | 27-40 | 3-12 | 1.35-1.60\| | 0.6-2 | 4.00-14.00 | \|0.08-0.17| | 0.0-2.9 | 0.5-1.0 | . 24 | . 37 | |
| | 26-30 | 48-70 | 27-40 | 3-12 | \|1.35-1.60| | 0.6-2 | 4.00-14.00 | \|0.08-0.17| | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 30-43 | 48-70 | 27-40 | 3-12 | 1.70-2.00\|0 | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 43 | |
| | 43-65 | 48-70 | 27-40 | 3-12 | 1.70-2.00\|0 | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 43 | |
| 45B: | | | | | | | | | | | | | |
| Woodbridge------ | 0-7 | 57-68 | 20-40 | 3-12 | 1.00-1.25\| | 0.6-2 | 4.00-14.00 | \|0.12-0.14| | 0.0-2.9 | 2.0-6.0 | . 17 | . 24 | 3 |
| | 7-18 | 48-70 | 27-40 | 3-12 | 1.35-1.60\| | 0.6-2 | 4.00-14.00 | \|0.08-0.17| | 0.0-2.9 | 1.0-3.0 | . 24 | . 37 | |
| | 18-26 | 48-70 | 27-40 | 3-12 | 1.35-1.60\| | 0.6-2 | 4.00-14.00 | \|0.08-0.17| | 0.0-2.9 | 0.5-1.0 | . 24 | . 37 | |
| | 26-30 | 48-70 | 27-40 | 3-12 | \|1.35-1.60| | 0.6-2 | 4.00-14.00 | \|0.08-0.17| | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | $30-43$ | 48-70 | 27-40 | 3-12 | 1.70-2.00\|0 | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 43 | |
| | 43-65 | 48-70 | 27-40 | 3-12 | 1.70-2.00 | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 43 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion Factors | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 45C: | | | | | | | | | | | | | |
| Woodbridge------ | 0-7 | 57-68 | 20-40 | 3-12 | 1.00-1.25\| | 0.6-2 | 4.00-14.00 | \|0.12-0.14| | 0.0-2.9 | 2.0-6.0 | . 17 | . 24 | 3 |
| | 7-18 | 48-70 | 27-40 | 3-12 | 1.35-1.60\| | 0.6-2 | 4.00-14.00 | \|0.08-0.17| | 0.0-2.9 | 1.0-3.0 | . 24 | . 37 | |
| | 18-26 | 48-70 | 27-40 | 3-12 | \|1.35-1.60| | 0.6-2 | 4.00-14.00 | \|0.08-0.17| | 0.0-2.9 | 0.5-1.0 | . 24 | . 37 | |
| | 26-30 | 48-70 | 27-40\| | 3-12 | \|1.35-1.60| | 0.6-2 | 4.00-14.00 | \|0.08-0.17| | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 30-43 | 48-70 | 27-40\| | 3-12 | 1.70-2.00\|0 | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 43 | |
| | 43-65 | 48-70 | 27-40 | 3-12 | 1.70-2.00\|0. | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 43 | |
| 46B: | | | | | | | | | | | | | |
| Woodbridge------ | 0-7 | 57-68 | 20-40 | 3-12 | 1.00-1.25\| | 0.6-2 | 4.00-14.00 | \|0.12-0.14| | 0.0-2.9 | 2.0-6.0 | . 15 | . 24 | 3 |
| | 7-18 | 48-70 | 27-40 | 3-12 | 1.35-1.60\| | 0.6-2 | 4.00-14.00 | \|0.08-0.17| | 0.0-2.9 | 1.0-3.0 | . 24 | . 37 | |
| | 18-26 | 48-70 | 27-40 | 3-12 | \| 1.35-1.60| | 0.6-2 | 4.00-14.00 | \|0.08-0.17| | 0.0-2.9 | 0.5-1.0 | . 24 | . 37 | |
| | 26-30 | 48-70 | 27-40\| | 3-12 | \|1.35-1.60| | 0.6-2 | 4.00-14.00 | \|0.08-0.17| | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 30-43 | 48-70 | 27-40 | 3-12 | 1.70-2.00\|0 | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 43 | |
| | 43-65 | 48-70 | 27-40 | 3-12 | 1.70-2.00\|0. | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 43 | |
| 46C: | | | | | | | | | | | | | |
| Woodbridge------- | | 57-68 | 20-40 | 3-12 | 1.00-1.25\| | 0.6-2 | 4.00-14.00 | \|0.12-0.14| | 0.0-2.9 | 2.0-6.0 | . 15 | . 24 | 3 |
| | 7-18 | 48-70 | 27-40 | 3-12 | \|1.35-1.60| | 0.6-2 | 4.00-14.00 | \|0.08-0.17| | 0.0-2.9 | 1.0-3.0 | . 24 | . 37 | |
| | 18-26 | 48-70 | 27-40 | 3-12 | \|1.35-1.60| | 0.6-2 | 4.00-14.00 | \|0.08-0.17| | 0.0-2.9 | 0.5-1.0 | . 24 | . 37 | |
| | 26-30 | 48-70 | 27-40 | 3-12 | \|1.35-1.60| | 0.6-2 | 4.00-14.00 | \|0.08-0.17| | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 30-43 | 48-70 | 27-40 | 3-12 | \|1.70-2.00| | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 43 | |
| | 43-65 | 48-70 | 27-40 | 3-12 | 1.70-2.00\|0 | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 43 | |
| 47C: | | | | | | | | | | | | | |
| Woodbridge------- | 0-7 | 57-68 | 20-40 | 3-12 | \|1.00-1.25| | 0.6-2 | 4.00-14.00 | 0.12-0.14\| | 0.0-2.9 | 2.0-6.0 | . 10 | . 24 | 3 |
| | 7-18 | 48-70 | 27-40 | 3-12 | \|1.35-1.60| | 0.6-2 | 4.00-14.00 | \|0.08-0.17| | 0.0-2.9 | 1.0-3.0 | . 24 | . 37 | |
| | 18-26 | 48-70 | 27-40 | 3-12 | \|1.35-1.60| | 0.6-2 | 4.00-14.00 | \|0.08-0.17| | 0.0-2.9 | 0.5-1.0 | . 24 | . 37 | |
| | 26-30 | 48-70 | 27-40\| | 3-12 | \|1.35-1.60| | 0.6-2 | 4.00-14.00 | \|0.08-0.17| | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 30-43 | 48-70 | 27-40 | 3-12 | \|1.70-2.00|0. | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 43 | |
| | 43-65 | 48-70 | 27-40 | 3-12 | 1.70-2.00\|0 | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 43 | |
| 48B : | | | | | | | | | | | | | |
| Georgia--------- | | 25-31 | 51-70 | 5-18 | \|1.20-1.40| | 0.6-2 | 4.00-14.00 | \|0.17-0.20| | 0.0-2.9 | 2.0-6.0 | . 32 | . 43 | 5 |
| | 8-14 | 17-55 | 40-65 | 5-18 | \|1.25-1.45| | 0.6-2 | 4.00-14.00 | \|0.09-0.20| | 0.0-2.9 | 0.5-2.0 | . 37 | . 49 | |
| | 14-24 | 17-55 | 40-65 | 5-18 | \|1.30-1.50| | 0.6-2 | 4.00-14.00 | \|0.09-0.20| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | 24-60 | 17-55 | 40-65 | 5-18 | \|1.35-1.65| | 0.2-0.6 | 1.40-4.00 | \|0.09-0.20| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| Amenia---------- | 0-9 | 25-31 | 51-70 | 5-18 | \|1.20-1.40| | 0.6-2 | 4.00-14.00 | \|0.15-0.21| | 0.0-2.9 | 2.0-6.0 | . 32 | . 43 | 5 |
| | 9-16 | 30-42 | 40-65 | 5-18 | \|1.20-1.40| | 0.6-2 | 4.00-14.00 | \|0.11-0.18| | 0.0-2.9 | 0.5-2.0 | . 43 | . 55 | |
| | 16-25 | 30-42 | 40-65 | 5-18 | \|1.25-1.45| | 0.6-2 | 4.00-14.00 | \|0.11-0.18| | 0.0-2.9 | 0.0-0.5 | . 43 | . 55 | |
| | 25-60 | 30-42 | 40-65 | 5-18 | \|1.30-1.65| | 0.2-0.6 | 1.40-4.00 | \|0.11-0.20| | 0.0-2.9 | 0.0-0.5 | . 43 | . 55 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated hydraulic conductivity | $\begin{array}{\|l} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$ | Linear extensibility | Organic
 matter | Erosion Factors | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 48C: | | | | | | | | | | | | | |
| Georgia--------- | 0-8 | 25-31 | 51-70 | 5-18 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.17-0.20 | 0.0-2.9 | 2.0-6.0 | . 32 | . 43 | 5 |
| | 8-14 | 17-55 | 40-65 | 5-18 | \|1.25-1.45| | 0.6-2 | 4.00-14.00 | 0.09-0.20 | 0.0-2.9 | 0.5-2.0 | . 37 | . 49 | |
| | 14-24 | 17-55 | 40-65 | 5-18 | \|1.30-1.50| | 0.6-2 | 4.00-14.00 | 0.09-0.20 | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | 24-60 | 17-55 | 40-65 | 5-18 | \|1.35-1.65| | 0.2-0.6 | 1.40-4.00 | 0.09-0.20 | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| Amenia---------- | 0-9 | 25-31 | 51-70 | 5-18 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.15-0.21 | 0.0-2.9 | 2.0-6.0 | . 32 | . 43 | 5 |
| | 9-16 | 30-42 | 40-65 | 5-18 | \|1.20-1.40| | 0.6-2 | 4.00-14.00 | 0.11-0.18 | 0.0-2.9 | 0.5-2.0 | . 43 | . 55 | |
| | 16-25 | 30-42 | 40-65 | 5-18 | \|1.25-1.45| | 0.6-2 | 4.00-14.00 | 0.11-0.18 | 0.0-2.9 | 0.0-0.5 | . 43 | . 55 | |
| | 25-60 | 30-42 | 40-65 | 5-18 | \|1.30-1.65| | 0.2-0.6 | 1.40-4.00 | 0.11-0.20 | 0.0-2.9 | 0.0-0.5 | . 43 | . 55 | |
| 49B: | | | | | | | | | | | | | |
| Georgia--------- | 0-8 | 25-31 | 51-70 | 5-18 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.17-0.20 | 0.0-2.9 | 2.0-6.0 | . 32 | . 43 | 5 |
| | 8-14 | 17-55 | 40-65 | 5-18 | \|1.25-1.45| | 0.6-2 | 4.00-14.00 | 0.09-0.20 | 0.0-2.9 | 0.5-2.0 | . 37 | . 49 | |
| | 14-24 | 17-55 | 40-65 | 5-18 | \|1.30-1.50| | 0.6-2 | 4.00-14.00 | 0.09-0.20 | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | $24-60$ | 17-55 | 40-65 | 5-18 | \|1.35-1.65| | 0.2-0.6 | 1.40-4.00 | 0.09-0.20 | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| Amenia---------- | 0-9 | 25-31 | 51-70 | 5-18 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.15-0.21 | 0.0-2.9 | 2.0-6.0 | . 24 | . 43 | 5 |
| | 9-16 | 30-42 | 40-65 | 5-18 | \|1.20-1.40| | 0.6-2 | 4.00-14.00 | 0.11-0.18 | 0.0-2.9 | 0.5-2.0 | . 43 | . 55 | |
| | 16-25 | 30-42 | 40-65 | 5-18 | \|1.25-1.45| | 0.6-2 | 4.00-14.00 | 0.11-0.18 | 0.0-2.9 | 0.0-0.5 | . 43 | . 55 | |
| | 25-60 | 30-42 | 40-65 | 5-18 | 1.30-1.65\| | 0.2-0.6 | 1.40-4.00 | 0.11-0.20 | 0.0-2.9 | 0.0-0.5 | . 43 | . 55 | |
| 49C: | | | | | | | | | | | | | |
| Georgia--------- | | | 51-70 | 5-18 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.17-0.20 | 0.0-2.9 | 2.0-6.0 | . 32 | . 43 | 5 |
| | 8-14 | 17-55 | 40-65 | 5-18 | \|1.25-1.45| | 0.6-2 | 4.00-14.00 | 0.09-0.20 | 0.0-2.9 | 0.5-2.0 | . 37 | . 49 | |
| | 14-24 | 17-55 | 40-65 | 5-18 | \|1.30-1.50| | 0.6-2 | 4.00-14.00 | 0.09-0.20 | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | 24-60 | 17-55 | 40-65 | 5-18 | \|1.35-1.65| | 0.2-0.6 | 1.40-4.00 | 0.09-0.20 | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| Amenia---------- | 0-9 | 25-31 | 51-70 | 5-18 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.15-0.21 | 0.0-2.9 | 2.0-6.0 | . 24 | . 43 | 5 |
| | 9-16 | 30-42 | 40-65 | 5-18 | \|1.20-1.40| | 0.6-2 | 4.00-14.00 | 0.11-0.18 | 0.0-2.9 | 0.5-2.0 | . 43 | . 55 | |
| | 16-25 | 30-42 | 40-65 | 5-18 | \|1.25-1.45| | 0.6-2 | 4.00-14.00 | 0.11-0.18 | 0.0-2.9 | 0.0-0.5 | . 43 | . 55 | |
| | 25-60 | 30-42 | 40-65 | 5-18 | 1.30-1.65\| | 0.2-0.6 | 1.40-4.00 | 0.11-0.20 | 0.0-2.9 | 0.0-0.5 | . 43 | . 55 | |
| 50A: | | | | | | | | | | | | | |
| Sutton---------- | 0-6 | 56-68 | 20-40 | 4-12 | 1.30-1.50\| | 2-6 | 14.00-42.00 | 0.12-0.14 | 0.0-2.9 | 2.0-6.0 | . 15 | . 20 | 5 |
| | 6-12 | 43-68 | 28-45 | 4-12 | \|1.35-1.55| | 0.6-6 | 4.00-42.00 | 0.07-0.17 | 0.0-2.9 | 1.0-3.0 | . 24 | . 37 | |
| | 12-24 | 43-68 | 28-45 | 4-12 | \|1.35-1.60| | 0.6-6 | 4.00-42.00 | 0.07-0.17 | 0.0-2.9 | 0.5-2.0 | . 24 | . 37 | |
| | 24-28 | 43-68 | 28-45 | 4-12 | \|1.35-1.60| | 0.6-6 | 4.00-42.00 | 0.07-0.17 | 0.0-2.9 | 0.0-1.0 | . 28 | . 37 | |
| | 28-36 | 58-70 | 20-40 | 2-10 | \|1.45-1.65| | 2-6 | 14.00-42.00 | 0.07-0.14 | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 36-65 | 58-70 | 20-40 | 2-10 | \|1.45-1.65| | 2-6 | 14.00-42.00 | 0.07-0.14 | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated hydraulic conductivity | Available water capacity | Linear extensibility | Organic matter | Erosion Factors | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g/cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 50B : | | | | | | | | | | | | | |
| Sutton | 0-6 | 56-68 | 20-40 | 4-12 | 1.30-1.50\| | 2-6 | 14.00-42.00 | 0.12-0.14\| | 0.0-2.9 | 2.0-6.0 | . 15 | . 20 | 5 |
| | 6-12 | 43-68 | 28-45 | 4-12 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | \|0.07-0.17 | 0.0-2.9 | 1.0-3.0 | . 24 | . 37 | |
| | 12-24 | 43-68 | 28-45 | 4-12 | 1.35-1.60\| | 0.6-6 | 4.00-42.00 | \|0.07-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 37 | |
| | 24-28 | 43-68 | 28-45 | 4-12 | 1.35-1.60\| | 0.6-6 | 4.00-42.00 | \|0.07-0.17| | 0.0-2.9 | 0.0-1.0 | . 28 | . 37 | |
| | 28-36 | 58-70 | 20-40 | 2-10 | 1.45-1.65 | 2-6 | 14.00-42.00 | 0.07-0.14 | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 36-65 | 58-70 | 20-40 | 2-10 | 1.45-1.65 | 2-6 | 14.00-42.00 | 0.07-0.14 | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| 51B : | | | | | | | | | | | | | |
| Sutton | 0-6 | 56-68 | 20-40 | 4-12 | 1.30-1.50\| | 2-6 | 14.00-42.00 | 0.12-0.14\| | 0.0-2.9 | 2.0-6.0 | . 15 | . 20 | 5 |
| | 6-12 | 43-68 | 28-45 | 4-12 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | \|0.07-0.17 | 0.0-2.9 | 1.0-3.0 | . 24 | . 37 | |
| | 12-24 | 43-68 | 28-45 | 4-12 | 1.35-1.60\| | 0.6-6 | 4.00-42.00 | \|0.07-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 37 | |
| | 24-28 | 43-68 | 28-45 | 4-12 | 1.35-1.60\| | 0.6-6 | 4.00-42.00 | \|0.07-0.17| | 0.0-2.9 | 0.0-1.0 | . 28 | . 37 | |
| | 28-36 | 58-70 | 20-40 | 2-10 | 1.45-1.65 | 2-6 | 14.00-42.00 | 0.07-0.14 | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 36-65 | 58-70 | 20-40 | 2-10 | 1.45-1.65 | 2-6 | 14.00-42.00 | 0.07-0.14 | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| 52C: | | | | | | | | | | | | | |
| Sutton | 0-6 | 56-68 | 20-40 | 4-12 | 1.30-1.50\| | 2-6 | 14.00-42.00 | 0.12-0.14\| | 0.0-2.9 | 2.0-6.0 | . 15 | . 20 | 5 |
| | 6-12 | 43-68 | 28-45 | 4-12 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | \|0.07-0.17| | 0.0-2.9 | 1.0-3.0 | . 24 | . 37 | |
| | 12-24 | 43-68 | 28-45 | 4-12 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.07-0.17\| | 0.0-2.9 | 0.5-2.0 | . 24 | . 37 | |
| | 24-28 | 43-68 | 28-45 | 4-12 | 1.35-1.60\| | 0.6-6 | 4.00-42.00 | \|0.07-0.17| | 0.0-2.9 | 0.0-1.0 | . 28 | . 37 | |
| | 28-36 | 58-70 | 20-40 | 2-10 | 1.45-1.65 | 2-6 | 14.00-42.00 | 0.07-0.14 | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 36-65 | 58-70 | 20-40 | 2-10 | 1.45-1.65 | 2-6 | 14.00-42.00 | 0.07-0.14 | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| 53A: | | | | | | | | | | | | | |
| Wapping--------- | 0-11 | 43-66 | 30-45 | 4-12 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.13-0.17\| | 0.0-2.9 | 2.0-6.0 | . 32 | . 43 | 5 |
| | 11-16 | 33-66 | 30-55 | 2-12 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.13-0.21 | 0.0-2.9 | 0.5-1.5 | . 49 | . 55 | |
| | 16-20 | 35-68 | 30-55 | 2-10 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.13-0.21 | 0.0-2.9 | 0.0-1.0 | . 55 | . 64 | |
| | 20-28 | 62-74 | 18-36 | 1-8 | 1.45-1.60\| | 2-6 | 14.00-42.00 | \|0.07-0.13 | 0.0-2.9 | 0.0-0.5 | . 20 | . 37 | |
| | 28-36 | 79-84 | 10-20 | 1-8 | 1.45-1.65 | 2-20 | 14.00-141.00 | 0.04-0.13 | 0.0-2.9 | 0.0-0.5 | . 15 | . 24 | |
| | 36-80 | 79-84 | 10-20 | 1-6 | 1.45-1.65 | 2-20 | 14.00-141.00 | 0.03-0.13 | 0.0-2.9 | 0.0-0.5 | . 15 | . 24 | |
| 53B: | | | | | | | | | | | | | |
| Wapping--------- | 0-11 | 43-66 | 30-45 | 4-12 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.13-0.17 | 0.0-2.9 | 2.0-6.0 | . 32 | . 43 | 5 |
| | 11-16 | 33-66 | 30-55 | 2-12 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.13-0.21 | 0.0-2.9 | 0.5-1.5 | . 49 | . 55 | |
| | 16-20 | 35-68 | 30-55 | 2-10 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.13-0.21 | 0.0-2.9 | 0.0-1.0 | . 55 | . 64 | |
| | 20-28 | 62-74 | 18-36 | 1-8 | 1.45-1.60 | 2-6 | 14.00-42.00 | 0.07-0.13 | 0.0-2.9 | 0.0-0.5 | . 20 | . 37 | |
| | 28-36 | 79-84 | 10-20 | 1-8 | 1.45-1.65 | 2-20 | 14.00-141.00 | 0.04-0.13 | 0.0-2.9 | 0.0-0.5 | . 15 | . 24 | |
| | 36-80 | 79-84 | 10-20 | 1-6 | 1.45-1.65 | 2-20 | 14.00-141.00 | 0.03-0.13 | 0.0-2.9 | 0.0-0.5 | . 15 | . 24 | |
| 54B : | | | | | | | | | | | | | |
| Wapping--------- | 0-11 | 43-66 | 30-45 | 4-12 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.13-0.17\| | 0.0-2.9 | 2.0-6.0 | . 32 | . 43 | 5 |
| | 11-16 | 33-66 | 30-55 | 2-12 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.13-0.21 | 0.0-2.9 | 0.5-1.5 | . 49 | . 55 | |
| | 16-20 | 35-68 | 30-55 | 2-10 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.13-0.21 | 0.0-2.9 | 0.0-1.0 | . 55 | . 64 | |
| | 20-28 | 62-74 | 18-36 | 1-8 | 1.45-1.60 | 2-6 | 14.00-42.00 | 0.07-0.13 | 0.0-2.9 | 0.0-0.5 | . 20 | . 37 | |
| | 28-36 | 79-84 | 10-20 | 1-8 | 1.45-1.65 | 2-20 | 14.00-141.00 | 0.04-0.13 | 0.0-2.9 | 0.0-0.5 | . 15 | . 24 | |
| | 36-80 | 79-84 | 10-20 | 1-6 | 1.45-1.65\| | 2-20 | 14.00-141.00 | \|0.03-0.13 | 0.0-2.9 | 0.0-0.5 | . 15 | . 24 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated hydraulic conductivity | $\begin{gathered} \text { Available } \\ \text { water } \\ \text { capacity } \end{gathered}$ | Linear extensibility | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 55A: | | | | | | | | | | | | | |
| Watchaug- | 0-8 | 56-65 | 20-40 | 4-15 | 1.30-1.50\| | 0.6-2 | 4.00-14.00 | 0.12-0.15 | 0.0-2.9 | 2.0-7.0 | . 17 | . 24 | 5 |
| | 8-18 | 30-66 | 30-55 | 4-15 | 1.40-1.65\| | 0.6-2 | 4.00-14.00 | 0.09-0.20 | 0.0-2.9 | 1.0-2.0 | . 28 | . 43 | |
| | 18-24 | 30-66 | 30-55 | 4-15 | 1.40-1.65 | 0.6-2 | 4.00-14.00 | 0.09-0.20 | 0.0-2.9 | 0.5-1.0 | . 32 | . 49 | |
| | 24-65 | 60-70 | 15-40 | 2-15 | 1.45-1.70\| | 0.6-6 | 4.00-42.00 | 0.07-0.15 | 0.0-2.9 | 0.0-0.5 | . 20 | . 37 | |
| 55B : | | | | | | | | | | | | | |
| Watchaug-- | 0-8 | 56-65 | 20-40 | 4-15 | 1.30-1.50\| | 0.6-2 | 4.00-14.00 | 0.12-0.15 | 0.0-2.9 | 2.0-7.0 | . 17 | . 24 | 5 |
| | 8-18 | 30-66 | 30-55 | 4-15 | 1.40-1.65 | 0.6-2 | 4.00-14.00 | 0.09-0.20 | 0.0-2.9 | 1.0-2.0 | . 28 | . 43 | |
| | 18-24 | 30-66 | 30-55 | 4-15 | 1.40-1.65 | 0.6-2 | 4.00-14.00 | 0.09-0.20 | 0.0-2.9 | 0.5-1.0 | . 32 | . 49 | |
| | 24-65 | 60-70 | 15-40 | 2-15 | 1.45-1.70\| | 0.6-6 | 4.00-42.00 | 0.07-0.15 | 0.0-2.9 | 0.0-0.5 | . 20 | . 37 | |
| 56B: | | | | | | | | | | | | | |
| Watchaug- | 0-8 | 56-65 | 20-40 | 4-15 | 1.30-1.50\| | 0.6-2 | 4.00-14.00 | 0.12-0.15 | 0.0-2.9 | 2.0-7.0 | . 17 | . 24 | 5 |
| | 8-18 | 30-66 | 30-55 | 4-15 | 1.40-1.65\| | 0.6-2 | 4.00-14.00 | 0.09-0.20 | 0.0-2.9 | 1.0-2.0 | . 28 | . 43 | |
| | 18-24 | 30-66 | 30-55 | 4-15 | 1.40-1.65 | 0.6-2 | 4.00-14.00 | 0.09-0.20 | 0.0-2.9 | 0.5-1.0 | . 32 | . 49 | |
| | 24-65 | 60-70 | 15-40 | 2-15 | 1.45-1.70\| | 0.6-6 | 4.00-42.00 | 0.07-0.15 | 0.0-2.9 | 0.0-0.5 | . 20 | . 37 | |
| 57B: | | | | | | | | | | | | | |
| Gloucester------ | 0-4 | 54-69 | 30-38 | 1-8 | 1.00-1.30\| | 6-20 | 42.00-141.00 | 0.09-0.13 | 0.0-2.9 | 2.0-5.0 | . 17 | . 24 | 2 |
| | 4-12 | 54-69 | 30-38 | 1-8 | 1.20-1.50\| | 6-20 | 42.00-141.00 | 0.07-0.13 | 0.0-2.9 | 0.5-1.5 | . 15 | . 28 | |
| | 12-25 | 85-87 | 8-15 | 0-5 | 1.50-1.75\| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| | 25-35 | 85-87 | 8-15 | 0-5 | 1.50-1.75\| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| | 35-60 | 85-87 | 8-15 | 0-5 | 1.50-1.75\| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| 57C: | | | | | | | | | | | | | |
| Gloucester------ | 0-4 | 54-69 | 30-38 | 1-8 | 1.00-1.30\| | 6-20 | 42.00-141.00 | 0.09-0.13 | 0.0-2.9 | 2.0-5.0 | . 17 | . 24 | 2 |
| | 4-12 | 54-69 | 30-38 | 1-8 | 1.20-1.50 | 6-20 | 42.00-141.00 | 0.07-0.13 | 0.0-2.9 | 0.5-1.5 | . 15 | . 28 | |
| | 12-25 | 85-87 | 8-15 | 0-5 | 1.50-1.75\| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| | 25-35 | 85-87 | 8-15 | 0-5 | 1.50-1.75\| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| | 35-60 | 85-87 | 8-15 | 0-5 | 1.50-1.75\| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| 57D: | | | | | | | | | | | | | |
| Gloucester------ | 0-4 | 54-69 | 30-38 | 1-8 | 1.00-1.30\| | 6-20 | 42.00-141.00 | 0.09-0.13 | 0.0-2.9 | 2.0-5.0 | . 17 | . 24 | 2 |
| | 4-12 | 54-69 | 30-38 | 1-8 | 1.20-1.50 | 6-20 | 42.00-141.00 | 0.07-0.13 | 0.0-2.9 | 0.5-1.5 | . 15 | . 28 | |
| | 12-25 | 85-87 | 8-15 | 0-5 | 1.50-1.75\| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| | 25-35 | 85-87 | 8-15 | 0-5 | 1.50-1.75\| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| | 35-60 | 85-87 | 8-15 | 0-5 | 1.50-1.75\| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| 58B: | | | | | | | | | | | | | |
| Gloucester------ | 0-4 | 54-69 | 30-38 | 1-8 | 1.00-1.30\| | 6-20 | 42.00-141.00 | 10.09-0.13 | 0.0-2.9 | 2.0-5.0 | . 17 | . 24 | 2 |
| | 4-12 | 54-69 | 30-38 | 1-8 | 1.20-1.50\| | 6-20 | 42.00-141.00 | 0.07-0.13 | 0.0-2.9 | 0.5-1.5 | . 15 | . 28 | |
| | 12-25 | 85-87 | 8-15 | 0-5 | 1.50-1.75\| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| | 25-35 | 85-87 | 8-15 | 0-5 | 1.50-1.75\| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| | 35-60 | 85-87 | 8-15 | 0-5 | 1.50-1.75\| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| | | | | | | | | | | | | | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion Factors | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 58C: | | | | | | | | | | | | | |
| Gloucester------ | 0-4 | 54-69 | 30-38 | 1-8 | \|1.00-1.30| | 6-20 | 42.00-141.00 | 0.09-0.13 | 0.0-2.9 | 2.0-5.0 | . 17 | . 24 | 2 |
| | 4-12 | 54-69 | 30-38 | 1-8 | \|1.20-1.50| | 6-20 | 42.00-141.00 | 0.07-0.13 | 0.0-2.9 | 0.5-1.5 | . 15 | . 28 | |
| | 12-25 | 85-87 | 8-15 | 0-5 | \|1.50-1.75| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| | 25-35 | 85-87 | 8-15 | 0-5 | \|1.50-1.75| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| | 35-60 | 85-87 | 8-15 | 0-5 | \|1.50-1.75| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| 59C: | | | | | | | | | | | | | |
| Gloucester------ | 0-4 | 54-69 | 30-38 | 1-8 | \|1.00-1.30| | 6-20 | 42.00-141.00 | 0.09-0.13 | 0.0-2.9 | 2.0-5.0 | . 17 | . 24 | 2 |
| | 4-12 | 54-69 | 30-38 | 1-8 | \|1.20-1.50| | 6-20 | 42.00-141.00 | 0.07-0.13 | 0.0-2.9 | 0.5-1.5 | . 15 | . 28 | |
| | 12-25 | 85-87 | 8-15 | 0-5 | \|1.50-1.75| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| | 25-35 | 85-87 | 8-15 | 0-5 | \|1.50-1.75| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| | 35-60 | 85-87 | 8-15 | 0-5 | \|1.50-1.75| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| 59D: | | | | | | | | | | | | | |
| Gloucester------ | | | 30-38 | | 1.00-1.30\| | 6-20 | 42.00-141.00 | 0.09-0.13 | 0.0-2.9 | 2.0-5.0 | . 17 | . 24 | 2 |
| | $4-12$ | 54-69 | 30-38 | 1-8 | \|1.20-1.50| | 6-20 | 42.00-141.00 | \|0.07-0.13 | 0.0-2.9 | 0.5-1.5 | . 15 | . 28 | |
| | 12-25 | 85-87 | 8-15 | 0-5 | \|1.50-1.75| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| | 25-35 | 85-87 | 8-15 | 0-5 | \|1.50-1.75| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| | 35-60 | 85-87 | 8-15 | 0-5 | \|1.50-1.75| | 6-20 | 42.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 05 | . 17 | |
| 60B: | | | | | | | | | | | | | |
| Canton---------- | | | | | \|0.30-0.55| | | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 45-95 | --- | -- | 3 |
| | 1-3 | 54-70 | 29-38 | 1-8 | \|1.25-1.45| | 2-6 | 14.00-42.00 | 0.10-0.13 | 0.0-2.9 | 2.0-6.0 | . 05 | . 24 | |
| | 3-15 | 43-70 | 29-45 | 1-8 | \|1.25-1.45| | 2-6 | 14.00-42.00 | \|0.10-0.15 | 0.0-2.9 | 0.5-1.0 | . 32 | . 55 | |
| | 15-24 | 43-70 | 29-45 | 1-8 | \|1.25-1.50| | 2-6 | 14.00-42.00 | 0.10-0.15 | 0.0-2.9 | 0.5-1.0 | . 32 | . 55 | |
| | 24-30 | 43-70 | 29-45 | 1-8 | \|1.30-1.50| | 2-6 | 14.00-42.00 | 0.10-0.15 | 0.0-2.9 | 0.0-0.5 | . 32 | . 55 | |
| | 30-60 | 77-85 | 15-18 | 0-5 | \|1.35-1.60| | 6-20 | 42.00-141.00 | 0.03-0.09 | 0.0-2.9 | 0.0-0.5 | . 17 | . 32 | |
| Charlton-------- | | 57-72 | 20-40 | 3-8 | \|1.25-1.45| | 0.6-6 | 4.00-42.00 | \|0.12-0.14 | 0.0-2.9 | 2.0-6.0 | . 17 | . 24 | 5 |
| | 4-7 | 57-72 | 20-40 | 3-8 | \|1.30-1.45| | 0.6-6 | 4.00-42.00 | 0.09-0.14 | 0.0-2.9 | 0.5-1.0 | . 24 | . 37 | |
| | 7-19 | 57-72 | 20-40 | 3-8 | \|1.35-1.50| | 0.6-6 | 4.00-42.00 | 0.09-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 19-27 | 57-72 | 20-40 | 3-8 | \|1.35-1.55| | 0.6-6 | 4.00-42.00 | 0.08-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 27-65 | 57-72 | 20-40 | 1-8 | \|1.35-1.60| | 0.6-6 | 4.00-42.00 | 0.08-0.13 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| 60C: | | | | | | | | | | | | | |
| Canton---------- | 0-1 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 45-95 | --- | --- | 3 |
| | 1-3 | 54-70 | 29-38 | 1-8 | \|1.25-1.45| | 2-6 | 14.00-42.00 | 0.10-0.13 | 0.0-2.9 | 2.0-6.0 | . 05 | . 24 | |
| | 3-15 | 43-70 | 29-45 | 1-8 | \|1.25-1.45| | 2-6 | 14.00-42.00 | 0.10-0.15 | 0.0-2.9 | 0.5-1.0 | . 32 | . 55 | |
| | 15-24 | 43-70 | 29-45 | 1-8 | \|1.25-1.50| | 2-6 | 14.00-42.00 | 0.10-0.15 | 0.0-2.9 | 0.5-1.0 | . 32 | . 55 | |
| | 24-30 | 43-70 | 29-45 | 1-8 | \|1.30-1.50| | 2-6 | 14.00-42.00 | \|0.10-0.15 | 0.0-2.9 | 0.0-0.5 | . 32 | . 55 | |
| | 30-60 | 77-85 | 15-18 | 0-5 | \|1.35-1.60| | 6-20 | 42.00-141.00 | 0.03-0.09 | 0.0-2.9 | 0.0-0.5 | . 17 | . 32 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$ | Linear extensibility | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| 60C:
 Charlton | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| | | | | | | | | | | | | | |
| | 0-4 | 57-72 | 20-40 | 3-8 | 1.25-1.45 | 0.6-6 | 4.00-42.00 | 0.12-0.14 | 0.0-2.9 | 2.0-6.0 | . 17 | . 24 | 5 |
| | 4-7 | 57-72 | 20-40 | 3-8 | 1.30-1.45 | 0.6-6 | 4.00-42.00 | 0.09-0.14 | 0.0-2.9 | 0.5-1.0 | . 24 | . 37 | |
| | 7-19 | 57-72 | 20-40 | 3-8 | 1.35-1.50 | 0.6-6 | 4.00-42.00 | 0.09-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 19-27 | 57-72 | 20-40 | 3-8 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | 0.08-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 27-65 | 57-72 | 20-40 | 1-8 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.13 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| 60D :
 Canton | | | | | | | | | | | | | |
| | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 45-95 | --- | --- | 3 |
| | 1-3 | 54-70 | 29-38 | 1-8 | 1.25-1.45 | 2-6 | 14.00-42.00 | 0.10-0.13 | 0.0-2.9 | 2.0-6.0 | . 05 | . 24 | |
| | 3-15 | 43-70 | 29-45 | 1-8 | 1.25-1.45 | 2-6 | 14.00-42.00 | 0.10-0.15 | 0.0-2.9 | 0.5-1.0 | . 32 | . 55 | |
| | 15-24 | 43-70 | 29-45 | 1-8 | 1.25-1.50 | 2-6 | 14.00-42.00 | 0.10-0.15 | 0.0-2.9 | 0.5-1.0 | . 32 | . 55 | |
| | 24-30 | 43-70 | 29-45 | 1-8 | 1.30-1.50 | 2-6 | 14.00-42.00 | 0.10-0.15 | 0.0-2.9 | 0.0-0.5 | . 32 | . 55 | |
| | 30-60 | 77-85 | 15-18 | 0-5 | 1.35-1.60 | 6-20 | 42.00-141.00 | 0.03-0.09 | 0.0-2.9 | 0.0-0.5 | . 17 | . 32 | |
| Charlton-------- | 0-4 | 57-72 | 20-40 | 3-8 | 1.25-1.45 | 0.6-6 | 4.00-42.00 | 0.12-0.14 | 0.0-2.9 | 2.0-6.0 | . 17 | . 24 | 5 |
| | 4-7 | 57-72 | 20-40 | 3-8 | 1.30-1.45 | 0.6-6 | 4.00-42.00 | 0.09-0.14 | 0.0-2.9 | 0.5-1.0 | . 24 | . 37 | |
| | 7-19 | 57-72 | 20-40 | 3-8 | 1.35-1.50 | 0.6-6 | 4.00-42.00 | 0.09-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 19-27 | 57-72 | 20-40 | 3-8 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | 0.08-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 27-65 | 57-72 | 20-40 | 1-8 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.13 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| 61B: | | | | | | | | | | | | | |
| Canton---------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 45-95 | --- | --- | 3 |
| | 1-3 | 54-70 | 29-38 | 1-8 | 1.25-1.45 | 2-6 | 14.00-42.00 | 0.10-0.13 | 0.0-2.9 | 2.0-6.0 | . 05 | . 24 | |
| | 3-15 | 43-70 | 29-45 | 1-8 | 1.25-1.45 | 2-6 | 14.00-42.00 | 0.10-0.15 | 0.0-2.9 | 0.5-1.0 | . 32 | . 55 | |
| | 15-24 | 43-70 | 29-45 | 1-8 | 1.25-1.50 | 2-6 | 14.00-42.00 | 0.10-0.15 | 0.0-2.9 | 0.5-1.0 | . 32 | . 55 | |
| | 24-30 | 43-70 | 29-45 | 1-8 | 1.30-1.50 | 2-6 | 14.00-42.00 | 0.10-0.15 | 0.0-2.9 | 0.0-0.5 | . 32 | . 55 | |
| | 30-60 | 77-85 | 15-18 | 0-5 | 1.35-1.60 | 6-20 | 42.00-141.00 | 0.03-0.09 | 0.0-2.9 | 0.0-0.5 | . 17 | . 32 | |
| Charlton-------- | 0-4 | 57-72 | 20-40 | 3-8 | 1.25-1.45 | 0.6-6 | 4.00-42.00 | 0.12-0.14 | 0.0-2.9 | 2.0-6.0 | . 17 | . 24 | 5 |
| | 4-7 | 57-72 | 20-40 | 3-8 | 1.30-1.45 | 0.6-6 | 4.00-42.00 | 0.09-0.14 | 0.0-2.9 | 0.5-1.0 | . 24 | . 37 | |
| | 7-19 | 57-72 | 20-40 | 3-8 | 1.35-1.50 | 0.6-6 | 4.00-42.00 | 0.09-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 19-27 | 57-72 | 20-40 | 3-8 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | 0.08-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 27-65 | 57-72 | 20-40 | 1-8 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.13 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| 61C: | | | | | | | | | | | | | |
| Canton---------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 45-95 | --- | --- | 3 |
| | 1-3 | 54-70 | 29-38 | 1-8 | 1.25-1.45 | 2-6 | 14.00-42.00 | 0.10-0.13 | 0.0-2.9 | 2.0-6.0 | . 05 | . 24 | |
| | 3-15 | 43-70 | 29-45 | 1-8 | 1.25-1.45 | 2-6 | 14.00-42.00 | 0.10-0.15 | 0.0-2.9 | 0.5-1.0 | . 32 | . 55 | |
| | 15-24 | 43-70 | 29-45 | 1-8 | 1.25-1.50 | 2-6 | 14.00-42.00 | 0.10-0.15 | 0.0-2.9 | 0.5-1.0 | . 32 | . 55 | |
| | 24-30 | 43-70 | 29-45 | 1-8 | 1.30-1.50 | 2-6 | 14.00-42.00 | 0.10-0.15 | 0.0-2.9 | 0.0-0.5 | . 32 | . 55 | |
| | 30-60 | 77-85 | 15-18 | 0-5 | 1.35-1.60 | 6-20 | 42.00-141.00 | 0.03-0.09 | 0.0-2.9 | 0.0-0.5 | . 17 | . 32 | |
| Charlton-------- | 0-4 | 57-72 | 20-40 | 3-8 | 1.25-1.45 | 0.6-6 | 4.00-42.00 | 0.12-0.14 | 0.0-2.9 | 2.0-6.0 | . 17 | . 24 | 5 |
| | 4-7 | 57-72 | 20-40 | 3-8 | 1.30-1.45 | 0.6-6 | 4.00-42.00 | 0.09-0.14 | 0.0-2.9 | 0.5-1.0 | . 24 | . 37 | |
| | 7-19 | 57-72 | 20-40 | 3-8 | 1.35-1.50 | 0.6-6 | 4.00-42.00 | 0.09-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 19-27 | 57-72 | 20-40 | 3-8 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | \|0.08-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 27-65 | 57-72 | 20-40 | 1-8 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | \|0.08-0.13 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |

Table 24.-Physical Properties of the Soils-Continued

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 64B : | | | | | | | | | | | | | |
| Cheshire- | 0-8 | 53-71 | 25-32 | 4-15 | 1.25-1.50\| | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 17 | . 24 | 5 |
| | 8-16 | 20-71 | 25-65 | 4-15 | 1.40-1.65\| | 0.6-6 | 4.00-42.00 | 0.07-0.20 | 0.0-2.9 | 0.5-1.5 | . 32 | . 43 | |
| | 16-26 | 20-71 | 25-65 | 4-15 | 1.40-1.65\| | 0.6-6 | 4.00-42.00 | 0.07-0.20 | 0.0-2.9 | 0.5-1.0 | . 32 | . 43 | |
| | 26-65 | 68-75 | 10-30 | 2-15 | 1.45-1.70\| | 0.6-6 | 4.00-42.00 | 0.07-0.15 | 0.0-2.9 | 0.0-0.5 | . 20 | . 37 | |
| 64C: | | | | | | | | | | | | | |
| Cheshire | 0-8 | 53-71 | 25-32 | 4-15 | 1.25-1.50\| | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 17 | . 24 | 5 |
| | 8-16 | 20-71 | 25-65 | 4-15 | 1.40-1.65\| | 0.6-6 | 4.00-42.00 | 0.07-0.20 | 0.0-2.9 | 0.5-1.5 | . 32 | . 43 | |
| | 16-26 | 20-71 | 25-65 | 4-15 | 1.40-1.65\| | 0.6-6 | 4.00-42.00 | 0.07-0.20 | 0.0-2.9 | 0.5-1.0 | . 32 | . 43 | |
| | 26-65 | 68-75 | 10-30 | 2-15 | 1.45-1.70\| | 0.6-6 | 4.00-42.00 | 0.07-0.15 | 0.0-2.9 | 0.0-0.5 | . 20 | . 37 | |
| 65C: | | | | | | | | | | | | | |
| Cheshire | 0-8 | 53-71 | 25-32 | 4-15 | 1.25-1.50\| | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 17 | . 24 | 5 |
| | 8-16 | 20-71 | 25-65 | 4-15 | 1.40-1.65 | 0.6-6 | 4.00-42.00 | 0.07-0.20 | 0.0-2.9 | 0.5-1.5 | . 32 | . 43 | |
| | 16-26 | 20-71 | 25-65 | 4-15 | 1.40-1.65\| | 0.6-6 | 4.00-42.00 | 0.07-0.20 | 0.0-2.9 | 0.5-1.0 | . 32 | . 43 | |
| | 26-65 | 68-75 | 10-30 | 2-15 | 1.45-1.70\| | 0.6-6 | 4.00-42.00 | 0.07-0.15 | 0.0-2.9 | 0.0-0.5 | . 20 | . 37 | |
| 65D: | | | | | | | | | | | | | |
| Cheshire- | 0-8 | 53-71 | 25-32 | 4-15 | 1.25-1.50\| | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 17 | . 24 | 5 |
| | 8-16 | 20-71 | 25-65 | 4-15 | 1.40-1.65 | 0.6-6 | 4.00-42.00 | 0.07-0.20 | 0.0-2.9 | 0.5-1.5 | . 32 | . 43 | |
| | 16-26 | 20-71 | 25-65 | 4-15 | 1.40-1.65 | 0.6-6 | 4.00-42.00 | 0.07-0.20 | 0.0-2.9 | 0.5-1.0 | . 32 | . 43 | |
| | 26-65 | 68-75 | 10-30 | 2-15 | 1.45-1.70\| | 0.6-6 | 4.00-42.00 | 0.07-0.15 | 0.0-2.9 | 0.0-0.5 | . 20 | . 37 | |
| 66B: | | | | | | | | | | | | | |
| Narragansett---- | 0-6 | 10-45 | 51-80 | 4-10 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.16-0.21 | 0.0-2.9 | 2.0-6.0 | . 37 | . 43 | 3 |
| | 6-15 | 10-73 | 23-80 | 4-10 | 1.40-1.60\| | 0.6-2 | 4.00-14.00 | 0.11-0.21 | 0.0-2.9 | 1.0-2.0 | . 49 | . 55 | |
| | 15-24 | 10-73 | 23-80 | 4-10 | 1.40-1.60\| | 0.6-2 | 4.00-14.00 | 0.11-0.21 | 0.0-2.9 | 0.5-1.0 | . 49 | . 55 | |
| | 24-28 | 10-73 | 23-80 | 4-10 | 1.40-1.60\| | 0.6-2 | 4.00-14.00 | 0.11-0.21 | 0.0-2.9 | 0.0-1.0 | . 49 | . 55 | |
| | 28-60 | 73-92 | 8-25 | 0-2 | 1.40-1.70\| | 2-20 | 14.00-141.00 | 0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |
| 66C: | | | | | | | | | | | | | |
| Narragansett---- | 0-6 | 10-45 | 51-80 | 4-10 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.16-0.21 | 0.0-2.9 | 2.0-6.0 | . 37 | . 43 | 3 |
| | 6-15 | 10-73 | 23-80 | 4-10 | 1.40-1.60\| | 0.6-2 | 4.00-14.00 | 0.11-0.21 | 0.0-2.9 | 1.0-2.0 | . 49 | . 55 | |
| | 15-24 | 10-73 | 23-80 | 4-10 | 1.40-1.60\| | 0.6-2 | 4.00-14.00 | 0.11-0.21 | 0.0-2.9 | 0.5-1.0 | . 49 | . 55 | |
| | 24-28 | 10-73 | 23-80 | 4-10 | 1.40-1.60\| | 0.6-2 | 4.00-14.00 | 0.11-0.21 | 0.0-2.9 | 0.0-1.0 | . 49 | . 55 | |
| | 28-60 | 73-92 | 8-25 | 0-2 | 1.40-1.70\| | 2-20 | 14.00-141.00 | 0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |
| 67B: | | | | | | | | | | | | | |
| Narragansett---- | 0-6 | 10-45 | 51-80 | 4-10 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.16-0.21 | 0.0-2.9 | 2.0-6.0 | . 28 | . 43 | 3 |
| | 6-15 | 10-73 | 23-80 | 4-10 | 1.40-1.60\| | 0.6-2 | 4.00-14.00 | 0.11-0.21 | 0.0-2.9 | 1.0-2.0 | . 49 | . 55 | |
| | 15-24 | 10-73 | 23-80 | 4-10 | 1.40-1.60\| | 0.6-2 | 4.00-14.00 | 0.11-0.21 | 0.0-2.9 | 0.5-1.0 | . 49 | . 55 | |
| | 24-28 | 10-73 | 23-80 | 4-10 | 1.40-1.60\| | 0.6-2 | 4.00-14.00 | 0.11-0.21 | 0.0-2.9 | 0.0-1.0 | . 49 | . 55 | |
| | 28-60 | 73-92 | 8-25 | 0-2 | 1.40-1.70\| | 2-20 | 14.00-141.00 | 0.02-0.10 | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated hydraulic conductivity | Available water capacity | Linear extensibility | Organic
 matter | Erosion Factors | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g/cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 67C: | | | | | | | | | | | | | |
| Narragansett---- | 0-6 | 10-45 | 51-80 | 4-10 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | \|0.16-0.21| | 0.0-2.9 | 2.0-6.0 | . 28 | . 43 | 3 |
| | 6-15 | 10-73 | 23-80 | 4-10 | 1.40-1.60 | 0.6-2 | 4.00-14.00 | \|0.11-0.21| | 0.0-2.9 | 1.0-2.0 | . 49 | . 55 | |
| | 15-24 | 10-73 | 23-80 | 4-10 | 1.40-1.60 | 0.6-2 | 4.00-14.00 | \|0.11-0.21| | 0.0-2.9 | 0.5-1.0 | . 49 | . 55 | |
| | 24-28 | 10-73 | 23-80 | 4-10 | 1.40-1.60 | 0.6-2 | 4.00-14.00 | \|0.11-0.21| | 0.0-2.9 | 0.0-1.0 | . 49 | . 55 | |
| | 28-60 | 73-92 | 8-25 | 0-2 | 1.40-1.70 | 2-20 | 14.00-141.00 | \|0.02-0.10| | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |
| 68C: | | | | | | | | | | | | | |
| Narragansett---- | 0-6 | 10-45 | 51-80 | 4-10 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | \|0.16-0.21| | 0.0-2.9 | 2.0-6.0 | . 24 | . 43 | 3 |
| | 6-15 | 10-73 | 23-80 | 4-10 | 1.40-1.60 | 0.6-2 | 4.00-14.00 | \|0.11-0.21| | 0.0-2.9 | 1.0-2.0 | . 49 | . 55 | |
| | 15-24 | 10-73 | 23-80 | 4-10 | 1.40-1.60 | 0.6-2 | 4.00-14.00 | \|0.11-0.21| | 0.0-2.9 | 0.5-1.0 | . 49 | . 55 | |
| | 24-28 | 10-73 | 23-80 | 4-10 | 1.40-1.60 | 0.6-2 | 4.00-14.00 | \|0.11-0.21| | 0.0-2.9 | 0.0-1.0 | . 49 | . 55 | |
| | 28-60 | 73-92 | 8-25 | 0-2 | 1.40-1.70 | 2-20 | 14.00-141.00 | \|0.02-0.10| | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |
| 68D: | | | | | | | | | | | | | |
| Narragansett---- | 0-6 | 10-45 | 51-80 | 4-10 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.16-0.21\| | 0.0-2.9 | 2.0-6.0 | . 24 | . 43 | 3 |
| | 6-15 | 10-73 | 23-80 | 4-10 | 1.40-1.60 | 0.6-2 | 4.00-14.00 | \|0.11-0.21| | 0.0-2.9 | 1.0-2.0 | . 49 | . 55 | |
| | 15-24 | 10-73 | 23-80 | 4-10 | 1.40-1.60 | 0.6-2 | 4.00-14.00 | \|0.11-0.21| | 0.0-2.9 | 0.5-1.0 | . 49 | . 55 | |
| | 24-28 | 10-73 | 23-80 | 4-10 | 1.40-1.60 | 0.6-2 | 4.00-14.00 | \|0.11-0.21| | 0.0-2.9 | 0.0-1.0 | . 49 | . 55 | |
| | 28-60 | 73-92 | 8-25 | 0-2 | 1.40-1.70 | 2-20 | 14.00-141.00 | \|0.02-0.10| | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |
| 69B: | | | | | | | | | | | | | |
| Yalesville------ | 0-8 | 53-70 | 25-35 | 5-12 | 1.25-1.50 | 0.6-6 | 4.00-42.00 | 0.12-0.14\| | 0.0-2.9 | 2.0-5.0 | . 24 | . 28 | 2 |
| | 8-14 | 37-70 | 25-48 | 5-15 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | \|0.07-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 37 | |
| | 14-25 | 37-70 | 25-48 | 5-15 | 1.40-1.60 | 0.6-6 | 4.00-42.00 | \|0.07-0.17| | 0.0-2.9 | 0.5-1.5 | . 24 | . 37 | |
| | 25-36 | 37-70 | 25-48 | 5-15 | 1.40-1.60 | 2-6 | 14.00-42.00 | \|0.05-0.16| | 0.0-2.9 | 0.0-1.0 | . 24 | . 37 | |
| | 36-80 | --- | - | | , | 0.01-20 | 0.07-141.00 | \|0.00-0.00| | - | . | --- | --- | |
| 69C: | | | | | | | | | | | | | |
| Yalesville------ | 0-8 | 53-70 | 25-35 | 5-12 | 1.25-1.50 | 0.6-6 | 4.00-42.00 | 0.12-0.14\| | 0.0-2.9 | 2.0-5.0 | . 24 | . 28 | 2 |
| | 8-14 | 37-70 | 25-48 | 5-15 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | \|0.07-0.17| | 0.0-2.9 | 0.5-2.0 | . 24 | . 37 | |
| | 14-25 | 37-70 | 25-48 | 5-15 | 1.40-1.60 | 0.6-6 | 4.00-42.00 | \|0.07-0.17| | 0.0-2.9 | 0.5-1.5 | . 24 | . 37 | |
| | 25-36 | 37-70 | 25-48 | 5-15 | 1.40-1.60 | 2-6 | 14.00-42.00 | \|0.05-0.16| | 0.0-2.9 | 0.0-1.0 | . 24 | . 37 | |
| | 36-80 | --- | --- | - | --- | 0.01-20 | 0.07-141.00 | \|0.00-0.00| | -- | - | --- | --- | |
| | | | | | | | | | | | | | |
| Branford-------- | 0-8 | 23-46 | 51-65 | 3-12 | 1.20-1.40 | 0.6-6 | 4.00-42.00 | \|0.17-0.21| | 0.0-2.9 | 2.0-5.0 | . 43 | . 49 | 3 |
| | 8-18 | 23-69 | 28-65 | 3-12 | 1.25-1.45 | 0.6-6 | 4.00-42.00 | \|0.11-0.21| | 0.0-2.9 | 0.5-1.5 | . 49 | . 55 | |
| | 18-24 | 23-69 | 28-65 | 3-12 | 1.30-1.50 | 0.6-6 | 4.00-42.00 | \|0.09-0.21| | 0.0-2.9 | 0.0-0.5 | . 49 | . 64 | |
| | 24-65 | 73-100 | 0-25 | 0-2 | 1.40-1.65 | 6-100 | 42.00-703.00 | \|0.02-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 20 | |
| Holyoke--------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | \|0.08-0.40| | 0.0-20.0 | 50-80 | --- | - | 1 |
| | 1-3 | 18-47 | 50-70 | 3-12 | 1.10-1.25 | 0.6-2 | 4.00-14.00 | \|0.16-0.20| | 0.0-2.9 | 2.0-5.0 | . 32 | . 43 | |
| | 3-8 | 23-67 | 30-65 | 3-12 | 1.30-1.55 | 0.6-2 | 4.00-14.00 | 0.08-0.20\| | 0.0-2.9 | 1.0-3.0 | . 20 | . 37 | |
| | 8-18 | 32-68 | 20-65 | 3-12 | 1.30-1.55 | 0.6-2 | 4.00-14.00 | \|0.08-0.20| | 0.0-2.9 | 0.5-1.0 | . 28 | . 49 | |
| | 18-80 | --- | --- | - | --- | 0.01-20 | 0.07-141.00 | --- | --- | --- | --- | --- | |

Table 24.-Physical Properties of the Soils-Continued

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated hydraulic conductivity | Available water capacity | Linear extensibility | Organic matter | Erosion Factors | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 73E: | | | | | | | | | | | | | |
| Charlton------- | 0-4 | 57-72 | 20-40 | 3-8 | \|1.25-1.45| | 0.6-6 | 4.00-42.00 | \|0.12-0.14| | 0.0-2.9 | 2.0-6.0 | . 17 | . 24 | 5 |
| | 4-7 | 57-72 | 20-40 | 3-8 | \| 1.30-1.45 | 0.6-6 | 4.00-42.00 | 0.09-0.14\| | 0.0-2.9 | 0.5-1.0 | . 24 | . 37 | |
| | 7-19 | 57-72 | 20-40 | 3-8 | \|1.35-1.50| | 0.6-6 | 4.00-42.00 | \|0.09-0.14| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 19-27 | 57-72 | 20-40 | 3-8 | \| 1.35-1.55| | 0.6-6 | 4.00-42.00 | \|0.08-0.14| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 27-65 | 57-72 | 20-40 | 1-8 | \| 1.35-1.60| | 0.6-6 | 4.00-42.00 | \|0.08-0.13| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| Chatfield------- | 0-1 | 0-0 | 0-0 | 0-0 | \|0.30-0.55 | 2-6 | 14.00-42.00 | 0.08-0.40\| | 0.0-20.0 | 50-95 | . 05 | . 05 | 2 |
| | 1-6 | 52-83 | 10-30 | 7-18 | \| 1.25-1.45 | 0.6-6 | 4.00-42.00 | \|0.09-0.13| | 0.0-2.9 | 2.0-6.0 | . 10 | . 15 | |
| | 6-15 | 37-83 | 10-45 | 7-18 | \| 1.30-1.45| | 0.6-6 | 4.00-42.00 | \|0.08-0.17| | 0.0-2.9 | 0.5-2.0 | . 20 | . 28 | |
| | 15-29 | 50-83 | 10-28 | 7-18 | \| 1.35-1.50| | 0.6-6 | 4.00-42.00 | \|0.08-0.13| | 0.0-2.9 | 0.0-0.5 | . 20 | . 28 | |
| | 29-80 | --- | | - | | 0.01-20 | 0.07-141.00 | --- | --- | --- | --- | --- | |
| 74C: | | | | | | | | | | | | | |
| Narragansett---- | 0-6 | 10-45 | 51-80 | 4-10 | \| 1.20-1.40| | 0.6-2 | 4.00-14.00 | 0.16-0.21\| | 0.0-2.9 | 2.0-6.0 | . 37 | . 43 | 3 |
| | 6-15 | 10-73 | 23-80 | 4-10 | \| 1.40-1.60| | 0.6-2 | 4.00-14.00 | \|0.11-0.21| | 0.0-2.9 | 1.0-2.0 | . 49 | . 55 | |
| | 15-24 | 10-73 | 23-80 | 4-10 | \|1.40-1.60| | 0.6-2 | 4.00-14.00 | \|0.11-0.21| | 0.0-2.9 | 0.5-1.0 | . 49 | . 55 | |
| | 24-28 | 10-73 | 23-80 | 4-10 | \| 1.40-1.60| | 0.6-2 | 4.00-14.00 | \|0.11-0.21| | 0.0-2.9 | 0.0-1.0 | . 49 | . 55 | |
| | 28-60 | 73-92 | 8-25 | 0-2 | \|1.40-1.70| | 2-20 | 14.00-141.00 | \|0.02-0.10| | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |
| Hollis---------- | 0-1 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 2-6 | 14.00-42.00 | \|0.08-0.40| | 0.0-20.0 | 20-60 | --- | --- | 1 |
| | 1-6 | 54-70 | 27-36 | 3-10 | \| 1.10-1.40| | 0.6-6 | 4.00-42.00 | \|0.08-0.17| | 0.0-2.9 | 2.0-6.0 | . 10 | . 20 | |
| | 6-9 | 53-69 | 30-39 | 1-8 | \| 1.30-1.55 | 0.6-6 | 4.00-42.00 | \|0.08-0.14| | 0.0-2.9 | 0.5-2.0 | . 15 | . 37 | |
| | 9-15 | 53-69 | 30-39 | 1-8 | \| 1.30-1.55 | 0.6-6 | 4.00-42.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 15-80 | --- | --- | --- | --- | 0.01-20 | 0.07-141.00 | --- | --- | --- | --- | -- | |
| 75C: | | | | | | | | | | | | | |
| Hollis--------- | 0-1 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 2-6 | 14.00-42.00 | 0.08-0.40\| | 0.0-20.0 | 20-60 | --- | --- | 1 |
| | 1-6 | 54-70 | 27-36 | 3-10 | \| 1.10-1.40| | 0.6-6 | 4.00-42.00 | \|0.08-0.17| | 0.0-2.9 | 2.0-6.0 | . 10 | . 20 | |
| | 6-9 | 53-69 | 30-39 | 1-8 | \| 1.30-1.55 | 0.6-6 | 4.00-42.00 | \|0.08-0.14| | 0.0-2.9 | 0.5-2.0 | . 15 | . 37 | |
| | 9-15 | 53-69 | 30-39 | 1-8 | \| 1.30-1.55 | 0.6-6 | 4.00-42.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 15-80 | - | - | --- | --- | 0.01-20 | 0.07-141.00 | --- | --- | --- | --- | -- | |
| Chatfield------- | 0-1 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 2-6 | 14.00-42.00 | \|0.08-0.40| | 0.0-20.0 | 50-95 | . 05 | . 05 | 2 |
| | 1-6 | 52-83 | 10-30 | 7-18 | 1.25-1.45 | 0.6-6 | 4.00-42.00 | 0.09-0.13 | 0.0-2.9 | 2.0-6.0 | . 10 | . 15 | |
| | 6-15 | 37-83 | 10-45 | 7-18 | \| 1.30-1.45 | 0.6-6 | 4.00-42.00 | \|0.08-0.17| | 0.0-2.9 | 0.5-2.0 | . 20 | . 28 | |
| | 15-29 | 50-83 | 10-28 | 7-18 | \| 1.35-1.50| | 0.6-6 | 4.00-42.00 | \|0.08-0.13| | 0.0-2.9 | 0.0-0.5 | . 20 | . 28 | |
| | 29-80 | --- | --- | --- | --- | 0.01-20 | 0.07-141.00 | --- | --- | --- | --- | --- | |
| Rock outcrop-- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | - | --- | 1 |
| 75E: | | | | | | | | | | | | | |
| Hollis---------- | 0-1 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 2-6 | 14.00-42.00 | 0.08-0.40\| | 0.0-20.0 | 20-60 | --- | --- | 1 |
| | 1-6 | 54-70 | 27-36 | 3-10 | \| 1.10-1.40 | 0.6-6 | 4.00-42.00 | \|0.08-0.17| | 0.0-2.9 | 2.0-6.0 | . 10 | . 20 | |
| | 6-9 | 53-69 | 30-39 | 1-8 | \| 1.30-1.55| | 0.6-6 | 4.00-42.00 | \|0.08-0.14| | 0.0-2.9 | 0.5-2.0 | . 15 | . 37 | |
| | $9-15$ | 53-69 | 30-39 | 1-8 | \| 1.30-1.55| | $0.6-6$ | $4.00-42.00$ | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 15-80 | - | --- | - | --- | 0.01-20 | 0.07-141.00 | --- | --- | - | -- | -- | |

Table 24.-Physical Properties of the Soils-Continued

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 77D: | | | | | | | | | | | | | |
| Holyoke | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | --- | --- | 1 |
| | 1-3 | 18-47 | 50-70 | 3-12 | 1.10-1.25 | 0.6-2 | 4.00-14.00 | 0.16-0.20 | 0.0-2.9 | 2.0-5.0 | . 32 | . 43 | |
| | 3-8 | 23-67 | 30-65 | 3-12 | 1.30-1.55 | 0.6-2 | 4.00-14.00 | 0.08-0.20 | 0.0-2.9 | 1.0-3.0 | . 20 | . 37 | |
| | 8-18 | 32-68 | 20-65 | 3-12 | 1.30-1.55 | 0.6-2 | 4.00-14.00 | 0.08-0.20 | 0.0-2.9 | 0.5-1.0 | . 28 | . 49 | |
| | 18-80 | | --- | | | 0.01-20 | 0.07-141.00 | --- | --- | | | --- | |
| 78C: | | | | | | | | | | | | | |
| Holyoke- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | --- | --- | 1 |
| | 1-3 | 18-47 | 50-70 | 3-12 | 1.10-1.25 | 0.6-2 | 4.00-14.00 | 0.16-0.20 | 0.0-2.9 | 2.0-5.0 | . 32 | . 43 | |
| | 3-8 | 23-67 | 30-65 | 3-12 | 1.30-1.55 | 0.6-2 | 4.00-14.00 | 0.08-0.20 | 0.0-2.9 | 1.0-3.0 | . 20 | . 37 | |
| | 8-18 | 32-68 | 20-65 | 3-12 | 1.30-1.55 | 0.6-2 | 4.00-14.00 | 0.08-0.20 | 0.0-2.9 | 0.5-1.0 | . 28 | . 49 | |
| | 18-80 | --- | - | --- | --- | 0.01-20 | 0.07-141.00 | --- | --- | --- | --- | --- | |
| Rock outcrop- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | 1 |
| 78E: | | | | | | | | | | | | | |
| Holyoke--------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | --- | --- | 1 |
| | 1-3 | 18-47 | 50-70 | 3-12 | 1.10-1.25 | 0.6-2 | 4.00-14.00 | 0.16-0.20 | 0.0-2.9 | 2.0-5.0 | . 32 | . 43 | |
| | 3-8 | 23-67 | 30-65 | 3-12 | 1.30-1.55 | 0.6-2 | 4.00-14.00 | 0.08-0.20 | 0.0-2.9 | 1.0-3.0 | . 20 | . 37 | |
| | 8-18 | 32-68 | 20-65 | 3-12 | 1.30-1.55 | 0.6-2 | 4.00-14.00 | 0.08-0.20 | 0.0-2.9 | 0.5-1.0 | . 28 | . 49 | |
| | 18-80 | --- | --- | --- | --- | 0.01-20 | 0.07-141.00 | --- | --- | --- | -- | --- | |
| Rock outcrop- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | 1 |
| 79E: | | | | | | | | | | | | | |
| Rock outcrop- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | 1 |
| Holyoke--------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | --- | --- | 1 |
| | 1-3 | 18-47 | 50-70 | 3-12 | 1.10-1.25 | 0.6-2 | 4.00-14.00 | 0.16-0.20 | 0.0-2.9 | 2.0-5.0 | . 32 | . 43 | |
| | 3-8 | 23-67 | 30-65 | 3-12 | 1.30-1.55 | 0.6-2 | 4.00-14.00 | 0.08-0.20 | 0.0-2.9 | 1.0-3.0 | . 20 | . 37 | |
| | 8-18 | 32-68 | 20-65 | 3-12 | 1.30-1.55 | 0.6-2 | 4.00-14.00 | 0.08-0.20 | 0.0-2.9 | 0.5-1.0 | . 28 | . 49 | |
| | 18-80 | - | - | , | 1.30-1.55 | 0.01-20 | 0.07-141.00 | 0.08-0.20 | 0.0 | . | --- | --- | |
| 80B: | | | | | | | | | | | | | |
| Bernardston----- | 0-8 | 20-43 | 50-60 | 7-15 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.16-0.19 | 0.0-2.9 | 2.0-5.0 | . 32 | . 43 | 3 |
| | 8-14 | 20-58 | 35-60 | 7-15 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | \|0.11-0.19 | 0.0-2.9 | 0.0-2.0 | . 43 | . 64 | |
| | 14-24 | 30-58 | 35-55 | 7-15 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.11-0.19 | 0.0-2.9 | 0.0-1.0 | . 43 | . 64 | |
| | 24-26 | 30-58 | 35-55 | 7-15 | 1.30-1.55 | 0.6-2 | 4.00-14.00 | 0.11-0.19 | 0.0-2.9 | 0.0-0.5 | . 43 | . 64 | |
| | 26-60 | 30-58 | 35-55 | 7-15 | 1.75-1.90 | 0.0015-0.2 | 0.01-1.40 | 0.07-0.16 | 0.0-2.9 | 0.0-0.5 | . 43 | . 64 | |
| 80C: | | | | | | | | | | | | | |
| Bernardston----- | 0-8 | 20-43 | 50-60 | 7-15 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | \|0.16-0.19 | 0.0-2.9 | 2.0-5.0 | . 32 | . 43 | 3 |
| | 8-14 | 20-58 | 35-60 | 7-15 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.11-0.19 | 0.0-2.9 | 0.0-2.0 | . 43 | . 64 | |
| | 14-24 | 30-58 | 35-55 | 7-15 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.11-0.19 | 0.0-2.9 | 0.0-1.0 | . 43 | . 64 | |
| | 24-26 | 30-58 | 35-55 | 7-15 | 1.30-1.55 | 0.6-2 | 4.00-14.00 | 0.11-0.19 | 0.0-2.9 | 0.0-0.5 | . 43 | . 64 | |
| | 26-60 | 30-58 | 35-55 | 7-15 | 1.75-1.90 | 0.0015-0.2 | 0.01-1.40 | 0.07-0.16 | 0.0-2.9 | 0.0-0.5 | . 43 | . 64 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 81C: | | | | | | | | | | | | | |
| Bernardston----- | 0-8 | 20-43 | 50-60 | 7-15 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.16-0.19 | 0.0-2.9 | 2.0-5.0 | . 32 | . 43 | 3 |
| | 8-14 | 20-58 | 35-60 | 7-15 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.11-0.19 | 0.0-2.9 | 0.0-2.0 | . 43 | . 64 | |
| | 14-24 | 30-58 | 35-55 | 7-15 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.11-0.19 | 0.0-2.9 | 0.0-1.0 | . 43 | . 64 | |
| | 24-26 | 30-58 | 35-55 | 7-15 | 1.30-1.55 | 0.6-2 | 4.00-14.00 | 0.11-0.19 | 0.0-2.9 | 0.0-0.5 | . 43 | . 64 | |
| | 26-60 | 30-58 | 35-55 | 7-15 | 1.75-1.90 | 0.0015-0.2 | 0.01-1.40 | 0.07-0.16 | 0.0-2.9 | 0.0-0.5 | . 43 | . 64 | |
| 81D: | | | | | | | | | | | | | |
| Bernardston----- | 0-8 | 20-43 | 50-60 | 7-15 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.16-0.19 | 0.0-2.9 | 2.0-5.0 | . 32 | . 43 | 3 |
| | 8-14 | 20-58 | 35-60 | 7-15 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.11-0.19 | 0.0-2.9 | 0.0-2.0 | . 43 | . 64 | |
| | 14-24 | 30-58 | 35-55 | 7-15 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.11-0.19 | 0.0-2.9 | 0.0-1.0 | . 43 | . 64 | |
| | 24-26 | 30-58 | 35-55 | 7-15 | 1.30-1.55 | 0.6-2 | 4.00-14.00 | 0.11-0.19 | 0.0-2.9 | 0.0-0.5 | . 43 | . 64 | |
| | 26-60 | 30-58 | 35-55 | 7-15 | 1.75-1.90 | 0.0015-0.2 | 0.01-1.40 | 0.07-0.16 | 0.0-2.9 | 0.0-0.5 | . 43 | . 64 | |
| 82B: | | | | | | | | | | | | | |
| Broadbrook------ | 0-8 | 15-45 | 50-70 | 5-15 | 1.15-1.40 | 0.6-2 | 4.00-14.00 | 0.17-0.21 | 0.0-2.9 | 2.0-5.0 | . 37 | . 43 | 3 |
| | 8-14 | 15-73 | 22-70 | 5-15 | 1.25-1.45 | 0.6-2 | 4.00-14.00 | 0.12-0.21 | 0.0-2.9 | 1.0-2.0 | . 43 | . 55 | |
| | 14-25 | 15-73 | 22-70 | 5-15 | 1.35-1.60 | 0.6-2 | 4.00-14.00 | 0.12-0.21 | 0.0-2.9 | 0.0-1.0 | . 49 | . 64 | |
| | 25-65 | 53-70 | 28-35 | 2-12 | 1.70-2.10 | 0.0015-0.2 | 0.01-1.40 | 0.05-0.12 | 0.0-2.9 | 0.0-0.5 | . 32 | . 55 | |
| 82C: | | | | | | | | | | | | | |
| Broadbrook------ | 0-8 | 15-45 | 50-70 | 5-15 | 1.15-1.40 | 0.6-2 | 4.00-14.00 | 0.17-0.21 | 0.0-2.9 | 2.0-5.0 | . 37 | . 43 | 3 |
| | 8-14 | 15-73 | 22-70 | 5-15 | 1.25-1.45 | 0.6-2 | 4.00-14.00 | 0.12-0.21 | 0.0-2.9 | 1.0-2.0 | . 43 | . 55 | |
| | 14-25 | 15-73 | 22-70 | 5-15 | 1.35-1.60 | 0.6-2 | 4.00-14.00 | 0.12-0.21 | 0.0-2.9 | 0.0-1.0 | . 49 | . 64 | |
| | 25-65 | 53-70 | 28-35 | 2-12 | 1.70-2.10 | 0.0015-0.2 | 0.01-1.40 | 0.05-0.12 | 0.0-2.9 | 0.0-0.5 | . 32 | . 55 | |
| 82D: | | | | | | | | | | | | | |
| Broadbrook------ | 0-8 | 15-45 | 50-70 | 5-15 | 1.15-1.40 | 0.6-2 | 4.00-14.00 | 0.17-0.21 | 0.0-2.9 | 2.0-5.0 | . 37 | . 43 | 3 |
| | 8-14 | 15-73 | 22-70 | 5-15 | 1.25-1.45 | 0.6-2 | 4.00-14.00 | 0.12-0.21 | 0.0-2.9 | 1.0-2.0 | . 43 | . 55 | |
| | 14-25 | 15-73 | 22-70 | 5-15 | 1.35-1.60 | 0.6-2 | 4.00-14.00 | 0.12-0.21 | 0.0-2.9 | 0.0-1.0 | . 49 | . 64 | |
| | 25-65 | 53-70 | 28-35 | 2-12 | 1.70-2.10 | 0.0015-0.2 | 0.01-1.40 | 0.05-0.12 | 0.0-2.9 | 0.0-0.5 | . 32 | . 55 | |
| 83B: | | | | | | | | | | | | | |
| Broadbrook------ | 0-8 | 15-45 | 50-70 | 5-15 | 1.15-1.40 | 0.6-2 | 4.00-14.00 | 0.17-0.21 | 0.0-2.9 | 2.0-5.0 | . 37 | . 43 | 3 |
| | 8-14 | 15-73 | 22-70 | 5-15 | 1.25-1.45 | 0.6-2 | 4.00-14.00 | 0.12-0.21 | 0.0-2.9 | 1.0-2.0 | . 43 | . 55 | |
| | 14-25 | 15-73 | 22-70 | 5-15 | 1.35-1.60 | 0.6-2 | 4.00-14.00 | 0.12-0.21 | 0.0-2.9 | 0.0-1.0 | . 49 | . 64 | |
| | 25-65 | 53-70 | 28-35 | 2-12 | 1.70-2.10 | 0.0015-0.2 | 0.01-1.40 | 0.05-0.12 | 0.0-2.9 | 0.0-0.5 | . 32 | . 55 | |
| 83C: | | | | | | | | | | | | | |
| Broadbrook------ | | 15-45 | 50-70 | 5-15 | 1.15-1.40 | 0.6-2 | 4.00-14.00 | 0.17-0.21 | 0.0-2.9 | 2.0-5.0 | . 37 | . 43 | 3 |
| | 8-14 | 15-73 | 22-70 | 5-15 | 1.25-1.45 | 0.6-2 | 4.00-14.00 | 0.12-0.21 | 0.0-2.9 | 1.0-2.0 | . 43 | . 55 | |
| | 14-25 | 15-73 | 22-70 | 5-15 | 1.35-1.60 | 0.6-2 | 4.00-14.00 | 0.12-0.21 | 0.0-2.9 | 0.0-1.0 | . 49 | . 64 | |
| | 25-65 | 53-70 | 28-35 | 2-12 | 1.70-2.10 | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.12 | 0.0-2.9 | 0.0-0.5 | . 32 | . 55 | |
| | | | | | | | | | | | | | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated hydraulic conductivity | $\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 84B: | | | | | | | | | | | | | |
| Paxton---------- | 0-8 | 53-70 | 27-35 | 3-12 | 1.00-1.25 | 0.6-2 | 4.00-14.00 | 0.11-0.14\| | 0.0-2.9 | 2.0-5.0 | . 20 | . 28 | 3 |
| | 8-15 | 40-72 | 25-48 | 3-12 | 1.35-1.60 | 0.6-2 | 4.00-14.00 | 0.08-0.17\| | 0.0-2.9 | 0.5-1.5 | . 28 | . 43 | |
| | 15-26 | 40-72 | 25-48 | 3-12 | 1.35-1.60 | 0.6-2 | 4.00-14.00 | 0.08-0.17\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 26-65 | 40-72 | 25-48 | 3-12 | 1.70-2.00 | 0.0015-0.2 | 0.01-1.41 | 0.05-0.10\| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| Montauk--------- | 0-4 | 54-67 | 15-40 | 6-18 | 1.30-1.60 | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 20 | . 24 | 3 |
| | 4-14 | 42-69 | 30-40 | 1-18 | 1.70-1.90 | 0.6-6 | 4.00-42.00 | 0.08-0.17\| | 0.0-2.9 | 0.5-1.5 | . 24 | . 37 | |
| | 14-25 | 42-69 | 30-40 | 1-18 | 1.70-1.90 | 0.6-6 | 4.00-42.00 | 0.08-0.17\| | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 25-39 | 50-83 | 16-27 | 1-12 | 1.85-2.00 | 0.0015-0.2 | 0.01-1.40 | 0.02-0.08\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |
| | 39-60 | 50-83 | 16-27 | 1-12 | 1.85-2.00 | 0.0015-0.2 | 0.01-1.40 | 0.02-0.08\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |
| 84C: | | | | | | | | | | | | | |
| Paxton---------- | 0-8 | 53-70 | 27-35 | 3-12 | 1.00-1.25 | 0.6-2 | 4.00-14.00 | 0.11-0.14\| | 0.0-2.9 | 2.0-5.0 | . 20 | . 28 | 3 |
| | 8-15 | 40-72 | 25-48 | 3-12 | 1.35-1.60 | 0.6-2 | 4.00-14.00 | 0.08-0.17\| | 0.0-2.9 | 0.5-1.5 | . 28 | . 43 | |
| | 15-26 | 40-72 | 25-48 | 3-12 | 1.35-1.60 | 0.6-2 | 4.00-14.00 | 0.08-0.17\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 26-65 | 40-72 | 25-48 | 3-12 | 1.70-2.00 | 0.0015-0.2 | 0.01-1.41 | 0.05-0.10\| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| Montauk--------- | 0-4 | 54-67 | 15-40 | 6-18 | 1.30-1.60 | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 20 | . 24 | 3 |
| | 4-14 | 42-69 | 30-40 | 1-18 | 1.70-1.90 | 0.6-6 | 4.00-42.00 | 0.08-0.17\| | 0.0-2.9 | 0.5-1.5 | . 24 | . 37 | |
| | 14-25 | 42-69 | 30-40 | 1-18 | 1.70-1.90 | 0.6-6 | 4.00-42.00 | 0.08-0.17\| | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 25-39 | 50-83 | 16-27 | 1-12 | 1.85-2.00 | 0.0015-0.2 | 0.01-1.40 | 0.02-0.08\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |
| | 39-60 | 50-83 | 16-27 | 1-12 | 1.85-2.00 | 0.0015-0.2 | 0.01-1.40 | 0.02-0.08\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |
| 84D : | | | | | | | | | | | | | |
| Paxton---------- | 0-8 | 53-70 | 27-35 | 3-12 | 1.00-1.25 | 0.6-2 | 4.00-14.00 | 0.11-0.14\| | 0.0-2.9 | 2.0-5.0 | . 20 | . 28 | 3 |
| | 8-15 | 40-72 | 25-48 | 3-12 | 1.35-1.60 | 0.6-2 | 4.00-14.00 | 0.08-0.17\| | 0.0-2.9 | 0.5-1.5 | . 28 | . 43 | |
| | 15-26 | 40-72 | 25-48 | 3-12 | 1.35-1.60 | 0.6-2 | 4.00-14.00 | 0.08-0.17\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 26-65 | 40-72 | 25-48 | 3-12 | 1.70-2.00 | 0.0015-0.2 | 0.01-1.41 | 0.05-0.10\| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| Montauk--------- | | 54-67 | 15-40 | 6-18 | 1.30-1.60 | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 20 | . 24 | 3 |
| | 4-14 | 42-69 | 30-40 | 1-18 | 1.70-1.90 | 0.6-6 | 4.00-42.00 | 0.08-0.17\| | 0.0-2.9 | 0.5-1.5 | . 24 | . 37 | |
| | 14-25 | 42-69 | 30-40 | 1-18 | 1.70-1.90 | 0.6-6 | 4.00-42.00 | 0.08-0.17\| | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 25-39 | 50-83 | 16-27 | 1-12 | 1.85-2.00 | 0.0015-0.2 | 0.01-1.40 | 0.02-0.08\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |
| | 39-60 | 50-83 | 16-27 | 1-12 | 1.85-2.00 | 0.0015-0.2 | 0.01-1.40 | 0.02-0.08\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |
| 85B : | | | | | | | | | | | | | |
| Paxton---------- | | 53-70 | 27-35 | 3-12 | 1.00-1.25 | 0.6-2 | 4.00-14.00 | 0.11-0.14\| | 0.0-2.9 | 2.0-5.0 | . 17 | . 28 | 3 |
| | 8-15 | 40-72 | 25-48 | 3-12 | 1.35-1.60 | 0.6-2 | 4.00-14.00 | 0.08-0.17\| | 0.0-2.9 | 0.5-1.5 | . 28 | . 43 | |
| | 15-26 | 40-72 | 25-48 | 3-12 | 1.35-1.60 | 0.6-2 | 4.00-14.00 | 0.08-0.17\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 26-65 | 40-72 | 25-48 | 3-12 | 1.70-2.00 | 0.0015-0.2 | 0.01-1.41 | 0.05-0.10\| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| Montauk--------- | 0-4 | 54-67 | 15-40 | 6-18 | 1.30-1.60 | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 20 | . 24 | 3 |
| | 4-14 | 42-69 | 30-40 | 1-18 | 1.70-1.90 | 0.6-6 | 4.00-42.00 | 0.08-0.17\| | 0.0-2.9 | 0.5-1.5 | . 24 | . 37 | |
| | 14-25 | 42-69 | 30-40 | 1-18 | 1.70-1.90 | 0.6-6 | 4.00-42.00 | 0.08-0.17\| | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 25-39 | 50-83 | 16-27 | 1-12 | 1.85-2.00 | 0.0015-0.2 | 0.01-1.40 | 0.02-0.08\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |
| | 39-60 | 50-83 | 16-27 | 1-12 | 1.85-2.00 | 0.0015-0.2 | 0.01-1.40 | 0.02-0.08\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | $\begin{array}{\|c} \text { Saturated } \\ \text { hydraulic } \\ \text { conductivity } \end{array}$ | $\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$ | Linear extensibility | Organic matter | Erosion Factors | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 85C: | | | | | | | | | | | | | |
| Paxton--------- | 0-8 | 53-70 | 27-35 | 3-12 | 1.00-1.25\| | 0.6-2 | 4.00-14.00 | 0.11-0.14\| | 0.0-2.9 | 2.0-5.0 | . 17 | . 28 | 3 |
| | 8-15 | 40-72 | 25-48 | 3-12 | \|1.35-1.60| | 0.6-2 | 4.00-14.00 | 0.08-0.17\| | 0.0-2.9 | 0.5-1.5 | . 28 | . 43 | |
| | 15-26 | 40-72 | 25-48 | 3-12 | \|1.35-1.60| | 0.6-2 | 4.00-14.00 | 0.08-0.17\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 26-65 | 40-72 | 25-48 | 3-12 | 1.70-2.00\| | 0.0015-0.2 | 0.01-1.41 | 0.05-0.10\| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| Montauk--------- | 0-4 | 54-67 | 15-40 | 6-18 | 1.30-1.60\| | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 20 | . 24 | 3 |
| | $4-14$ | 42-69 | 30-40 | 1-18 | 1.70-1.90 | 0.6-6 | 4.00-42.00 | 0.08-0.17\| | 0.0-2.9 | 0.5-1.5 | . 24 | . 37 | |
| | 14-25 | 42-69 | 30-40 | 1-18 | 1.70-1.90\| | 0.6-6 | 4.00-42.00 | 0.08-0.17\| | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 25-39 | 50-83 | 16-27 | 1-12 | 1.85-2.00 | 0.0015-0.2 | 0.01-1.40 | 0.02-0.08\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |
| | 39-60 | 50-83 | 16-27 | 1-12 | 1.85-2.00\|0 | 0.0015-0.2 | 0.01-1.40 | 0.02-0.08\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |
| 86C: | | | | | | | | | | | | | |
| Paxton--------- | | 53-70 | 27-35 | 3-12 | 1.00-1.25\| | 0.6-2 | 4.00-14.00 | 0.11-0.14\| | 0.0-2.9 | 2.0-5.0 | . 15 | . 28 | 3 |
| | 8-15 | 40-72 | 25-48 | 3-12 | \|1.35-1.60| | 0.6-2 | 4.00-14.00 | 0.08-0.17\| | 0.0-2.9 | 0.5-1.5 | . 28 | . 43 | |
| | 15-26 | 40-72 | 25-48 | 3-12 | \|1.35-1.60| | 0.6-2 | 4.00-14.00 | 0.08-0.17\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 26-65 | 40-72 | 25-48 | 3-12 | 1.70-2.00\| | 0.0015-0.2 | 0.01-1.41 | 0.05-0.10\| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| Montauk--------- | 0-4 | 54-67 | 15-40 | 6-18 | 1.30-1.60\| | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 20 | . 24 | 3 |
| | 4-14 | 42-69 | 30-40 | 1-18 | 1.70-1.90\| | 0.6-6 | 4.00-42.00 | 0.08-0.17\| | 0.0-2.9 | 0.5-1.5 | . 24 | . 37 | |
| | 14-25 | 42-69 | 30-40 | 1-18 | \|1.70-1.90| | 0.6-6 | 4.00-42.00 | 0.08-0.17\| | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 25-39 | 50-83 | 16-27 | 1-12 | 1.85-2.00\| | 0.0015-0.2 | 0.01-1.40 | 0.02-0.08\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |
| | 39-60 | 50-83 | 16-27 | 1-12 | 1.85-2.00\|0 | 0.0015-0.2 | 0.01-1.40 | 0.02-0.08\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |
| 86D: | | | | | | | | | | | | | |
| Paxton---------- | 0-8 | 53-70 | 27-35 | 3-12 | 1.00-1.25\| | 0.6-2 | 4.00-14.00 | 0.11-0.14\| | 0.0-2.9 | 2.0-5.0 | . 15 | . 28 | 3 |
| | 8-15 | 40-72 | 25-48 | 3-12 | \|1.35-1.60| | 0.6-2 | 4.00-14.00 | 0.08-0.17\| | 0.0-2.9 | 0.5-1.5 | . 28 | . 43 | |
| | 15-26 | 40-72 | 25-48 | 3-12 | \|1.35-1.60| | 0.6-2 | 4.00-14.00 | 0.08-0.17\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 26-65 | 40-72 | 25-48 | 3-12 | 1.70-2.00 | 0.0015-0.2 | 0.01-1.41 | 0.05-0.10\| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| Montauk--------- | 0-4 | 54-67 | 15-40 | 6-18 | 1.30-1.60\| | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 20 | . 24 | 3 |
| | 4-14 | 42-69 | 30-40 | 1-18 | 1.70-1.90\| | 0.6-6 | 4.00-42.00 | 0.08-0.17\| | 0.0-2.9 | 0.5-1.5 | . 24 | . 37 | |
| | 14-25 | 42-69 | 30-40 | 1-18 | 1.70-1.90\| | 0.6-6 | 4.00-42.00 | 0.08-0.17\| | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 25-39 | 50-83 | 16-27 | 1-12 | 1.85-2.00\| | 0.0015-0.2 | 0.01-1.40 | 0.02-0.08\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |
| | 39-60 | 50-83 | 16-27 | 1-12 | 1.85-2.00\|0 | 0.0015-0.2 | 0.01-1.40 | 0.02-0.08\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 32 | |
| 87B: | | | | | | | | | | | | | |
| Wethersfield---- | 0-3 | 37-51 | 42-48 | 7-15 | 1.10-1.30\| | 0.6-2 | 4.00-14.00 | 0.14-0.17\| | 0.0-2.9 | 2.0-5.0 | . 28 | . 43 | 3 |
| | 3-13 | 37-73 | 22-48 | 5-15 | \|1.30-1.50| | 0.6-2 | 4.00-14.00 | 0.10-0.17\| | 0.0-2.9 | 0.5-1.5 | . 32 | . 43 | |
| | 13-27 | 37-73 | 22-48 | 5-15 | 1.30-1.60\| | 0.6-2 | 4.00-14.00 | 0.10-0.17\| | 0.0-2.9 | 0.5-1.0 | . 32 | . 43 | |
| | 27-65 | 37-73 | 22-48 | 5-15 | 1.75-2.00\|0 | 0.0015-0.2 | 0.01-1.40 | 0.08-0.17\| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |

Table 24.-Physical Properties of the Soils-Continued

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated
 hydraulic
 conductivity | $\begin{gathered} \text { Available } \\ \text { water } \\ \text { capacity } \end{gathered}$ | Linear extensibility | Organic matter | Erosion Factors | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 90C: | | | | | | | | | | | | | |
| Stockbridge | 0-10 | 22-53 | 40-50 | 7-17 | 1.00-1.30\| | 0.6-2 | 4.00-14.00 | \|0.14-0.18| | 0.0-2.9 | 2.0-6.0 | . 24 | . 32 | 3 |
| | 10-20 | 17-53 | 40-65 | 7-17 | 1.10-1.30\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.5-1.0 | . 37 | . 55 | |
| | 20-28 | 17-53 | 40-65 | 7-17 | 1.30-1.70\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | 28-42 | 22-53 | 40-60 | 7-17 | \| 1.50-1.70| | 0.2-0.6 | 1.40-4.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | 42-48 | 27-62 | 35-55 | 3-17 | 1.60-1.80\| | 0.2-0.6 | 1.40-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 48-65 | 27-62 | 35-55 | 3-17 | 1.60-1.80\| | 0.2-0.6 | 1.40-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 90D: | | | | | | | | | | | | | |
| Stockbridge | 0-10 | 22-53 | 40-50 | 7-17 | 1.00-1.30\| | 0.6-2 | 4.00-14.00 | \|0.14-0.18| | 0.0-2.9 | 2.0-6.0 | . 24 | . 32 | 3 |
| | 10-20 | 17-53 | 40-65 | 7-17 | 1.10-1.30\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.5-1.0 | . 37 | . 55 | |
| | 20-28 | 17-53 | 40-65 | 7-17 | 1.30-1.70\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | 28-42 | 22-53 | 40-60 | 7-17 | \| 1.50-1.70| | 0.2-0.6 | 1.40-4.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | 42-48 | 27-62 | 35-55 | 3-17 | \| 1.60-1.80| | 0.2-0.6 | 1.40-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 48-65 | 27-62 | 35-55 | 3-17 | 1.60-1.80\| | 0.2-0.6 | 1.40-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 91B: | | | | | | | | | | | | | |
| Stockbridge | 0-10 | 22-53 | 40-50 | 7-17 | 1.00-1.30\| | 0.6-2 | 4.00-14.00 | \|0.14-0.18| | 0.0-2.9 | 2.0-6.0 | . 17 | . 32 | 3 |
| | 10-20 | 17-53 | 40-65 | 7-17 | 1.10-1.30\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.5-1.0 | . 37 | . 55 | |
| | 20-28 | 17-53 | 40-65 | 7-17 | 1.30-1.70\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | 28-42 | 22-53 | 40-60 | 7-17 | 1.50-1.70\| | 0.2-0.6 | 1.40-4.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | 42-48 | 27-62 | 35-55 | 3-17 | 1.60-1.80\| | 0.2-0.6 | 1.40-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 48-65 | 27-62 | 35-55 | 3-17 | 1.60-1.80\| | 0.2-0.6 | 1.40-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 91C: | | | | | | | | | | | | | |
| Stockbridge | 0-10 | 22-53 | 40-50 | 7-17 | 1.00-1.30\| | 0.6-2 | 4.00-14.00 | \|0.14-0.18| | 0.0-2.9 | 2.0-6.0 | . 17 | . 32 | 3 |
| | 10-20 | 17-53 | 40-65 | 7-17 | 1.10-1.30\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.5-1.0 | . 37 | . 55 | |
| | 20-28 | 17-53 | 40-65 | 7-17 | 1.30-1.70\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | 28-42 | 22-53 | 40-60 | 7-17 | \| 1.50-1.70| | 0.2-0.6 | 1.40-4.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | 42-48 | 27-62 | 35-55 | 3-17 | \| 1.60-1.80| | 0.2-0.6 | 1.40-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 48-65 | 27-62 | 35-55 | 3-17 | 1.60-1.80\| | 0.2-0.6 | 1.40-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 91D: | | | | | | | | | | | | | |
| Stockbridge | 0-10 | 22-53 | 40-50 | 7-17 | 1.00-1.30\| | 0.6-2 | 4.00-14.00 | \|0.14-0.18| | 0.0-2.9 | 2.0-6.0 | . 17 | . 32 | 3 |
| | 10-20 | 17-53 | 40-65 | 7-17 | 1.10-1.30\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.5-1.0 | . 37 | . 55 | |
| | 20-28 | 17-53 | 40-65 | 7-17 | 1.30-1.70\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | 28-42 | 22-53 | 40-60 | 7-17 | \| 1.50-1.70| | 0.2-0.6 | 1.40-4.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | 42-48 | 27-62 | 35-55 | 3-17 | \|1.60-1.80| | 0.2-0.6 | 1.40-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 48-65 | 27-62 | 35-55 | 3-17 | 1.60-1.80\| | 0.2-0.6 | 1.40-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 92B: | | | | | | | | | | | | | |
| Nellis---------- | | 52-60 | 30-35 | 5-18 | 1.30-1.60\| | 0.6-6 | 4.00-42.00 | \|0.11-0.15 | 0.0-2.9 | 2.0-6.0 | . 17 | . 24 | 3 |
| | 8-14 | 17-65 | 30-65 | 5-18 | 1.40-1.70\| | 0.6-6 | 4.00-42.00 | \|0.08-0.19| | 0.0-2.9 | 0.0-1.0 | . 32 | . 43 | |
| | 14-25 | 17-65 | 30-65 | 5-18 | \| 1.40-1.70| | 0.6-6 | 4.00-42.00 | \|0.08-0.19| | 0.0-2.9 | 0.0-1.0 | . 32 | . 49 | |
| | 25-27 | 22-65 | 30-60 | 5-18 | \|1.40-1.70| | 0.6-6 | 4.00-42.00 | \|0.08-0.19| | 0.0-2.9 | 0.0-0.5 | . 32 | . 43 | |
| | 27-60 | 32-62 | 35-50 | 3-18 | \|1.70-1.80| | 0.6-6 | 4.00-42.00 | $\|0.07-0.19\|$ | 0.0-2.9 | 0.0-1.0 | . 28 | . 49 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g/cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 92C: | | | | | | | | | | | | | |
| Nellis | 0-8 | 52-60 | 30-35 | 5-18 | 1.30-1.60 | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-6.0 | . 17 | . 24 | 3 |
| | 8-14 | 17-65 | 30-65 | 5-18 | 1.40-1.70 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-1.0 | . 32 | . 43 | |
| | 14-25 | 17-65 | 30-65 | 5-18 | 1.40-1.70 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-1.0 | . 32 | . 49 | |
| | 25-27 | 22-65 | 30-60 | 5-18 | 1.40-1.70 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-0.5 | . 32 | . 43 | |
| | 27-60 | 32-62 | 35-50 | 3-18 | 1.70-1.80 | 0.6-6 | 4.00-42.00 | 0.07-0.19 | 0.0-2.9 | 0.0-1.0 | . 28 | . 49 | |
| 92D: | | | | | | | | | | | | | |
| Nellis- | 0-8 | 52-60 | 30-35 | 5-18 | 1.30-1.60 | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-6.0 | . 17 | . 24 | 3 |
| | $8-14$ | 17-65 | 30-65 | 5-18 | 1.40-1.70 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-1.0 | . 32 | . 43 | |
| | 14-25 | 17-65 | 30-65 | 5-18 | 1.40-1.70 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-1.0 | . 32 | . 49 | |
| | 25-27 | 22-65 | 30-60 | 5-18 | 1.40-1.70 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-0.5 | . 32 | . 43 | |
| | 27-60 | 32-62 | 35-50 | 3-18 | 1.70-1.80 | 0.6-6 | 4.00-42.00 | 0.07-0.19 | 0.0-2.9 | 0.0-1.0 | . 28 | . 49 | |
| 93C: | | | | | | | | | | | | | |
| Nellis | 0-8 | 52-60 | 30-35 | 5-18 | 1.30-1.60 | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-6.0 | . 10 | . 24 | 3 |
| | 8-14 | 17-65 | 30-65 | 5-18 | 1.40-1.70 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-1.0 | . 32 | . 43 | |
| | 14-25 | 17-65 | 30-65 | 5-18 | 1.40-1.70 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-1.0 | . 32 | . 49 | |
| | 25-27 | 22-65 | 30-60 | 5-18 | 1.40-1.70 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-0.5 | . 32 | . 43 | |
| | 27-60 | 32-62 | 35-50 | 3-18 | 1.70-1.80 | 0.6-6 | 4.00-42.00 | 0.07-0.19 | 0.0-2.9 | 0.0-1.0 | . 28 | . 49 | |
| 94C: | | | | | | | | | | | | | |
| Farmington------ | 0-3 | 60-74 | 10-35 | 5-16 | 1.30-1.50 | 0.6-6 | 4.00-42.00 | 0.11-0.14 | 0.0-2.9 | 2.0-5.0 | . 17 | . 24 | 1 |
| | 3-8 | 29-60 | 35-55 | 5-16 | 1.30-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.5-1.5 | . 28 | . 43 | |
| | 8-17 | 24-55 | 35-60 | 5-16 | 1.30-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-1.0 | . 28 | . 49 | |
| | 17-80 | | | --- | | 0.0000-0.6 | 0.00-4.00 | --- | | --- | --- | --- | |
| Nellis----------- | 0-8 | 52-60 | 30-35 | 5-18 | 1.30-1.60 | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-6.0 | . 17 | . 24 | 3 |
| | 8-14 | 17-65 | 30-65 | 5-18 | 1.40-1.70 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-1.0 | . 32 | . 43 | |
| | 14-25 | 17-65 | 30-65 | 5-18 | 1.40-1.70 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-1.0 | . 32 | . 49 | |
| | 25-27 | 22-65 | 30-60 | 5-18 | 1.40-1.70 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-0.5 | . 32 | . 43 | |
| | 27-60 | 32-62 | 35-50 | 3-18 | 1.70-1.80 | 0.6-6 | 4.00-42.00 | 0.07-0.19 | 0.0-2.9 | 0.0-1.0 | . 28 | . 49 | |
| 94E: | | | | | | | | | | | | | |
| Farmington------ | 0-3 | 60-74 | 10-35 | 5-16 | 1.30-1.50 | 0.6-6 | 4.00-42.00 | 0.11-0.14 | 0.0-2.9 | 2.0-5.0 | . 17 | . 24 | 1 |
| | 3-8 | 29-60 | 35-55 | 5-16 | 1.30-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.5-1.5 | . 28 | . 43 | |
| | 8-17 | 24-55 | 35-60 | 5-16 | 1.30-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-1.0 | . 28 | . 49 | |
| | 17-80 | | --- | --- | --- | 0.0000-0.6 | 0.00-4.00 | --- | --- | --- | --- | --- | |
| Nellis---------- | 0-8 | 52-60 | 30-35 | 5-18 | 1.30-1.60 | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-6.0 | . 17 | . 24 | 3 |
| | 8-14 | 17-65 | 30-65 | 5-18 | 1.40-1.70 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-1.0 | . 32 | . 43 | |
| | 14-25 | 17-65 | 30-65 | 5-18 | 1.40-1.70 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-1.0 | . 32 | . 49 | |
| | 25-27 | 22-65 | 30-60 | 5-18 | 1.40-1.70 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-0.5 | . 32 | . 43 | |
| | 27-60 | 32-62 | 35-50 | 3-18 | 1.70-1.80 | 0.6-6 | 4.00-42.00 | 0.07-0.19 | 0.0-2.9 | 0.0-1.0 | . 28 | . 49 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\begin{array}{\|c} \text { Available } \\ \text { water } \\ \mid \text { capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion Factors | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 95C: | | | | | | | | | | | | | |
| Farmington---------- \| | 0-3 | 60-74 | 10-35 | 5-16 | 1.30-1.50\| | 0.6-6 | 4.00-42.00 | 0.11-0.14 | 0.0-2.9 | 2.0-5.0 | . 17 | . 24 | 1 |
| | 3-8 | 29-60 | 35-55 | 5-16 | \|1.30-1.60| | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.5-1.5 | . 28 | . 43 | |
| | 8-17 | 24-55 | 35-60 | 5-16 | \|1.30-1.60| | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-1.0 | . 28 | . 49 | |
| | 17-80 | --- | --- | --- | --- | 0.0000-0.6 | 0.00-4.00 | --- | --- | --- | - | --- | |
| Rock outcrop--------- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | - | --- | 1 |
| 95E: | | | | | | | | | | | | | |
| Farmington---------- \| | 0-3 | 60-74 | 10-35 | 5-16 | 1.30-1.50\| | 0.6-6 | 4.00-42.00 | 0.11-0.14 | 0.0-2.9 | 2.0-5.0 | . 17 | . 24 | 1 |
| | 3-8 | 29-60 | 35-55 | 5-16 | \|1.30-1.60| | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.5-1.5 | . 28 | . 43 | |
| | 8-17 | 24-55 | 35-60 | 5-16 | \|1.30-1.60| | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-1.0 | . 28 | . 49 | |
| | 17-80 | --- | --- | --- | --- | 0.0000-0.6 | 0.00-4.00 | --- | --- | --- | --- | --- | |
| Rock outcrop--------- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | 1 |
| 96 : | | | | | | | | | | | | | |
| Ipswich------------- | 0-16 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 0.6-20 | 4.00-141.00 | 0.07-0.35 | 0.0-20.0 | 50-80 | --- | --- | 3 |
| | 16-23 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 0.6-20 | 4.00-141.00 | 0.07-0.35 | 0.0-20.01 | 50-80 | --- | --- | |
| | 23-64 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 0.6-20 | 4.00-141.00 | 0.07-0.35 | 0.0-20.0 | 50-80 | --- | - | |
| | 64-80 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 0.6-20 | 4.00-141.00 | 0.07-0.35 | 0.0-20.0 | 55-75 | --- | --- | |
| 97 : | | | | | | | | | | | | | |
| Pawcatuck----------- | 0-12 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 0.6-20 | 4.00-141.00 | 0.05-0.09 | 0.0-20.0 | 20-90 | --- | --- | 2 |
| | 12-40 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 0.6-20 | 4.00-141.00 | 0.05-0.09 | 0.0-20.0 | 20-80 | --- | --- | |
| | 40-46 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 0.6-20 | 4.00-141.00 | 0.05-0.09 | 0.0-20.01 | 20-50 | --- | --- | |
| | 46-50 | 25-69 | 30-65 | 1-10 | \|1.40-1.65| | 0.6-20 | 4.00-141.00 | 0.02-0.20 | 0.0-2.9 | 1.0-15 | . 20 | . 28 | |
| | 50-60 | 70-95 | 5-25 | 0-2 | \|1.45-1.70| | 20-100 | 141.00-703.00 | 0.01-0.11 | 0.0-2.9 | 0.0-2.0 | . 20 | . 28 | |
| $98 \text { : }$ | | | | | | | | | | | | | |
| Westbrook----------- | 0-10 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 0.6-20 | 4.00-141.00 | 0.05-0.09 | 0.0-20.0 | 20-90 | --- | --- | 2 |
| | 10-40 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 0.6-20 | 4.00-141.00 | 0.05-0.09 | 0.0-20.0 | 20-90 | --- | --- | |
| | 40-48 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 0.6-20 | 4.00-141.00 | 0.05-0.09 | 0.0-20.0 | 15-40 | --- | --- | |
| | 48-64 | 2-60 | 40-80 | 2-35 | 1.25-1.50\|0. | 0.0015-2 | 0.01-14.00 | 0.02-0.07 | 0.0-6.0 | 8.0-15 | . 20 | . 20 | |
| | 64-99 | 2-60 | 40-80 | 2-35 | \|1.25-1.50|0. | 0.0015-2 | 0.01-14.00 | 0.02-0.07 | 0.0-6.0 | 5.0-15 | . 24 | . 24 | |
| $99 \text { : }$ | | | | | | | | | | | | | |
| Westbrook, low salt-- | 0-10 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 0.6-20 | 4.00-141.00 | 0.07-0.27 | 0.0-20.0 | 20-90 | --- | --- | 2 |
| | 10-40 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 0.6-20 | 4.00-141.00 | 0.07-0.27 | 0.0-20.0 | 20-90 | --- | --- | |
| | 40-48 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 0.6-20 | 4.00-141.00 | 0.07-0.27 | 0.0-20.0 | 15-40 | --- | --- | |
| | 48-64 | 2-60 | 40-80 | 2-35 | 1.25-1.50\|0. | 0.0015-2 | 0.01-14.00 | 0.11-0.21 | 0.0-6.0 | 8.0-15 | . 20 | . 20 | |
| | 64-99 | 2-60 | 40-80 | 2-35 | \|1.25-1.50|0. | 0.0015-2 | 0.01-14.00 | 0.11-0.21 | 0.0-6.0 | 5.0-15 | . 24 | . 24 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | ```Moist bulk density``` | $\begin{aligned} & \text { Permea- } \\ & \text { bility } \end{aligned}$ | Saturated hydraulic conductivity | $\left.\begin{array}{\|c\|} \text { Available } \\ \text { water } \\ \text { capacity } \end{array} \right\rvert\,$ | $\|$Linear
 extensi-
 bility | Organic matter | Erosion Factors | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g/cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 100 : | | | | | | | | | | | | | |
| Suncook--------- | 0-7 | 75-100 | 15-22 | 1-3 | \|1.10-1.30| | 6-100 | 42.00-703.00 | 0.08-0.11\| | 0.0-2.9 | 2.0-5.0 | . 28 | . 28 | 5 |
| | 7-15 | 75-100 | 0-22 | 0-3 | \|1.20-1.50| | 6-100 | 42.00-703.00 | \|0.03-0.11| | 0.0-2.9 | 0.0-1.0 | . 28 | . 28 | |
| | 15-22 | 75-100 | 0-22 | 0-3 | \|1.20-1.50| | 6-100 | 42.00-703.00 | \|0.03-0.11| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | |
| | 22-32 | 75-100 | 0-22 | 0-3 | \|1.20-1.50| | 6-100 | 42.00-703.00 | 0.03-0.11\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | |
| | 32-42 | 75-100 | 0-22 | 0-3 | \|1.20-1.50| | 6-100 | 42.00-703.00 | 0.03-0.11\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | |
| | 42-65 | 75-100 | 0-22 | 0-3 | \|1.20-1.50| | 6-100 | 42.00-703.00 | 0.02-0.11\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 32 | |
| 101: | | | | | | | | | | | | | |
| Occum----------- | 0-10 | 53-68 | 20-45 | 2-12 | \|1.05-1.40| | 0.6-6 | 4.00-42.00 | 0.12-0.15\| | 0.0-2.9 | 2.0-6.0 | . 28 | . 28 | 3 |
| | 10-17 | 43-70 | 28-45 | 2-12 | \|1.20-1.50| | 0.6-6 | 4.00-42.00 | 0.10-0.18\| | 0.0-2.9 | 0.5-1.5 | . 32 | . 37 | |
| | 17-28 | 50-62 | 30-48 | 2-8 | \|1.20-1.50| | 0.6-6 | 4.00-42.00 | 0.10-0.15\| | 0.0-2.9 | 0.0-0.5 | . 43 | . 49 | |
| | 28-32 | 77-100 | 0-18 | 0-5 | \|1.30-1.60| | 6-100 | 42.00-703.00 | 0.01-0.11\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| | 32-42 | 77-100 | 0-18 | 0-5 | \|1.30-1.60| | 6-100 | 42.00-703.00 | 0.01-0.11\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| | 42-65 | 77-100 | 0-18 | 0-5 | \|1.30-1.60| | 6-100 | 42.00-703.00 | 0.01-0.11\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| 102 : | | | | | | | | | | | | | |
| Pootatuck------- | | 54-69 | 25-40 | 2-6 | \|1.10-1.35| | 0.6-6 | 4.00-42.00 | 0.12-0.14\| | 0.0-2.9 | 2.0-6.0 | . 24 | . 28 | 3 |
| | $4-16$ | 49-69 | 30-45 | 1-6 | \|1.20-1.45| | 0.6-6 | 4.00-42.00 | 0.10-0.14\| | 0.0-2.9 | 0.5-1.0 | . 37 | . 43 | |
| | 16-21 | 49-69 | 30-48 | 1-6 | \|1.20-1.45| | 0.6-6 | 4.00-42.00 | 0.10-0.14\| | 0.0-2.9 | 0.5-1.0 | . 37 | . 43 | |
| | 21-29 | 49-69 | 30-48 | 1-6 | \|1.20-1.45| | 0.6-6 | 4.00-42.00 | 0.10-0.14\| | 0.0-2.9 | 0.5-1.0 | . 37 | . 43 | |
| | 29-35 | 73-99 | 1-25 | 0-2 | \|1.25-1.50| | 6-100 | 42.00-703.00 | 0.02-0.11\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 | |
| | 35-40 | 88-100 | 0-10 | 0-2 | \|1.25-1.50| | 6-100 | 42.00-703.00 | 0.02-0.11\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 | |
| | 40-65 | 88-100 | 0-10 | 0-2 | \|1.25-1.50| | 6-100 | 42.00-703.00 | 0.02-0.11\| | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 | |
| $103:$ | | | | | | | | | | | | | |
| Rippowam-------- | | 49-68 | 30-45 | | 1.10-1.35 | 0.6-6 | 4.00-42.00 | 0.11-0.21 | 0.0-2.9 | 3.0-8.0 | . 15 | . 20 | 3 |
| | 5-12 | 49-69 | 30-45 | 1-6 | \|1.20-1.45| | 0.6-6 | 4.00-42.00 | 0.09-0.18\| | 0.0-2.9 | 1.0-3.0 | . 28 | . 37 | |
| | 12-19 | 49-69 | 30-45 | 1-6 | \|1.20-1.45| | 0.6-6 | 4.00-42.00 | 0.09-0.18\| | 0.0-2.9 | 0.5-1.0 | . 28 | . 37 | |
| | 19-24 | 49-84 | 15-45 | 1-6 | \|1.20-1.45| | 0.6-6 | 4.00-42.00 | 0.09-0.18\| | 0.0-2.9 | 0.0-1.0 | . 28 | . 37 | |
| | 24-27 | 49-84 | 15-45 | 1-6 | \|1.20-1.45| | 0.6-6 | 4.00-42.00 | 0.09-0.18\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 37 | |
| | 27-31 | 73-100 | 0-25 | 0-2 | \|1.25-1.50| | 6-100 | 42.00-703.00 | 0.01-0.10\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| | 31-65 | 73-100 | 0-25 | 0-2 | \|1.25-1.50| | 6-100 | 42.00-703.00 | 0.01-0.10\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| 104 : | | | | | | | | | | | | | |
| Bash----------- | | 13-44 | 51-70 | | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.17-0.21\| | 0.0-2.9 | 1.0-5.0 | . 43 | | 5 |
| | 11-21 | 13-70 | 25-70 | 5-17 | \|1.20-1.55 | 0.6-2 | 4.00-14.00 | 0.09-0.20\| | 0.0-2.9 | 0.5-2.0 | . 37 | . 43 | |
| | 21-28 | 13-70 | 25-70 | 5-17 | \|1.25-1.55| | 0.6-2 | 4.00-14.00 | 0.09-0.20\| | 0.0-2.9 | 0.5-2.0 | . 37 | . 49 | |
| | 28-60 | 13-69 | 30-70 | 1-17 | \|1.25-1.55| | 0.2-2 | 1.40-14.00 | 0.08-0.20\| | 0.0-2.9 | 0.0-0.5 | . 43 | . 55 | |
| 105 : | | | | | | | | | | | | | |
| Hadley--------- | 0-12 | 15-46 | 52-70 | 5-15 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.19-0.21\| | 0.0-2.9 | 2.0-5.0 | . 43 | . 43 | 5 |
| | 12-29 | 28-88 | 10-60 | 2-12 | \|1.25-1.50| | 0.6-6 | 4.00-42.00 | 0.16-0.20\| | 0.0-2.9 | 0.0-2.0 | . 55 | . 55 | |
| | 29-40 | 28-88 | 10-60 | 2-12 | \|1.25-1.50 | 0.6-6 | 4.00-42.00 | 0.16-0.20 | 0.0-2.9 | 0.0-2.0 | . 55 | . 55 | |
| | 40-45 | 28-88 | 10-60 | 2-12 | \|1.25-1.50| | 0.6-20 | 4.00-141.00 | 0.04-0.20\| | 0.0-2.9 | 0.0-2.0 | . 37 | . 37 | |
| | 45-60 | 28-88 | 10-60 | 2-12 | \|1.25-1.50| | 0.6-20 | 4.00-141.00 | 0.04-0.20\| | 0.0-2.9 | 0.0-2.0 | . 37 | . 37 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated hydraulic conductivity | $\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 106 : | | | | | | | | | | | | | |
| Winooski------------- | 0-12 | 2-44 | 51-80 | 5-18 | 1.15-1.35\| | 0.6-2 | 4.00-14.00 | 0.19-0.21 | 0.0-2.9 | 2.0-5.0 | . 43 | . 64 | 5 |
| | 12-18 | 10-84 | 14-80 | 2-10 | 1.20-1.50\| | 0.6-6 | 4.00-42.00 | 0.10-0.21 | 0.0-2.9 | 0.0-0.5 | . 43 | . 64 | |
| | 18-36 | 10-84 | 14-80 | 2-10 | 1.20-1.50\| | 0.6-6 | 4.00-42.00 | 0.10-0.21 | 0.0-2.9 | 0.0-0.5 | . 43 | . 64 | |
| | 36-52 | 10-84 | 14-80 | 2-10 | 1.20-1.50\| | 0.6-6 | 4.00-42.00 | 0.10-0.21 | 0.0-2.9 | 0.0-0.5 | . 43 | . 64 | |
| | 52-65 | 10-84 | 14-80 | 2-10 | 1.20-1.50\| | 0.6-6 | 4.00-42.00 | 0.10-0.21 | 0.0-2.9 | 0.0-0.5 | . 43 | . 64 | |
| 107: | | | | | | | | | | | | | |
| Limerick------------ | 0-8 | 15-56 | 50-75 | 7-10 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.19-0.21 | 0.0-2.9 | 2.0-5.0 | . 49 | . 49 | 5 |
| | 8-20 | 15-58 | 40-75 | 2-10 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.15-0.21 | 0.0-2.9 | 0.0-0.5 | . 64 | . 64 | |
| | 20-36 | 15-58 | 40-75 | 2-10 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.15-0.21 | 0.0-2.9 | 0.0-0.5 | . 64 | . 64 | |
| | 36-54 | 15-58 | 40-75 | 2-10 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.15-0.21 | 0.0-2.9 | 0.0-0.5 | . 64 | . 64 | |
| | 54-65 | 17-59 | 40-75 | 1-8 | 1.20-1.50\| | 0.6-2 | 4.00-14.00 | 0.15-0.21 | 0.0-2.9 | 0.0-0.5 | . 64 | . 64 | |
| Lim----------------- | 0-6 | 52-67 | 30-36 | 3-12 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | \|0.15-0.17 | 0.0-2.9 | 2.0-8.0 | . 28 | . 32 | 4 |
| | 6-11 | 5-55 | 42-80 | 3-15 | 1.20-1.50\| | 0.6-2 | 4.00-14.00 | \|0.15-0.19 | 0.0-2.9 | 0.0-0.5 | . 64 | . 64 | |
| | 11-15 | 5-55 | 42-80 | 3-15 | 1.20-1.50\| | 0.6-2 | 4.00-14.00 | \|0.15-0.19 | 0.0-2.9 | 0.0-0.5 | . 64 | . 64 | |
| | 15-22 | 5-55 | 42-80 | 3-15 | 1.20-1.50\| | 0.6-2 | 4.00-14.00 | \|0.15-0.19 | 0.0-2.9 | 0.0-0.5 | . 64 | . 64 | |
| | 22-29 | 37-77 | 20-51 | 3-12 | 1.20-1.50\| | 0.6-2 | 4.00-14.00 | 0.09-0.15 | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 29-42 | 75-98 | 2-22 | 0-3 | 1.30-1.60\| | 6-100 | 42.00-703.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 15 | . 20 | |
| | 42-50 | 75-98 | 2-22 | 0-3 | 1.30-1.60\| | 6-100 | 42.00-703.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 15 | . 20 | |
| | 50-57 | 75-98 | 2-22 | 0-3 | 1.30-1.60\| | 6-100 | 42.00-703.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 | |
| | 57-65 | 75-98 | 2-22 | 0-3 | 1.30-1.60\| | 6-100 | 42.00-703.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 15 | . 20 | |
| 108: | | | | | | | | | | | | | |
| Saco---------------- | 0-12 | 13-41 | 52-70 | 7-17 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.19-0.21 | 0.0-2.9 | 3.0-8.0 | . 28 | . 32 | 4 |
| | 12-32 | 13-66 | 30-70 | 4-17 | 1.25-1.50\| | 0.6-2 | 4.00-14.00 | 0.15-0.21 | 0.0-2.9 | 0.0-2.0 | . 49 | . 49 | |
| | 32-48 | 13-66 | 30-70 | 4-17 | 1.25-1.50\| | 0.6-2 | 4.00-14.00 | 0.15-0.21 | 0.0-2.9 | 0.0-0.5 | . 49 | . 49 | |
| | 48-60 | 80-98 | 1-12 | 1-8 | 1.30-1.60\| | 6-100 | 42.00-703.00 | 0.02-0.11 | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |
| 109: | | | | | | | | | | | | | |
| Fluvaquents, | | | | | | | | | | | | | |
| Frequently Flooded-- | 0-4 | 20-43 | 50-65 | 7-15 | 1.00-1.70\| | 0.6-2 | 4.00-14.00 | 0.16-0.21 | 0.0-2.9 | 2.0-6.0 | . 32 | . 37 | 2 |
| | 4-14 | 30-92 | 5-55 | 3-15 | 1.10-1.70\| | 0.6-100 | 4.00-703.00 | 0.01-0.21 | 0.0-2.9 | 0.5-1.5 | . 28 | . 32 | |
| | 14-21 | 30-92 | 5-55 | 3-15 | 1.20-2.00\| | 0.6-100 | 4.00-703.00 | 0.01-0.21 | 0.0-2.9 | 0.0-1.0 | . 28 | . 37 | |
| | 21-38 | 20-80 | 15-65 | 5-15 | 1.00-1.70\| | 0.6-100 | 4.00-703.00 | 0.03-0.21 | 0.0-2.9 | 1.0-4.0 | . 24 | . 37 | |
| | 38-45 | 20-80 | 15-65 | 5-15 | 1.00-1.70\| | 0.6-100 | 4.00-703.00 | 0.03-0.21 | 0.0-2.9 | 1.0-3.0 | . 28 | . 37 | |
| | 45-55 | 30-92 | 5-55 | 3-15 | 1.20-2.00\| | 0.6-100 | 4.00-703.00 | 0.01-0.21 | 0.0-2.9 | 0.0-0.5 | . 28 | . 37 | |
| | 55-60 | 20-80 | 15-65 | 5-15 | 1.00-1.70\| | 0.6-100 | 4.00-703.00 | 0.03-0.21 | 0.0-2.9 | 1.0-3.0 | . 28 | . 37 | |
| Udifluvents, Frequently Flooded-- | | | | | | | | | | | | | |
| | 0-2 | 55-75 | 18-30 | 7-15 | 1.20-1.45\| | 4-36 | 28.00-254.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 15 | . 15 | 2 |
| | 2-4 | 30-92 | 5-55 | 3-15 | 1.30-1.60 | 0.6-100 | 4.00-703.00 | 0.01-0.21 | 0.0-2.9 | 0.0-1.0 | . 28 | . 37 | |
| | 4-12 | 20-80 | 15-65 | 5-15 | 1.25-1.60\| | 0.6-100 | 4.00-703.00 | 0.03-0.21 | 0.0-2.9 | 1.0-4.0 | . 24 | . 37 | |
| | 12-18 | 20-80 | 15-65 | 5-15 | 1.30-1.60\| | 0.6-100 | 4.00-703.00 | 0.03-0.21 | 0.0-2.9 | 0.5-2.0 | . 32 | . 43 | |
| | 18-35 | 30-92 | 5-55 | 3-15 | 1.40-1.70\| | 0.6-100 | 4.00-703.00 | 0.01-0.21 | 0.0-2.9 | 0.0-0.5 | . 28 | . 37 | |
| | 35-38 | 30-92 | 5-55 | 3-15 | 1.40-1.70\| | 0.6-100 | 4.00-703.00 | 0.01-0.21 | 0.0-2.9 | 0.0-0.5 | . 28 | . 37 | |
| | 38-60 | 30-92 | 5-55 | 3-15 | 1.40-1.70\| | 0.6-100 | 4.00-703.00 | 0.01-0.21 | 0.0-2.9 | 0.0-0.5 | . 28 | . 37 | |

Table 24.-Physical Properties of the Soils-Continued

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g/cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 229B: | | | | | | | | | | | | | |
| Agawam---------- | 0-8 | 53-71 | 25-37 | 4-10 | 1.10-1.20 | 2-6 | 14.00-42.00 | 0.12-0.15\| | 0.0-2.9 | 1.0-5.0 | . 28 | . 32 | 3 |
| | 8-14 | 50-69 | 30-40 | 1-10 | 1.20-1.40 | 2-6 | 14.00-42.00 | 0.11-0.18\| | 0.0-2.9 | 0.5-2.0 | . 37 | . 43 | |
| | 14-24 | 54-69 | 30-40 | 1-6 | 1.30-1.40 | 2-6 | 14.00-42.00 | 0.11-0.17\| | 0.0-2.9 | 0.0-0.5 | . 32 | . 55 | |
| | 24-60 | 87-100 | 0-12 | 0-1 | 1.30-1.50 | 20-100 | 141.00-703.00 | 0.01-0.07\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| Urban land- | 0-6 | - | --- | 0-0 | --- | 0.01-20 | 0.07-141.00 | 0.00-0.00 | --- | - | - | - | -- |
| 229C: | | | | | | | | | | | | | |
| Agawam---------- | 0-8 | 53-71 | 25-37 | 4-10 | 1.10-1.20 | 2-6 | 14.00-42.00 | 0.12-0.15\| | 0.0-2.9 | 1.0-5.0 | . 28 | . 32 | 3 |
| | 8-14 | 50-69 | 30-40 | 1-10 | 1.20-1.40 | 2-6 | 14.00-42.00 | 0.11-0.18\| | 0.0-2.9 | 0.5-2.0 | . 37 | . 43 | |
| | 14-24 | 54-69 | 30-40 | 1-6 | 1.30-1.40 | 2-6 | 14.00-42.00 | 0.11-0.17\| | 0.0-2.9 | 0.0-0.5 | . 32 | . 55 | |
| | 24-60 | 87-100 | 0-12 | 0-1 | 1.30-1.50 | 20-100 | 141.00-703.00 | 0.01-0.07\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| Urban land- | 0-6 | --- | --- | 0-0 | --- | 0.01-20 | 0.07-141.00 | 0.00-0.00 | --- | --- | --- | --- | -- |
| 230B: | | | | | | | | | | | | | |
| Branford-------- | | 23-46 | 51-65 | 3-12 | 1.20-1.40 | 0.6-6 | 4.00-42.00 | 0.17-0.21 | 0.0-2.9 | 2.0-5.0 | . 43 | . 49 | 3 |
| | $8-18$ | 23-69 | 28-65 | 3-12 | 1.25-1.45 | 0.6-6 | 4.00-42.00 | 0.11-0.21\| | 0.0-2.9 | 0.5-1.5 | . 49 | . 55 | |
| | 18-24 | 23-69 | 28-65 | 3-12 | 1.30-1.50 | 0.6-6 | 4.00-42.00 | 0.09-0.21\| | 0.0-2.9 | 0.0-0.5 | . 49 | . 64 | |
| | 24-65 | 73-100 | 0-25 | 0-2 | 1.40-1.65 | 6-100 | 42.00-703.00 | 0.02-0.10\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 20 | |
| Urban land- | 0-6 | --- | --- | 0-0 | --- | 0.01-20 | 0.07-141.00 | 0.00-0.00\| | --- | --- | --- | --- | -- |
| $230 \mathrm{C}:$ | | | | | | | | | | | | | |
| Branford-------- | 0-8 | 23-46 | 51-65 | 3-12 | 1.20-1.40 | 0.6-6 | 4.00-42.00 | 0.17-0.21\| | 0.0-2.9 | 2.0-5.0 | . 43 | . 49 | 3 |
| | 8-18 | 23-69 | 28-65 | 3-12 | 1.25-1.45 | 0.6-6 | 4.00-42.00 | 0.11-0.21\| | 0.0-2.9 | 0.5-1.5 | . 49 | . 55 | |
| | 18-24 | 23-69 | 28-65 | 3-12 | 1.30-1.50 | 0.6-6 | 4.00-42.00 | 0.09-0.21\| | 0.0-2.9 | 0.0-0.5 | . 49 | . 64 | |
| | 24-65 | 73-100 | 0-25 | 0-2 | 1.40-1.65 | 6-100 | 42.00-703.00 | 0.02-0.10\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 20 | |
| Urban land- | 0-6 | --- | --- | 0-0 | --- | 0.01-20 | 0.07-141.00 | 0.00-0.00 | --- | --- | --- | - | -- |
| 232B: | | | | | | | | | | | | | |
| Haven----------- | | | 51-80 | | 1.10-1.40 | 0.6-2 | 4.00-14.00 | 0.16-0.21 | 0.0-2.9 | 2.0-6.0 | . 32 | . 43 | 3 |
| | $7-14$ | 2-44 | 25-80 | 5-18 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.13-0.21\| | 0.0-2.9 | 0.5-2.0 | . 49 | . 64 | |
| | 14-20 | 2-44 | 25-80 | 5-18 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.13-0.21\| | 0.0-2.9 | 0.5-1.0 | . 49 | . 64 | |
| | 20-24 | 54-70 | 25-28 | 5-18 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.13-0.17\| | 0.0-2.9 | 0.0-0.5 | . 37 | . 43 | |
| | 24-60 | 92-100 | 0-5 | 0-3 | 1.40-1.65 | 20-100 | 141.00-703.00 | 0.01-0.06\| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |
| Urban land- | 0-6 | --- | --- | 0-0 | --- | 0.01-20 | 0.07-141.00 | 0.00-0.00\| | -- | - | -- | --- | -- |
| 234B: | | | | | | | | | | | | | |
| Merrimac-------- | 0-9 | 45-70 | 27-48 | 3-7 | 1.10-1.20 | 2-6 | 14.00-42.00 | 0.10-0.12\| | 0.0-2.9 | 1.0-5.0 | . 24 | . 28 | 3 |
| | 9-16 | 48-69 | 30-48 | 1-4 | 1.20-1.40 | 2-6 | 14.00-42.00 | 0.10-0.14\| | 0.0-2.9 | 0.5-1.0 | . 28 | . 37 | |
| | 16-24 | 48-69 | 30-48 | 1-4 | 1.20-1.40 | 2-6 | 14.00-42.00 | 0.07-0.12\| | 0.0-2.9 | 0.5-1.0 | . 24 | . 32 | |
| | 24-60 | 88-100 | 0-9 | 0-3 | 1.30-1.50 | 6-100 | 42.00-703.00 | 0.02-0.05 | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |
| Urban land-- | 0-6 | -- | -- | 0-0 | --- | 0.01-20 | 0.07-141.00 | 0.00-0.00 | --- | --- | --- | --- | -- |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion Factors | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 235B: | | | | | | | | | | | | | |
| Penwood--------- | 0-8 | 74-83 | 14-25 | 1-3 | 1.45-1.60\| | 6-100 | 42.00-703.00 | 0.05-0.08 | 0.0-2.9 | 2.0-4.0 | . 17 | . 20 | 3 |
| | 8-18 | 72-85 | 12-28 | 0-3 | 1.45-1.60\| | 6-100 | 42.00-703.00 | 0.05-0.11 | 0.0-2.9 | 0.5-1.0 | . 24 | . 28 | |
| | 18-30 | 88-98 | 2-10 | 0-2 | 1.45-1.60\| | 6-100 | 42.00-703.00 | 0.03-0.07 | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| | 30-60 | 88-98 | 2-10 | 0-2 | 1.45-1.70\| | 6-100 | 42.00-703.00 | 0.03-0.07 | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| Urban land- | 0-6 | --- | --- | 0-0 | - | 0.01-20 | 0.07-141.00 | 0.00-0.00 | --- | --- | - | - | -- |
| 236B: | | | | | | | | | | | | | |
| Windsor--------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55\| | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 45-95 | --- | --- | 2 |
| | 1-3 | 64-86 | 10-25 | 1-4 | 1.45-1.60\| | 6-20 | 42.00-141.00 | 0.05-0.08 | 0.0-2.9 | 1.0-4.0 | . 17 | . 17 | |
| | 3-9 | 74-86 | 10-25 | 1-4 | 1.45-1.60\| | 6-20 | 42.00-141.00 | 0.05-0.11 | 0.0-2.9 | 0.5-1.0 | . 10 | . 10 | |
| | 9-21 | 74-86 | 10-25 | 1-4 | 1.45-1.60\| | 6-20 | 42.00-141.00 | 0.05-0.11 | 0.0-2.9 | 0.5-1.0 | . 10 | . 10 | |
| | 21-25 | 77-95 | 5-20 | 0-3 | 1.45-1.60\| | 6-100 | 12.00-703.00 | 0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | |
| | 25-65 | 78-95 | 5-20 | 0-2 | 1.45-1.60\| | 6-100 | 42.00-703.00 | 0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| Urban land- | 0-6 | --- | | 0-0 | --- | 0.01-20 | 0.07-141.00 | 10.00-0.00 | --- | --- | - | - | -- |
| 237A: | | | | | | | | | | | | | |
| Manchester------ | 0-9 | 53-69 | 28-40 | 3-7 | 1.25-1.50\| | 6-20 | 42.00-141.00 | 0.07-0.11 | 0.0-2.9 | 2.0-5.0 | . 15 | . 24 | 2 |
| | 9-18 | 78-98 | 1-18 | 1-4 | 1.25-1.50\| | 6-100 | 12.00-703.00 | 0.02-0.07 | 0.0-2.9 | 0.0-1.0 | . 15 | . 20 | |
| | 18-65 | 72-99 | 1-27 | 0-1 | 1.35-1.60\| | 6-100 | 42.00-703.00 | 0.01-0.06 | 0.0-2.9 | 0.0-0.5 | . 10 | . 24 | |
| Urban land- | 0-6 | --- | --- | 0-0 | --- | 0.01-20 | 0.07-141.00 | 0.00-0.00 | --- | --- | - | -- | -- |
| 237C: | | | | | | | | | | | | | |
| Manchester------ | 0-9 | 53-69 | 28-40 | 3-7 | 1.25-1.50\| | 6-20 | 42.00-141.00 | 0.07-0.11 | 0.0-2.9 | 2.0-5.0 | . 15 | . 24 | 2 |
| | 9-18 | 78-98 | 1-18 | 1-4 | 1.25-1.50\| | 6-100 | 42.00-703.00 | 0.02-0.07 | 0.0-2.9 | 0.0-1.0 | . 15 | . 20 | |
| | 18-65 | 72-99 | 1-27 | 0-1 | 1.35-1.60\| | 6-100 | 42.00-703.00 | 0.01-0.06 | 0.0-2.9 | 0.0-0.5 | . 10 | . 24 | |
| Urban land- | 0-6 | --- | --- | 0-0 | --- | 0.01-20 | 0.07-141.00 | 0.00-0.00 | --- | --- | -- | -- | -- |
| 238A: | | | | | | | | | | | | | |
| Hinckley-------- | 0-8 | 54-69 | 27-38 | 4-8 | 0.90-1.10\| | 6-20 | 42.00-141.00 | 0.07-0.11 | 0.0-2.9 | 2.0-7.0 | . 15 | . 28 | 2 |
| | 8-20 | 75-83 | 12-24 | 1-5 | 1.20-1.40\| | 6-20 | 42.00-141.00 | 0.03-0.10 | 0.0-2.9 | 0.5-1.5 | . 10 | . 17 | |
| | 20-27 | 87-93 | 2-12 | 1-5 | 1.20-1.40\| | 6-20 | 42.00-141.00 | 0.02-0.05 | 0.0-2.9 | 0.0-0.5 | . 05 | . 15 | |
| | 27-42 | 88-93 | 4-12 | 0-3 | \|1.30-1.50| | 20-100 | \|141.00-703.00 | 0.01-0.04 | 0.0-2.9 | 0.0-0.5 | . 10 | . 28 | |
| | 42-60 | 88-93 | 4-12 | 0-3 | 1.30-1.50\| | 20-100 | 141.00-703.00 | 0.01-0.04 | 0.0-2.9 | 0.0-0.5 | . 10 | . 28 | |
| Urban land- | 0-6 | --- | - | 0-0 | -- | 0.01-20 | 0.07-141.00 | 0.00-0.00 | -- | -- | --- | --- | -- |
| 238C: | | | | | | | | | | | | | |
| Hinckley------- | 0-8 | 54-69 | 27-38 | 4-8 | 0.90-1.10\| | 6-20 | 42.00-141.00 | 0.07-0.11 | 0.0-2.9 | 2.0-7.0 | . 15 | . 28 | 2 |
| | 8-20 | 75-83 | 12-24 | 1-5 | 1.20-1.40\| | 6-20 | 42.00-141.00 | 0.03-0.10 | 0.0-2.9 | 0.5-1.5 | . 10 | . 17 | |
| | 20-27 | 87-93 | 2-12 | 1-5 | 1.20-1.40\| | 6-20 | 42.00-141.00 | 0.02-0.05 | 0.0-2.9 | 0.0-0.5 | . 05 | . 15 | |
| | 27-42 | 88-93 | 4-12 | 0-3 | 1.30-1.50\| | 20-100 | 141.00-703.00 | 0.01-0.04 | 0.0-2.9 | 0.0-0.5 | . 10 | . 28 | |
| | 42-60 | 88-93 | 4-12 | 0-3 | 1.30-1.50\| | 20-100 | 141.00-703.00 | 0.01-0.04 | 0.0-2.9 | 0.0-0.5 | . 10 | . 28 | |

Table 24.-Physical Properties of the Soils-Continued

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | ```Moist``` | Permeability | Saturated hydraulic conductivity | $\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$ | $\left\lvert\, \begin{gathered} \text { Linear } \\ \text { extensi- } \\ \text { bility } \end{gathered}\right.$ | Organic
 matter | \|Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g/cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 250B: | | | | | | | | | | | | | |
| Sutton---------- | 0-6 | 56-68 | 20-40 | 4-12 | 1.30-1.50 | 2-6 | 14.00-42.00 | 0.12-0.14 | 0.0-2.9 | 2.0-6.0 | . 15 | . 20 | 5 |
| | 6-12 | 43-68 | 28-45 | 4-12 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | 0.07-0.17 | 0.0-2.9 | 1.0-3.0 | . 24 | . 37 | |
| | 12-24 | 43-68 | 28-45 | 4-12 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.07-0.17\| | 0.0-2.9 | 0.5-2.0 | . 24 | . 37 | |
| | 24-28 | 43-68 | 28-45 | 4-12 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.07-0.17\| | 0.0-2.9 | 0.0-1.0 | . 28 | . 37 | |
| | 28-36 | 58-70 | 20-40 | 2-10 | 1.45-1.65 | 2-6 | 14.00-42.00 | 0.07-0.14 | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 36-65 | 58-70 | 20-40 | 2-10 | 1.45-1.65 | 2-6 | 14.00-42.00 | 0.07-0.14 | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| Urban land- | 0-6 | - | --- | 0-0 | --- | 0.01-20 | 0.07-141.00 | 0.00-0.00 | --- | - | --- | - | -- |
| 253B: | | | | | | | | | | | | | |
| Wapping--------- | 0-11 | 43-66 | 30-45 | 4-12 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.13-0.17 | 0.0-2.9 | 2.0-6.0 | . 32 | . 43 | 5 |
| | 11-16 | 33-66 | 30-55 | 2-12 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.13-0.21 | 0.0-2.9 | 0.5-1.5 | . 49 | . 55 | |
| | 16-20 | 35-68 | 30-55 | 2-10 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.13-0.21 | 0.0-2.9 | 0.0-1.0 | . 55 | . 64 | |
| | 20-28 | 62-74 | 18-36 | 1-8 | 1.45-1.60 | 2-6 | 14.00-42.00 | 0.07-0.13 | 0.0-2.9 | 0.0-0.5 | . 20 | . 37 | |
| | 28-36 | 79-84 | 10-20 | 1-8 | 1.45-1.65 | 2-20 | 14.00-141.00 | 0.04-0.13 | 0.0-2.9 | 0.0-0.5 | . 15 | . 24 | |
| | 36-80 | 79-84 | 10-20 | 1-6 | 1.45-1.65 | 2-20 | 14.00-141.00 | 0.03-0.13 | 0.0-2.9 | 0.0-0.5 | . 15 | . 24 | |
| Urban land- | 0-6 | --- | --- | 0-0 | --- | 0.01-20 | 0.07-141.00 | 0.00-0.00 | --- | --- | --- | --- | -- |
| 255B: | | | | | | | | | | | | | |
| Watchaug-------- | | 56-65 | 20-40 | 4-15 | 1.30-1.50 | 0.6-2 | 4.00-14.00 | 0.12-0.15 | 0.0-2.9 | 2.0-7.0 | . 17 | . 24 | 5 |
| | 8-18 | 30-66 | 30-55 | 4-15 | 1.40-1.65 | 0.6-2 | 4.00-14.00 | 0.09-0.20 | 0.0-2.9 | 1.0-2.0 | . 28 | . 43 | |
| | 18-24 | 30-66 | 30-55 | 4-15 | 1.40-1.65 | 0.6-2 | 4.00-14.00 | 0.09-0.20 | 0.0-2.9 | 0.5-1.0 | . 32 | . 49 | |
| | 24-65 | 60-70 | 15-40 | 2-15 | 1.45-1.70 | 0.6-6 | 4.00-42.00 | 0.07-0.15 | 0.0-2.9 | 0.0-0.5 | . 20 | . 37 | |
| Urban land- | 0-6 | --- | | 0-0 | --- | 0.01-20 | 0.07-141.00 | 0.00-0.00 | --- | --- | --- | -- | -- |
| 260B: | | | | | | | | | | | | | |
| Charlton-------- | | 57-72 | 20-40 | 3-8 | 1.25-1.45 | 0.6-6 | 4.00-42.00 | 0.12-0.14 | 0.0-2.9 | 2.0-6.0 | . 17 | . 24 | 5 |
| | 4-7 | 57-72 | 20-40 | 3-8 | 1.30-1.45 | 0.6-6 | 4.00-42.00 | 0.09-0.14 | 0.0-2.9 | 0.5-1.0 | . 24 | . 37 | |
| | 7-19 | 57-72 | 20-40 | 3-8 | 1.35-1.50 | 0.6-6 | 4.00-42.00 | 0.09-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 19-27 | 57-72 | 20-40 | 3-8 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | 0.08-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 27-65 | 57-72 | 20-40 | 1-8 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.13 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| Urban land- | 0-6 | - | --- | 0-0 | --- | 0.01-20 | 0.07-141.00 | 0.00-0.00 | --- | --- | --- | -- | -- |
| 260C: | | | | | | | | | | | | | |
| Charlton-------- | 0-4 | 57-72 | 20-40 | 3-8 | 1.25-1.45 | 0.6-6 | 4.00-42.00 | 0.12-0.14 | 0.0-2.9 | 2.0-6.0 | . 17 | . 24 | 5 |
| | 4-7 | 57-72 | 20-40 | 3-8 | 1.30-1.45 | 0.6-6 | 4.00-42.00 | 0.09-0.14 | 0.0-2.9 | 0.5-1.0 | . 24 | . 37 | |
| | 7-19 | 57-72 | 20-40 | 3-8 | 1.35-1.50 | 0.6-6 | 4.00-42.00 | 0.09-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 19-27 | 57-72 | 20-40 | 3-8 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | 0.08-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 27-65 | 57-72 | 20-40 | 1-8 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.13 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| Urban land- | 0-6 | --- | --- | 0-0 | --- | 0.01-20 | 0.07-141.00 | 0.00-0.00 | --- | --- | - | - | -- |

Table 24.-Physical Properties of the Soils-Continued

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated hydraulic conductivity | $\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$ | Linear extensibility | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g/cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 269C: | | | | | | | | | | | | | |
| Yalesville------ | 0-8 | 53-70 | 25-35 | 5-12 | 1.25-1.50 | 0.6-6 | 4.00-42.00 | 0.12-0.14 | 0.0-2.9 | 2.0-5.0 | . 24 | . 28 | 2 |
| | 8-14 | 37-70 | 25-48 | 5-15 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.07-0.17 | 0.0-2.9 | 0.5-2.0 | . 24 | . 37 | |
| | 14-25 | 37-70 | 25-48 | 5-15 | 1.40-1.60 | 0.6-6 | 4.00-42.00 | 0.07-0.17 | 0.0-2.9 | 0.5-1.5 | . 24 | . 37 | |
| | 25-36 | 37-70 | 25-48 | 5-15 | 1.40-1.60 | 2-6 | 14.00-42.00 | \|0.05-0.16 | 0.0-2.9 | 0.0-1.0 | . 24 | . 37 | |
| | 36-80 | - | - | --- | - | 0.01-20 | 0.07-141.00 | 0.00-0.00 | --- | --- | --- | --- | |
| Urban land- | 0-6 | --- | --- | 0-0 | --- | 0.01-20 | 0.07-141.00 | 0.00-0.00 | --- | --- | --- | - | -- |
| 273C: | | | | | | | | | | | | | |
| Urban land- | 0-6 | --- | --- | 0-0 | --- | 0.01-20 | 0.07-141.00 | 0.00-0.00 | --- | --- | --- | --- | -- |
| Charlton--------- | 0-4 | 57-72 | 20-40 | 3-8 | 1.25-1.45 | 0.6-6 | 4.00-42.00 | 0.12-0.14 | 0.0-2.9 | 2.0-6.0 | . 17 | . 24 | 5 |
| | 4-7 | 57-72 | 20-40 | 3-8 | 1.30-1.45 | 0.6-6 | 4.00-42.00 | 0.09-0.14 | 0.0-2.9 | 0.5-1.0 | . 24 | . 37 | |
| | 7-19 | 57-72 | 20-40 | 3-8 | 1.35-1.50 | 0.6-6 | 4.00-42.00 | 0.09-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 19-27 | 57-72 | 20-40 | 3-8 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | 0.08-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 27-65 | 57-72 | 20-40 | 1-8 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.13 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| Chatfield------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 2-6 | 14.00-42.00 | 0.08-0.40 | 0.0-20.0 | 50-95 | . 05 | . 05 | 2 |
| | 1-6 | 52-83 | 10-30 | 7-18 | 1.25-1.45 | 0.6-6 | 4.00-42.00 | 0.09-0.13 | 0.0-2.9 | 2.0-6.0 | . 10 | . 15 | |
| | 6-15 | 37-83 | 10-45 | 7-18 | 1.30-1.45 | 0.6-6 | 4.00-42.00 | \|0.08-0.17 | 0.0-2.9 | 0.5-2.0 | . 20 | . 28 | |
| | 15-29 | 50-83 | 10-28 | 7-18 | 1.35-1.50 | 0.6-6 | 4.00-42.00 | 0.08-0.13 | 0.0-2.9 | 0.0-0.5 | . 20 | . 28 | |
| | 29-80 | --- | | --- | | 0.01-20 | 0.07-141.00 | --- | --- | --- | --- | --- | |
| 273E: | | | | | | | | | | | | | |
| Urban land- | 0-6 | --- | --- | 0-0 | --- | 0.01-20 | 0.07-141.00 | 0.00-0.00 | --- | --- | --- | --- | -- |
| Charlton-------- | 0-4 | 57-72 | 20-40 | 3-8 | 1.25-1.45 | 0.6-6 | 4.00-42.00 | 0.12-0.14 | 0.0-2.9 | 2.0-6.0 | . 17 | . 24 | 5 |
| | 4-7 | 57-72 | 20-40 | 3-8 | 1.30-1.45 | 0.6-6 | 4.00-42.00 | 0.09-0.14 | 0.0-2.9 | 0.5-1.0 | . 24 | . 37 | |
| | 7-19 | 57-72 | 20-40 | 3-8 | 1.35-1.50 | 0.6-6 | 4.00-42.00 | 0.09-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 19-27 | 57-72 | 20-40 | 3-8 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | 0.08-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 27-65 | 57-72 | 20-40 | 1-8 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.13 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| Chatfield------- | | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 2-6 | 14.00-42.00 | 0.08-0.40 | 0.0-20.0 | 50-95 | | . 05 | 2 |
| | 1-6 | 52-83 | 10-30 | 7-18 | 1.25-1.45 | 0.6-6 | 4.00-42.00 | 0.09-0.13 | 0.0-2.9 | 2.0-6.0 | . 10 | . 15 | |
| | 6-15 | 37-83 | 10-45 | 7-18 | 1.30-1.45 | 0.6-6 | 4.00-42.00 | 0.08-0.17 | 0.0-2.9 | 0.5-2.0 | . 20 | . 28 | |
| | 15-29 | 50-83 | 10-28 | 7-18 | 1.35-1.50 | 0.6-6 | 4.00-42.00 | 0.08-0.13 | 0.0-2.9 | 0.0-0.5 | . 20 | . 28 | |
| | 29-80 | --- | --- | --- | --- | 0.01-20 | 0.07-141.00 | --- | --- | --- | -- | --- | |
| $\begin{aligned} & \text { 275C: } \\ & \text { Urban land. } \end{aligned}$ | | | | | | | | | | | | | |
| | 0-6 | --- | - | 0-0 | --- | 0.01-20 | 0.07-141.00 | 0.00-0.00 | --- | --- | --- | -- | -- |
| Chatfield------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 2-6 | 14.00-42.00 | 0.08-0.40 | 0.0-20.0 | 50-95 | . 05 | . 05 | 2 |
| | 1-6 | 52-83 | 10-30 | 7-18 | 1.25-1.45 | 0.6-6 | 4.00-42.00 | 0.09-0.13 | 0.0-2.9 | 2.0-6.0 | . 10 | . 15 | |
| | 6-15 | 37-83 | 10-45 | 7-18 | 1.30-1.45 | 0.6-6 | 4.00-42.00 | 0.08-0.17 | 0.0-2.9 | 0.5-2.0 | . 20 | . 28 | |
| | 15-29 | 50-83 | 10-28 | 7-18 | 1.35-1.50 | 0.6-6 | 4.00-42.00 | 0.08-0.13 | 0.0-2.9 | 0.0-0.5 | . 20 | . 28 | |
| | 29-80 | --- | --- | --- | --- | 0.01-20 | 0.07-141.00 | --- | --- | --- | --- | --- | |

Table 24.-Physical Properties of the Soils-Continued

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated hydraulic conductivity | Available water capacity | Linear extensibility | Organic matter | Erosion Factors | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g/cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 287B: | | | | | | | | | | | | | |
| Wethersfield-------- | 0-3 | 37-51 | 42-48 | 7-15 | 1.10-1.30 | 0.6-2 | 4.00-14.00 | \|0.14-0.17| | 0.0-2.9 | 2.0-5.0 | . 28 | . 43 | 3 |
| | 3-13 | 37-73 | 22-48 | 5-15 | 1.30-1.50 | 0.6-2 | 4.00-14.00 | \|0.10-0.17| | 0.0-2.9 | 0.5-1.5 | . 32 | . 43 | |
| | 13-27 | 37-73 | 22-48 | 5-15 | 1.30-1.60 | 0.6-2 | 4.00-14.00 | \|0.10-0.17| | 0.0-2.9 | 0.5-1.0 | . 32 | . 43 | |
| | 27-65 | 37-73 | 22-48 | 5-15 | 1.75-2.00 | 0.0015-0.2 | 0.01-1.40 | \|0.08-0.17| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| Urban land---------- | 0-6 | --- | --- | 0-0 | --- | 0.01-20 | 0.07-141.00 | \|0.00-0.00| | --- | --- | -- | - | -- |
| 287C: | | | | | | | | | | | | | |
| Wethersfield-------- | 0-3 | 37-51 | 42-48 | 7-15 | 1.10-1.30 | 0.6-2 | 4.00-14.00 | \|0.14-0.17| | 0.0-2.9 | 2.0-5.0 | . 28 | . 43 | 3 |
| | 3-13 | 37-73 | 22-48 | 5-15 | 1.30-1.50 | 0.6-2 | 4.00-14.00 | \|0.10-0.17| | 0.0-2.9 | 0.5-1.5 | . 32 | . 43 | |
| | 13-27 | 37-73 | 22-48 | 5-15 | 1.30-1.60 | 0.6-2 | 4.00-14.00 | \|0.10-0.17| | 0.0-2.9 | 0.5-1.0 | . 32 | . 43 | |
| | 27-65 | 37-73 | 22-48 | 5-15 | 1.75-2.00 | 0.0015-0.2 | 0.01-1.40 | \|0.08-0.17| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| Urban land---------- | 0-6 | --- | - | 0-0 | --- | 0.01-20 | 0.07-141.00 | \|0.00-0.00| | --- | --- | - | --- | -- |
| 287D: | | | | | | | | | | | | | |
| Wethersfield-------- | 0-3 | 37-51 | 42-48 | 7-15 | 1.10-1.30 | 0.6-2 | 4.00-14.00 | \|0.14-0.17| | 0.0-2.9 | 2.0-5.0 | . 28 | . 43 | 3 |
| | 3-13 | 37-73 | 22-48 | 5-15 | 1.30-1.50 | 0.6-2 | 4.00-14.00 | \|0.10-0.17| | 0.0-2.9 | 0.5-1.5 | . 32 | . 43 | |
| | 13-27 | 37-73 | 22-48 | 5-15 | 1.30-1.60 | 0.6-2 | 4.00-14.00 | \|0.10-0.17| | 0.0-2.9 | 0.5-1.0 | . 32 | . 43 | |
| | 27-65 | 37-73 | 22-48 | 5-15 | 1.75-2.00 | 0.0015-0.2 | 0.01-1.40 | \|0.08-0.17| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| Urban land---------- | 0-6 | --- | --- | 0-0 | --- | 0.01-20 | 0.07-141.00 | \|0.00-0.00| | --- | --- | --- | - | -- |
| 290B: | | | | | | | | | | | | | |
| Stockbridge--------- | 0-10 | 22-53 | 40-50 | 7-17 | 1.00-1.30 | 0.6-2 | 4.00-14.00 | 0.14-0.18\| | 0.0-2.9 | 2.0-6.0 | . 24 | . 32 | 3 |
| | 10-20 | 17-53 | 40-65 | 7-17 | 1.10-1.30 | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.5-1.0 | . 37 | . 55 | |
| | 20-28 | 17-53 | 40-65 | 7-17 | 1.30-1.70 | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | 28-42 | 22-53 | 40-60 | 7-17 | 1.50-1.70 | 0.2-0.6 | 1.40-4.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | 42-48 | 27-62 | 35-55 | 3-17 | 1.60-1.80 | 0.2-0.6 | 1.40-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 48-65 | 27-62 | 35-55 | 3-17 | 1.60-1.80 | 0.2-0.6 | 1.40-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| Urban land---------- | 0-6 | - | -- | 0-0 | --- | 0.01-20 | 0.07-141.00 | \|0.00-0.00| | --- | --- | - | -- | -- |
| 290C: | | | | | | | | | | | | | |
| Stockbridge--------- | 0-10 | 22-53 | 40-50 | 7-17 | 1.00-1.30 | 0.6-2 | 4.00-14.00 | \|0.14-0.18| | 0.0-2.9 | 2.0-6.0 | . 24 | . 32 | 3 |
| | 10-20 | 17-53 | 40-65 | 7-17 | 1.10-1.30 | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.5-1.0 | . 37 | . 55 | |
| | 20-28 | 17-53 | 40-65 | 7-17 | 1.30-1.70 | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | 28-42 | 22-53 | 40-60 | 7-17 | 1.50-1.70 | 0.2-0.6 | 1.40-4.00 | 0.10-0.18\| | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | 42-48 | 27-62 | 35-55 | 3-17 | 1.60-1.80 | 0.2-0.6 | 1.40-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 48-65 | 27-62 | 35-55 | 3-17 | 1.60-1.80 | 0.2-0.6 | 1.40-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| Urban land---------- | 0-6 | - | - | 0-0 | --- | 0.01-20 | 0.07-141.00 | 0.00-0.00\| | --- | -- | --- | -- | -- |

Table 24.-Physical Properties of the Soils-Continued

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | Available water capacity | Linear extensibility | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 308: | | | | | | | | | | | | | |
| Udorthents---------- | 0-5 | 35-50 | 43-50 | 7-15 | 1.00-1.70 | 0.6-2 | 4.00-14.00 | 0.14-0.18\| | 0.0-2.9 | 2.0-6.0 | . 28 | . 37 | 3 |
| | 5-21 | 10-95 | 2-60 | 3-30 | 1.10-1.70 | 0.0015-100 | 0.01-703.00 | 0.01-0.21\| | 0.0-2.9 | 0.0-0.5 | . 24 | . 28 | |
| | 21-80 | 10-95 | 2-60 | 3-30 | 1.20-2.00 | 0.0015-100 | 0.01-703.00 | 0.01-0.21\| | 0.0-2.9 | 0.0-0.5 | . 24 | . 28 | |
| 309 : | | | | | | | | | | | | | |
| Udorthents---------- | 0-5 | 35-50 | 43-50 | 7-15 | 1.00-1.70 | 0.6-2 | 4.00-14.00 | 0.14-0.18\| | 0.0-2.9 | 2.0-6.0 | . 28 | . 37 | 5 |
| | 5-21 | 10-95 | 2-60 | 3-30 | 1.10-1.70 | 0.0015-100 | 0.01-703.00 | 0.01-0.21\| | 0.0-2.9 | 0.0-0.5 | . 24 | . 28 | |
| | 21-80 | 10-95 | 2-60 | 3-30 | 1.20-2.00 | 0.0015-100 | 0.01-703.00 | 0.01-0.21\| | 0.0-2.9 | 0.0-0.5 | . 24 | . 28 | |
| 310 : | | | | | | | | | | | | | |
| Udorthents, Periodically Flooded | 0-5 | 35-50 | 43-50 | 7-15 | 1.00-1.70 | 0.6-2 | 4.00-14.00 | 0.14-0.18 | 0.0-2.9 | 2.0-6.0 | . 28 | 37 | 5 |
| | 5-21 | 10-95 | 2-60 | 3-30 | 1.10-1.70 | 0.0015-100 | 0.01-703.00 | 0.01-0.21 | 0.0-2.9 | 0.0-0.5 | . 24 | . 28 | |
| | 21-80 | 10-95 | 2-60 | 3-30 | 1.20-2.00 | 0.0015-100 | 0.01-703.00 | 0.01-0.21 | 0.0-2.9 | 0.0-0.5 | . 24 | . 28 | |
| 401C: | | | | | | | | | | | | | |
| Macomber------------ | | | 0-0 | 0-0 | 0.30-0.55 | 2-6 | 14.00-42.00 | 0.08-0.40\| | 0.0-20.0 | 20-60 | --- | --- | 2 |
| | 1-2 | 35-53 | 43-50 | 7-15 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.08-0.12\| | 0.0-2.9 | 2.0-5.0 | . 15 | . 32 | |
| | 2-10 | 30-53 | 43-55 | 7-15 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.07-0.14\| | 0.0-2.9 | 0.5-2.0 | . 17 | . 49 | |
| | 10-21 | 30-53 | 43-55 | 7-15 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.07-0.14\| | 0.0-2.9 | 0.0-1.0 | . 17 | . 49 | |
| | 21-30 | 30-53 | 43-55 | 7-15 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.05-0.13\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 49 | |
| | 30-80 | --- | - | | --- | 0.01-20 | 0.07-141.00 | --- | --- | --- | --- | | |
| Taconic------------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40\| | 0.0-20.0 | 50-80 | --- | --- | 1 |
| | 1-4 | 37-58 | 35-48 | 7-15 | 1.10-1.40 | 0.6-6 | 4.00-42.00 | 0.08-0.12\| | 0.0-2.9 | 2.0-5.0 | . 10 | . 28 | |
| | $4-11$ | 25-58 | 35-60 | 7-15 | 1.20-1.50 | 0.6-6 | 4.00-42.00 | 0.05-0.15 | 0.0-2.9 | 0.1-2.0 | . 15 | . 43 | |
| | 11-80 | - - | | --- | | 0.01-20 | 0.07-141.00 | | | | --- | --- | |
| 402D: | | | | | | | | | | | | | |
| Macomber------------ | | 0-0 | 0-0 | | 0.30-0.55 | 2-6 | 14.00-42.00 | 0.08-0.40\| | 0.0-20.0 | 20-60 | -- | --- | 2 |
| | 1-2 | 35-53 | 43-50 | 7-15 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.08-0.12\| | 0.0-2.9 | 2.0-5.0 | . 15 | . 32 | |
| | 2-10 | 30-53 | 43-55 | 7-15 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.07-0.14\| | 0.0-2.9 | 0.5-2.0 | . 17 | . 49 | |
| | 10-21 | 30-53 | 43-55 | 7-15 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.07-0.14\| | 0.0-2.9 | 0.0-1.0 | . 17 | . 49 | |
| | 21-30 | 30-53 | 43-55 | 7-15 | 1.20-1.40 | 0.6-2 | $4.00-14.00$ | 0.05-0.13\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 49 | |
| | 30-80 | --- | --- | | --- | 0.01-20 | 0.07-141.00 | --- | --- | --- | --- | -- | |
| Taconic------------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | - | -- | 1 |
| | 1-4 | 37-58 | 35-48 | 7-15 | 1.10-1.40 | 0.6-6 | 4.00-42.00 | 0.08-0.12\| | 0.0-2.9 | 2.0-5.0 | . 10 | . 28 | |
| | $4-11$ | 25-58 | 35-60 | 7-15 | 1.20-1.50 | 0.6-6 | 4.00-42.00 | 0.05-0.15\| | 0.0-2.9 | 0.1-2.0 | . 15 | . 43 | |
| | 11-80 | --- | --- | --- | -- | 0.01-20 | 0.07-141.00 | -- | --- | -- | --- | -- | |
| Rock outcrop-------- | --- | --- | | --- | --- | --- | --- | --- | --- | --- | --- | --- | 1 |

Table 24.-Physical Properties of the Soils-Continued

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$ | Linear extensibility | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 407C: | | | | | | | | | | | | | |
| Lanesboro------- | 0-3 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 2-6 | 14.00-42.00 | 0.08-0.40 | 0.0-20.0 | 20-60 | --- | --- | 3 |
| | 3-6 | 37-58 | 35-48 | 7-15 | 1.00-1.20 | 0.6-2 | 4.00-14.00 | 0.15-0.18 | 0.0-2.9 | 2.0-5.0 | . 17 | . 32 | |
| | 6-8 | 25-58 | 35-60 | 7-15 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.08-0.19 | 0.0-2.9 | 0.5-2.0 | . 28 | . 49 | |
| | 8-16 | 25-58 | 35-60 | 7-15 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.08-0.19 | 0.0-2.9 | 0.5-1.5 | . 28 | . 49 | |
| | 16-22 | 25-58 | 35-60 | 7-15 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.08-0.19 | 0.0-2.9 | 0.0-1.0 | . 28 | . 49 | |
| | 22-30 | 25-58 | 35-60 | 7-15 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.08-0.19 | 0.0-2.9 | 0.0-0.5 | . 28 | . 49 | |
| | $30-60$ | 40-60 | 35-48 | 5-12 | 1.75-1.90 | 0.0015-0.2 | 0.01-1.40 | 0.01-0.08 | 0.0-2.9 | 0.0-0.5 | . 24 | . 55 | |
| 407E: | | | | | | | | | | | | | |
| Lanesboro------- | 0-3 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 2-6 | 14.00-42.00 | 0.08-0.40 | 0.0-20.0 | 20-60 | --- | --- | 3 |
| | 3-6 | 37-58 | 35-48 | 7-15 | 1.00-1.20 | 0.6-2 | 4.00-14.00 | 0.15-0.18 | 0.0-2.9 | 2.0-5.0 | . 17 | . 32 | |
| | 6-8 | 25-58 | 35-60 | 7-15 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.08-0.19 | 0.0-2.9 | 0.5-2.0 | . 28 | . 49 | |
| | 8-16 | 25-58 | 35-60 | 7-15 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.08-0.19 | 0.0-2.9 | 0.5-1.5 | . 28 | . 49 | |
| | 16-22 | 25-58 | 35-60 | 7-15 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.08-0.19 | 0.0-2.9 | 0.0-1.0 | . 28 | . 49 | |
| | 22-30 | 25-58 | 35-60 | 7-15 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.08-0.19 | 0.0-2.9 | 0.0-0.5 | . 28 | . 49 | |
| | 30-60 | 40-60 | 35-48 | 5-12 | 1.75-1.90 | 0.0015-0.2 | 0.01-1.40 | 0.01-0.08 | 0.0-2.9 | 0.0-0.5 | . 24 | . 55 | |
| 408C: | | | | | | | | | | | | | |
| Fullam---------- | 0-2 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | --- | --- | 3 |
| | 2-4 | 25-43 | 50-60 | 7-15 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.17-0.21 | 0.0-2.9 | 2.0-5.0 | . 28 | . 43 | |
| | 4-10 | 25-50 | 43-60 | 7-15 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.11-0.21 | 0.0-2.9 | 0.5-2.0 | . 32 | . 49 | |
| | 10-20 | 25-50 | 43-60 | 7-15 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.11-0.18 | 0.0-2.9 | 0.5-1.0 | . 28 | . 49 | |
| | 20-49 | 40-60 | 35-48 | 5-12 | 1.80-2.00 | 0.0015-0.2 | 0.01-1.40 | 0.08-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 55 | |
| | 49-60 | 40-60 | 35-48 | 5-12 | 1.80-2.00 | 0.0015-0.2 | 0.01-1.40 | 0.08-0.14 | 0.0-2.9 | 0.0-0.5 | . 28 | . 55 | |
| 409B: | | | | | | | | | | | | | |
| Brayton--------- | 0-3 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | --- | --- | 2 |
| | 3-6 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 2-6 | 14.00-42.00 | 0.08-0.40 | 0.0-20.0 | 20-60 | --- | --- | |
| | 6-7 | 31-47 | 50-60 | 3-9 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.17-0.21 | 0.0-2.9 | 4.0-8.0 | . 20 | . 24 | |
| | 7-9 | 36-50 | 43-55 | 7-9 | 1.20-1.40 | 0.6-6 | 4.00-42.00 | 0.07-0.14 | 0.0-2.9 | 0.0-2.0 | . 32 | . 49 | |
| | 9-13 | 46-62 | 35-45 | 3-9 | 1.25-1.50 | 0.6-6 | 4.00-42.00 | 0.06-0.12 | 0.0-2.9 | 0.0-2.0 | . 32 | . 49 | |
| | 13-18 | 46-62 | 35-45 | 3-9 | 1.65-1.90 | 0.0015-0.2 | 0.01-1.40 | 0.06-0.12 | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | 18-23 | 46-62 | 35-45 | 3-9 | 1.70-1.95 | 0.0015-0.2 | 0.01-1.40 | 0.06-0.12 | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| | 23-60 | 46-62 | 35-45 | 3-9 | 1.70-1.95 | 0.0015-0.2 | 0.01-1.40 | 0.06-0.12 | 0.0-2.9 | 0.0-0.5 | . 37 | . 55 | |
| 412B: | | | | | | | | | | | | | |
| Bice------------ | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | --- | --- | 5 |
| | 1-7 | 50-70 | 25-35 | 5-15 | 1.35-1.50 | 0.6-6 | 4.00-42.00 | 0.13-0.15 | 0.0-2.9 | 2.0-5.0 | . 15 | . 20 | |
| | 7-16 | 30-63 | 30-55 | 7-15 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-2.0 | . 28 | . 43 | |
| | 16-24 | 40-63 | 30-45 | 7-15 | 1.35-1.65 | 0.6-6 | 4.00-42.00 | 0.08-0.16 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 24-60 | 40-63 | 30-45 | 7-15 | 1.45-1.70 | 0.6-6 | 4.00-42.00 | \|0.05-0.16 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated hydraulic conductivity | $\left.\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array} \right\rvert\,$ | Linear extensibility | Organic matter | Erosion Factors | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g/cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| $\begin{gathered} \text { 412C: } \\ \text { Bice. } \end{gathered}$ | | | | | | | | | | | | | |
| | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | \|0.08-0.40| | 0.0-20.0 | 50-80 | --- | --- | 5 |
| | 1-7 | 50-70 | 25-35 | 5-15 | 1.35-1.50 | 0.6-6 | 4.00-42.00 | \|0.13-0.15 | 0.0-2.9 | 2.0-5.0 | . 15 | . 20 | |
| | 7-16 | 30-63 | 30-55 | 7-15 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | \|0.08-0.19| | 0.0-2.9 | 0.0-2.0 | . 28 | . 43 | |
| | 16-24 | 40-63 | 30-45 | 7-15 | 1.35-1.65 | 0.6-6 | 4.00-42.00 | \|0.08-0.16| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 24-60 | 40-63 | 30-45 | 7-15 | 1.45-1.70 | 0.6-6 | 4.00-42.00 | 0.05-0.16 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| 412D:Bice | | | | | | | | | | | | | |
| | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | --- | --- | 5 |
| | 1-7 | 50-70 | 25-35 | 5-15 | 1.35-1.50 | 0.6-6 | 4.00-42.00 | 0.13-0.15 | 0.0-2.9 | 2.0-5.0 | . 15 | . 20 | |
| | 7-16 | 30-63 | 30-55 | 7-15 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-2.0 | . 28 | . 43 | |
| | 16-24 | 40-63 | 30-45 | 7-15 | 1.35-1.65 | 0.6-6 | 4.00-42.00 | 0.08-0.16 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 24-60 | 40-63 | 30-45 | 7-15 | 1.45-1.70 | 0.6-6 | 4.00-42.00 | 0.05-0.16 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| $\begin{array}{r} \text { 413C: } \\ \text { Bice } \end{array}$ | | | | | | | | | | | | | |
| | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | --- | --- | 5 |
| | 1-7 | 50-70 | 25-35 | 5-15 | 1.35-1.50 | 0.6-6 | 4.00-42.00 | 0.13-0.15 | 0.0-2.9 | 2.0-5.0 | . 15 | . 20 | |
| | 7-16 | 30-63 | 30-55 | 7-15 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-2.0 | . 28 | . 43 | |
| | 16-24 | 40-63 | 30-45 | 7-15 | 1.35-1.65 | 0.6-6 | 4.00-42.00 | 0.08-0.16 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 24-60 | 40-63 | 30-45 | 7-15 | 1.45-1.70 | 0.6-6 | 4.00-42.00 | 0.05-0.16 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| Millsite-------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | --- | --- | 2 |
| | 1-5 | 50-55 | 30-45 | 5-15 | 1.20-1.40 | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 20 | . 24 | |
| | 5-13 | 40-65 | 30-45 | 5-15 | 1.30-1.45 | 0.6-6 | 4.00-42.00 | 0.07-0.16 | 0.0-2.9 | 0.5-1.5 | . 24 | . 37 | |
| | 13-24 | 40-65 | 30-45 | 5-15 | 1.30-1.50 | 0.6-6 | 4.00-42.00 | 0.07-0.16 | 0.0-2.9 | 0.0-1.0 | . 24 | . 37 | |
| | 24-31 | 40-65 | 30-45 | 5-15 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | 0.07-0.16 | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 31-80 | - | --- | --- | --- | 0.01-20 | 0.07-141.00 | --- | --- | --- | --- | --- | |
| 413E: | | | | | | | | | | | | | |
| | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | --- | --- | 5 |
| | 1-7 | 50-70 | 25-35 | 5-15 | 1.35-1.50 | 0.6-6 | 4.00-42.00 | 0.13-0.15 | 0.0-2.9 | 2.0-5.0 | . 15 | . 20 | |
| | 7-16 | 30-63 | 30-55 | 7-15 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.19 | 0.0-2.9 | 0.0-2.0 | . 28 | . 43 | |
| | $16-24$ | $40-63$ | 30-45 | 7-15 | 1.35-1.65 | 0.6-6 | 4.00-42.00 | 0.08-0.16 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 24-60 | 40-63 | 30-45 | 7-15 | 1.45-1.70 | 0.6-6 | 4.00-42.00 | 0.05-0.16 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| Millsite-------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | - | --- | 2 |
| | 1-5 | 50-55 | 30-45 | 5-15 | 1.20-1.40 | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 20 | . 24 | |
| | 5-13 | 40-65 | 30-45 | 5-15 | 1.30-1.45 | 0.6-6 | 4.00-42.00 | 0.07-0.16 | 0.0-2.9 | 0.5-1.5 | . 24 | . 37 | |
| | 13-24 | 40-65 | 30-45 | 5-15 | 1.30-1.50 | 0.6-6 | 4.00-42.00 | 0.07-0.16 | 0.0-2.9 | 0.0-1.0 | . 24 | . 37 | |
| | 24-31 | 40-65 | 30-45 | 5-15 | 1.35-1.55 | $0.6-6$ | | 0.07-0.16 | 0.0-2.9 | 0.0-0.5 | . 24 | | |
| | 31-80 | - | - | | 1.35 | 0.01-20 | 0.07-141.00 | 0.07-0.16 | 0.0 | 0.0 | --- | --- | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion Factors | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 414: | | | | | | | | | | | | | |
| Fredon, cold----- | 0-8 | 5-45 | 50-80 | 5-15 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | 0.17-0.21 | 0.0-2.9 | 2.0-5.0 | . 37 | . 43 | 3 |
| | 8-17 | 20-65 | 30-65 | 5-15 | 1.25-1.45\| | 0.6-2 | 4.00-14.00 | 0.12-0.21 | 0.0-2.9 | 0.5-2.0 | . 43 | . 49 | |
| | 17-24 | 20-65 | 30-65 | 5-15 | \|1.25-1.45| | 0.6-2 | 4.00-14.00 | 0.12-0.21 | 0.0-2.9 | 0.5-1.0 | . 43 | . 55 | |
| | 24-29 | 75-93 | 5-18 | 2-7 | \|1.35-1.55| | 2-20 | 14.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 15 | . 20 | |
| | 29-48 | 75-93 | 5-18 | 2-7 | \|1.35-1.60| | 2-20 | 14.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 15 | . 20 | |
| | 48-60 | 75-93 | 5-18 | 2-7 | \|1.40-1.60| | 2-20 | 14.00-141.00 | 0.02-0.08 | 0.0-2.9 | 0.0-0.5 | . 15 | . 20 | |
| 415C: | | | | | | | | | | | | | |
| Millsite-------- | 0-1 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | --- | - | 2 |
| | 1-5 | 50-55 | 30-45 | 5-15 | \|1.20-1.40| | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 20 | . 24 | |
| | 5-13 | 40-65 | 30-45 | 5-15 | \|1.30-1.45| | 0.6-6 | 4.00-42.00 | 0.07-0.16 | 0.0-2.9 | 0.5-1.5 | . 24 | . 37 | |
| | 13-24 | 40-65 | 30-45 | 5-15 | \|1.30-1.50| | 0.6-6 | 4.00-42.00 | 0.07-0.16 | 0.0-2.9 | 0.0-1.0 | . 24 | . 37 | |
| | 24-31 | 40-65 | 30-45 | 5-15 | \| 1.35-1.55| | 0.6-6 | 4.00-42.00 | 0.07-0.16 | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 31-80 | --- | --- | --- | --- | $0.01-20$ | $0.07-141.00$ | --- | --- | --- | --- | --- | |
| Westminster----- | 0-1 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 20-100 | 141.00-703.00 | 0.08-0.40 | 0.0-20.0 | 25-50 | --- | --- | 1 |
| | 1-2 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 20-100 | \|141.00-703.00 | 0.08-0.40 | 0.0-20.0 | 20-50 | --- | - | |
| | 2-5 | 55-63 | 25-40 | 5-12 | \|1.30-1.50| | 2-6 | 14.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 20 | . 28 | |
| | 5-12 | 43-70 | 25-45 | 5-12 | \|1.40-1.60| | 2-6 | 14.00-42.00 | 0.10-0.16 | 0.0-2.9 | 0.0-1.0 | . 32 | . 43 | |
| | $12-16$ | 43-70 | 25-45 | 5-12 | \| 1.40-1.60| | 2-6 | 14.00-42.00 | \|0.10-0.16 | 0.0-2.9 | 0.0-1.0 | . 32 | . 43 | |
| | 16-80 | - | --- | - - | --- | 0.01-20 | 0.07-141.00 | --- | --- | --- | -- | --- | |
| Rock outcrop- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | 1 |
| 415E: | | | | | | | | | | | | | |
| Millsite-------- | 0-1 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | --- | --- | 2 |
| | 1-5 | 50-55 | 30-45 | 5-15 | \|1.20-1.40| | 0.6-6 | 4.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 20 | . 24 | |
| | 5-13 | 40-65 | 30-45 | 5-15 | \|1.30-1.45| | 0.6-6 | 4.00-42.00 | 0.07-0.16 | 0.0-2.9 | 0.5-1.5 | . 24 | . 37 | |
| | 13-24 | 40-65 | 30-45 | 5-15 | \|1.30-1.50| | 0.6-6 | 4.00-42.00 | 0.07-0.16 | 0.0-2.9 | 0.0-1.0 | . 24 | . 37 | |
| | 24-31 | 40-65 | 30-45 | 5-15 | \| 1.35-1.55| | 0.6-6 | 4.00-42.00 | 0.07-0.16 | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| | 31-80 | --- | - | --- | --- | 0.01-20 | 0.07-141.00 | --- | --- | --- | --- | --- | |
| Westminster----- | 0-1 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 20-100 | 141.00-703.00 | 0.08-0.40 | 0.0-20.0 | 25-50 | --- | --- | 1 |
| | 1-2 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 20-100 | \| 141.00-703.00 | 0.08-0.40 | 0.0-20.0 | 20-50 | - | -- | |
| | 2-5 | 55-63 | 25-40 | 5-12 | \|1.30-1.50| | 2-6 | \| 14.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 20 | . 28 | |
| | 5-12 | 43-70 | 25-45 | 5-12 | \| 1.40-1.60| | 2-6 | \| 14.00-42.00 | 0.10-0.16 | 0.0-2.9 | 0.0-1.0 | . 32 | . 43 | |
| | 12-16 | 43-70 | 25-45 | 5-12 | 1.40-1.60\| | 2-6 | 14.00-42.00 | 0.10-0.16 | 0.0-2.9 | 0.0-1.0 | . 32 | . 43 | |
| | 16-80 | | --- | --- | --- | 0.01-20 | 0.07-141.00 | --- | --- | --- | --- | -- | |
| Rock outcrop---- | --- | | | --- | --- | --- | --- | --- | --- | --- | - | --- | 1 |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated hydraulic conductivity | $\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$ | Linear extensibility | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 416E:
 Rock outcrop | | | | | | | | | | | | | |
| | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | 1 |
| Westminster------ | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 20-100 | 141.00-703.00 | 0.08-0.40\| | 0.0-20.0 | 25-50 | --- | --- | 1 |
| | 1-2 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 20-100 | 141.00-703.00 | 0.08-0.40\| | 0.0-20.0 | 20-50 | --- | --- | |
| | 2-5 | 55-63 | 25-40 | 5-12 | 1.30-1.50 | 2-6 | 14.00-42.00 | 0.11-0.15\| | 0.0-2.9 | 2.0-5.0 | . 20 | . 28 | |
| | 5-12 | 43-70 | 25-45 | 5-12 | 1.40-1.60 | 2-6 | 14.00-42.00 | 0.10-0.16\| | 0.0-2.9 | 0.0-1.0 | . 32 | . 43 | |
| | 12-16 | 43-70 | 25-45 | 5-12 | 1.40-1.60 | $2-6$ | 14.00-42.00 | 0.10-0.16\| | 0.0-2.9 | 0.0-1.0 | . 32 | . 43 | |
| | $16-80$ | - | --- | --- | - | $0.01-20$ | $0.07-141.00$ | , | D. | , | . | --- | |
| 416F: | | | | | | | | | | | | | |
| Rock outcrop-- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | 1 |
| Westminster----- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 20-100 | 141.00-703.00 | 0.08-0.40\| | 0.0-20.0 | 25-50 | --- | --- | 1 |
| | 1-2 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 20-100 | 141.00-703.00 | 0.08-0.40\| | 0.0-20.0 | 20-50 | - | -- | |
| | 2-5 | 55-63 | 25-40 | 5-12 | 1.30-1.50 | 2-6 | 14.00-42.00 | 0.11-0.15\| | 0.0-2.9 | 2.0-5.0 | . 20 | . 28 | |
| | 5-12 | 43-70 | 25-45 | 5-12 | 1.40-1.60 | 2-6 | 14.00-42.00 | 0.10-0.16\| | 0.0-2.9 | 0.0-1.0 | . 32 | . 43 | |
| | 12-16 | 43-70 | 25-45 | 5-12 | 1.40-1.60 | 2-6 | 14.00-42.00 | 0.10-0.16\| | 0.0-2.9 | 0.0-1.0 | . 32 | . 43 | |
| | 16-80 | --- | --- | --- | --- | 0.01-20 | 0.07-141.00 | --- | --- | --- | --- | --- | |
| 417B: | | | | | | | | | | | | | |
| | | | 0-0 | | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40\| | 0.0-20.0 | 50-80 | | --- | 5 |
| | 1-7 | 50-70 | 25-35 | 5-15 | 1.35-1.50 | 0.6-6 | 4.00-42.00 | 0.13-0.15\| | 0.0-2.9 | 2.0-5.0 | . 15 | . 20 | |
| | 7-16 | 30-63 | 30-55 | 7-15 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.19\| | 0.0-2.9 | 0.0-2.0 | . 28 | . 43 | |
| | 16-24 | 40-63 | 30-45 | 7-15 | 1.35-1.65 | 0.6-6 | 4.00-42.00 | 0.08-0.16\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 24-60 | 40-63 | 30-45 | 7-15 | 1.45-1.70 | 0.6-6 | 4.00-42.00 | 0.05-0.16\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| 417C: | | | | | | | | | | | | | |
| | | | 0-0 | | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40\| | 0.0-20.0 | 50-80 | --- | --- | 5 |
| | 1-7 | 50-70 | 25-35 | 5-15 | 1.35-1.50 | 0.6-6 | 4.00-42.00 | 0.13-0.15\| | 0.0-2.9 | 2.0-5.0 | . 15 | . 20 | |
| | 7-16 | 30-63 | 30-55 | 7-15 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.19\| | 0.0-2.9 | 0.0-2.0 | . 28 | . 43 | |
| | 16-24 | 40-63 | 30-45 | 7-15 | 1.35-1.65 | 0.6-6 | 4.00-42.00 | 0.08-0.16\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 24-60 | 40-63 | 30-45 | 7-15 | 1.45-1.70 | 0.6-6 | 4.00-42.00 | 0.05-0.16\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| 417D: | | | | | | | | | | | | | |
| Bice----------- | | | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40\| | 0.0-20.0 | 50-80 | --- | --- | 5 |
| | 1-7 | 50-70 | 25-35 | 5-15 | 1.35-1.50 | 0.6-6 | 4.00-42.00 | 0.13-0.15\| | 0.0-2.9 | 2.0-5.0 | . 15 | . 20 | |
| | 7-16 | 30-63 | 30-55 | 7-15 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.19\| | 0.0-2.9 | 0.0-2.0 | . 28 | . 43 | |
| | 16-24 | 40-63 | 30-45 | 7-15 | 1.35-1.65 | 0.6-6 | 4.00-42.00 | 0.08-0.16\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 24-60 | 40-63 | 30-45 | 7-15 | 1.45-1.70 | 0.6-6 | 4.00-42.00 | 0.05-0.16\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | ```Moist``` | Permeability | Saturated hydraulic conductivity | $\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 418C: | | | | | | | | | | | | | |
| Schroon--------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | --- | --- | 5 |
| | 1-2 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | --- | --- | |
| | 2-3 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 20-60 | --- | --- | |
| | 3-9 | 55-65 | 20-38 | 7-15 | 1.30-1.50 | 0.6-6 | 4.00-42.00 | 0.13-0.15 | 0.0-2.9 | 2.0-5.0 | . 10 | . 17 | |
| | 9-14 | 45-68 | 25-40 | 7-15 | 1.30-1.50 | 0.6-6 | 4.00-42.00 | \|0.08-0.18 | 0.0-2.9 | 1.0-3.0 | . 20 | . 32 | |
| | 14-23 | 45-68 | 25-40 | 7-15 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | \|0.08-0.18 | 0.0-2.9 | 0.5-2.0 | . 24 | . 32 | |
| | 23-30 | 45-68 | 25-40 | 7-15 | 1.40-1.60 | 0.6-6 | 4.00-42.00 | \|0.08-0.18 | 0.0-2.9 | 0.5-2.0 | . 24 | . 32 | |
| | 30-60 | 55-70 | 25-40 | 3-15 | 1.45-1.70 | 2-6 | 14.00-42.00 | \|0.08-0.15 | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| 420A: | | | | | | | | | | | | | |
| Schroon--------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | --- | --- | 5 |
| | 1-2 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | \|0.08-0.40 | 0.0-20.0 | 50-80 | --- | --- | |
| | 2-3 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | \|0.08-0.40 | 0.0-20.0 | 20-60 | --- | --- | |
| | 3-9 | 55-65 | 20-38 | 7-15 | 1.30-1.50 | 0.6-6 | 4.00-42.00 | \|0.13-0.15 | 0.0-2.9 | 2.0-5.0 | . 10 | . 17 | |
| | 9-14 | 45-68 | 25-40 | 7-15 | 1.30-1.50 | 0.6-6 | 4.00-42.00 | \|0.08-0.18 | 0.0-2.9 | 1.0-3.0 | . 20 | . 32 | |
| | 14-23 | 45-68 | 25-40 | 7-15 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | \|0.08-0.18 | 0.0-2.9 | 0.5-2.0 | . 24 | . 32 | |
| | 23-30 | 45-68 | 25-40 | 7-15 | 1.40-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.18 | 0.0-2.9 | 0.5-2.0 | . 24 | . 32 | |
| | 30-60 | 55-70 | 25-40 | 3-15 | 1.45-1.70 | 2-6 | 14.00-42.00 | 0.08-0.15 | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| 420B: | | | | | | | | | | | | | |
| Schroon--------- | | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 10.08-0.40 | 0.0-20.0 | 50-80 | --- | - | 5 |
| | 1-2 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 10.08-0.40 | 0.0-20.0 | 50-80 | --- | --- | |
| | 2-3 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | \|0.08-0.40 | 0.0-20.0 | 20-60 | --- | --- | |
| | 3-9 | 55-65 | 20-38 | 7-15 | 1.30-1.50 | 0.6-6 | 4.00-42.00 | \|0.13-0.15 | 0.0-2.9 | 2.0-5.0 | . 10 | . 17 | |
| | 9-14 | 45-68 | 25-40 | 7-15 | 1.30-1.50 | 0.6-6 | 4.00-42.00 | 0.08-0.18 | 0.0-2.9 | 1.0-3.0 | . 20 | . 32 | |
| | 14-23 | 45-68 | 25-40 | 7-15 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | 0.08-0.18 | 0.0-2.9 | 0.5-2.0 | . 24 | . 32 | |
| | 23-30 | 45-68 | 25-40 | 7-15 | 1.40-1.60 | 0.6-6 | 4.00-42.00 | \|0.08-0.18 | 0.0-2.9 | 0.5-2.0 | . 24 | . 32 | |
| | 30-60 | 55-70 | 25-40 | 3-15 | 1.45-1.70 | 2-6 | 14.00-42.00 | 0.08-0.15 | 0.0-2.9 | 0.0-0.5 | . 24 | . 37 | |
| 421A: | | | | | | | | | | | | | |
| Ninigret, cold--- | 0-8 | 53-70 | 27-35 | 3-12 | 1.00-1.25 | 0.6-6 | 4.00-42.00 | 0.13-0.15 | 0.0-2.9 | 2.0-5.0 | . 32 | . 37 | 3 |
| | 8-16 | 28-70 | 27-60 | 3-12 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | \|0.13-0.20 | 0.0-2.9 | 0.5-1.5 | . 43 | . 49 | |
| | 16-26 | 28-70 | 27-60 | 3-12 | 1.35-1.60 | 0.6-6 | 4.00-42.00 | \|0.13-0.20 | 0.0-2.9 | 0.0-0.5 | . 49 | . 55 | |
| | 26-65 | 73-100 | 0-25 | 0-2 | 1.45-1.70 | 6-100 | 42.00-703.00 | 0.01-0.11 | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| 423A: | | | | | | | | | | | | | |
| Sudbury, cold---- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 45-95 | --- | - | 5 |
| | 1-5 | 46-68 | 30-48 | 2-6 | 1.10-1.40 | 2-6 | 14.00-42.00 | \|0.10-0.13 | 0.0-2.9 | 2.0-6.0 | . 24 | . 28 | |
| | 5-17 | 63-73 | 20-35 | 2-7 | 1.15-1.45 | 2-6 | 14.00-42.00 | \|0.07-0.15 | 0.0-2.9 | 0.5-2.0 | . 24 | . 32 | |
| | 17-25 | 63-73 | 20-35 | 2-7 | 1.15-1.45 | 2-6 | 14.00-42.00 | 0.07-0.15 | 0.0-2.9 | 0.0-0.5 | . 28 | . 32 | |
| | 25-60 | 79-98 | 2-8 | 0-3 | 1.30-1.45 | 6-100 | 42.00-703.00 | 0.01-0.06 | 0.0-2.9 | 0.0-0.5 | . 15 | . 28 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated hydraulic conductivity | $\begin{gathered} \text { Available } \\ \text { water } \\ \text { capacity } \end{gathered}$ | Linear extensibility | Organic matter | \|Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| 424B:
 Shelburne | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| | | | | | | | | | | | | | |
| | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | --- | --- | 3 |
| | 1-2 | 55-67 | 30-30 | 3-15 | 1.20-1.40 | 0.6-6 | 4.00-42.00 | 0.12-0.15 | 0.0-2.9 | 2.0-5.0 | . 20 | . 24 | |
| | 2-7 | 50-62 | 35-45 | 3-15 | 1.25-1.40 | 0.6-6 | 4.00-42.00 | 0.08-0.18 | 0.0-2.9 | 0.0-2.0 | . 24 | . 37 | |
| | 7-21 | 50-62 | 35-45 | 3-15 | 1.30-1.50 | 0.6-6 | 4.00-42.00 | 0.08-0.18 | 0.0-2.9 | 0.0-2.0 | . 24 | . 37 | |
| | 21-27 | 50-62 | 35-45 | 3-15 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | 0.08-0.18 | 0.0-2.9 | 0.0-1.0 | . 24 | . 37 | |
| | 27-32 | 50-62 | 35-45 | 3-15 | 1.35-1.55 | 0.0015-0.2 | 0.01-1.40 | 0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 32-43 | 50-62 | 35-45 | 3-15 | 1.35-1.55 | 0.0015-0.2 | 0.01-1.40 | 0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 43-55 | 50-62 | 35-45 | 3-15 | 1.40-1.65 | 0.0015-0.2 | 0.01-1.40 | 0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 55-80 | 50-62 | 35-45 | 3-15 | 1.60-2.10 | 0.0015-0.2 | 0.01-1.40 | 0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 424C: | | | | | | | | | | | | | |
| Shelburne | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | | --- | 3 |
| | 1-2 | 55-67 | 30-30 | 3-15 | 1.20-1.40 | 0.6-6 | 4.00-42.00 | 0.12-0.15 | 0.0-2.9 | 2.0-5.0 | . 20 | . 24 | |
| | 2-7 | 50-62 | 35-45 | 3-15 | 1.25-1.40 | 0.6-6 | 4.00-42.00 | 0.08-0.18 | 0.0-2.9 | 0.0-2.0 | . 24 | . 37 | |
| | 7-21 | 50-62 | 35-45 | 3-15 | 1.30-1.50 | 0.6-6 | 4.00-42.00 | 0.08-0.18 | 0.0-2.9 | 0.0-2.0 | . 24 | . 37 | |
| | 21-27 | 50-62 | 35-45 | 3-15 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | 0.08-0.18 | 0.0-2.9 | 0.0-1.0 | . 24 | . 37 | |
| | 27-32 | 50-62 | 35-45 | 3-15 | 1.35-1.55 | 0.0015-0.2 | 0.01-1.40 | 0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 32-43 | 50-62 | 35-45 | 3-15 | 1.35-1.55 | 0.0015-0.2 | 0.01-1.40 | 0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 43-55 | 50-62 | 35-45 | 3-15 | 1.40-1.65 | 0.0015-0.2 | 0.01-1.40 | 0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 55-80 | 50-62 | 35-45 | 3-15 | 1.60-2.10 | 0.0015-0.2 | 0.01-1.40 | 0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 424D:
 Shelburne- | | | | | | | | | | | | | |
| | | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | - | --- | 3 |
| | 1-2 | 55-67 | 30-30 | 3-15 | 1.20-1.40 | 0.6-6 | 4.00-42.00 | 0.12-0.15 | 0.0-2.9 | 2.0-5.0 | . 20 | . 24 | |
| | 2-7 | 50-62 | 35-45 | 3-15 | 1.25-1.40 | 0.6-6 | 4.00-42.00 | 0.08-0.18 | 0.0-2.9 | 0.0-2.0 | . 24 | . 37 | |
| | 7-21 | 50-62 | 35-45 | 3-15 | 1.30-1.50 | 0.6-6 | 4.00-42.00 | 0.08-0.18 | 0.0-2.9 | 0.0-2.0 | . 24 | . 37 | |
| | 21-27 | 50-62 | 35-45 | 3-15 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | 0.08-0.18 | 0.0-2.9 | 0.0-1.0 | . 24 | . 37 | |
| | 27-32 | 50-62 | 35-45 | 3-15 | 1.35-1.55 | 0.0015-0.2 | 0.01-1.40 | 0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 32-43 | 50-62 | 35-45 | 3-15 | 1.35-1.55 | 0.0015-0.2 | 0.01-1.40 | 0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 43-55 | 50-62 | 35-45 | 3-15 | 1.40-1.65 | 0.0015-0.2 | 0.01-1.40 | 0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 55-80 | 50-62 | 35-45 | 3-15 | 1.60-2.10 | 0.0015-0.2 | 0.01-1.40 | 0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 425B:
 Shelburne | | | | | | | | | | | | | |
| | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.08-0.40 | 0.0-20.0 | 50-80 | --- | --- | 3 |
| | 1-2 | 55-67 | 30-30 | 3-15 | 1.20-1.40 | 0.6-6 | 4.00-42.00 | 0.12-0.15 | 0.0-2.9 | 2.0-5.0 | . 20 | . 24 | |
| | 2-7 | 50-62 | 35-45 | 3-15 | 1.25-1.40 | 0.6-6 | 4.00-42.00 | 0.08-0.18 | 0.0-2.9 | 0.0-2.0 | . 24 | . 37 | |
| | 7-21 | 50-62 | 35-45 | 3-15 | 1.30-1.50 | 0.6-6 | 4.00-42.00 | 0.08-0.18 | 0.0-2.9 | 0.0-2.0 | . 24 | . 37 | |
| | 21-27 | 50-62 | 35-45 | 3-15 | 1.35-1.55 | 0.6-6 | 4.00-42.00 | 0.08-0.18 | 0.0-2.9 | 0.0-1.0 | . 24 | . 37 | |
| | 27-32 | 50-62 | 35-45 | 3-15 | 1.35-1.55 | 0.0015-0.2 | 0.01-1.40 | 0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 32-43 | 50-62 | 35-45 | 3-15 | 1.35-1.55 | 0.0015-0.2 | 0.01-1.40 | 0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 43-55 | $50-62$ | 35-45 | 3-15 | 1.40-1.65 | 0.0015-0.2 | 0.01-1.40 | 0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 55-80 | 50-62 | 35-45 | 3-15 | 1.60-2.10 | 0.0015-0.2 | 0.01-1.40 | 0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | | | | | | | | | | | | | |

Table 24.-Physical Properties of the Soils-Continued

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$ | Linear extensibility | Organic matter | \|Erosion Factors | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 428A: | | | | | | | | | | | | | |
| Ashfield-------- | 0-1 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 6-20 | 42.00-141.00 | --- | 0.0-20.0 | 20-95 | --- | --- | 3 |
| | 1-2 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 6-20 | 42.00-141.00 | --- | 0.0-20.0 | 45-95 | --- | --- | |
| | 2-3 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 6-20 | 42.00-141.00 | --- | 0.0-20.0 | 50-95 | --- | --- | |
| | 3-7 | 55-70 | 25-30 | 5-15 | \| 1.20-1.40| | 2-6 | 14.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 17 | . 28 | |
| | 7-12 | 30-67 | 30-55 | 5-15 | \|1.25-1.40| | 2-6 | 14.00-42.00 | 0.11-0.19 | 0.0-2.9 | 2.0-5.0 | . 28 | . 37 | |
| | 12-18 | 30-67 | 30-55 | 3-15 | \|1.30-1.50| | 0.6-6 | 4.00-42.00 | 0.10-0.19 | 0.0-2.9 | 0.5-2.0 | . 37 | . 55 | |
| | 18-24 | 30-67 | 30-55 | 3-15 | \|1.35-1.50| | 0.6-6 | 4.00-42.00 | 0.10-0.19 | 0.0-2.9 | 0.5-1.0 | . 37 | . 55 | |
| | 24-29 | 30-77 | 20-55 | 3-15 | \|1.35-1.55| | 0.6-6 | 4.00-42.00 | \|0.10-0.19 | 0.0-2.9 | 0.0-1.0 | . 37 | . 55 | |
| | 29-44 | 30-77 | 20-55 | 3-15 | \|1.60-2.10| | 0.0015-0.2 | 0.01-1.40 | 0.06-0.12 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 44-58 | 30-77 | 20-55 | 3-15 | \|1.60-2.10|0 | 0.0015-0.2 | 0.01-1.40 | 0.06-0.12 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | $58-80$ | 30-77 | 20-55 | 3-15 | 1.60-2.10\|0. | 0.0015-0.2 | 0.01-1.40 | 0.06-0.12 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 428B: | | | | | | | | | | | | | |
| Ashfield-------- | 0-1 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 6-20 | 42.00-141.00 | --- | 0.0-20.0 | 20-95 | --- | --- | 3 |
| | 1-2 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 6-20 | 42.00-141.00 | --- | 0.0-20.0 | 45-95 | --- | --- | |
| | 2-3 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 6-20 | 42.00-141.00 | --- | 0.0-20.0 | 50-95 | --- | --- | |
| | 3-7 | 55-70 | 25-30 | 5-15 | \|1.20-1.40| | 2-6 | 14.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 17 | . 28 | |
| | 7-12 | 30-67 | 30-55 | 5-15 | \|1.25-1.40| | 2-6 | 14.00-42.00 | 0.11-0.19 | 0.0-2.9 | 2.0-5.0 | . 28 | . 37 | |
| | 12-18 | 30-67 | 30-55 | 3-15 | \| 1.30-1.50| | 0.6-6 | 4.00-42.00 | \|0.10-0.19 | 0.0-2.9 | 0.5-2.0 | . 37 | . 55 | |
| | 18-24 | 30-67 | 30-55 | 3-15 | \|1.35-1.50| | 0.6-6 | 4.00-42.00 | \|0.10-0.19 | 0.0-2.9 | 0.5-1.0 | . 37 | . 55 | |
| | 24-29 | 30-77 | 20-55 | 3-15 | \|1.35-1.55| | 0.6-6 | 4.00-42.00 | 0.10-0.19 | 0.0-2.9 | 0.0-1.0 | . 37 | . 55 | |
| | 29-44 | 30-77 | 20-55 | 3-15 | 1.60-2.10\| | 0.0015-0.2 | 0.01-1.40 | 0.06-0.12 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 44-58 | 30-77 | 20-55 | 3-15 | \|1.60-2.10|0. | 0.0015-0.2 | 0.01-1.40 | 0.06-0.12 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 58-80 | 30-77 | 20-55 | 3-15 | 1.60-2.10\|0 | 0.0015-0.2 | 0.01-1.40 | 0.06-0.12 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 428C: | | | | | | | | | | | | | |
| Ashfield-------- | 0-1 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 6-20 | 42.00-141.00 | --- | 0.0-20.0 | 20-95 | --- | --- | 3 |
| | 1-2 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 6-20 | 42.00-141.00 | --- | 0.0-20.0 | 45-95 | --- | --- | |
| | 2-3 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 6-20 | 42.00-141.00 | --- | 0.0-20.0 | 50-95 | --- | --- | |
| | 3-7 | 55-70 | 25-30 | 5-15 | \|1.20-1.40| | 2-6 | 14.00-42.00 | 0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 17 | . 28 | |
| | 7-12 | 30-67 | 30-55 | 5-15 | \|1.25-1.40| | 2-6 | 14.00-42.00 | 0.11-0.19 | 0.0-2.9 | 2.0-5.0 | . 28 | . 37 | |
| | 12-18 | 30-67 | 30-55 | 3-15 | \|1.30-1.50| | 0.6-6 | 4.00-42.00 | 0.10-0.19 | 0.0-2.9 | 0.5-2.0 | . 37 | . 55 | |
| | 18-24 | 30-67 | 30-55 | 3-15 | \|1.35-1.50| | 0.6-6 | 4.00-42.00 | 0.10-0.19 | 0.0-2.9 | 0.5-1.0 | . 37 | . 55 | |
| | 24-29 | 30-77 | 20-55 | 3-15 | \|1.35-1.55| | 0.6-6 | 4.00-42.00 | 0.10-0.19 | 0.0-2.9 | 0.0-1.0 | . 37 | . 55 | |
| | 29-44 | 30-77 | 20-55 | 3-15 | 1.60-2.10\| | 0.0015-0.2 | 0.01-1.40 | 0.06-0.12 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 44-58 | 30-77 | 20-55 | 3-15 | \|1.60-2.10|0. | 0.0015-0.2 | 0.01-1.40 | 0.06-0.12 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 58-80 | 30-77 | 20-55 | 3-15 | 1.60-2.10\|0. | 0.0015-0.2 | 0.01-1.40 | 0.06-0.12 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 429A: | | | | | | | | | | | | | |
| Agawam, cold----- | | 53-71 | 25-37 | 4-10 | 1.10-1.20\| | 2-6 | 14.00-42.00 | 0.12-0.15 | 0.0-2.9 | 1.0-5.0 | . 28 | . 32 | 3 |
| | 8-14 | 50-69 | 30-40 | 1-10 | $\|1.20-1.40\|$ | 2-6 | 14.00-42.00 | 0.11-0.18 | 0.0-2.9 | 0.5-2.0 | . 37 | . 43 | |
| | 14-24 | $54-69$ | 30-40 | 1-6 | \|1.30-1.40| | 2-6 | $14.00-42.00$ | \|0.11-0.17 | 0.0-2.9 | 0.0-0.5 | . 32 | . 55 | |
| | 24-60 | 87-100 | 0-12 | 0-1 | \|1.30-1.50| | 20-100 | \|41.00-703.00| | 0.01-0.07 | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 429B: | | | | | | | | | | | | | |
| Agawam, cold----- | 0-8 | 53-71 | 25-37 | 4-10 | 1.10-1.20 | 2-6 | 14.00-42.00 | 0.12-0.15\| | 0.0-2.9 | 1.0-5.0 | . 28 | . 32 | 3 |
| | 8-14 | 50-69 | 30-40 | 1-10 | 1.20-1.40 | 2-6 | 14.00-42.00 | 0.11-0.18 | 0.0-2.9 | 0.5-2.0 | . 37 | . 43 | |
| | 14-24 | 54-69 | 30-40 | 1-6 | 1.30-1.40 | 2-6 | 14.00-42.00 | 0.11-0.17\| | 0.0-2.9 | 0.0-0.5 | . 32 | . 55 | |
| | 24-60 | 87-100 | 0-12 | 0-1 | 1.30-1.50 | 20-100 | 141.00-703.00\| | 0.01-0.07\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| 429C: | | | | | | | | | | | | | |
| Agawam, cold----- | 0-8 | 53-71 | 25-37 | 4-10 | 1.10-1.20 | 2-6 | 14.00-42.00 | 0.12-0.15 | 0.0-2.9 | 1.0-5.0 | . 28 | . 32 | 3 |
| | 8-14 | 50-69 | 30-40 | 1-10 | 1.20-1.40 | 2-6 | 14.00-42.00 | 0.11-0.18 | 0.0-2.9 | 0.5-2.0 | . 37 | . 43 | |
| | 14-24 | 54-69 | 30-40 | 1-6 | 1.30-1.40 | 2-6 | 14.00-42.00 | 0.11-0.17\| | 0.0-2.9 | 0.0-0.5 | . 32 | . 55 | |
| | 24-60 | 87-100 | 0-12 | 0-1 | 1.30-1.50 | 20-100 | 141.00-703.00\| | 0.01-0.07\| | 0.0-2.9 | 0.0-0.5 | . 15 | . 17 | |
| 433 : | | | | | | | | | | | | | |
| Moosilauke------ | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.06-0.50\| | 0.0-20.0 | 45-70 | --- | --- | 3 |
| | 1-6 | 40-51 | 42-50 | 7-10 | 1.30-1.55 | 2-6 | 14.00-42.00 | 0.09-0.15\| | 0.0-2.9 | 0.5-2.0 | . 37 | . 43 | |
| | 6-16 | 52-67 | 30-40 | 3-8 | 1.30-1.55 | 2-6 | 14.00-42.00 | 0.08-0.15\| | 0.0-2.9 | 0.0-1.0 | . 32 | . 37 | |
| | 16-24 | 52-67 | 30-40 | 0-8 | 1.40-1.65 | 6-100 | 42.00-703.00 | 0.08-0.15\| | 0.0-2.9 | 0.0-0.5 | . 32 | . 37 | |
| | 24-39 | 80-95 | 5-15 | 0-5 | 1.40-1.65 | 6-100 | 42.00-703.00 | 0.02-0.11\| | 0.0-2.9 | 0.0-0.5 | . 17 | . 20 | |
| | 39-65 | 80-95 | 5-15 | 0-5 | 1.40-1.65 | 6-100 | 42.00-703.00 | 0.02-0.11\| | 0.0-2.9 | 0.0-0.5 | . 17 | . 20 | |
| 434A: | | | | | | | | | | | | | |
| Merrimac, cold--- | 0-9 | 45-70 | 27-48 | 3-7 | 1.10-1.20 | 2-6 | 14.00-42.00 | 0.10-0.12\| | 0.0-2.9 | 1.0-5.0 | . 24 | . 28 | 3 |
| | 9-16 | 48-69 | 30-48 | 1-4 | 1.20-1.40 | 2-6 | 14.00-42.00 | 0.10-0.14\| | 0.0-2.9 | 0.5-1.0 | . 28 | . 37 | |
| | 16-24 | 48-69 | 30-48 | 1-4 | 1.20-1.40 | 2-6 | 14.00-42.00 | 0.07-0.12\| | 0.0-2.9 | 0.5-1.0 | . 24 | . 32 | |
| | 24-60 | 88-100 | 0-9 | 0-3 | 1.30-1.50 | 6-100 | 42.00-703.00 | 0.02-0.05\| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |
| 434B: | | | | | | | | | | | | | |
| Merrimac, cold--- | | 45-70 | 27-48 | | 1.10-1.20 | | 14.00-42.00 | 0.10-0.12\| | 0.0-2.9 | 1.0-5.0 | . 24 | . 28 | 3 |
| | 9-16 | 48-69 | 30-48 | 1-4 | 1.20-1.40\| | 2-6 | 14.00-42.00 | 0.10-0.14\| | 0.0-2.9 | 0.5-1.0 | . 28 | . 37 | |
| | 16-24 | 48-69 | 30-48 | 1-4 | 1.20-1.40 | 2-6 | 14.00-42.00 | 0.07-0.12\| | 0.0-2.9 | 0.5-1.0 | . 24 | . 32 | |
| | 24-60 | 88-100 | 0-9 | 0-3 | 1.30-1.50 | 6-100 | 42.00-703.00 | 0.02-0.05\| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |
| 434C: | | | | | | | | | | | | | |
| Merrimac, cold--- | 0-9 | 45-70 | 27-48 | 3-7 | 1.10-1.20 | 2-6 | 14.00-42.00 | 0.10-0.12\| | 0.0-2.9 | 1.0-5.0 | . 24 | . 28 | 3 |
| | 9-16 | 48-69 | 30-48 | 1-4 | 1.20-1.40 | 2-6 | 14.00-42.00 | 0.10-0.14\| | 0.0-2.9 | 0.5-1.0 | . 28 | . 37 | |
| | 16-24 | 48-69 | 30-48 | 1-4 | 1.20-1.40 | 2-6 | 14.00-42.00 | 0.07-0.12\| | 0.0-2.9 | 0.5-1.0 | . 24 | . 32 | |
| | 24-60 | 88-100 | 0-9 | 0-3 | 1.30-1.50 | 6-100 | 42.00-703.00 | 0.02-0.05\| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |
| 435 : | | | | | | | | | | | | | |
| Scarboro-------- | 0-12 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 2-6 | 14.00-42.00 | 0.08-0.40\| | 0.0-20.0 | 50-95 | --- | --- | 3 |
| | 12-17 | 74-83 | 10-25 | 1-5 | 1.25-1.45 | 2-20 | 14.00-141.00 | 0.08-0.11\| | 0.0-2.9 | 3.0-15 | . 05 | . 05 | |
| | 17-31 | 75-93 | 5-25 | 0-2 | 1.35-1.55 | 6-100 | 42.00-703.00 | 0.04-0.08\| | 0.0-2.9 | 0.0-1.0 | . 24 | . 28 | |
| | 31-72 | 75-93 | 5-25 | 0-2 | 1.35-1.55 | 6-100 | 42.00-703.00 | 0.02-0.08\| | 0.0-2.9 | 0.0-0.5 | . 24 | . 28 | |

Table 24.-Physical Properties of the Soils-Continued

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$ | Linear extensibility | Organic matter | Erosion Factors | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 440E: | | | | | | | | | | | | | |
| Boscawen-------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55\| | 2-20 | 14.00-141.00 | \|0.07-0.11| | 0.0-20.0 | 55-75 | --- | --- | 2 |
| | 1-2 | 54-68 | 30-40 | 2-6 | 1.20-1.40\| | 2-20 | 14.00-141.00 | \|0.03-0.10| | 0.0-2.9 | 2.0-5.0 | . 15 | . 24 | |
| | 2-9 | 54-83 | 15-40 | 2-6 | 1.20-1.40\| | 2-20 | 14.00-141.00 | \|0.02-0.05| | 0.0-2.9 | 0.0-0.5 | . 17 | . 37 | |
| | 9-16 | 77-85 | 15-17 | 2-6 | 1.30-1.50\| | 6-100 | \|42.00-703.00 | \|0.01-0.04| | 0.0-2.9 | 0.0-0.5 | . 05 | . 24 | |
| | 16-29 | 89-98 | 2-5 | 0-6 | \|1.30-1.50| | 6-100 | \| 42.00-703.00 | \|0.01-0.04| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |
| | 29-34 | 89-98 | 2-5 | 0-6 | 1.30-1.50\| | 6-100 | 42.00-703.00 | 0.01-0.04\| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |
| | 34-40 | 89-98 | 2-5 | 0-6 | 1.30-1.50\| | 6-100 | \|42.00-703.00 | \|0.01-0.04| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |
| | 40-44 | 89-98 | 2-5 | 0-6 | \|1.30-1.50| | 6-100 | \|42.00-703.00 | \|0.01-0.04| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |
| | 44-67 | 89-98 | 2-5 | 0-6 | 1.30-1.50\| | 6-100 | 12.00-703.00 | \|0.01-0.04| | 0.0-2.9 | 0.0-0.5 | . 10 | . 15 | |
| 442: | | | | | | | | | | | | | |
| Brayton--------- | 0-2 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 6-20 | 42.00-141.00 | \|0.08-0.40| | 0.0-20.0 | 50-80 | --- | --- | 2 |
| | 2-10 | 35-51 | 42-50 | 7-15 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | \|0.17-0.21| | 0.0-2.9 | 4.0-8.0 | . 10 | . 37 | |
| | 10-17 | 30-70 | 25-55 | 5-15 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | \|0.07-0.14| | 0.0-2.9 | 0.0-2.0 | . 28 | . 43 | |
| | 17-22 | 30-70 | 25-55 | 5-15 | 1.25-1.50\| | 0.6-6 | 4.00-42.00 | \|0.06-0.12| | 0.0-2.9 | 0.0-2.0 | . 28 | . 43 | |
| | 22-27 | 30-70 | 25-55 | 5-15 | \|1.25-1.50| | 0.6-6 | 4.00-42.00 | \|0.06-0.12| | 0.0-2.9 | 0.0-0.8 | . 28 | . 43 | |
| | 27-42 | 35-70 | 25-50 | 5-15 | 1.65-1.90\|0 | 0.0015-0.2 | 0.01-1.40 | \|0.06-0.12| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 42-65 | 35-70 | 25-50 | 5-15 | 1.70-1.95\|0 | 0.0015-0.2 | 0.01-1.40 | \|0.06-0.12| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 443 : | | | | | | | | | | | | | |
| Brayton--------- | 0-2 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 6-20 | 142.00-141.00 | \|0.08-0.40| | 0.0-20.0 | 50-80 | --- | --- | 2 |
| | 2-10 | 35-51 | 42-50 | 7-15 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | \|0.17-0.21| | 0.0-2.9 | 4.0-8.0 | . 10 | . 37 | |
| | 10-17 | 30-70 | 25-55 | 5-15 | 1.20-1.40\| | 0.6-2 | 4.00-14.00 | \|0.07-0.14| | 0.0-2.9 | 0.0-2.0 | . 28 | . 43 | |
| | 17-22 | 30-70 | 25-55 | 5-15 | \| 1.25-1.50| | 0.6-6 | 4.00-42.00 | \|0.06-0.12| | 0.0-2.9 | 0.0-2.0 | . 28 | . 43 | |
| | 22-27 | 30-70 | 25-55 | 5-15 | 1.25-1.50\| | 0.6-6 | 4.00-42.00 | \|0.06-0.12| | 0.0-2.9 | 0.0-0.8 | . 28 | . 43 | |
| | 27-42 | 35-70 | 25-50 | 5-15 | 1.65-1.90\|0 | 0.0015-0.2 | 0.01-1.40 | \|0.06-0.12| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 42-65 | 35-70 | 25-50 | 5-15 | 1.70-1.95\|0 | 0.0015-0.2 | 0.01-1.40 | \|0.06-0.12| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| Loonmeadow------ | 0-2 | 0-0 | 0-0 | 0-0 | \|0.30-0.55| | 6-20 | 12.00-141.00 | \|0.08-0.40| | 0.0-20.0 | 50-80 | --- | - | 5 |
| | 2-9 | 57-68 | 20-40 | 3-12 | 1.30-1.45\| | 2-6 | 14.00-42.00 | \|0.12-0.15| | 0.0-2.9 | 8.0-15 | . 05 | . 10 | |
| | 9-18 | 57-68 | 20-40 | 3-12 | \| 1.40-1.80| | 2-6 | 14.00-42.00 | \|0.09-0.14| | 0.0-2.9 | 0.0-1.0 | . 28 | . 37 | |
| | 18-35 | 57-70 | 20-40 | 3-10 | \|1.45-2.00| | 0.2-6 | 1.40-42.00 | \|0.05-0.14| | 0.0-2.9 | 0.0-1.0 | . 28 | . 43 | |
| | 35-80 | 57-70 | 20-40 | 3-10 | \|1.45-2.10| | 0.06-20 | 0.42-141.00 | \|0.05-0.14| | 0.0-2.9 | 0.0-1.0 | . 28 | . 43 | |
| 448B: | | | | | | | | | | | | | |
| Hogansburg------ | 0-12 | 29-47 | 35-45 | 18-26 | 1.00-1.40\| | 0.6-2 | 4.00-14.00 | \|0.14-0.18| | 0.0-2.9 | 2.0-5.0 | . 24 | . 32 | 5 |
| | 12-20 | 23-55 | 30-55 | 15-22 | \| 1.40-1.70| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.5-1.5 | . 28 | . 43 | |
| | 20-29 | 25-63 | 30-55 | 7-20 | \|1.50-1.70| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-1.0 | . 28 | . 43 | |
| | 29-43 | 25-63 | 30-55 | 7-20 | \| 1.50-1.70| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-1.0 | . 28 | . 43 | |
| | 43-50 | 43-65 | 30-40 | 5-17 | 1.70-2.10\|0 | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 50-70 | 43-65 | 30-40 | 5-17 | 1.70-2.10\|0 | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 70-84 | 43-65 | 30-40 | 5-17 | 1.70-2.10\|0 | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated hydraulic conductivity | $\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$ | Linear extensibility | Organic matter | Erosion Factors | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| 449B:
 Hogansburg | In | Pct | Pct | Pct | g/cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| | | | | | | | | | | | | | |
| | 0-12 | 29-47 | 35-45 | 18-26 | 1.00-1.40\| | 0.6-2 | 4.00-14.00 | \|0.14-0.18| | 0.0-2.9 | 2.0-5.0 | . 24 | . 32 | 5 |
| | 12-20 | 23-55 | 30-55 | 15-22 | 1.40-1.70\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.5-1.5 | . 28 | . 43 | |
| | 20-29 | 25-63 | 30-55 | 7-20 | 1.50-1.70\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-1.0 | . 28 | . 43 | |
| | 29-43 | 25-63 | 30-55 | 7-20 | 1.50-1.70\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-1.0 | . 28 | . 43 | |
| | 43-50 | 43-65 | 30-40 | 5-17 | 1.70-2.10\|0. | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 50-70 | 43-65 | 30-40 | 5-17 | 1.70-2.10\|0. | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 70-84 | 43-65 | 30-40 | 5-17 | 1.70-2.10\|0. | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 449C:
 Hogansburg- | | | | | | | | | | | | | |
| | 0-12 | 29-47 | 35-45 | 18-26 | 1.00-1.40\| | 0.6-2 | 4.00-14.00 | \|0.14-0.18| | 0.0-2.9 | 2.0-5.0 | . 24 | . 32 | 5 |
| | 12-20 | 23-55 | 30-55 | 15-22 | 1.40-1.70\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.5-1.5 | . 28 | . 43 | |
| | 20-29 | 25-63 | 30-55 | 7-20 | 1.50-1.70\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-1.0 | . 28 | . 43 | |
| | 29-43 | 25-63 | 30-55 | 7-20\| | 1.50-1.70\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-1.0 | . 28 | . 43 | |
| | 43-50 | 43-65 | 30-40 | 5-17 | 1.70-2.10 | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 50-70 | 43-65 | 30-40 | 5-17 | 1.70-2.10\|0. | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 70-84 | 43-65 | 30-40 | 5-17 | 1.70-2.10 | 0.0015-0.2 | 0.01-1.40 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 450B: | | | | | | | | | | | | | |
| Pyrities-------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.14-0.18\| | 0.0-20.0 | 55-70 | --- | --- | 3 |
| | 1-8 | 23-52 | 30-50 | 18-27 | 1.10-1.30\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 2.0-5.0 | . 15 | . 43 | |
| | 8-13 | 25-58 | 30-50 | 12-25 | 1.30-1.70\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 13-26 | 25-58 | 30-50 | 12-25 | 1.50-1.70\| | 0.06-0.6 | 0.42-4.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 26-45 | 25-58 | 30-50 | 12-25 | 1.60-1.80\| | 0.06-0.6 | 0.42-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 45-65 | 40-58 | 30-50 | 12-20 | 1.60-1.80 | 0.06-0.6 | 0.42-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 450C: | | | | | | | | | | | | | |
| Pyrities-------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55\| | 6-20 | 42.00-141.00 | \|0.14-0.18| | 0.0-20.0 | 55-70 | --- | --- | 3 |
| | 1-8 | 23-52 | 30-50 | 18-27 | 1.10-1.30 | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 2.0-5.0 | . 15 | . 43 | |
| | 8-13 | 25-58 | 30-50 | 12-25 | 1.30-1.70\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 13-26 | 25-58 | 30-50 | 12-25 | 1.50-1.70\| | 0.06-0.6 | 0.42-4.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 26-45 | 25-58 | 30-50 | 12-25 | 1.60-1.80\| | 0.06-0.6 | 0.42-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 45-65 | 40-58 | 30-50 | 12-20 | 1.60-1.80\| | 0.06-0.6 | 0.42-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 450D: | | | | | | | | | | | | | |
| Pyrities-------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | \|0.14-0.18| | 0.0-20.0 | 55-70 | --- | --- | 3 |
| | 1-8 | 23-52 | 30-50 | 18-27 | 1.10-1.30\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 2.0-5.0 | . 15 | . 43 | |
| | 8-13 | 25-58 | 30-50 | 12-25 | 1.30-1.70\| | 0.6-2 | 4.00-14.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 13-26 | 25-58 | 30-50 | 12-25 | 1.50-1.70\| | 0.06-0.6 | 0.42-4.00 | \|0.10-0.18| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 26-45 | 25-58 | 30-50 | 12-25 | 1.60-1.80\| | 0.06-0.6 | 0.42-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 45-65 | 40-58 | 30-50 | 12-20 | 1.60-1.80\| | 0.06-0.6 | 0.42-4.00 | \|0.06-0.18| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$ | Permeability | Saturated hydraulic conductivity | $\begin{array}{\|c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}$ | Linear extensibility | Organic matter | Erosion Factors | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 451B: | | | | | | | | | | | | | |
| Pyrities-------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.14-0.18\| | 0.0-20.0 | 55-70 | --- | --- | 3 |
| | 1-8 | 23-52 | 30-50 | 18-27 | 1.10-1.30 | 0.6-2 | 4.00-14.00 | 0.10-0.18\| | 0.0-2.9 | 2.0-5.0 | . 15 | . 43 | |
| | 8-13 | 25-58 | 30-50 | 12-25 | 1.30-1.70 | 0.6-2 | 4.00-14.00 | 0.10-0.18\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 13-26 | 25-58 | 30-50 | 12-25 | 1.50-1.70 | 0.06-0.6 | 0.42-4.00 | 0.10-0.18\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 26-45 | 25-58 | 30-50 | 12-25 | 1.60-1.80 | 0.06-0.6 | 0.42-4.00 | 0.06-0.18\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 45-65 | 40-58 | 30-50 | 12-20 | 1.60-1.80 | 0.06-0.6 | 0.42-4.00 | 0.06-0.18\| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 451C: | | | | | | | | | | | | | |
| Pyrities-------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.14-0.18 | 0.0-20.0 | 55-70 | --- | --- | 3 |
| | 1-8 | 23-52 | 30-50 | 18-27 | 1.10-1.30 | 0.6-2 | 4.00-14.00 | 0.10-0.18\| | 0.0-2.9 | 2.0-5.0 | . 15 | . 43 | |
| | 8-13 | 25-58 | 30-50 | 12-25 | 1.30-1.70 | 0.6-2 | 4.00-14.00 | 0.10-0.18\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 13-26 | 25-58 | 30-50 | 12-25 | 1.50-1.70 | 0.06-0.6 | 0.42-4.00 | 0.10-0.18 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 26-45 | 25-58 | 30-50 | 12-25 | 1.60-1.80 | 0.06-0.6 | 0.42-4.00 | 0.06-0.18\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 45-65 | 40-58 | 30-50 | 12-20 | 1.60-1.80 | 0.06-0.6 | 0.42-4.00 | 0.06-0.18\| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 451D: | | | | | | | | | | | | | |
| Pyrities-------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.14-0.18 | 0.0-20.0 | 55-70 | --- | --- | 3 |
| | 1-8 | 23-52 | 30-50 | 18-27 | 1.10-1.30 | 0.6-2 | 4.00-14.00 | 0.10-0.18\| | 0.0-2.9 | 2.0-5.0 | . 15 | . 43 | |
| | 8-13 | 25-58 | 30-50 | 12-25 | 1.30-1.70 | 0.6-2 | 4.00-14.00 | 0.10-0.18 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 13-26 | 25-58 | 30-50 | 12-25 | 1.50-1.70 | 0.06-0.6 | 0.42-4.00 | 0.10-0.18\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 26-45 | 25-58 | 30-50 | 12-25 | 1.60-1.80 | 0.06-0.6 | 0.42-4.00 | 0.06-0.18\| | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 45-65 | 40-58 | 30-50 | 12-20 | 1.60-1.80 | 0.06-0.6 | 0.42-4.00 | 0.06-0.18\| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 457 : | | | | | | | | | | | | | |
| Mudgepond------- | 0-11 | 28-30 | 50-60 | 10-22 | 1.10-1.40 | 0.6-2 | 4.00-14.00 | 0.16-0.20\| | 0.0-2.9 | 3.0-8.0 | . 20 | . 28 | 5 |
| | 11-16 | 28-73 | 20-55 | 7-17 | 1.20-1.50 | 0.6-6 | 4.00-42.00 | 0.08-0.20\| | 0.0-2.9 | 0.5-2.0 | . 32 | . 49 | |
| | 16-26 | 28-75 | 20-55 | 5-17 | 1.30-1.55 | 0.6-6 | 4.00-42.00 | 0.08-0.20\| | 0.0-2.9 | 0.5-2.0 | . 32 | . 49 | |
| | 26-35 | 28-75 | 20-55 | 5-17 | 1.40-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.20\| | 0.0-2.9 | 0.5-2.0 | . 32 | . 49 | |
| | 35-65 | 38-72 | 25-45 | 3-17 | 1.50-1.80 | 0.6-2 | 4.00-14.00 | 0.07-0.17\| | 0.0-2.9 | 0.0-1.0 | . 32 | . 49 | |
| 458 : | | | | | | | | | | | | | |
| Mudgepond------- | 0-11 | 28-30 | 50-60 | 10-22 | 1.10-1.40 | 0.6-2 | 4.00-14.00 | 0.16-0.20\| | 0.0-2.9 | 3.0-8.0 | . 20 | . 28 | 5 |
| | 11-16 | 28-73 | 20-55 | 7-17 | 1.20-1.50 | 0.6-6 | 4.00-42.00 | 0.08-0.20\| | 0.0-2.9 | 0.5-2.0 | . 32 | . 49 | |
| | 16-26 | 28-75 | 20-55 | 5-17 | 1.30-1.55 | 0.6-6 | 4.00-42.00 | 0.08-0.20\| | 0.0-2.9 | 0.5-2.0 | . 32 | . 49 | |
| | 26-35 | 28-75 | 20-55 | 5-17 | 1.40-1.60 | 0.6-6 | 4.00-42.00 | 0.08-0.20 | 0.0-2.9 | 0.5-2.0 | . 32 | . 49 | |
| | 35-65 | 38-72 | 25-45 | 3-17 | 1.50-1.80 | 0.6-2 | 4.00-14.00 | 0.07-0.17\| | 0.0-2.9 | 0.0-1.0 | . 32 | . 49 | |
| Alden----------- | 0-4 | 9-33 | 52-65 | 15-26 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.16-0.21 | 0.0-5.9 | 10-15 | . 10 | . 15 | 5 |
| | 4-13 | 9-54 | 28-65 | 18-26 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.13-0.21\| | 0.0-5.9 | 3.0-8.0 | . 28 | . 24 | |
| | 13-23 | 9-54 | 28-65 | 18-26 | 1.20-1.50 | 0.6-2 | 4.00-14.00 | 0.13-0.21\| | 0.0-5.9 | 0.5-1.0 | . 28 | . 24 | |
| | 23-29 | 9-54 | 28-65 | 18-26 | 1.20-1.50 | 0.6-2 | 4.00-14.00 | 0.13-0.21\| | 0.0-5.9 | 0.5-1.0 | . 28 | . 24 | |
| | 29-43 | 14-42 | 40-60 | 18-26 | 1.40-1.65 | 0.2-0.6 | 1.40-4.00 | 0.10-0.19\| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| | 43-60 | 14-42 | 40-60 | 18-26 | 1.40-1.65 | 0.2-0.6 | 1.40-4.00 | \|0.10-0.19| | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |

Table 24.-Physical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Sand | Silt | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permeability | Saturated hydraulic conductivity | $\left\|\begin{array}{c} \text { Available } \\ \text { water } \\ \text { capacity } \end{array}\right\|$ | Linear extensibility | Organic matter | Erosion Factors | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | Kw | Kf | T |
| | In | Pct | Pct | Pct | g / cc | In/hr | um/sec | In/in | Pct | Pct | | | |
| 501: | | | | | | | | | | | | | |
| Ondawa---------- | 0-1 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.14-0.18 | 0.0-20.0 | 55-70 | --- | --- | 3 |
| | 1-2 | 0-0 | 0-0 | 0-0 | 0.30-0.55 | 6-20 | 42.00-141.00 | 0.14-0.18 | 0.0-20.0 | 55-70 | --- | --- | |
| | 2-14 | 23-52 | 30-50 | 18-27 | 1.10-1.30 | 0.6-2 | 4.00-14.00 | 0.10-0.18 | 0.0-2.9 | 2.0-5.0 | . 15 | . 43 | |
| | 14-30 | 25-58 | 30-50 | 12-25 | 1.30-1.70 | 0.6-2 | 4.00-14.00 | 0.10-0.18 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 30-33 | 25-58 | 30-50 | 12-25 | 1.60-1.80 | 0.06-0.6 | 0.42-4.00 | 0.06-0.18 | 0.0-2.9 | 0.0-0.5 | . 28 | . 43 | |
| | 33-60 | 40-58 | 30-50 | 12-20 | 1.60-1.80 | 0.06-0.6 | 0.42-4.00 | 0.06-0.18 | 0.0-2.9 | 0.0-0.5 | . 32 | . 49 | |
| 503: | | | | | | | | | | | | | |
| Rumney---------- | | 10-45 | 50-65 | 5-25 | 1.05-1.60 | 0.6-6 | 4.00-42.00 | 0.15-0.20 | 0.0-2.9 | 2.0-5.0 | . 32 | . 37 | 3 |
| | 7-22 | 26-67 | 30-49 | 3-25 | 1.20-1.60 | 0.6-6 | 4.00-42.00 | 0.11-0.17 | 0.0-2.9 | 0.2-1.0 | . 37 | . 43 | |
| | 22-38 | 26-67 | 30-49 | 3-25 | 1.20-1.60 | 0.6-6 | 4.00-42.00 | 0.11-0.17 | 0.0-2.9 | 0.2-1.0 | . 37 | . 43 | |
| | 38-42 | 5-67 | 30-70 | 3-25 | 1.20-1.60 | 0.6-6 | 4.00-42.00 | 0.11-0.20 | 0.0-2.9 | 2.0-5.0 | . 28 | . 37 | |
| | 42-44 | 52-97 | 2-30 | 1-18 | 1.20-1.60 | 6-20 | 42.00-141.00 | 0.03-0.15 | 0.0-2.9 | 0.0-0.2 | . 15 | . 20 | |
| | 44-65 | 52-96 | 2-30 | 2-20 | 1.20-1.60 | 6-20 | 42.00-141.00 | 0.03-0.15 | 0.0-2.9 | 0.0-0.2 | . 15 | . 20 | |
| 508: | | | | | | | | | | | | | |
| Medomak--------- | 0-7 | 15-35 | 50-75 | 8-15 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.19-0.21 | 0.0-2.9 | 10-20 | . 10 | . 15 | 4 |
| | 7-24 | 15-60 | 25-75 | 8-15 | 1.20-1.40 | 0.6-2 | 4.00-14.00 | 0.19-0.21 | 0.0-2.9 | 0.5-6.0 | . 37 | . 43 | |
| | 24-33 | 10-35 | 50-75 | 8-15 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.15-0.21 | 0.0-2.9 | 10-20 | . 10 | . 15 | |
| | 33-46 | 10-95 | 5-75 | 0-15 | 1.25-1.50 | 0.6-2 | 4.00-14.00 | 0.15-0.21 | 0.0-2.9 | 0.2-1.0 | . 17 | . 20 | |
| | 46-79 | 10-95 | 5-75 | 0-15 | 1.30-1.60 | 6-100 | 42.00-703.00 | 0.02-0.11 | 0.0-2.9 | 0.2-1.0 | . 17 | . 20 | |

Table 25.-Chemical Properties of the Soils
(Absence of an entry indicates that data were not estimated.)

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| 2: | 0-5 | 1.7-5.6 | --- | 4.5-6.0 | 0 | 0 |
| | 5-14 | 1.0-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 14-21 | 1.0-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 21-60 | 1.0-4.3 | --- | 4.5-6.0 | 0 | 0 |
| $3:$Ridgebu | | | | | | |
| | 0-5 | 1.7-5.6 | - | 4.5-6.0 | 0 | 0 |
| | 5-14 | 1.0-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 14-21 | 1.0-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 21-60 | 1.0-4.3 | - - | 4.5-6.0 | 0 | 0 |
| Leicester------- | 0-1 | --- | 30-63 | 4.5-5.0 | 0 | 0 |
| | 1-7 | --- | 0.5-2.4 | 4.5-5.5 | 0 | 0 |
| | 7-10 | --- | 0.6-2.9 | 4.5-5.5 | 0 | 0 |
| | 10-18 | --- | 0.7-4.3 | 4.5-5.5 | 0 | 0 |
| | 18-24 | --- | 0.7-4.3 | 4.5-5.5 | 0 | 0 |
| | 24-43 | 1.0-3.8 | - | 4.5-6.0 | 0 | 0 |
| | 43-65 | 1.0-3.8 | --- | 4.5-6.0 | 0 | 0 |
| Whitman---------- | 0-1 | --- | 17-99 | 4.5-6.0 | 0 | 0 |
| | 1-9 | 2.8-6.7 | --- | 4.5-6.5 | 0 | 0 |
| | 9-16 | 1.0-6.5 | --- | 4.5-6.5 | 0 | 0 |
| | 16-22 | 1.0-4.3 | - | 4.5-6.5 | 0 | 0 |
| | 22-60 | 1.0-4.3 | --- | 4.5-6.5 | 0 | 0 |
| 4: | | | | | | |
| Leicester------- | 0-7 | --- | 0.5-2.4 | 4.5-5.5 | 0 | 0 |
| | 7-10 | --- | 0.6-2.9 | 4.5-5.5 | 0 | 0 |
| | 10-18 | --- | 0.7-4.3 | 4.5-5.5 | 0 | 0 |
| | 18-24 | --- | 0.7-4.3 | 4.5-5.5 | 0 | 0 |
| | 24-43 | 1.0-3.8 | --- | 4.5-6.0 | 0 | 0 |
| | 43-65 | 1.0-3.8 | - | 4.5-6.0 | 0 | 0 |
| 5: | | | | | | |
| Wilbraham------- | 0-4 | --- | 0.5-3.8 | 4.5-6.0 | 0 | 0 |
| | 4-8 | --- | 0.7-6.8 | 4.5-6.0 | 0 | 0 |
| | 8-20 | --- | 0.7-6.8 | 4.5-6.0 | 0 | 0 |
| | 20-65 | --- | 0.7-6.8 | 4.5-6.0 | 0 | 0 |
| 6 : | | | | | | |
| Wilbraham------- | 0-4 | --- | 0.5-3.8 | 4.5-6.0 | 0 | 0 |
| | 4-8 | --- | 0.7-6.8 | 4.5-6.0 | 0 | 0 |
| | 8-20 | --- | 0.7-6.8 | 4.5-6.0 | 0 | 0 |
| | 20-65 | --- | 0.7-6.8 | 4.5-6.0 | 0 | 0 |
| Menlo----------- | | --- | 17-65 | 4.5-6.0 | 0 | 0 |
| | 5-16 | 3.9-8.4 | --- | 4.5-7.3 | 0 | 0 |
| | 16-22 | 1.6-8.2 | -- | 5.1-7.8 | 0 | 0 |
| | 22-27 | 1.6-8.1 | --- | 5.1-7.8 | 0 | 0 |
| | 27-40 | 1.6-8.0 | --- | 5.1-7.8 | 0 | 0 |
| | 40-60 | 1.6-8.0 | --- | 5.1-8.4 | 0 | 0 |
| 7 : | | | | | | |
| Mudgepond------- | 0-11 | 9.3-20 | --- | 6.6-7.8 | 0 | 0 |
| | 11-16 | 6.3-15 | --- | 6.6-7.8 | 0-2 | 0 |
| | 16-26 | 4.6-15 | --- | 6.6-7.8 | 0-15 | 0 |
| | 26-35 | 4.6-15 | --- | 6.6-7.8 | 1-15 | 0 |
| | 35-65 | 2.6-14 | --- | 6.6-8.4 | 5-25 | 0 |

Table 25.-Chemical Properties of the Soils-Continued

Table 25.-Chemical Properties of the Soils-Continued

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| 21A: | | | | | | |
| Ninigret-------- | 0-8 | --- | 0.6-3.1 | 4.5-6.0 | 0 | 0 |
| | 8-16 | --- | 0.6-3.6 | 4.5-6.0 | 0 | 0 |
| | 16-26 | --- | 0.7-5.3 | 4.5-6.0 | 0 | 0 |
| | 26-65 | 0.0-1.1 | --- | 4.5-6.5 | 0 | 0 |
| Tisbury--------- | 0-8 | --- | 0.5-3.1 | 4.5-6.0 | 0 | 0 |
| | 8-18 | --- | 0.6-3.6 | 4.5-6.0 | 0 | 0 |
| | 18-26 | --- | 0.7-5.3 | 4.5-6.0 | 0 | 0 |
| | 26-60 | --- | 0.0-1.1 | 4.5-6.0 | 0 | 0 |
| 22A: | | | | | | |
| Hero----------- | 0-9 | 2.6-5.7 | --- | 5.6-7.3 | 0 | 0 |
| | 9-18 | 1.9-5.5 | --- | 5.6-7.8 | 0 | 0 |
| | 18-24 | 1.9-5.5 | --- | 5.6-7.8 | 0 | 0 |
| | 24-27 | 1.7-5.4 | --- | 5.6-7.8 | 0-5 | 0 |
| | 27-60 | 1.1-3.6 | - | 7.3-8.4 | 0-20 | 0 |
| 22B: | | | | | | |
| Hero----------- | 0-9 | 2.6-5.7 | --- | 5.6-7.3 | 0 | 0 |
| | 9-18 | 1.9-5.5 | --- | 5.6-7.8 | 0 | 0 |
| | 18-24 | 1.9-5.5 | --- | 5.6-7.8 | 0 | 0 |
| | 24-27 | 1.7-5.4 | --- | 5.6-7.8 | 0-5 | 0 |
| | 27-60 | 1.1-3.6 | --- | 7.3-8.4 | 0-20 | 0 |
| 23A: | | | | | | |
| Sudbury--------- | 0-1 | --- | 30-121 | 4.5-6.5 | 0 | 0 |
| | 1-5 | 2.2-6.2 | --- | 4.5-6.5 | 0 | 0 |
| | 5-17 | 1.9-6.1 | --- | 4.5-6.5 | 0 | 0 |
| | 17-25 | 1.2-5.0 | --- | 4.5-6.5 | 0 | 0 |
| | 25-60 | 0.0-2.6 | --- | 4.5-6.5 | 0 | 0 |
| 24A: | | | | | | |
| Deerfield------- | 0-8 | 1.9-6.4 | --- | 4.5-6.5 | 0 | 0 |
| | 8-16 | 1.0-5.7 | --- | 4.5-6.5 | 0 | 0 |
| | 16-28 | 0.8-5.4 | --- | 4.5-6.5 | 0 | 0 |
| | 28-34 | 0.0-4.0 | --- | 4.5-6.5 | 0 | 0 |
| | 34-60 | 0.0-3.1 | --- | 4.5-6.5 | 0 | 0 |
| 25A: | | | | | | |
| Brancroft------- | | 9.8-13 | --- | 4.5-6.5 | 0 | 0 |
| | 6-17 | 9.7-19 | --- | 5.1-7.3 | 0 | 0 |
| | 17-22 | 9.6-19 | --- | 5.1-7.3 | 0 | 0 |
| | 22-32 | 9.1-18 | --- | 5.1-7.3 | 0 | 0 |
| | 32-43 | 9.1-18 | --- | 5.6-7.3 | 0 | 0 |
| | 43-66 | 9.1-18 | --- | 5.6-7.3 | 0 | 0 |
| 25B: | | | | | | |
| Brancroft------- | 0-6 | 9.8-13 | --- | 4.5-6.5 | 0 | 0 |
| | 6-17 | 9.7-19 | --- | 5.1-7.3 | 0 | 0 |
| | 17-22 | 9.6-19 | --- | 5.1-7.3 | 0 | 0 |
| | 22-32 | 9.1-18 | --- | 5.1-7.3 | 0 | 0 |
| | 32-43 | 9.1-18 | --- | 5.6-7.3 | 0 | 0 |
| | 43-66 | 9.1-18 | --- | 5.6-7.3 | 0 | 0 |
| 25C: | | | | | | |
| Brancroft------- | 0-6 | 9.8-13 | --- | 4.5-6.5 | 0 | 0 |
| | 6-17 | 9.7-19 | --- | 5.1-7.3 | 0 | 0 |
| | 17-22 | 9.6-19 | --- | 5.1-7.3 | 0 | 0 |
| | 22-32 | 9.1-18 | --- | 5.1-7.3 | 0 | 0 |
| | 32-43 | 9.1-18 | --- | 5.6-7.3 | 0 | 0 |
| | 43-66 | 9.1-18 | --- | 5.6-7.3 | 0 | 0 |

Table 25.-Chemical Properties of the Soils-Continued

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| 30B:Branford | | | | | | |
| | 0-8 | --- | 0.6-3.1 | 4.5-6.0 | 0 | 0 |
| | 8-18 | --- | 0.6-3.6 | 4.5-6.0 | 0 | 0 |
| | 18-24 | --- | 0.7-5.3 | 4.5-6.0 | 0 | 0 |
| | 24-65 | --- | 0.0-0.7 | 4.5-6.0 | 0 | 0 |
| 30C: | | | | | | |
| Branford-------- | 0-8 | --- | 0.6-3.1 | 4.5-6.0 | 0 | 0 |
| | 8-18 | -- - | 0.6-3.6 | 4.5-6.0 | 0 | 0 |
| | 18-24 | - | 0.7-5.3 | 4.5-6.0 | 0 | 0 |
| | 24-65 | - | 0.0-0.7 | 4.5-6.0 | 0 | 0 |
| 31A: | | | | | | |
| Copake---------- | 0-6 | 3.7-6.4 | --- | 5.1-7.3 | 0 | 0 |
| | 6-13 | 2.9-6.3 | --- | 5.1-7.3 | 0 | 0 |
| | 13-21 | 2.7-6.1 | --- | 5.1-7.3 | 0 | 0 |
| | 21-31 | 2.7-6.1 | --- | 5.1-7.3 | 0 | 0 |
| | 31-56 | 0.4-2.9 | - | 6.1-8.4 | 0-2 | 0 |
| | 56-65 | 0.4-2.9 | - | 6.6-8.4 | 1-10 | 0 |
| | 65-75 | 0.4-2.9 | --- | 6.6-8.4 | 1-20 | 0 |
| | 75-80 | 0.4-2.9 | - | 7.4-8.4 | 1-25 | 0 |
| 31B: | | | | | | |
| Copake---------- | | 3.7-6.4 | --- | 5.1-7.3 | 0 | 0 |
| | 6-13 | 2.9-6.3 | - | 5.1-7.3 | 0 | 0 |
| | 13-21 | 2.7-6.1 | --- | 5.1-7.3 | 0 | 0 |
| | 21-31 | 2.7-6.1 | - | 5.1-7.3 | 0 | 0 |
| | 31-56 | 0.4-2.9 | --- | 6.1-8.4 | 0-2 | 0 |
| | 56-65 | 0.4-2.9 | --- | 6.6-8.4 | 1-10 | 0 |
| | 65-75 | 0.4-2.9 | --- | 6.6-8.4 | 1-20 | 0 |
| | 75-80 | 0.4-2.9 | - | 7.4-8.4 | 1-25 | 0 |
| 31C: | | | | | | |
| Copake---------- | 0-6 | 3.7-6.4 | - | 5.1-7.3 | 0 | 0 |
| | 6-13 | 2.9-6.3 | --- | 5.1-7.3 | 0 | 0 |
| | 13-21 | 2.7-6.1 | --- | 5.1-7.3 | 0 | 0 |
| | 21-31 | 2.7-6.1 | --- | 5.1-7.3 | 0 | 0 |
| | 31-56 | 0.4-2.9 | --- | 6.1-8.4 | 0-2 | 0 |
| | 56-65 | 0.4-2.9 | --- | 6.6-8.4 | 1-10 | 0 |
| | 65-75 | 0.4-2.9 | --- | 6.6-8.4 | 1-20 | 0 |
| | 75-80 | 0.4-2.9 | --- | 7.4-8.4 | 1-25 | 0 |
| 32A: | | | | | | |
| Haven----------- | 0-7 | --- | 1.0-4.9 | 4.5-6.0 | 0 | 0 |
| | 7-14 | --- | 1.1-5.7 | 4.5-6.0 | 0 | 0 |
| | 14-20 | --- | 1.2-5.7 | 4.5-6.0 | 0 | 0 |
| | 20-24 | --- | 1.3-8.4 | 4.5-6.0 | 0 | 0 |
| | 24-60 | --- | 0.0-1.1 | 4.5-6.0 | 0 | 0 |
| Enfield--------- | 0-3 | --- | 32-71 | 4.5-5.5 | 0 | 0 |
| | 3-4 | --- | 32-71 | 4.5-5.5 | 0 | 0 |
| | 4-12 | 1.7-6.7 | --- | 4.5-6.0 | 0 | 0 |
| | 12-20 | 1.6-6.5 | --- | 4.5-6.0 | 0 | 0 |
| | 20-26 | 1.6-6.5 | --- | 4.5-6.0 | 0 | 0 |
| | 26-30 | 1.6-6.4 | --- | 4.5-6.0 | 0 | 0 |
| | 30-37 | 0.0-3.2 | --- | 4.5-6.0 | 0 | 0 |
| | 37-65 | 0.0-1.1 | --- | 4.5-6.0 | 0 | 0 |

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| 32B: | | | | | | |
| Haven----------- | 0-7 | --- | 1.0-4.9 | 4.5-6.0 | 0 | 0 |
| | 7-14 | --- | 1.1-5.7 | 4.5-6.0 | 0 | 0 |
| | 14-20 | --- | 1.2-5.7 | 4.5-6.0 | 0 | 0 |
| | 20-24 | --- | 1.3-8.4 | 4.5-6.0 | 0 | 0 |
| | 24-60 | --- | 0.0-1.1 | 4.5-6.0 | 0 | 0 |
| Enfield--------- | 0-3 | --- | 32-71 | 4.5-5.5 | 0 | 0 |
| | 3-4 | --- | 32-71 | 4.5-5.5 | 0 | 0 |
| | 4-12 | 1.7-6.7 | --- | 4.5-6.0 | 0 | 0 |
| | 12-20 | 1.6-6.5 | -- | 4.5-6.0 | 0 | 0 |
| | 20-26 | 1.6-6.5 | --- | 4.5-6.0 | 0 | 0 |
| | 26-30 | 1.6-6.4 | --- | 4.5-6.0 | 0 | 0 |
| | 30-37 | 0.0-3.2 | --- | 4.5-6.0 | 0 | 0 |
| | 37-65 | 0.0-1.1 | --- | 4.5-6.0 | 0 | 0 |
| 32C: | | | | | | |
| Haven----------- | 0-7 | --- | 1.0-4.9 | 4.5-6.0 | 0 | 0 |
| | 7-14 | --- | 1.1-5.7 | 4.5-6.0 | 0 | 0 |
| | 14-20 | --- | 1.2-5.7 | 4.5-6.0 | 0 | 0 |
| | 20-24 | --- | 1.3-8.4 | 4.5-6.0 | 0 | 0 |
| | 24-60 | --- | 0.0-1.1 | 4.5-6.0 | 0 | 0 |
| Enfield--------- | 0-3 | --- | 32-71 | 4.5-5.5 | 0 | 0 |
| | 3-4 | --- | 32-71 | 4.5-5.5 | 0 | 0 |
| | 4-12 | 1.7-6.7 | --- | 4.5-6.0 | 0 | 0 |
| | 12-20 | 1.6-6.5 | --- | 4.5-6.0 | 0 | 0 |
| | 20-26 | 1.6-6.5 | --- | 4.5-6.0 | 0 | 0 |
| | 26-30 | 1.6-6.4 | --- | 4.5-6.0 | 0 | 0 |
| | 30-37 | 0.0-3.2 | - | 4.5-6.0 | 0 | 0 |
| | 37-65 | 0.0-1.1 | --- | 4.5-6.0 | 0 | 0 |
| 33A: | | | | | | |
| Hartford-------- | 0-8 | --- | 2.0-5.7 | 4.5-6.0 | 0 | 0 |
| | 8-20 | - | 0.9-3.5 | 4.5-6.0 | 0 | 0 |
| | 20-26 | - | 0.2-4.0 | 4.5-6.0 | 0 | 0 |
| | 26-65 | -- - | 0.1-2.0 | 4.5-6.0 | 0 | 0 |
| 33B: | | | | | | |
| Hartford------- | | --- | 2.0-5.7 | 4.5-6.0 | 0 | 0 |
| | 8-20 | --- | 0.9-3.5 | 4.5-6.0 | 0 | 0 |
| | 20-26 | --- | 0.2-4.0 | 4.5-6.0 | 0 | 0 |
| | 26-65 | --- | 0.1-2.0 | 4.5-6.0 | 0 | 0 |
| 34A: | | | | | | |
| Merrimac------- | 0-9 | 2.8-6.9 | --- | 5.1-6.5 | 0 | 0 |
| | 9-16 | 1.1-3.6 | --- | 5.6-6.0 | 0 | 0 |
| | 16-24 | 1.1-3.6 | --- | 5.6-6.0 | 0 | 0 |
| | 24-60 | 0.0-2.6 | --- | 5.6-6.0 | 0 | 0 |
| 34B: | | | | | | |
| Merrimac-------- | 0-9 | 2.8-6.9 | --- | 5.1-6.5 | 0 | 0 |
| | 9-16 | 1.1-3.6 | -- | 5.6-6.0 | 0 | 0 |
| | 16-24 | 1.1-3.6 | --- | 5.6-6.0 | 0 | 0 |
| | 24-60 | 0.0-2.6 | --- | 5.6-6.0 | 0 | 0 |
| 34C: | | | | | | |
| Merrimac-------- | 0-9 | 2.8-6.9 | --- | 5.1-6.5 | 0 | 0 |
| | 9-16 | 1.1-3.6 | --- | 5.6-6.0 | 0 | 0 |
| | 16-24 | 1.1-3.6 | --- | 5.6-6.0 | 0 | 0 |
| | 24-60 | 0.0-2.6 | --- | 5.6-6.0 | 0 | 0 |

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective
 cation
 exchange
 capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| 35A: | | | | | | |
| Penwood- | 0-8 | --- | 0.8-2.4 | 4.5-6.0 | 0 | 0 |
| | 8-18 | --- | 0.1-1.4 | 4.5-6.0 | 0 | 0 |
| | 18-30 | --- | 0.0-0.8 | 4.5-6.0 | 0 | 0 |
| | 30-60 | --- | 0.0-0.8 | 4.5-6.0 | 0 | 0 |
| 35B : | | | | | | |
| Penwood- | 0-8 | --- | 0.8-2.4 | 4.5-6.0 | 0 | 0 |
| | 8-18 | --- | 0.1-1.4 | 4.5-6.0 | 0 | 0 |
| | 18-30 | --- | 0.0-0.8 | 4.5-6.0 | 0 | 0 |
| | 30-60 | --- | 0.0-0.8 | 4.5-6.0 | 0 | 0 |
| 36A: | | | | | | |
| Windsor- | 0-1 | --- | 30-99 | 4.5-6.0 | 0 | 0 |
| | 1-3 | --- | 0.6-3.1 | 4.5-6.0 | 0 | 0 |
| | 3-9 | --- | 0.4-1.8 | 4.5-6.0 | 0 | 0 |
| | 9-21 | --- | 0.4-1.8 | 4.5-6.0 | 0 | 0 |
| | 21-25 | 0.0-2.6 | - - | 4.5-6.5 | 0 | 0 |
| | 25-65 | 0.0-1.8 | --- | 4.5-6.5 | 0 | 0 |
| 36B: | | | | | | |
| Windsor- | 0-1 | --- | 30-99 | 4.5-6.0 | 0 | 0 |
| | 1-3 | --- | 0.6-3.1 | 4.5-6.0 | 0 | 0 |
| | 3-9 | --- | 0.4-1.8 | 4.5-6.0 | 0 | 0 |
| | 9-21 | --- | 0.4-1.8 | 4.5-6.0 | 0 | 0 |
| | 21-25 | 0.0-2.6 | -- | 4.5-6.5 | 0 | 0 |
| | 25-65 | 0.0-1.8 | -- | 4.5-6.5 | 0 | 0 |
| 36C: | | | | | | |
| Windsor-- | 0-1 | - | 30-99 | 4.5-6.0 | 0 | 0 |
| | 1-3 | --- | 0.6-3.1 | 4.5-6.0 | 0 | 0 |
| | 3-9 | --- | 0.4-1.8 | 4.5-6.0 | 0 | 0 |
| | 9-21 | --- | 0.4-1.8 | 4.5-6.0 | 0 | 0 |
| | 21-25 | 0.0-2.6 | --- | 4.5-6.5 | 0 | 0 |
| | 25-65 | 0.0-1.8 | --- | 4.5-6.5 | 0 | 0 |
| 37A: | | | | | | |
| Manchester- | 0-9 | --- | 1.8-5.3 | 4.5-6.0 | 0 | 0 |
| | 9-18 | --- | 0.1-1.8 | 4.5-6.0 | 0 | 0 |
| | 18-65 | --- | 0.0-0.4 | 4.5-6.0 | 0 | 0 |
| 37C: | | | | | | |
| Manchester----- | 0-9 | --- | 1.8-5.3 | 4.5-6.0 | 0 | 0 |
| | 9-18 | --- | 0.1-1.8 | 4.5-6.0 | 0 | 0 |
| | 18-65 | --- | 0.0-0.4 | 4.5-6.0 | 0 | 0 |
| 37E: | | | | | | |
| Manchester----- | | --- | 1.8-5.3 | | 0 | |
| | 9-18 | -- - | 0.1-1.8 | 4.5-6.0 | 0 | 0 |
| | 18-65 | --- | 0.0-0.4 | 4.5-6.0 | 0 | 0 |
| 38A: | | | | | | |
| Hinckley------- | 0-8 | --- | 2.3-6.7 | 3.5-6.0 | 0 | 0 |
| | 8-20 | --- | 0.4-2.5 | 3.5-6.0 | 0 | 0 |
| | 20-27 | --- | 0.1-1.6 | 3.5-6.0 | 0 | 0 |
| | 27-42 | --- | 0.0-1.1 | 3.5-6.0 | 0 | 0 |
| | 42-60 | --- | 0.0-1.1 | 3.5-6.0 | 0 | 0 |
| | | | | | | |

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| 38C: | | | | | | |
| Hinckley-------- | 0-8 | --- | 2.3-6.7 | 3.5-6.0 | 0 | 0 |
| | 8-20 | --- | 0.4-2.5 | 3.5-6.0 | 0 | 0 |
| | 20-27 | --- | 0.1-1.6 | 3.5-6.0 | 0 | 0 |
| | 27-42 | - | 0.0-1.1 | 3.5-6.0 | 0 | 0 |
| | 42-60 | --- | 0.0-1.1 | 3.5-6.0 | 0 | 0 |
| 38E: | | | | | | |
| Hinckley-------- | 0-8 | --- | 2.3-6.7 | 3.5-6.0 | 0 | 0 |
| | 8-20 | --- | 0.4-2.5 | 3.5-6.0 | 0 | 0 |
| | 20-27 | --- | 0.1-1.6 | 3.5-6.0 | 0 | 0 |
| | 27-42 | --- | 0.0-1.1 | 3.5-6.0 | 0 | 0 |
| | 42-60 | --- | 0.0-1.1 | 3.5-6.0 | 0 | 0 |
| 39A: | | | | | | |
| Groton---------- | 0-8 | 2.0-7.4 | --- | 5.6-7.3 | 0 | 0 |
| | 8-18 | 1.9-6.2 | -- - | 5.6-7.3 | 0 | 0 |
| | 18-24 | 1.2-3.9 | --- | 5.6-7.8 | 0 | 0 |
| | 24-30 | 1.2-3.9 | --- | 5.6-7.8 | 0 | 0 |
| | 30-52 | 0.0-1.9 | --- | 6.6-8.4 | 0-10 | 0 |
| | 52-72 | 0.0-1.9 | --- | 6.6-8.4 | 1-10 | 0 |
| 39C: | | | | | | |
| Groton---------- | 0-8 | 2.0-7.4 | --- | 5.6-7.3 | 0 | 0 |
| | 8-18 | 1.9-6.2 | - | 5.6-7.3 | 0 | 0 |
| | 18-24 | 1.2-3.9 | --- | 5.6-7.8 | 0 | 0 |
| | 24-30 | 1.2-3.9 | --- | 5.6-7.8 | 0 | 0 |
| | 30-52 | 0.0-1.9 | - | 6.6-8.4 | 0-10 | 0 |
| | 52-72 | 0.0-1.9 | - | 6.6-8.4 | 1-10 | 0 |
| 39E: | | | | | | |
| Groton---------- | 0-8 | 2.0-7.4 | - | 5.6-7.3 | 0 | 0 |
| | 8-18 | 1.9-6.2 | --- | 5.6-7.3 | 0 | 0 |
| | 18-24 | 1.2-3.9 | --- | 5.6-7.8 | 0 | 0 |
| | 24-30 | 1.2-3.9 | --- | 5.6-7.8 | 0 | 0 |
| | 30-52 | 0.0-1.9 | -- | 6.6-8.4 | 0-10 | 0 |
| | 52-72 | 0.0-1.9 | - | 6.6-8.4 | 1-10 | 0 |
| 40A: | | | | | | |
| Ludlow---------- | 0-8 | --- | 0.8-2.6 | 4.5-6.0 | 0 | 0 |
| | 8-20 | --- | 0.8-2.9 | 4.5-6.0 | 0 | 0 |
| | 20-26 | --- | 0.9-3.5 | 4.5-6.0 | 0 | 0 |
| | 26-65 | --- | 0.9-3.5 | 4.5-6.0 | 0 | 0 |
| 40B : | | | | | | |
| Ludlow---------- | 0-8 | --- | 0.8-2.6 | 4.5-6.0 | 0 | 0 |
| | 8-20 | --- | 0.8-2.9 | 4.5-6.0 | 0 | 0 |
| | 20-26 | --- | 0.9-3.5 | 4.5-6.0 | 0 | 0 |
| | 26-65 | --- | 0.9-3.5 | 4.5-6.0 | 0 | 0 |
| 41B: | | | | | | |
| Ludlow---------- | | --- | 0.8-2.6 | 4.5-6.0 | | |
| | 8-20 | --- | 0.8-2.9 | 4.5-6.0 | 0 | 0 |
| | 20-26 | --- | 0.9-3.5 | 4.5-6.0 | 0 | 0 |
| | 26-65 | --- | 0.9-3.5 | 4.5-6.0 | 0 | 0 |
| 42C: | | | | | | |
| Ludlow---------- | 0-8 | --- | 0.8-2.6 | 4.5-6.0 | 0 | 0 |
| | 8-20 | --- | 0.8-2.9 | 4.5-6.0 | 0 | 0 |
| | 20-26 | --- | 0.9-3.5 | 4.5-6.0 | 0 | 0 |
| | 26-65 | --- | 0.9-3.5 | 4.5-6.0 | 0 | 0 |
| | | | | | | |

Table 25.-Chemical Properties of the Soils-Continued

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| 47C: | | | | | | |
| Woodbridge------- | 0-7 | --- | 0.5-3.1 | 4.5-6.0 | 0 | 0 |
| | 7-18 | --- | 0.6-3.3 | 4.5-6.0 | 0 | 0 |
| | 18-26 | --- | 0.7-3.6 | 4.5-6.0 | 0 | 0 |
| | 26-30 | --- | 0.7-5.3 | 4.5-6.0 | 0 | 0 |
| | 30-43 | --- | 0.7-5.3 | 4.5-6.0 | 0 | 0 |
| | 43-65 | --- | 0.7-5.3 | 4.5-6.0 | 0 | 0 |
| 48B : | | | | | | |
| Georgia--------- | 0-8 | 1.9-6.8 | --- | 5.1-7.3 | 0 | 0 |
| | 8-14 | 1.9-6.6 | --- | 5.1-7.3 | 0 | 0 |
| | 14-24 | 1.7-6.4 | - | 5.1-7.3 | 0 | 0 |
| | 24-60 | 1.7-6.4 | --- | 5.1-7.3 | 0-25 | 0 |
| Amenia---------- | 0-9 | 2.8-9.9 | --- | 5.6-7.8 | 0 | 0 |
| | 9-16 | 2.7-9.8 | - | 5.6-7.8 | 0 | 0 |
| | 16-25 | 2.6-9.6 | --- | 5.6-7.8 | 0 | 0 |
| | 25-60 | 2.6-9.6 | --- | 7.4-8.4 | 1-25 | 0 |
| 48C: | | | | | | |
| Georgia--------- | 0-8 | 1.9-6.8 | --- | 5.1-7.3 | 0 | 0 |
| | 8-14 | 1.9-6.6 | - | 5.1-7.3 | 0 | 0 |
| | 14-24 | 1.7-6.4 | - | 5.1-7.3 | 0 | 0 |
| | 24-60 | 1.7-6.4 | --- | 5.1-7.3 | 0-25 | 0 |
| Amenia---------- | 0-9 | 2.8-9.9 | --- | 5.6-7.8 | 0 | 0 |
| | 9-16 | 2.7-9.8 | --- | 5.6-7.8 | 0 | 0 |
| | 16-25 | 2.6-9.6 | -- | 5.6-7.8 | 0 | 0 |
| | 25-60 | 2.6-9.6 | --- | 7.4-8.4 | 1-25 | 0 |
| 49B: | | | | | | |
| Georgia--------- | 0-8 | 1.9-6.8 | --- | 5.1-7.3 | 0 | 0 |
| | 8-14 | 1.9-6.6 | --- | 5.1-7.3 | 0 | 0 |
| | 14-24 | 1.7-6.4 | --- | 5.1-7.3 | 0 | 0 |
| | 24-60 | 1.7-6.4 | --- | 5.1-7.3 | 0-25 | 0 |
| Amenia---------- | 0-9 | 2.8-9.9 | -- | 5.6-7.8 | 0 | 0 |
| | 9-16 | 2.7-9.8 | -- | 5.6-7.8 | 0 | 0 |
| | 16-25 | 2.6-9.6 | -- | 5.6-7.8 | 0 | 0 |
| | 25-60 | 2.6-9.6 | - | 7.4-8.4 | 1-25 | 0 |
| 49C: | | | | | | |
| Georgia--------- | 0-8 | 1.9-6.8 | --- | 5.1-7.3 | 0 | 0 |
| | 8-14 | 1.9-6.6 | --- | 5.1-7.3 | 0 | 0 |
| | 14-24 | 1.7-6.4 | --- | 5.1-7.3 | 0 | 0 |
| | 24-60 | 1.7-6.4 | --- | 5.1-7.3 | 0-25 | 0 |
| Amenia--------- | 0-9 | 2.8-9.9 | --- | 5.6-7.8 | 0 | 0 |
| | 9-16 | 2.7-9.8 | --- | 5.6-7.8 | 0 | 0 |
| | 16-25 | 2.6-9.6 | --- | 5.6-7.8 | 0 | 0 |
| | 25-60 | 2.6-9.6 | --- | 7.4-8.4 | 1-25 | 0 |
| 50A: | | | | | | |
| Sutton---------- | 0-6 | - | 0.8-3.1 | 4.5-6.0 | 0 | 0 |
| | 6-12 | --- | 0.8-3.3 | 4.5-6.0 | 0 | 0 |
| | 12-24 | --- | 0.9-3.6 | 4.5-6.0 | 0 | 0 |
| | 24-28 | --- | 0.9-5.3 | 4.5-6.0 | 0 | 0 |
| | 28-36 | --- | 0.5-4.3 | 4.5-6.0 | 0 | 0 |
| | 36-65 | --- | 0.5-4.3 | 4.5-6.0 | 0 | 0 |

Table 25.-Chemical Properties of the Soils-Continued

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | $\mathrm{meq} / 100 \mathrm{~g}$ | pH | Pct | mmhos/cm |
| | | | | | | |
| Watchaug-------- | 0-8 | --- | 0.6-2.6 | 4.5-6.0 | 0 | 0 |
| | 8-18 | --- | 0.7-2.7 | 4.5-6.0 | 0 | 0 |
| | 18-24 | - | 0.7-2.9 | 4.5-6.0 | 0 | 0 |
| | 24-65 | 0.7-5.4 | - | 4.5-6.5 | 0 | 0 |
| 57B : | | | | | | |
| Gloucester------ | 0-4 | --- | 1.3-6.0 | 3.5-6.0 | 0 | 0 |
| | 4-12 | 1.1-6.5 | , | 4.5-6.0 | 0 | 0 |
| | 12-25 | 0.0-3.9 | --- | 4.5-6.0 | 0 | 0 |
| | 25-35 | 0.0-3.9 | - | 4.5-6.0 | 0 | 0 |
| | 35-60 | 0.0-3.9 | --- | 4.5-6.0 | 0 | 0 |
| 57C: | | | | | | |
| Gloucester------ | 0-4 | --- | 1.3-6.0 | 3.5-6.0 | 0 | 0 |
| | 4-12 | 1.1-6.5 | --- | 4.5-6.0 | 0 | 0 |
| | 12-25 | 0.0-3.9 | --- | 4.5-6.0 | 0 | 0 |
| | 25-35 | 0.0-3.9 | --- | 4.5-6.0 | 0 | 0 |
| | 35-60 | 0.0-3.9 | --- | 4.5-6.0 | 0 | 0 |
| 57D: | | | | | | |
| Gloucester------ | 0-4 | --- | 1.3-6.0 | 3.5-6.0 | 0 | 0 |
| | 4-12 | 1.1-6.5 | --- | 4.5-6.0 | 0 | 0 |
| | 12-25 | 0.0-3.9 | - | 4.5-6.0 | 0 | 0 |
| | 25-35 | 0.0-3.9 | --- | 4.5-6.0 | 0 | 0 |
| | 35-60 | 0.0-3.9 | - | 4.5-6.0 | 0 | 0 |
| 58B: | | | | | | |
| Gloucester------ | 0-4 | --- | 1.3-6.0 | 3.5-6.0 | 0 | 0 |
| | 4-12 | 1.1-6.5 | --- | 4.5-6.0 | 0 | 0 |
| | 12-25 | 0.0-3.9 | --- | 4.5-6.0 | 0 | 0 |
| | 25-35 | 0.0-3.9 | --- | 4.5-6.0 | 0 | 0 |
| | 35-60 | 0.0-3.9 | - | 4.5-6.0 | 0 | 0 |
| 58C: | | | | | | |
| Gloucester------ | 0-4 | --- | 1.3-6.0 | 3.5-6.0 | 0 | 0 |
| | 4-12 | 1.1-6.5 | --- | 4.5-6.0 | 0 | 0 |
| | 12-25 | 0.0-3.9 | - | 4.5-6.0 | 0 | 0 |
| | 25-35 | 0.0-3.9 | --- | 4.5-6.0 | 0 | 0 |
| | 35-60 | 0.0-3.9 | - | 4.5-6.0 | 0 | 0 |
| 59C: | | | | | | |
| Gloucester------ | 0-4 | --- | 1.3-6.0 | 3.5-6.0 | 0 | 0 |
| | 4-12 | 1.1-6.5 | --- | 4.5-6.0 | 0 | 0 |
| | 12-25 | 0.0-3.9 | --- | 4.5-6.0 | 0 | 0 |
| | 25-35 | 0.0-3.9 | - | 4.5-6.0 | 0 | 0 |
| | 35-60 | 0.0-3.9 | --- | 4.5-6.0 | 0 | 0 |
| 59D: | | | | | | |
| Gloucester------ | 0-4 | --- | 1.3-6.0 | 3.5-6.0 | 0 | 0 |
| | 4-12 | 1.1-6.5 | --- | 4.5-6.0 | 0 | 0 |
| | 12-25 | 0.0-3.9 | --- | 4.5-6.0 | 0 | 0 |
| | 25-35 | 0.0-3.9 | --- | 4.5-6.0 | 0 | 0 |
| | 35-60 | 0.0-3.9 | --- | 4.5-6.0 | 0 | 0 |
| 60B: | | | | | | |
| Canton--------- | 0-1 | --- | 16-63 | 3.5-5.0 | 0 | 0 |
| | 1-3 | --- | 0.1-1.4 | 3.5-6.0 | 0 | 0 |
| | 3-15 | --- | 0.2-1.5 | 3.5-6.0 | 0 | 0 |
| | 15-24 | --- | 0.2-1.5 | 3.5-6.0 | 0 | 0 |
| | 24-30 | --- | 0.2-1.8 | 3.5-6.0 | 0 | 0 |
| | 30-60 | 0.0-1.9 | --- | 3.5-6.0 | 0 | 0 |

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Charlton-------- | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| | 0-4 | 1.7-4.5 | --- | 4.5-6.0 | 0 | 0 |
| | 4-7 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 7-19 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 19-27 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 27-65 | 0.5-4.3 | --- | 4.5-6.0 | 0 | 0 |
| 60C: | | | | | | |
| Canton---------- | 0-1 | --- | 16-63 | 3.5-5.0 | 0 | 0 |
| | 1-3 | --- | 0.1-1.4 | 3.5-6.0 | 0 | 0 |
| | 3-15 | --- | 0.2-1.5 | 3.5-6.0 | 0 | 0 |
| | 15-24 | --- | 0.2-1.5 | 3.5-6.0 | 0 | 0 |
| | 24-30 | --- | 0.2-1.8 | 3.5-6.0 | 0 | 0 |
| | 30-60 | 0.0-1.9 | --- | 3.5-6.0 | 0 | 0 |
| Charlton-------- | 0-4 | 1.7-4.5 | --- | 4.5-6.0 | 0 | 0 |
| | 4-7 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 7-19 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 19-27 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 27-65 | 0.5-4.3 | - | 4.5-6.0 | 0 | 0 |
| 60D: | | | | | | |
| Canton---------- | 0-1 | --- | 16-63 | 3.5-5.0 | 0 | 0 |
| | 1-3 | --- | 0.1-1.4 | 3.5-6.0 | 0 | 0 |
| | 3-15 | --- | 0.2-1.5 | 3.5-6.0 | 0 | 0 |
| | 15-24 | --- | 0.2-1.5 | 3.5-6.0 | 0 | 0 |
| | 24-30 | --- | 0.2-1.8 | 3.5-6.0 | 0 | 0 |
| | 30-60 | 0.0-1.9 | - | 3.5-6.0 | 0 | 0 |
| Charlton-------- | 0-4 | 1.7-4.5 | --- | 4.5-6.0 | 0 | 0 |
| | 4-7 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 7-19 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 19-27 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 27-65 | 0.5-4.3 | --- | 4.5-6.0 | 0 | 0 |
| 61B: | | | | | | |
| Canton---------- | 0-1 | --- | 16-63 | 3.5-5.0 | 0 | 0 |
| | 1-3 | --- | 0.1-1.4 | 3.5-6.0 | 0 | 0 |
| | 3-15 | --- | 0.2-1.5 | 3.5-6.0 | 0 | 0 |
| | 15-24 | --- | 0.2-1.5 | 3.5-6.0 | 0 | 0 |
| | 24-30 | --- | 0.2-1.8 | 3.5-6.0 | 0 | 0 |
| | 30-60 | 0.0-1.9 | , | 3.5-6.0 | 0 | 0 |
| Charlton-------- | 0-4 | 1.7-4.5 | - | 4.5-6.0 | 0 | 0 |
| | 4-7 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 7-19 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 19-27 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 27-65 | 0.5-4.3 | --- | 4.5-6.0 | 0 | 0 |
| 61C: | | | | | | |
| Canton---------- | 0-1 | --- | 16-63 | 3.5-5.0 | 0 | 0 |
| | 1-3 | --- | 0.1-1.4 | 3.5-6.0 | 0 | 0 |
| | 3-15 | --- | 0.2-1.5 | 3.5-6.0 | 0 | 0 |
| | 15-24 | - | 0.2-1.5 | 3.5-6.0 | 0 | 0 |
| | 24-30 | --- | 0.2-1.8 | 3.5-6.0 | 0 | 0 |
| | 30-60 | 0.0-1.9 | --- | 3.5-6.0 | 0 | 0 |
| Charlton-------- | 0-4 | 1.7-4.5 | --- | 4.5-6.0 | 0 | 0 |
| | 4-7 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 7-19 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 19-27 | 1.6-4.3 | -- | 4.5-6.0 | 0 | 0 |
| | 27-65 | 0.5-4.3 | --- | 4.5-6.0 | 0 | 0 |

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| 62C: | | | | | | |
| Canton---------- | 0-1 | --- | 16-63 | 3.5-5.0 | 0 | 0 |
| | 1-3 | --- | 0.1-1.4 | 3.5-6.0 | 0 | 0 |
| | 3-15 | --- | 0.2-1.5 | 3.5-6.0 | 0 | 0 |
| | 15-24 | --- | 0.2-1.5 | 3.5-6.0 | 0 | 0 |
| | 24-30 | --- | 0.2-1.8 | 3.5-6.0 | 0 | 0 |
| | 30-60 | 0.0-1.9 | --- | 3.5-6.0 | 0 | 0 |
| Charlton-------- | 0-4 | 1.7-4.5 | --- | 4.5-6.0 | 0 | 0 |
| | 4-7 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 7-19 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 19-27 | 1.6-4.3 | - | 4.5-6.0 | 0 | 0 |
| | 27-65 | 0.5-4.3 | --- | 4.5-6.0 | 0 | 0 |
| 62D: | | | | | | |
| Canton---------- | 0-1 | --- | 16-63 | 3.5-5.0 | 0 | 0 |
| | 1-3 | - | 0.1-1.4 | 3.5-6.0 | 0 | 0 |
| | 3-15 | --- | 0.2-1.5 | 3.5-6.0 | 0 | 0 |
| | 15-24 | --- | 0.2-1.5 | 3.5-6.0 | 0 | 0 |
| | 24-30 | --- | 0.2-1.8 | 3.5-6.0 | 0 | 0 |
| | 30-60 | 0.0-1.9 | --- | 3.5-6.0 | 0 | 0 |
| Charlton-------- | 0-4 | 1.7-4.5 | --- | 4.5-6.0 | 0 | 0 |
| | 4-7 | 1.6-4.3 | - | 4.5-6.0 | 0 | 0 |
| | 7-19 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 19-27 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 27-65 | 0.5-4.3 | - | 4.5-6.0 | 0 | 0 |
| 63B: | | | | | | |
| Cheshire-------- | | --- | 0.6-2.6 | 4.5-6.0 | | |
| | 8-16 | --- | 0.7-2.9 | 4.5-6.0 | 0 | 0 |
| | 16-26 | --- | 0.7-2.9 | 4.5-6.0 | 0 | 0 |
| | 26-65 | --- | 0.3-3.5 | 4.5-6.0 | 0 | 0 |
| 63C: | | | | | | |
| Cheshire-------- | 0-8 | --- | 0.6-2.6 | 4.5-6.0 | 0 | 0 |
| | 8-16 | -- - | 0.7-2.9 | 4.5-6.0 | 0 | 0 |
| | 16-26 | --- | 0.7-2.9 | 4.5-6.0 | 0 | 0 |
| | 26-65 | --- | 0.3-3.5 | 4.5-6.0 | 0 | 0 |
| 63D: | | | | | | |
| Cheshire-------- | 0-8 | --- | 0.6-2.6 | 4.5-6.0 | 0 | 0 |
| | 8-16 | - | 0.7-2.9 | 4.5-6.0 | 0 | 0 |
| | 16-26 | --- | 0.7-2.9 | 4.5-6.0 | 0 | 0 |
| | 26-65 | --- | 0.3-3.5 | 4.5-6.0 | 0 | 0 |
| 64B : | | | | | | |
| Cheshire-------- | | --- | 0.6-2.6 | 4.5-6.0 | | |
| | 8-16 | - | 0.7-2.9 | 4.5-6.0 | 0 | 0 |
| | 16-26 | --- | 0.7-2.9 | 4.5-6.0 | 0 | 0 |
| | 26-65 | --- | 0.3-3.5 | 4.5-6.0 | 0 | 0 |
| 64C: | | | | | | |
| Cheshire-------- | 0-8 | --- | 0.6-2.6 | 4.5-6.0 | 0 | 0 |
| | 8-16 | --- | 0.7-2.9 | 4.5-6.0 | 0 | 0 |
| | 16-26 | --- | 0.7-2.9 | 4.5-6.0 | 0 | 0 |
| | 26-65 | --- | 0.3-3.5 | 4.5-6.0 | 0 | 0 |
| | | | | | | |

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| 65C: | | | | | | |
| Cheshire-------- | 0-8 | --- | 0.6-2.6 | 4.5-6.0 | 0 | 0 |
| | 8-16 | --- | 0.7-2.9 | 4.5-6.0 | 0 | 0 |
| | 16-26 | --- | 0.7-2.9 | 4.5-6.0 | 0 | 0 |
| | 26-65 | --- | 0.3-3.5 | 4.5-6.0 | 0 | 0 |
| 65D : | | | | | | |
| Cheshire-------- | 0-8 | --- | 0.6-2.6 | 4.5-6.0 | 0 | 0 |
| | 8-16 | --- | 0.7-2.9 | 4.5-6.0 | 0 | 0 |
| | 16-26 | --- | 0.7-2.9 | 4.5-6.0 | 0 | 0 |
| | 26-65 | --- | 0.3-3.5 | 4.5-6.0 | 0 | 0 |
| 66B: | | | | | | |
| Narragansett---- | 0-6 | --- | 0.8-2.5 | 4.5-6.0 | 0 | 0 |
| | 6-15 | --- | 0.9-2.7 | 4.5-6.0 | 0 | 0 |
| | 15-24 | -- | 0.9-2.9 | 4.5-6.0 | 0 | 0 |
| | 24-28 | --- | 0.9-4.3 | 4.5-6.0 | 0 | 0 |
| | 28-60 | - | 0.0-0.7 | 4.5-6.0 | 0 | 0 |
| 66C: | | | | | | |
| Narragansett---- | 0-6 | - | 0.8-2.5 | 4.5-6.0 | 0 | 0 |
| | 6-15 | --- | 0.9-2.7 | 4.5-6.0 | 0 | 0 |
| | 15-24 | --- | 0.9-2.9 | 4.5-6.0 | 0 | 0 |
| | 24-28 | - | 0.9-4.3 | 4.5-6.0 | 0 | 0 |
| | 28-60 | --- | 0.0-0.7 | 4.5-6.0 | 0 | 0 |
| 67B: | | | | | | |
| Narragansett---- | 0-6 | --- | 0.8-2.5 | 4.5-6.0 | 0 | 0 |
| | 6-15 | --- | 0.9-2.7 | 4.5-6.0 | 0 | 0 |
| | 15-24 | -- | 0.9-2.9 | 4.5-6.0 | 0 | 0 |
| | 24-28 | --- | 0.9-4.3 | 4.5-6.0 | 0 | 0 |
| | 28-60 | --- | 0.0-0.7 | 4.5-6.0 | 0 | 0 |
| 67C: | | | | | | |
| Narragansett---- | 0-6 | --- | 0.8-2.5 | 4.5-6.0 | 0 | 0 |
| | 6-15 | - | 0.9-2.7 | 4.5-6.0 | 0 | 0 |
| | 15-24 | --- | 0.9-2.9 | 4.5-6.0 | 0 | 0 |
| | 24-28 | --- | 0.9-4.3 | 4.5-6.0 | 0 | 0 |
| | 28-60 | --- | 0.0-0.7 | 4.5-6.0 | 0 | 0 |
| 68C: | | | | | | |
| Narragansett---- | 0-6 | -- | 0.8-2.5 | 4.5-6.0 | 0 | 0 |
| | 6-15 | - | 0.9-2.7 | 4.5-6.0 | 0 | 0 |
| | 15-24 | --- | 0.9-2.9 | 4.5-6.0 | 0 | 0 |
| | 24-28 | -- - | 0.9-4.3 | 4.5-6.0 | 0 | 0 |
| | 28-60 | --- | 0.0-0.7 | 4.5-6.0 | 0 | 0 |
| 68D: | | | | | | |
| Narragansett---- | 0-6 | - | 0.8-2.5 | 4.5-6.0 | 0 | 0 |
| | 6-15 | --- | 0.9-2.7 | 4.5-6.0 | 0 | 0 |
| | 15-24 | --- | 0.9-2.9 | 4.5-6.0 | 0 | 0 |
| | 24-28 | --- | 0.9-4.3 | 4.5-6.0 | 0 | 0 |
| | 28-60 | --- | 0.0-0.7 | 4.5-6.0 | 0 | 0 |
| 69B: | | | | | | |
| Yalesville------ | 0-8 | --- | 1.0-3.1 | 4.5-6.0 | 0 | 0 |
| | 8-14 | --- | 1.1-4.6 | 4.5-6.0 | 0 | 0 |
| | 14-25 | --- | 1.2-4.6 | 4.5-6.0 | 0 | 0 |
| | 25-36 | --- | 1.2-6.8 | 4.5-6.0 | 0 | 0 |
| | 36-80 | --- | --- | --- | --- | --- |

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| 69C: | | | | | | |
| Yalesville------ | 0-8 | --- | 1.0-3.1 | 4.5-6.0 | 0 | 0 |
| | 8-14 | --- | 1.1-4.6 | 4.5-6.0 | 0 | 0 |
| | 14-25 | --- | 1.2-4.6 | 4.5-6.0 | 0 | 0 |
| | 25-36 | --- | 1.2-6.8 | 4.5-6.0 | 0 | 0 |
| | 36-80 | --- | --- | --- | --- | --- |
| 70C: | | | | | | |
| Branford-------- | 0-8 | - | 0.6-3.1 | 4.5-6.0 | 0 | 0 |
| | 8-18 | --- | 0.6-3.6 | 4.5-6.0 | 0 | 0 |
| | 18-24 | --- | 0.7-5.3 | 4.5-6.0 | 0 | 0 |
| | 24-65 | --- | 0.0-0.7 | 4.5-6.0 | 0 | 0 |
| Holyoke--------- | 0-1 | --- | 17-89 | 3.5-6.0 | 0 | 0 |
| | 1-3 | 3.1-11 | --- | 3.5-6.0 | 0 | 0 |
| | 3-8 | 3.0-11 | --- | 3.5-6.0 | 0 | 0 |
| | 8-18 | 2.9-10 | - | 3.5-6.0 | 0 | 0 |
| | 18-80 | --- | - | --- | 0 | 0 |
| 71C: | | | | | | |
| Brookfield------ | 0-1 | --- | 30-99 | 4.5-6.0 | 0 | 0 |
| | 1-3 | --- | 0.6-2.5 | 4.5-6.0 | 0 | 0 |
| | 3-13 | --- | 0.6-2.7 | 4.5-6.0 | 0 | 0 |
| | 13-27 | --- | 0.7-2.9 | 4.5-6.0 | 0 | 0 |
| | 27-60 | --- | 0.7-4.3 | 4.5-6.0 | 0 | 0 |
| Brimfield------- | 0-1 | - | 30-99 | 4.5-6.0 | 0 | 0 |
| | 1-3 | --- | 0.6-2.5 | 4.5-6.0 | 0 | 0 |
| | 3-6 | --- | 0.6-2.7 | 4.5-6.0 | 0 | 0 |
| | 6-17 | --- | 0.7-2.9 | 4.5-6.0 | 0 | 0 |
| | 17-80 | --- | --- | --- | 0 | 0 |
| Rock Outcrop--- | --- | --- | - | - | --- | -- |
| 71E: | | | | | | |
| Brookfield------ | 0-1 | --- | 30-99 | 4.5-6.0 | 0 | 0 |
| | 1-3 | --- | 0.6-2.5 | 4.5-6.0 | 0 | 0 |
| | 3-13 | --- | 0.6-2.7 | 4.5-6.0 | 0 | 0 |
| | 13-27 | --- | 0.7-2.9 | 4.5-6.0 | 0 | 0 |
| | 27-60 | --- | 0.7-4.3 | 4.5-6.0 | 0 | 0 |
| Brimfield------- | 0-1 | --- | 30-99 | 4.5-6.0 | 0 | 0 |
| | 1-3 | --- | 0.6-2.5 | 4.5-6.0 | 0 | 0 |
| | 3-6 | --- | 0.6-2.7 | 4.5-6.0 | 0 | 0 |
| | 6-17 | --- | 0.7-2.9 | 4.5-6.0 | 0 | 0 |
| | 17-80 | --- | --- | --- | 0 | 0 |
| Rock Outcrop---- | --- | --- | --- | --- | --- | --- |
| 73C: | | | | | | |
| Charlton-------- | 0-4 | 1.7-4.5 | --- | 4.5-6.0 | 0 | 0 |
| | 4-7 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 7-19 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 19-27 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 27-65 | 0.5-4.3 | --- | 4.5-6.0 | 0 | 0 |
| Chatfield------- | 0-1 | --- | 32-63 | 4.5-5.0 | 0 | 0 |
| | 1-6 | 6.6-16 | --- | 4.5-6.0 | 0 | 0 |
| | 6-15 | 6.3-16 | --- | 4.5-6.0 | 0 | 0 |
| | 15-29 | 5.5-15 | --- | 4.5-6.0 | 0 | 0 |
| | 29-80 | --- | --- | --- | 0 | 0 |
| | | | | | | |

Table 25.-Chemical Properties of the Soils-Continued

Table 25.-Chemical Properties of the Soils-Continued

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Holyoke--------- | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| | 0-1 | --- | 17-89 | 3.5-6.0 | 0 | 0 |
| | 1-3 | 3.1-11 | --- | 3.5-6.0 | 0 | 0 |
| | 3-8 | 3.0-11 | --- | 3.5-6.0 | 0 | 0 |
| | 8-18 | 2.9-10 | --- | 3.5-6.0 | 0 | 0 |
| | 18-80 | --- | --- | --- | 0 | 0 |
| 80B : | | | | | | |
| Bernardston----- | 0-8 | --- | 1.5-3.9 | 4.5-6.0 | 0 | 0 |
| | 8-14 | --- | 1.6-6.8 | 4.5-6.0 | 0 | 0 |
| | 14-24 | --- | 1.8-6.8 | 4.5-6.0 | 0 | 0 |
| | 24-26 | --- | 1.9-6.8 | 4.5-6.0 | 0 | 0 |
| | 26-60 | --- | 1.9-6.8 | 4.5-6.0 | 0 | 0 |
| 80C: | | | | | | |
| Bernardston----- | 0-8 | --- | 1.5-3.9 | 4.5-6.0 | 0 | 0 |
| | 8-14 | --- | 1.6-6.8 | 4.5-6.0 | 0 | 0 |
| | 14-24 | --- | 1.8-6.8 | 4.5-6.0 | 0 | 0 |
| | 24-26 | --- | 1.9-6.8 | 4.5-6.0 | 0 | 0 |
| | 26-60 | --- | 1.9-6.8 | 4.5-6.0 | 0 | 0 |
| 81C: | | | | | | |
| Bernardston----- | 0-8 | --- | 1.5-3.9 | 4.5-6.0 | 0 | 0 |
| | 8-14 | --- | 1.6-6.8 | 4.5-6.0 | 0 | 0 |
| | 14-24 | --- | 1.8-6.8 | 4.5-6.0 | 0 | 0 |
| | 24-26 | --- | 1.9-6.8 | 4.5-6.0 | 0 | 0 |
| | 26-60 | --- | 1.9-6.8 | 4.5-6.0 | 0 | 0 |
| 81D: | | | | | | |
| Bernardston----- | 0-8 | --- | 1.5-3.9 | 4.5-6.0 | 0 | 0 |
| | 8-14 | --- | 1.6-6.8 | 4.5-6.0 | 0 | 0 |
| | 14-24 | - | 1.8-6.8 | 4.5-6.0 | 0 | 0 |
| | 24-26 | --- | 1.9-6.8 | 4.5-6.0 | 0 | 0 |
| | 26-60 | --- | 1.9-6.8 | 4.5-6.0 | 0 | 0 |
| 82B: | | | | | | |
| Broadbrook----- | 0-8 | --- | 1.0-3.9 | 4.5-6.0 | 0 | 0 |
| | 8-14 | --- | 1.1-4.3 | 4.5-6.0 | 0 | 0 |
| | 14-25 | --- | 1.2-6.8 | 4.5-6.0 | 0 | 0 |
| | 25-65 | - | 0.5-5.3 | 4.5-6.0 | 0 | 0 |
| 82C: | | | | | | |
| Broadbrook------ | 0-8 | --- | 1.0-3.9 | 4.5-6.0 | 0 | 0 |
| | 8-14 | --- | 1.1-4.3 | 4.5-6.0 | 0 | 0 |
| | 14-25 | --- | 1.2-6.8 | 4.5-6.0 | 0 | 0 |
| | 25-65 | --- | 0.5-5.3 | 4.5-6.0 | 0 | 0 |
| 82D: | | | | | | |
| Broadbrook------ | 0-8 | --- | 1.0-3.9 | 4.5-6.0 | 0 | 0 |
| | 8-14 | --- | 1.1-4.3 | 4.5-6.0 | 0 | 0 |
| | 14-25 | --- | 1.2-6.8 | 4.5-6.0 | 0 | 0 |
| | 25-65 | --- | 0.5-5.3 | 4.5-6.0 | 0 | 0 |
| 83B : | | | | | | |
| Broadbrook----- | 0-8 | --- | 1.0-3.9 | 4.5-6.0 | 0 | 0 |
| | 8-14 | --- | 1.1-4.3 | 4.5-6.0 | 0 | 0 |
| | 14-25 | --- | 1.2-6.8 | 4.5-6.0 | 0 | 0 |
| | 25-65 | --- | 0.5-5.3 | 4.5-6.0 | 0 | 0 |
| | | | | | | |

Table 25.-Chemical Properties of the Soils-Continued

Table 25.-Chemical Properties of the Soils-Continued

Table 25.-Chemical Properties of the Soils-Continued

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective
 cation
 exchange
 capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | $\mathrm{meq} / 100 \mathrm{~g}$ | pH | Pct | mmhos/cm |
| 92B: | | | | | | |
| Nellis---------- | 0-8 | 4.9-16 | --- | 5.6-7.3 | 0 | 0 |
| | 8-14 | 4.1-15 | --- | 5.6-7.3 | 0 | 0 |
| | 14-25 | 4.1-15 | --- | 5.6-7.8 | 0-10 | 0 |
| | 25-27 | 4.1-15 | --- | 5.6-7.8 | 0-10 | 0 |
| | 27-60 | 2.6-15 | --- | 6.6-8.4 | 5-20 | 0 |
| 92C: | | | | | | |
| Nellis---------- | 0-8 | 4.9-16 | --- | 5.6-7.3 | 0 | 0 |
| | 8-14 | 4.1-15 | --- | 5.6-7.3 | 0 | 0 |
| | 14-25 | 4.1-15 | -- | 5.6-7.8 | 0-10 | 0 |
| | 25-27 | 4.1-15 | --- | 5.6-7.8 | 0-10 | 0 |
| | 27-60 | 2.6-15 | --- | 6.6-8.4 | 5-20 | 0 |
| 92D: | | | | | | |
| Nellis---------- | 0-8 | 4.9-16 | - | 5.6-7.3 | 0 | 0 |
| | 8-14 | 4.1-15 | - | 5.6-7.3 | 0 | 0 |
| | 14-25 | 4.1-15 | --- | 5.6-7.8 | 0-10 | 0 |
| | 25-27 | 4.1-15 | --- | 5.6-7.8 | 0-10 | 0 |
| | 27-60 | 2.6-15 | --- | 6.6-8.4 | 5-20 | 0 |
| 93C: | | | | | | |
| Nellis---------- | 0-8 | 4.9-16 | --- | 5.6-7.3 | 0 | 0 |
| | 8-14 | 4.1-15 | --- | 5.6-7.3 | 0 | 0 |
| | 14-25 | 4.1-15 | --- | 5.6-7.8 | 0-10 | 0 |
| | 25-27 | 4.1-15 | -- - | 5.6-7.8 | 0-10 | 0 |
| | 27-60 | 2.6-15 | - | 6.6-8.4 | 5-20 | 0 |
| 94C: | | | | | | |
| Farmington------ | 0-3 | 2.8-8.8 | --- | 5.1-7.3 | 0 | 0 |
| | 3-8 | 2.7-8.7 | --- | 5.6-7.8 | 0 | 0 |
| | 8-17 | 2.6-8.6 | -- | 5.6-7.8 | 0-5 | 0 |
| | 17-80 | --- | --- | - | --- | --- |
| Nellis---------- | 0-8 | 4.9-16 | --- | 5.6-7.3 | 0 | 0 |
| | 8-14 | 4.1-15 | --- | 5.6-7.3 | 0 | 0 |
| | 14-25 | 4.1-15 | --- | 5.6-7.8 | 0-10 | 0 |
| | 25-27 | 4.1-15 | -- | 5.6-7.8 | 0-10 | 0 |
| | 27-60 | 2.6-15 | --- | 6.6-8.4 | 5-20 | 0 |
| 94E: | | | | | | |
| Farmington------ | 0-3 | 2.8-8.8 | --- | 5.1-7.3 | 0 | 0 |
| | 3-8 | 2.7-8.7 | --- | 5.6-7.8 | 0 | 0 |
| | 8-17 | 2.6-8.6 | --- | 5.6-7.8 | 0-5 | 0 |
| | 17-80 | --- | --- | --- | --- | --- |
| Nellis---------- | 0-8 | 4.9-16 | --- | 5.6-7.3 | 0 | 0 |
| | 8-14 | 4.1-15 | --- | 5.6-7.3 | 0 | 0 |
| | 14-25 | 4.1-15 | --- | 5.6-7.8 | 0-10 | 0 |
| | 25-27 | 4.1-15 | --- | 5.6-7.8 | 0-10 | 0 |
| | 27-60 | 2.6-15 | --- | 6.6-8.4 | 5-20 | 0 |
| 95C: | | | | | | |
| Farmington------ | 0-3 | 2.8-8.8 | --- | 5.1-7.3 | 0 | 0 |
| | 3-8 | 2.7-8.7 | --- | 5.6-7.8 | 0 | |
| | 8-17 | 2.6-8.6 | --- | 5.6-7.8 | 0-5 | 0 |
| | 17-80 | --- | --- | --- | --- | --- |
| Rock Outcrop--- | --- | --- | --- | --- | --- | --- |

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | Soil reaction | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| 95E:Farmin | | | | | | |
| | 0-3 | 2.8-8.8 | --- | 5.1-7.3 | 0 | 0 |
| | 3-8 | 2.7-8.7 | --- | 5.6-7.8 | 0 | 0 |
| | 8-17 | 2.6-8.6 | -- | 5.6-7.8 | 0-5 | 0 |
| | 17-80 | -- | --- | -- | --- | --- |
| Rock Outcrop--------- | -- | --- | - | --- | --- | --- |
| 96 : | | | | | | |
| Ipswich------------- | 0-16 | 73-118 | --- | 5.1-7.8 | 0 | 8.0- |
| | | | | | | 16.0 |
| | 16-23 | 73-118 | --- | 5.1-7.8 | 0 | 8.0- |
| | | | | | | 16.0 |
| | 23-64 | 73-118 | --- | 5.1-7.8 | 0 | 16.0- |
| | | | | | | 60.0 |
| | 64-80 | 108-160 | --- | 5.1-7.8 | 0 | $60.0^{16.0-}$ |
| 97: | | | | | | |
| Pawcatuck------------ | 0-12 | 38-130 | --- | 5.1-7.8 | 0 | 8.0- |
| | | | | | | 32.0 |
| | 12-40 | 38-118 | --- | 5.1-7.8 | 0 | 8.0- |
| | | | | | | 32.0 |
| | 40-46 | 38-83 | --- | 5.1-7.8 | 0 | 16.0- |
| | | | | | | 32.0 |
| | 46-50 | 2.5-18 | --- | 5.1-7.8 | 0 | 16.0- |
| | | | | | | 32.0 |
| | 50-60 | 0.0-4.3 | --- | 5.1-7.8 | 0 | $\begin{aligned} & 16.0- \\ & 32.0 \end{aligned}$ |
| | | | | | | $\text { \| } 32 \text {. } 0$ |
| 98: | | | | | | |
| Westbrook------------ | 0-10 | 38-130 | --- | 5.1-7.8 | 0 | 16.0- |
| | | | | | | 60.0 |
| | 10-40 | 38-130 | --- | 5.1-7.8 | 0 | 16.0- |
| | | | | | | 40.0 |
| | 40-48 | 32-71 | --- | 5.1-7.8 | 0 | 16.0- |
| | | | | | | 40.0 |
| | 48-64 | 6.8-34 | --- | 5.1-7.8 | 0 | 16.0- |
| | | | | | | 32.0 |
| | 64-99 | 5.8-34 | --- | 5.1-7.8 | 0 | $\begin{aligned} & 16.0- \\ & 32.0 \end{aligned}$ |
| | | | | | | 32.0 |
| 99: | | | | | | |
| Westbrook, low salt--\| | 0-10 | 38-130 | --- | 5.1-7.8 | 0 | 2.0- |
| | | | | | | 16.0 |
| | 10-40 | 38-130 | --- | 5.1-7.8 | 0 | 2.0- |
| | | | | | | 16.0 |
| | 40-48 | 32-71 | --- | 5.1-7.8 | 0 | 2.0- |
| | | | | | | 16.0 |
| | 48-64 | 6.8-34 | --- | 5.1-7.8 | 0 | 2.0- |
| | | | | | | 16.0 |
| | 64-99 | 5.8-34 | -- - | 5.1-7.8 | 0 | 2.0- |
| | | | | | | 16.0 |
| | | | | | | |
| 100: | | | | | | |
| Suncook--------------- | 0-7 | 1.1-3.1 | --- | 4.5-6.5 | 0 | 0 |
| | 7-15 | 0.0-2.7 | --- | 4.5-6.5 | 0 | 0 |
| | 15-22 | 0.0-2.6 | --- | 4.5-6.5 | 0 | 0 |
| | 22-32 | 0.0-2.6 | --- | 4.5-6.5 | 0 | 0 |
| | 32-42 | 0.0-2.6 | -- - | 4.5-6.5 | 0 | 0 |
| | 42-65 | 0.0-2.6 | --- | 4.5-6.5 | 0 | 0 |
| | | | | | | |

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| | | | | | | |
| Occum----------- | 0-10 | 2.1-11 | --- | 4.5-6.5 | 0 | 0 |
| | 10-17 | 2.0-11 | --- | 4.5-6.5 | 0 | 0 |
| | 17-28 | 1.8-7.1 | --- | 4.5-6.5 | 0 | 0 |
| | 28-32 | 0.0-4.6 | --- | 4.5-6.5 | 0 | 0 |
| | 32-42 | 0.0-4.6 | --- | 4.5-6.5 | 0 | 0 |
| | 42-65 | 0.0-4.6 | --- | 4.5-6.5 | 0 | 0 |
| 102: | | | | | | |
| Pootatuck------- | 0-4 | 1.1-3.4 | - | 4.5-6.5 | 0 | 0 |
| | 4-16 | 0.6-3.3 | --- | 4.5-6.5 | 0 | 0 |
| | 16-21 | 0.6-3.3 | --- | 4.5-6.5 | 0 | 0 |
| | 21-29 | 0.6-3.3 | --- | 4.5-6.5 | 0 | 0 |
| | 29-35 | 0.0-1.1 | -- | 4.5-6.5 | 0 | 0 |
| | 35-40 | 0.0-1.1 | - | 4.5-6.5 | 0 | 0 |
| | 40-65 | 0.0-1.1 | --- | 4.5-6.5 | 0 | 0 |
| $103:$ | | | | | | |
| Rippowam------- | 0-5 | 2.2-6.1 | --- | 4.5-7.3 | 0 | 0 |
| | 5-12 | 1.1-5.9 | --- | 4.5-7.3 | 0 | 0 |
| | 12-19 | 1.1-5.6 | - | 4.5-7.3 | 0 | 0 |
| | 19-24 | 1.0-5.6 | --- | 4.5-7.3 | 0 | 0 |
| | 24-27 | 1.0-5.5 | --- | 5.6-7.3 | 0 | 0 |
| | 27-31 | 0.0-2.0 | --- | 5.6-7.3 | 0 | 0 |
| | 31-65 | 0.0-2.0 | --- | 5.6-7.3 | 0 | 0 |
| 104: | | | | | | |
| Bash----------- | 0-11 | 1.9-6.4 | --- | 4.5-6.0 | 0 | 0 |
| | 11-21 | 1.9-6.3 | --- | 4.5-6.0 | 0 | 0 |
| | 21-28 | 1.9-6.3 | --- | 4.5-6.0 | 0 | 0 |
| | 28-60 | --- | 0.2-4.0 | 4.5-6.0 | 0 | 0 |
| 105: | | | | | | |
| Hadley--------- | 0-12 | 4.9-14 | --- | 4.5-7.3 | 0 | 0 |
| | 12-29 | 1.8-11 | --- | 4.5-7.3 | 0 | 0 |
| | 29-40 | 1.8-11 | - | 4.5-7.3 | 0 | 0 |
| | 40-45 | 1.8-11 | --- | 5.6-7.8 | 0 | 0 |
| | 45-60 | 1.8-11 | --- | 5.6-7.8 | 0 | 0 |
| 106: | | | | | | |
| Winooski-------- | 0-12 | 2.8-9.9 | --- | 5.6-6.5 | | 0 |
| | 12-18 | 1.0-5.4 | -- - | 5.6-7.3 | 0 | 0 |
| | 18-36 | 1.0-5.4 | --- | 5.6-7.3 | 0 | 0 |
| | 36-52 | 1.0-5.4 | --- | 5.6-7.3 | 0 | 0 |
| | 52-65 | 1.0-5.4 | --- | 5.6-7.3 | 0 | 0 |
| 107 : | | | | | | |
| Limerick------- | | 3.8-5.5 | --- | 5.1-7.3 | | 0 |
| | 8-20 | 1.0-5.4 | --- | 5.6-7.3 | 0 | 0 |
| | 20-36 | 1.0-5.4 | -- | 5.6-7.3 | 0 | 0 |
| | 36-54 | 1.0-5.4 | --- | 5.6-7.3 | 0 | 0 |
| | 54-65 | 0.5-4.3 | --- | 5.6-7.3 | 0 | 0 |
| Lim------------ | $0-6$ | 3.1-11 | --- | 5.1-7.3 | 0 | 0 |
| | 6-11 | 2.6-12 | --- | 5.1-7.3 | 0 | 0 |
| | 11-15 | 2.6-12 | --- | 5.1-7.3 | 0 | 0 |
| | 15-22 | 2.6-12 | --- | 5.1-7.3 | 0 | 0 |
| | 22-29 | 2.6-10 | --- | 5.1-7.3 | 0 | 0 |
| | 29-42 | 0.0-2.9 | --- | 5.1-7.3 | 0 | 0 |
| | 42-50 | 0.0-2.9 | --- | 5.1-7.3 | 0 | 0 |
| | 50-57 | 0.0-2.9 | --- | 5.1-7.3 | 0 | 0 |
| | 57-65 | 0.0-2.9 | --- | 5.1-7.3 | 0 | 0 |

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| 108: | | | | | | |
| Saco---------------- | 0-12 | 3.9-9.4 | --- | 5.1-7.3 | 0 | 0 |
| | 12-32 | 2.1-9.2 | --- | 5.1-7.3 | 0 | 0 |
| | 32-48 | 2.1-9.0 | --- | 5.6-7.3 | 0 | 0 |
| | 48-60 | 0.5-4.3 | --- | 5.6-7.3 | 0 | 0 |
| 109 : | | | | | | |
| Fluvaquents,
 Frequently Flooded-- | 0-4 | 5.0-15 | - | 4.5-7.8 | 0 | 0 |
| | 4-14 | 0.0-10 | --- | 4.5-7.8 | 0 | 0 |
| | 14-21 | 0.0-10 | --- | 4.5-7.8 | 0 | 0 |
| | 21-38 | 5.0-15 | --- | 4.5-7.8 | 0 | 0 |
| | 38-45 | 5.0-15 | --- | 4.5-7.8 | 0 | 0 |
| | 45-55 | 0.0-10 | --- | 4.5-7.8 | 0 | 0 |
| | 55-60 | 5.0-15 | --- | 4.5-7.8 | 0 | 0 |
| ```Udifluvents, Frequently Flooded--``` | 0-2 | 5.0-15 | --- | 4.5-7.3 | 0 | 0 |
| | 2-4 | 0.0-5.0 | --- | 4.5-7.3 | 0 | 0 |
| | 4-12 | 0.0-10 | --- | 4.5-7.3 | 0 | 0 |
| | 12-18 | 0.0-10 | --- | 4.5-7.3 | 0 | 0 |
| | 18-35 | 0.0-5.0 | --- | 4.5-7.3 | 0 | 0 |
| | 35-38 | 0.0-5.0 | --- | 4.5-7.3 | 0 | 0 |
| | 38-60 | 0.0-5.0 | --- | 4.5-7.3 | 0 | 0 |
| 221A: | | | | | | |
| Ninigret------------ | 0-8 | --- | 0.6-3.1 | 4.5-6.0 | 0 | 0 |
| | 8-16 | --- | 0.6-3.6 | 4.5-6.0 | 0 | 0 |
| | 16-26 | --- | 0.7-5.3 | 4.5-6.0 | 0 | 0 |
| | 26-65 | 0.0-1.1 | --- | 4.5-6.5 | 0 | 0 |
| Urban Land---------- - - - | 0-6 | --- | - | --- | --- | --- |
| 224A: | | | | | | |
| Deerfield---------- | 0-8 | 1.9-6.4 | --- | 4.5-6.5 | 0 | 0 |
| | 8-16 | 1.0-5.7 | --- | 4.5-6.5 | 0 | 0 |
| | 16-28 | 0.8-5.4 | --- | 4.5-6.5 | 0 | 0 |
| | 28-34 | 0.0-4.0 | --- | 4.5-6.5 | 0 | 0 |
| | 34-60 | 0.0-3.1 | --- | 4.5-6.5 | 0 | 0 |
| Urban Land----------- | 0-6 | --- | --- | --- | --- | --- |
| 225B: | | | | | | |
| Brancroft----------- | | 9.8-13 | --- | 4.5-6.5 | | 0 |
| | 6-17 | 9.7-19 | --- | 5.1-7.3 | 0 | 0 |
| | 17-22 | 9.6-19 | --- | 5.1-7.3 | 0 | 0 |
| | 22-32 | 9.1-18 | --- | 5.1-7.3 | 0 | 0 |
| | 32-43 | 9.1-18 | --- | 5.6-7.3 | 0 | 0 |
| | 43-66 | 9.1-18 | --- | 5.6-7.3 | 0 | 0 |
| Urban Land---------- | 0-6 | --- | --- | --- | --- | --- |
| 226B: | | | | | | |
| Berlin------------- | 0-6 | 6.7-9.0 | --- | 4.5-7.3 | 0 | 0 |
| | 6-12 | 6.5-13 | --- | 5.1-7.3 | 0 | 0 |
| | 12-20 | 6.4-12 | -- | 5.1-7.3 | 0 | 0 |
| | 20-34 | 6.0-16 | --- | 5.1-7.3 | 0 | 0 |
| | 34-48 | 6.0-16 | --- | 5.6-7.3 | 0 | 0 |
| | 48-65 | 6.0-16 | --- | 5.6-7.3 | 0 | 0 |
| Urban Land----------- | 0-6 | --- | --- | --- | --- | --- |

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| 228B: | | | | | | |
| Elmridge-------- | 0-6 | 0.8-3.1 | --- | 4.5-7.3 | 0 | 0 |
| | 6-10 | 0.8-3.7 | --- | 5.1-7.3 | 0 | 0 |
| | 10-18 | 0.7-3.7 | - | 5.1-7.3 | 0 | 0 |
| | 18-25 | 0.7-3.6 | --- | 5.1-7.3 | 0 | 0 |
| | 25-65 | 12-21 | --- | 5.6-7.8 | 0 | 0 |
| Urban Land----- | 0-6 | --- | --- | --- | --- | - |
| 229B: | | | | | | |
| Agawam---------- | 0-8 | 2.2-5.5 | - | 4.5-6.5 | 0 | 0 |
| | 8-14 | 0.6-5.5 | --- | 4.5-6.5 | 0 | 0 |
| | 14-24 | 0.5-3.2 | --- | 4.5-6.5 | 0 | 0 |
| | 24-60 | 0.0-0.6 | - | 4.5-6.5 | 0 | 0 |
| Urban Land----- | 0-6 | --- | --- | --- | --- | --- |
| 229C: | | | | | | |
| Agawam---------- | 0-8 | 2.2-5.5 | - | 4.5-6.5 | 0 | 0 |
| | 8-14 | 0.6-5.5 | --- | 4.5-6.5 | 0 | 0 |
| | 14-24 | 0.5-3.2 | --- | 4.5-6.5 | 0 | 0 |
| | 24-60 | 0.0-0.6 | --- | 4.5-6.5 | 0 | 0 |
| Urban Land----- | 0-6 | --- | --- | - | --- | --- |
| 230B: | | | | | | |
| Branford-------- | 0-8 | --- | 0.6-3.1 | 4.5-6.0 | 0 | 0 |
| | 8-18 | --- | 0.6-3.6 | 4.5-6.0 | 0 | 0 |
| | 18-24 | --- | 0.7-5.3 | 4.5-6.0 | 0 | 0 |
| | 24-65 | --- | 0.0-0.7 | 4.5-6.0 | 0 | 0 |
| Urban Land----- | 0-6 | --- | --- | --- | --- | --- |
| 230C: | | | | | | |
| Branford-------- | 0-8 | --- | 0.6-3.1 | 4.5-6.0 | 0 | 0 |
| | 8-18 | --- | 0.6-3.6 | 4.5-6.0 | 0 | 0 |
| | 18-24 | --- | 0.7-5.3 | 4.5-6.0 | 0 | 0 |
| | 24-65 | - | 0.0-0.7 | 4.5-6.0 | 0 | 0 |
| Urban Land----- | 0-6 | --- | --- | - | --- | --- |
| 232B: | | | | | | |
| Haven----------- | 0-7 | --- | 1.0-4.9 | 4.5-6.0 | 0 | 0 |
| | 7-14 | --- | 1.1-5.7 | 4.5-6.0 | 0 | 0 |
| | 14-20 | --- | 1.2-5.7 | 4.5-6.0 | 0 | 0 |
| | 20-24 | --- | 1.3-8.4 | 4.5-6.0 | 0 | 0 |
| | 24-60 | - | 0.0-1.1 | 4.5-6.0 | 0 | 0 |
| Urban Land----- | 0-6 | --- | --- | --- | --- | --- |
| 234B: | | | | | | |
| Merrimac-------- | 0-9 | 2.8-6.9 | --- | 5.1-6.5 | 0 | 0 |
| | 9-16 | 1.1-3.6 | --- | 5.6-6.0 | 0 | 0 |
| | 16-24 | 1.1-3.6 | --- | 5.6-6.0 | 0 | 0 |
| | 24-60 | 0.0-2.6 | --- | 5.6-6.0 | 0 | 0 |
| Urban Land----- | 0-6 | --- | --- | --- | --- | --- |

Table 25.-Chemical Properties of the Soils-Continued

Table 25.-Chemical Properties of the Soils-Continued

Table 25.-Chemical Properties of the Soils-Continued

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| 269C: | | | | | | |
| Yalesville------ | 0-8 | --- | 1.0-3.1 | 4.5-6.0 | 0 | 0 |
| | 8-14 | --- | 1.1-4.6 | 4.5-6.0 | 0 | 0 |
| | 14-25 | --- | 1.2-4.6 | 4.5-6.0 | 0 | 0 |
| | 25-36 | --- | 1.2-6.8 | 4.5-6.0 | 0 | 0 |
| | 36-80 | --- | -- | --- | --- | --- |
| Urban Land------- | 0-6 | --- | --- | --- | --- | -- |
| 273C: | | | | | | |
| Urban Land----- | 0-6 | --- | --- | -- | --- | --- |
| Charlton-------- | 0-4 | 1.7-4.5 | --- | 4.5-6.0 | 0 | 0 |
| | 4-7 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 7-19 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 19-27 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 27-65 | 0.5-4.3 | --- | 4.5-6.0 | 0 | 0 |
| Chatfield------- | 0-1 | -- | 32-63 | 4.5-5.0 | 0 | 0 |
| | 1-6 | 6.6-16 | --- | 4.5-6.0 | 0 | 0 |
| | 6-15 | 6.3-16 | --- | 4.5-6.0 | 0 | 0 |
| | 15-29 | 5.5-15 | --- | 4.5-6.0 | 0 | 0 |
| | 29-80 | --- | - | --- | 0 | 0 |
| 273E: | | | | | | |
| Urban Land----- | 0-6 | --- | --- | --- | --- | --- |
| Charlton-------- | 0-4 | 1.7-4.5 | --- | 4.5-6.0 | 0 | 0 |
| | 4-7 | 1.6-4.3 | - | 4.5-6.0 | 0 | 0 |
| | 7-19 | 1.6-4.3 | - | 4.5-6.0 | 0 | 0 |
| | 19-27 | 1.6-4.3 | --- | 4.5-6.0 | 0 | 0 |
| | 27-65 | 0.5-4.3 | --- | 4.5-6.0 | 0 | 0 |
| Chatfield------- | 0-1 | --- | 32-63 | 4.5-5.0 | | 0 |
| | 1-6 | 6.6-16 | --- | 4.5-6.0 | 0 | 0 |
| | 6-15 | 6.3-16 | --- | 4.5-6.0 | 0 | 0 |
| | 15-29 | 5.5-15 | --- | 4.5-6.0 | 0 | 0 |
| | 29-80 | --- | - | --- | 0 | 0 |
| 275C: | | | | | | |
| Urban Land----- | 0-6 | - | - | --- | --- | --- |
| Chatfield------- | 0-1 | - | 32-63 | 4.5-5.0 | 0 | 0 |
| | 1-6 | 6.6-16 | --- | 4.5-6.0 | 0 | 0 |
| | 6-15 | 6.3-16 | --- | 4.5-6.0 | 0 | 0 |
| | 15-29 | 5.5-15 | --- | 4.5-6.0 | 0 | 0 |
| | 29-80 | --- | --- | --- | 0 | 0 |
| 275E: | | | | | | |
| Urban Land------ | 0-6 | - | --- | - | --- | -- |
| Chatfield------- | 0-1 | --- | 32-63 | 4.5-5.0 | 0 | 0 |
| | 1-6 | 6.6-16 | --- | 4.5-6.0 | 0 | 0 |
| | 6-15 | 6.3-16 | --- | 4.5-6.0 | 0 | 0 |
| | 15-29 | 5.5-15 | --- | 4.5-6.0 | 0 | 0 |
| | 29-80 | --- | --- | --- | 0 | 0 |
| Rock Outcrop---- | --- | --- | --- | --- | --- | --- |

Table 25.-Chemical Properties of the Soils-Continued

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| 290B:
 Stockbridge- | | | | | | |
| | 0-10 | 2.6-6.4 | --- | 5.1-7.3 | 0 | 0 |
| | 10-20 | 2.6-6.2 | --- | 5.6-7.3 | 0 | 0 |
| | 20-28 | 2.4-6.1 | -- | 5.6-7.3 | 0 | 0 |
| | 28-42 | 2.4-6.1 | --- | 5.6-7.3 | 0 | 0 |
| | 42-48 | 1.1-6.1 | --- | 5.6-8.4 | 1-10 | 0 |
| | 48-65 | 1.1-6.1 | --- | 5.6-8.4 | 1-10 | 0 |
| Urban Land-- | 0-6 | -- | --- | --- | --- | --- |
| 290C: | | | | | | |
| Stockbridge----- | 0-10 | 2.6-6.4 | - | 5.1-7.3 | 0 | 0 |
| | 10-20 | 2.6-6.2 | --- | 5.6-7.3 | 0 | 0 |
| | 20-28 | 2.4-6.1 | -- | 5.6-7.3 | 0 | 0 |
| | 28-42 | 2.4-6.1 | --- | 5.6-7.3 | 0 | 0 |
| | 42-48 | 1.1-6.1 | --- | 5.6-8.4 | 1-10 | 0 |
| | 48-65 | 1.1-6.1 | --- | 5.6-8.4 | 1-10 | 0 |
| Urban Land---- | 0-6 | --- | --- | --- | --- | --- |
| 290D: | | | | | | |
| Stockbridge----- | 0-10 | 2.6-6.4 | --- | 5.1-7.3 | 0 | 0 |
| | 10-20 | 2.6-6.2 | --- | 5.6-7.3 | 0 | 0 |
| | 20-28 | 2.4-6.1 | --- | 5.6-7.3 | 0 | 0 |
| | 28-42 | 2.4-6.1 | --- | 5.6-7.3 | 0 | 0 |
| | 42-48 | 1.1-6.1 | -- | 5.6-8.4 | 1-10 | 0 |
| | 48-65 | 1.1-6.1 | --- | 5.6-8.4 | 1-10 | 0 |
| Urban Land----- | 0-6 | --- | - | - | --- | --- |
| 301: | | | | | | |
| Beaches-- | 0-65 | - | --- | 6.1-7.8 | --- | $32.0^{8.0-}$ |
| Udipsamments---- | 0-38 | 0.0-3.0 | --- | 5.6-7.3 | 0 | 0 |
| | 38-50 | 0.0-2.0 | --- | 5.6-7.3 | 0 | 0 |
| | 50-65 | 0.0-2.0 | - | 5.6-7.3 | 0 | 0 |
| 302 : | | | | | | |
| Dumps---------- | 0-65 | --- | - | - | --- | - |
| 303 : | | | | | | |
| Pits, Quarries--- | 0-1 | - | --- | - | --- | --- |
| 304 : | | | | | | |
| Udorthents------ | 0-5 | 5.0-15 | --- | 4.5-7.8 | 0 | 0 |
| | 5-21 | 0.0-10 | --- | 4.5-7.8 | 0 | 0 |
| | 21-80 | 0.0-10 | --- | 4.5-7.8 | 0 | 0 |
| 305 : | | | | | | |
| Udorthents------ | 0-5 | 5.0-15 | --- | 4.5-7.8 | 0 | 0 |
| | 5-21 | 0.0-10 | --- | 4.5-7.8 | 0 | 0 |
| | 21-80 | 0.0-10 | --- | 4.5-7.8 | 0 | 0 |
| Pits----------- | 0-65 | --- | --- | 4.5-7.8 | --- | --- |
| 306 : | | | | | | |
| Udorthents------ | 0-5 | 5.0-15 | --- | 4.5-7.8 | 0 | 0 |
| | 5-21 | 0.0-10 | --- | 4.5-7.8 | 0 | 0 |
| | 21-80 | 0.0-10 | --- | 4.5-7.8 | 0 | 0 |
| Urban Land----- | 0-6 | --- | --- | --- | --- | --- |

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| $\begin{aligned} & 307: \\ & \text { Urban Land- } \end{aligned}$ | 0-6 | --- | --- | -- | - | -- |
| 308: | | | | | | |
| Udorthents---------- \| | 0-5 | 5.0-15 | --- | 4.5-7.8 | 0 | 0 |
| | 5-21 | 0.0-10 | --- | 4.5-7.8 | 0 | 0 |
| | 21-80 | 0.0-10 | --- | 4.5-7.8 | 0 | 0 |
| 309 : | | | | | | |
| Udorthents---------- \| | 0-5 | 5.0-15 | --- | 4.5-7.8 | 0 | 0 |
| | 5-21 | 0.0-10 | -- | 4.5-7.8 | 0 | 0 |
| | 21-80 | 0.0-10 | - | 4.5-7.8 | 0 | 0 |
| 310: | | | | | | |
| Udorthents, | 0-5 | 5.0-15 | --- | 4.5-7.8 | 0 | 0 |
| | 5-21 | 0.0-10 | --- | 4.5-7.8 | 0 | 0 |
| | 21-80 | 0.0-10 | - | 4.5-7.8 | 0 | 0 |
| 401C: | | | | | | |
| Macomber----------- \| | 0-1 | --- | 17-59 | 4.5-5.5 | 0 | 0 |
| | 1-2 | --- | 1.5-3.9 | 4.5-5.5 | 0 | 0 |
| | 2-10 | --- | 1.6-4.6 | 4.5-5.5 | 0 | 0 |
| | 10-21 | --- | 1.8-6.8 | 4.5-5.5 | 0 | 0 |
| | 21-30 | --- | 1.9-6.8 | 4.5-5.5 | 0 | 0 |
| | 30-80 | --- | --- | --- | 0 | 0 |
| Taconic------------- | 0-1 | --- | 32-71 | 4.5-5.5 | 0 | 0 |
| | 1-4 | --- | 1.5-3.9 | 4.5-5.5 | 0 | 0 |
| | 4-11 | --- | 1.6-6.0 | 4.5-5.5 | 0 | 0 |
| | 11-80 | --- | -- | --- | 0 | 0 |
| 402D: | | | | | | |
| Macomber----------- \| | 0-1 | --- | 17-59 | 4.5-5.5 | 0 | 0 |
| | 1-2 | --- | 1.5-3.9 | 4.5-5.5 | 0 | 0 |
| | 2-10 | --- | 1.6-4.6 | 4.5-5.5 | 0 | 0 |
| | 10-21 | -- - | 1.8-6.8 | 4.5-5.5 | 0 | 0 |
| | 21-30 | --- | 1.9-6.8 | 4.5-5.5 | 0 | 0 |
| | 30-80 | --- | --- | -- | 0 | 0 |
| Taconic------------ | 0-1 | --- | 32-71 | 4.5-5.5 | 0 | 0 |
| | 1-4 | --- | 1.5-3.9 | 4.5-5.5 | 0 | 0 |
| | 4-11 | --- | 1.6-6.0 | 4.5-5.5 | 0 | 0 |
| | 11-80 | - | -- | --- | 0 | 0 |
| Rock Outcrop-------- | --- | - | --- | --- | - | --- |
| 403C: | | | | | | |
| Taconic------------ | | --- | 32-71 | 4.5-5.5 | 0 | 0 |
| | 1-4 | --- | 1.5-3.9 | 4.5-5.5 | 0 | 0 |
| | 4-11 | --- | 1.6-6.0 | 4.5-5.5 | 0 | 0 |
| | 11-80 | --- | --- | --- | 0 | 0 |
| Rock Outcrop--------- | --- | --- | -- | - | --- | --- |
| $403 \mathrm{E}:$ | | | | | | |
| Taconic | 0-1 | --- | 32-71 | 4.5-5.5 | 0 | 0 |
| | 1-4 | --- | 1.5-3.9 | 4.5-5.5 | 0 | 0 |
| | 4-11 | --- | 1.6-6.0 | 4.5-5.5 | 0 | 0 |
| | 11-80 | --- | --- | --- | 0 | 0 |
| Rock Outcrop-------- | --- | --- | --- | --- | --- | --- |

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| | | | | | | |
| Taconic-------- | 0-1 | --- | 32-71 | 4.5-5.5 | 0 | 0 |
| | 1-4 | --- | 1.5-3.9 | 4.5-5.5 | 0 | 0 |
| | 4-11 | --- | 1.6-6.0 | 4.5-5.5 | 0 | 0 |
| | 11-80 | --- | -- | --- | 0 | 0 |
| Rock Outcrop--- | --- | --- | - | --- | --- | -- |
| 405C: | | | | | | |
| Dummerston------ | 0-1 | --- | 32-89 | 4.5-6.0 | 0 | 0 |
| | 1-2 | - | 1.4-3.9 | 4.5-6.0 | 0 | 0 |
| | 2-3 | --- | 3.7-13 | 4.5-6.0 | 0 | 0 |
| | 3-4 | --- | 1.6-4.6 | 4.5-6.0 | 0 | 0 |
| | 4-6 | --- | 1.7-4.6 | 4.5-6.0 | 0 | 0 |
| | 6-11 | - | 1.7-4.6 | 4.5-6.0 | 0 | 0 |
| | 11-22 | --- | 1.8-4.6 | 4.5-6.0 | 0 | 0 |
| | 22-27 | --- | 1.9-6.8 | 4.5-6.0 | 0 | 0 |
| | 27-40 | --- | 1.9-5.3 | 4.5-6.0 | 0 | 0 |
| | 40-64 | --- | 1.9-5.3 | 4.5-6.0 | 0 | 0 |
| 405E: | | | | | | |
| Dummerston------ | 0-1 | --- | 32-89 | 4.5-6.0 | 0 | 0 |
| | 1-2 | --- | 1.4-3.9 | 4.5-6.0 | 0 | 0 |
| | 2-3 | --- | 3.7-13 | 4.5-6.0 | 0 | 0 |
| | 3-4 | --- | 1.6-4.6 | 4.5-6.0 | 0 | 0 |
| | 4-6 | -- - | 1.7-4.6 | 4.5-6.0 | 0 | 0 |
| | 6-11 | --- | 1.7-4.6 | 4.5-6.0 | 0 | 0 |
| | 11-22 | - | 1.8-4.6 | 4.5-6.0 | 0 | 0 |
| | 22-27 | --- | 1.9-6.8 | 4.5-6.0 | 0 | 0 |
| | 27-40 | --- | 1.9-5.3 | 4.5-6.0 | 0 | 0 |
| | 40-64 | --- | 1.9-5.3 | 4.5-6.0 | 0 | 0 |
| 407C: | | | | | | |
| Lanesboro------- | 0-3 | --- | 17-73 | 4.5-6.0 | 0 | 0 |
| | 3-6 | --- | 1.5-3.9 | 4.5-6.0 | 0 | 0 |
| | 6-8 | - | 1.6-4.6 | 4.5-6.0 | 0 | 0 |
| | 8-16 | --- | 1.7-4.6 | 4.5-6.0 | 0 | 0 |
| | 16-22 | --- | 1.8-6.8 | 4.5-6.0 | 0 | 0 |
| | 22-30 | --- | 1.9-6.8 | 4.5-6.0 | 0 | 0 |
| | 30-60 | --- | 1.3-5.3 | 4.5-6.0 | 0 | 0 |
| 407E: | | | | | | |
| Lanesboro------- | 0-3 | - | 17-73 | 4.5-6.0 | 0 | 0 |
| | 3-6 | --- | 1.5-3.9 | 4.5-6.0 | 0 | 0 |
| | 6-8 | --- | 1.6-4.6 | 4.5-6.0 | 0 | 0 |
| | 8-16 | -- | 1.7-4.6 | 4.5-6.0 | 0 | 0 |
| | 16-22 | -- | 1.8-6.8 | 4.5-6.0 | 0 | 0 |
| | 22-30 | --- | 1.9-6.8 | 4.5-6.0 | 0 | 0 |
| | 30-60 | --- | 1.3-5.3 | 4.5-6.0 | 0 | 0 |
| 408C: | | | | | | |
| Fullam--------- | 0-2 | --- | 32-89 | 4.5-6.0 | 0 | 0 |
| | 2-4 | --- | 1.5-3.9 | 4.5-6.0 | 0 | 0 |
| | 4-10 | --- | 1.6-4.6 | 4.5-6.0 | 0 | 0 |
| | 10-20 | --- | 1.8-4.6 | 4.5-6.0 | 0 | 0 |
| | 20-49 | --- | 1.3-5.3 | 4.5-6.0 | 0 | 0 |
| | 49-60 | --- | 1.3-5.3 | 4.5-6.0 | 0 | 0 |
| | | | | | | |

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| 409B: | | | | | | |
| Brayton--------- | 0-3 | --- | 17-89 | 3.5-6.0 | 0 | 0 |
| | 3-6 | --- | 9.2-73 | 3.5-6.0 | 0 | 0 |
| | 6-7 | --- | 0.5-2.0 | 3.5-6.0 | 0 | 0 |
| | 7-9 | 3.6-4.9 | --- | 5.1-6.5 | 0 | 0 |
| | 9-13 | 1.6-4.9 | --- | 5.1-6.5 | 0 | 0 |
| | 13-18 | 1.6-4.8 | --- | 5.6-7.3 | 0 | 0 |
| | 18-23 | 1.6-4.8 | --- | 5.6-7.3 | 0 | 0 |
| | 23-60 | 1.6-4.8 | - | 5.6-7.3 | 0 | 0 |
| 412B: | | | | | | |
| Bice----------- | 0-1 | --- | 32-89 | 4.5-6.0 | 0 | 0 |
| | 1-7 | 2.8-8.3 | --- | 4.5-6.0 | 0 | 0 |
| | 7-16 | 3.6-8.2 | --- | 4.5-6.0 | 0 | 0 |
| | 16-24 | 3.6-8.0 | --- | 4.5-6.0 | 0 | 0 |
| | 24-60 | 3.6-8.0 | --- | 4.5-6.0 | 0 | 0 |
| 412C: | | | | | | |
| Bice----------- | 0-1 | --- | 32-89 | 4.5-6.0 | 0 | 0 |
| | 1-7 | 2.8-8.3 | --- | 4.5-6.0 | 0 | 0 |
| | 7-16 | 3.6-8.2 | --- | 4.5-6.0 | 0 | 0 |
| | 16-24 | 3.6-8.0 | --- | 4.5-6.0 | 0 | 0 |
| | 24-60 | 3.6-8.0 | --- | 4.5-6.0 | 0 | 0 |
| 412D: | | | | | | |
| Bice----------- | 0-1 | --- | 32-89 | 4.5-6.0 | 0 | 0 |
| | 1-7 | 2.8-8.3 | --- | 4.5-6.0 | 0 | 0 |
| | 7-16 | 3.6-8.2 | --- | 4.5-6.0 | 0 | 0 |
| | 16-24 | 3.6-8.0 | -- | 4.5-6.0 | 0 | 0 |
| | 24-60 | 3.6-8.0 | - | 4.5-6.0 | 0 | 0 |
| 413C: | | | | | | |
| Bice----------- | 0-1 | --- | 32-89 | 4.5-6.0 | 0 | 0 |
| | 1-7 | 2.8-8.3 | --- | 4.5-6.0 | 0 | 0 |
| | 7-16 | 3.6-8.2 | --- | 4.5-6.0 | 0 | 0 |
| | 16-24 | 3.6-8.0 | -- | 4.5-6.0 | 0 | 0 |
| | 24-60 | 3.6-8.0 | - | 4.5-6.0 | 0 | 0 |
| Millsite-------- | 0-1 | --- | 32-71 | 4.5-5.5 | 0 | 0 |
| | 1-5 | --- | 1.0-3.9 | 4.5-6.5 | 0 | 0 |
| | 5-13 | --- | 1.2-4.6 | 4.5-6.5 | 0 | 0 |
| | 13-24 | 2.6-8.1 | --- | 4.5-6.5 | 0 | 0 |
| | 24-31 | 2.6-8.0 | - | 4.5-6.5 | 0 | 0 |
| | 31-80 | --- | --- | --- | --- | 0 |
| 413E: | | | | | | |
| Bice----------- | 0-1 | --- | 32-89 | 4.5-6.0 | 0 | 0 |
| | 1-7 | 2.8-8.3 | --- | 4.5-6.0 | 0 | 0 |
| | 7-16 | 3.6-8.2 | --- | 4.5-6.0 | 0 | 0 |
| | 16-24 | 3.6-8.0 | -- | 4.5-6.0 | 0 | 0 |
| | 24-60 | 3.6-8.0 | --- | 4.5-6.0 | 0 | 0 |
| Millsite-------- | 0-1 | --- | 32-71 | 4.5-5.5 | 0 | 0 |
| | 1-5 | --- | 1.0-3.9 | 4.5-6.5 | 0 | 0 |
| | 5-13 | --- | 1.2-4.6 | 4.5-6.5 | 0 | 0 |
| | 13-24 | 2.6-8.1 | --- | 4.5-6.5 | 0 | 0 |
| | 24-31 | 2.6-8.0 | -- | 4.5-6.5 | 0 | 0 |
| | 31-80 | --- | --- | --- | --- | 0 |
| | | | | | | |

Table 25.-Chemical Properties of the Soils-Continued

Table 25.-Chemical Properties of the Soils-Continued

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| 423A:Sudbury, cold | | | | | | |
| | 0-1 | --- | 30-121 | 4.5-6.5 | 0 | 0 |
| | 1-5 | 2.2-6.2 | -- | 4.5-6.5 | 0 | 0 |
| | 5-17 | 1.9-6.1 | -- | 4.5-6.5 | 0 | 0 |
| | 17-25 | 1.2-5.0 | -- | 4.5-6.5 | 0 | 0 |
| | 25-60 | 0.0-2.6 | --- | 4.5-6.5 | 0 | 0 |
| 424B: | | | | | | |
| Shelburne------- | 0-1 | - | 32-89 | 4.5-6.0 | 0 | 0 |
| | 1-2 | --- | 0.6-3.9 | 4.5-6.0 | 0 | 0 |
| | 2-7 | --- | 0.6-6.8 | 4.5-6.0 | 0 | 0 |
| | 7-21 | --- | 0.6-6.8 | 4.5-6.0 | 0 | 0 |
| | 21-27 | --- | 0.7-6.8 | 4.5-6.0 | 0 | 0 |
| | 27-32 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| | 32-43 | 1.6-8.0 | - | 5.1-6.0 | 0 | 0 |
| | 43-55 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| | 55-80 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| 424C: | | | | | | |
| Shelburne------- | 0-1 | --- | 32-89 | 4.5-6.0 | 0 | 0 |
| | 1-2 | --- | 0.6-3.9 | 4.5-6.0 | 0 | 0 |
| | 2-7 | --- | 0.6-6.8 | 4.5-6.0 | 0 | 0 |
| | 7-21 | --- | 0.6-6.8 | 4.5-6.0 | 0 | 0 |
| | 21-27 | --- | 0.7-6.8 | 4.5-6.0 | 0 | 0 |
| | 27-32 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| | 32-43 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| | 43-55 | 1.6-8.0 | - | 5.1-6.0 | 0 | 0 |
| | 55-80 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| 424D: | | | | | | |
| Shelburne------- | 0-1 | --- | 32-89 | 4.5-6.0 | 0 | 0 |
| | 1-2 | --- | 0.6-3.9 | 4.5-6.0 | 0 | 0 |
| | 2-7 | --- | 0.6-6.8 | 4.5-6.0 | 0 | 0 |
| | 7-21 | --- | 0.6-6.8 | 4.5-6.0 | 0 | 0 |
| | 21-27 | --- | 0.7-6.8 | 4.5-6.0 | 0 | 0 |
| | 27-32 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| | 32-43 | 1.6-8.0 | - | 5.1-6.0 | 0 | 0 |
| | 43-55 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| | 55-80 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| 425B: | | | | | | |
| Shelburne------- | 0-1 | --- | 32-89 | 4.5-6.0 | 0 | 0 |
| | 1-2 | --- | 0.6-3.9 | 4.5-6.0 | 0 | 0 |
| | 2-7 | --- | 0.6-6.8 | 4.5-6.0 | 0 | 0 |
| | 7-21 | --- | 0.6-6.8 | 4.5-6.0 | 0 | 0 |
| | 21-27 | --- | 0.7-6.8 | 4.5-6.0 | 0 | 0 |
| | 27-32 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| | 32-43 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| | 43-55 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| | 55-80 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| 425C: | | | | | | |
| Shelburne------- | 0-1 | --- | 32-89 | 4.5-6.0 | 0 | 0 |
| | 1-2 | --- | 0.6-3.9 | 4.5-6.0 | 0 | 0 |
| | 2-7 | - | 0.6-6.8 | 4.5-6.0 | 0 | 0 |
| | 7-21 | --- | 0.6-6.8 | 4.5-6.0 | 0 | 0 |
| | 21-27 | --- | 0.7-6.8 | 4.5-6.0 | 0 | 0 |
| | 27-32 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| | 32-43 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| | 43-55 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| | 55-80 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| | | | | | | |

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | $\mathrm{meq} / 100 \mathrm{~g}$ | pH | Pct | mmhos/cm |
| $42 \text { 6D : }$ | | | | | | |
| Shelburne------- | 0-1 | --- | 32-89 | 4.5-6.0 | 0 | 0 |
| | 1-2 | --- | 0.6-3.9 | 4.5-6.0 | 0 | 0 |
| | 2-7 | --- | 0.6-6.8 | 4.5-6.0 | 0 | 0 |
| | 7-21 | --- | 0.6-6.8 | 4.5-6.0 | 0 | 0 |
| | 21-27 | --- | 0.7-6.8 | 4.5-6.0 | 0 | 0 |
| | 27-32 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| | 32-43 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| | 43-55 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| | 55-80 | 1.6-8.0 | --- | 5.1-6.0 | 0 | 0 |
| 427B: | | | | | | |
| Ashfield-------- | 0-1 | - | 9.2-80 | 3.5-5.5 | 0 | 0 |
| | 1-2 | --- | 16-80 | 3.5-5.5 | 0 | 0 |
| | 2-3 | --- | 17-80 | 3.5-5.5 | 0 | 0 |
| | 3-7 | --- | 1.0-3.9 | 3.5-5.5 | 0 | 0 |
| | 7-12 | --- | 1.0-3.9 | 3.5-5.5 | 0 | 0 |
| | 12-18 | --- | 0.6-4.6 | 3.5-5.5 | 0 | 0 |
| | 18-24 | --- | 0.7-4.6 | 3.5-5.5 | 0 | 0 |
| | 24-29 | - | 0.7-6.8 | 3.5-5.5 | 0 | 0 |
| | 29-44 | 1.6-8.0 | --- | 5.1-6.5 | 0 | 0 |
| | 44-58 | 1.6-8.0 | --- | 5.1-6.5 | 0 | 0 |
| | 58-80 | 1.6-8.0 | - | 5.1-6.5 | 0 | 0 |
| 427C: | | | | | | |
| Ashfield-------- | 0-1 | --- | 9.2-80 | 3.5-5.5 | 0 | 0 |
| | 1-2 | - | 16-80 | 3.5-5.5 | 0 | 0 |
| | 2-3 | --- | 17-80 | 3.5-5.5 | 0 | 0 |
| | 3-7 | --- | 1.0-3.9 | 3.5-5.5 | 0 | 0 |
| | 7-12 | --- | 1.0-3.9 | 3.5-5.5 | 0 | 0 |
| | 12-18 | - | 0.6-4.6 | 3.5-5.5 | 0 | 0 |
| | 18-24 | --- | 0.7-4.6 | 3.5-5.5 | 0 | 0 |
| | 24-29 | --- | 0.7-6.8 | 3.5-5.5 | 0 | 0 |
| | 29-44 | 1.6-8.0 | --- | 5.1-6.5 | 0 | 0 |
| | 44-58 | 1.6-8.0 | - | 5.1-6.5 | 0 | 0 |
| | 58-80 | 1.6-8.0 | - | 5.1-6.5 | 0 | 0 |
| 428A: | | | | | | |
| Ashfield-------- | 0-1 | --- | 9.2-80 | 3.5-5.5 | 0 | 0 |
| | 1-2 | --- | 16-80 | 3.5-5.5 | 0 | 0 |
| | 2-3 | --- | 17-80 | 3.5-5.5 | 0 | 0 |
| | 3-7 | --- | 1.0-3.9 | 3.5-5.5 | 0 | 0 |
| | 7-12 | --- | 1.0-3.9 | 3.5-5.5 | 0 | 0 |
| | 12-18 | --- | 0.6-4.6 | 3.5-5.5 | 0 | 0 |
| | 18-24 | --- | 0.7-4.6 | 3.5-5.5 | 0 | 0 |
| | 24-29 | --- | 0.7-6.8 | 3.5-5.5 | 0 | 0 |
| | 29-44 | 1.6-8.0 | --- | 5.1-6.5 | 0 | 0 |
| | 44-58 | 1.6-8.0 | --- | 5.1-6.5 | 0 | 0 |
| | 58-80 | 1.6-8.0 | --- | 5.1-6.5 | 0 | 0 |
| 428B: | | | | | | |
| Ashfield-------- | 0-1 | --- | 9.2-80 | 3.5-5.5 | 0 | 0 |
| | 1-2 | --- | 16-80 | 3.5-5.5 | 0 | 0 |
| | 2-3 | --- | 17-80 | 3.5-5.5 | 0 | 0 |
| | 3-7 | --- | 1.0-3.9 | 3.5-5.5 | 0 | 0 |
| | 7-12 | --- | 1.0-3.9 | 3.5-5.5 | 0 | 0 |
| | 12-18 | --- | 0.6-4.6 | 3.5-5.5 | 0 | 0 |
| | 18-24 | --- | 0.7-4.6 | 3.5-5.5 | 0 | 0 |
| | 24-29 | --- | 0.7-6.8 | 3.5-5.5 | 0 | 0 |
| | 29-44 | 1.6-8.0 | --- | 5.1-6.5 | 0 | 0 |
| | 44-58 | 1.6-8.0 | --- | 5.1-6.5 | 0 | 0 |
| | 58-80 | 1.6-8.0 | --- | 5.1-6.5 | 0 | 0 |

Table 25.-Chemical Properties of the Soils-Continued

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective
 cation
 exchange
 capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| 435:Scarbo | | | | | | |
| | 0-12 | --- | 32-99 | 4.5-6.0 | 0 | 0 |
| | 12-17 | --- | 1.0-6.9 | 4.5-6.0 | 0 | 0 |
| | 17-31 | --- | 0.1-3.6 | 4.5-6.0 | 0 | 0 |
| | 31-72 | 0.0-1.9 | --- | 4.5-7.3 | 0 | 0 |
| 436: | | | | | | |
| Halsey--------- | 0-1 | 81-104 | --- | 5.6-7.3 | 0 | 0 |
| | 1-8 | 3.3-9.4 | --- | 5.6-7.3 | 0 | 0 |
| | 8-16 | 3.2-9.2 | --- | 5.6-7.3 | 0 | 0 |
| | 16-28 | 2.7-6.5 | - | 5.6-7.3 | 0 | 0 |
| | 28-38 | 1.0-4.3 | - | 6.1-8.4 | 0 | 0 |
| | 38-60 | 1.0-4.3 | --- | 6.1-8.4 | 0-10 | 0 |
| 437: | | | | | | |
| Wonsqueak------- | 0-2 | --- | 23-121 | 3.5-6.5 | 0 | 0 |
| | 2-11 | - | 23-121 | 3.5-6.5 | 0 | 0 |
| | 11-22 | - | 43-121 | 4.5-6.5 | 0 | 0 |
| | 22-25 | 1.5-13 | --- | 4.5-7.3 | 0 | 0 |
| | 25-45 | 1.5-13 | --- | 4.5-7.3 | 0 | 0 |
| | 45-60 | 1.5-13 | - | 4.5-7.3 | 0 | 0 |
| 438: | | | | | | |
| Bucksport------- | 0-9 | --- | 23-80 | 3.5-5.5 | 0 | 0 |
| | 9-33 | --- | 43-121 | 4.5-6.5 | 0 | 0 |
| | 33-50 | --- | 43-121 | 4.5-6.5 | 0 | 0 |
| | 50-59 | 133-171 | --- | 4.5-6.5 | 0 | 0 |
| | 59-63 | 1.0-13 | - | 4.5-7.3 | 0 | 0 |
| 440A: | | | | | | |
| Boscawen------- | | --- | 34-68 | 4.5-5.5 | 0 | 0 |
| | 1-2 | --- | 1.3-4.6 | 4.5-5.5 | 0 | 0 |
| | 2-9 | --- | 0.2-1.9 | 4.5-5.5 | 0 | 0 |
| | 9-16 | --- | 0.2-1.9 | 4.5-6.0 | 0 | 0 |
| | 16-29 | --- | 0.0-1.9 | 4.5-6.0 | 0 | 0 |
| | 29-34 | --- | 0.0-1.9 | 4.5-6.0 | 0 | 0 |
| | 34-40 | 0.0-4.7 | --- | 4.5-6.0 | 0 | 0 |
| | 40-44 | 0.0-4.7 | --- | 4.5-6.0 | 0 | 0 |
| | 44-67 | 0.0-4.7 | -- | 4.5-6.0 | 0 | 0 |
| 440C: | | | | | | |
| Boscawen-------- | 0-1 | --- | 34-68 | 4.5-5.5 | 0 | 0 |
| | 1-2 | --- | 1.3-4.6 | 4.5-5.5 | 0 | 0 |
| | 2-9 | --- | 0.2-1.9 | 4.5-5.5 | 0 | 0 |
| | 9-16 | --- | 0.2-1.9 | 4.5-6.0 | 0 | 0 |
| | 16-29 | --- | 0.0-1.9 | 4.5-6.0 | 0 | 0 |
| | 29-34 | --- | 0.0-1.9 | 4.5-6.0 | 0 | 0 |
| | 34-40 | 0.0-4.7 | --- | 4.5-6.0 | 0 | 0 |
| | 40-44 | 0.0-4.7 | --- | 4.5-6.0 | 0 | 0 |
| | 44-67 | 0.0-4.7 | --- | 4.5-6.0 | 0 | 0 |
| 440E: | | | | | | |
| Boscawen-------- | 0-1 | - | 34-68 | 4.5-5.5 | 0 | 0 |
| | 1-2 | - | 1.3-4.6 | 4.5-5.5 | 0 | 0 |
| | 2-9 | --- | 0.2-1.9 | 4.5-5.5 | 0 | 0 |
| | 9-16 | --- | 0.2-1.9 | 4.5-6.0 | 0 | 0 |
| | 16-29 | --- | 0.0-1.9 | 4.5-6.0 | 0 | 0 |
| | 29-34 | - | 0.0-1.9 | 4.5-6.0 | 0 | 0 |
| | 34-40 | 0.0-4.7 | --- | 4.5-6.0 | 0 | 0 |
| | 40-44 | 0.0-4.7 | --- | 4.5-6.0 | 0 | 0 |
| | 44-67 | 0.0-4.7 | --- | 4.5-6.0 | 0 | 0 |

Table 25.-Chemical Properties of the Soils-Continued

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| $450 \mathrm{C}:$
 Pyrities | | | | | | |
| | 0-1 | 69-81 | --- | 5.6-6.5 | 0 | 0 |
| | 1-8 | 9.8-15 | --- | 5.6-7.8 | 0 | 0 |
| | 8-13 | 6.1-13 | - | 6.1-7.8 | 0 | 0 |
| | 13-26 | 6.1-13 | --- | 6.1-7.8 | 0 | 0 |
| | 26-45 | 6.1-13 | --- | 6.1-8.4 | 0 | 0 |
| | 45-65 | 6.1-11 | --- | 6.1-8.4 | 5-35 | 0 |
| 450D: | | | | | | |
| Pyrities------- | 0-1 | 69-81 | --- | 5.6-6.5 | 0 | 0 |
| | 1-8 | 9.8-15 | --- | 5.6-7.8 | 0 | 0 |
| | 8-13 | 6.1-13 | -- | 6.1-7.8 | 0 | 0 |
| | 13-26 | 6.1-13 | --- | 6.1-7.8 | 0 | 0 |
| | 26-45 | 6.1-13 | - | 6.1-8.4 | 0 | 0 |
| | 45-65 | 6.1-11 | --- | 6.1-8.4 | 5-35 | 0 |
| 451B: | | | | | | |
| Pyrities-------- | 0-1 | 69-81 | - | 5.6-6.5 | 0 | 0 |
| | 1-8 | 9.8-15 | - | 5.6-7.8 | 0 | 0 |
| | 8-13 | 6.1-13 | --- | 6.1-7.8 | 0 | 0 |
| | 13-26 | 6.1-13 | --- | 6.1-7.8 | 0 | 0 |
| | 26-45 | 6.1-13 | --- | 6.1-8.4 | 0 | 0 |
| | 45-65 | 6.1-11 | - | 6.1-8.4 | 5-35 | 0 |
| 451C: | | | | | | |
| Pyrities-------- | 0-1 | 69-81 | --- | 5.6-6.5 | 0 | 0 |
| | 1-8 | 9.8-15 | --- | 5.6-7.8 | 0 | 0 |
| | 8-13 | 6.1-13 | --- | 6.1-7.8 | 0 | 0 |
| | 13-26 | 6.1-13 | --- | 6.1-7.8 | 0 | 0 |
| | 26-45 | 6.1-13 | --- | 6.1-8.4 | 0 | 0 |
| | 45-65 | 6.1-11 | --- | 6.1-8.4 | 5-35 | 0 |
| 451D: | | | | | | |
| Pyrities------- | 0-1 | 69-81 | --- | 5.6-6.5 | 0 | 0 |
| | 1-8 | 9.8-15 | --- | 5.6-7.8 | 0 | 0 |
| | 8-13 | 6.1-13 | --- | 6.1-7.8 | 0 | 0 |
| | 13-26 | 6.1-13 | --- | 6.1-7.8 | 0 | 0 |
| | 26-45 | 6.1-13 | --- | 6.1-8.4 | 0 | 0 |
| | 45-65 | 6.1-11 | --- | 6.1-8.4 | 5-35 | 0 |
| 457: | | | | | | |
| Mudgepond------- | 0-11 | 9.3-20 | --- | 6.6-7.8 | 0 | 0 |
| | 11-16 | 6.3-15 | --- | 6.6-7.8 | 0-2 | 0 |
| | 16-26 | 4.6-15 | --- | 6.6-7.8 | 0-15 | 0 |
| | 26-35 | 4.6-15 | --- | 6.6-7.8 | 1-15 | 0 |
| | 35-65 | 2.6-14 | --- | 6.6-8.4 | 5-25 | 0 |
| 458 : | | | | | | |
| Mudgepond------- | 0-11 | 9.3-20 | --- | 6.6-7.8 | 0 | 0 |
| | 11-16 | 6.3-15 | --- | 6.6-7.8 | 0-2 | 0 |
| | 16-26 | 4.6-15 | -- | 6.6-7.8 | 0-15 | 0 |
| | 26-35 | 4.6-15 | --- | 6.6-7.8 | 1-15 | 0 |
| | 35-65 | 2.6-14 | --- | 6.6-8.4 | 5-25 | 0 |
| Alden----------- | 0-4 | 8.4-14 | --- | 5.1-7.3 | 0 | 0 |
| | 4-13 | 9.8-14 | --- | 5.1-7.3 | 0 | 0 |
| | 13-23 | 9.6-14 | --- | 5.6-7.3 | 0 | 0 |
| | 23-29 | 9.6-14 | --- | 5.6-7.3 | 0 | 0 |
| | 29-43 | 9.1-14 | --- | 6.1-7.3 | 0 | 0 |
| | 43-60 | 9.1-14 | --- | 6.1-8.4 | 0-15 | 0 |

Table 25.-Chemical Properties of the Soils-Continued

| Map symbol and soil name | Depth | Cation exchange capacity | Effective cation exchange capacity | $\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$ | Calcium carbonate | Salinity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | meq/100 g | pH | Pct | mmhos/cm |
| 501: | | | | | | |
| Ondawa--------- | 0-1 | --- | 34-65 | 4.5-5.5 | -- | --- |
| | 1-2 | --- | 34-65 | 4.5-5.5 | 0 | 0 |
| | 2-14 | --- | 4.4-7.8 | 4.5-6.5 | 0 | 0 |
| | 14-30 | --- | 3.6-12 | 4.5-6.5 | 0 | 0 |
| | 30-33 | --- | 3.6-12 | 4.5-6.5 | 0 | 0 |
| | 33-60 | --- | 3.6-9.5 | 4.5-6.5 | 5-35 | 0 |
| 503: | | | | | | |
| Rumney--------- | 0-7 | 2.8-14 | --- | 5.6-7.3 | 0 | 0 |
| | 7-22 | 1.6-13 | --- | 5.6-7.3 | 0 | 0 |
| | 22-38 | 1.6-13 | --- | 5.6-7.3 | 0 | 0 |
| | 38-42 | 1.7-14 | --- | 5.6-7.3 | 0 | 0 |
| | 42-44 | 0.5-9.5 | --- | 6.1-7.8 | 0 | 0 |
| | 44-65 | 1.0-10 | --- | 6.1-7.8 | 0 | 0 |
| 508: | | | | | | |
| Medomak-------- | 0-7 | 29-43 | --- | 5.1-7.3 | 0 | 0 |
| | 7-24 | 7.1-14 | --- | 5.1-7.3 | 0 | 0 |
| | 24-33 | 29-43 | --- | 5.1-7.3 | 0 | 0 |
| | 33-46 | 0.0-13 | --- | 5.6-7.8 | 0 | 0 |
| | 46-79 | 0.0-13 | --- | 5.6-7.8 | 0 | 0 |

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$ | Lower
 limit | Surface water depth | Duration | Frequency | Duration | Frequency |
| | | | Ft | Ft | Ft | | | | |
| 7: | | | | | | | | | |
| Mudgepond---------- | D | | | | | | | | |
| | | January | 0.0-1.0 | 5.4-5.4 | --- | --- | None | --- | None |
| | | February | 0.0-1.0 | 5.4-5.4 | --- | --- | None | --- | None |
| | | March | 0.0-1.0 | 5.4-5.4 | --- | --- | None | --- | None |
| | | April | 0.0-1.0 | 5.4-5.4 | --- | --- | None | --- | None |
| | | May | 0.0-1.0 | 5.4-5.4\| | --- | --- | None | --- | None |
| | | June | 0.0-1.0 | 5.4-5.4 | - | --- | None | --- | None |
| | | July | 0.0-1.0 | 5.4-5.4 | --- | --- | None | --- | None |
| | | August | 0.0-1.0 | 5.4-5.4 | --- | --- | None | --- | None |
| | | September | 0.0-1.0 | 5.4-5.4\| | --- | --- | None | --- | None |
| | | October | 0.0-1.0 | 5.4-5.4 | --- | --- | None | --- | None |
| | | | 0.0-1.0 | 5.4-5.4 | | --- | None | --- | None |
| | | December | 0.0-1.0 | 5.4-5.4 | --- | --- | None | --- | |
| 8 : | | | | | | | | | |
| Mudgepond---------- | D | | | | | | | | |
| | | January | 0.0-1.0 | 5.4-5.4 | --- | --- | None | --- | |
| | | February | 0.0-1.0 | 5.4-5.4 | --- | --- | None | - | None |
| | | March | 0.0-1.0 | 5.4-5.4 | --- | --- | None | --- | None |
| | | April | 0.0-1.0 | 5.4-5.4\| | --- | --- | None | --- | None |
| | | May | 0.0-1.0 | 5.4-5.4 | --- | --- | None | --- | None |
| | | June | 0.0-1.0 | 5.4-5.4 | --- | --- | None | --- | None |
| | | July | 0.0-1.0 | 5.4-5.4 | --- | --- | None | --- | None |
| | | August | 0.0-1.0 | 5.4-5.4 | --- | --- | None | --- | None |
| | | September | 0.0-1.0 | 5.4-5.4 | --- | --- | None | --- | None |
| | | October | 0.0-1.0 | 5.4-5.4 | --- | --- | None | --- | None |
| | | November | 0.0-1.0 | 5.4-5.4 | --- | --- | None | --- | None |
| | | December | 0.0-1.0 | 5.4-5.4 | --- | --- | None | - | None |
| 8 : | | | | | | | | | |
| Alden-------------- | D | | | | | | | | |
| | | January | 0.0-1.0 | >6.0 | 0.0-0.5 | Long | Occasional | --- | None |
| | | February | 0.0-1.0 | >6.0 | 0.0-0.5 | Long | Occasional | --- | None |
| | | March | 0.0-1.0 | >6.0 | 0.0-0.5 | Long | Occasional | --- | None |
| | | April | 0.0-1.0 | >6.0 | 0.0-0.5 | Long | Occasional | --- | None |
| | | May | 0.0-1.0 | >6.0 | 0.0-0.5 | Long | Occasional | --- | None |
| | | June | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | October | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | November | 0.0-1.0 | >6.0 | 0.0-0.5 | Long | Occasional | --- | None |
| | | December | 0.0-1.0 | >6.0 | 0.0-0.5 | Long | Occasional | --- | None |
| | | | | | | | | | |

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | $\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$ | Lower
 limit | Surface water depth | Duration | \| Frequency | Duration | Frequency |
| | | | Ft | Ft | Ft | | | | |
| $\begin{aligned} & 12: \\ & \text { Raypol } \end{aligned}$ | | | | | | | | | |
| | D | | | | | | | | |
| | | January | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | \| February | 0.0-1.0 | >6.0 | -- | --- | None | --- | None |
| | | March | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | April | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | May | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | November | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | December | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | | | | | | | | |
| | | | | | | | | | | | |
| | | \| January | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | February | 0.0-1.0 | >6.0 | --- | --- | None | -- | None |
| | | March | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | April | 0.0-1.0 | >6.0 | --- | --- | None | -- - | None |
| | | May | 0.0-1.0 | >6.0 | -- | --- | None | --- | None |
| | | November | 0.0-1.0 | >6.0 | - | --- | None | -- - | None |
| | | December | 0.0-1.0 | >6.0 | --- | --- | None | -- | |
| 14 : | | | | | | | | | |
| Fredon------------- | D | | | | | | | | |
| | | January | | | --- | --- | | --- | |
| | | February | 0.0-1.0 | >6.0 | --- | - | None | - | None |
| | | March | 0.0-1.0 | >6.0 | -- | --- | None | --- | None |
| | | April | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | May | 0.0-1.0 | >6.0 | --- | -- | None | -- | None |
| | | \| June | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | \| July | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| | | August | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| | | September | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| | | October | 0.0-1.0 | >6.0 | -- | - | None | --- | None |
| | | November | 0.0-1.0 | >6.0 | --- | --- | None | --- | |
| | | December | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| 15: | | | | | | | | | |
| Scarboro----------- | D | | | | | | | | |
| | | January | 0.0-0.5 | >6.0 | \|0.0-0.5| | Brief | Occasional | --- | None |
| | | February | 0.0-0.5 | >6.0 | \|0.0-0.5| | Brief | Occasional | --- | None |
| | | March | 0.0-0.5 | >6.0 | \|0.0-0.5| | Brief | Occasional | --- | None |
| | | April | 0.0-0.5 | >6.0 | \|0.0-0.5| | Brief | Occasional | --- | None |
| | | May | 0.0-0.5 | >6.0 | \|0.0-0.5| | Brief | Occasional | --- | None |
| | | June | 0.0-0.5 | >6.0 | \|0.0-0.5| | Brief | Occasional | --- | None |
| | | July | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | August | 0.0-1.0 | >6.0 | --- | - | None | --- | None |
| | | September | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | October | 0.0-0.5 | >6.0 | 0.0-0.5\| | Brief | Occasional | --- | None |
| | | November | 0.0-0.5 | >6.0 | \|0.0-0.5| | Brief | Occasional | --- | None |
| | | December | 0.0-0.5 | >6.0 | \|0.0-0.5| | Brief | Occasional | --- | None |
| | | | | | | | | | |

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | $\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$ | Lower limit | Surface water depth | Duration | Frequency | Duration | Frequency |
| | | | Ft | Ft | Ft | | | | |
| 16: \| | | | F | | | | | | | | | | |
| Halsey------------ | D | | | | | | | | |
| | | January | 0.0-0.5 | >6.0 | \|0.0-0.5| | Brief | Occasional | --- | None |
| | | February | 0.0-0.5 | >6.0 | \|0.0-0.5| | Brief | Occasional\| | --- | None |
| | | March | 0.0-0.5 | >6.0 | \|0.0-0.5| | Brief | Occasional\| | -- | None |
| | | April | 0.0-0.5 | >6.0 | \|0.0-0.5| | Brief | Occasional\| | --- | None |
| | | May | 0.0-0.5 | >6.0 | \|0.0-0.5| | Brief | Occasional\| | --- | None |
| | | June | 0.0-0.5 | >6.0 | \|0.0-0.5| | Brief | Occasional | --- | None |
| | | July | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | August | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | September | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | October | 0.0-0.5 | >6.0 | \|0.0-0.5| | Brief | Occasional\| | --- | None |
| | | November | 0.0-0.5 | >6.0 | \|0.0-0.5| | Brief | Occasional\| | --- | None |
| | | December | $0.0-0.5$ | >6.0 | \|0.0-0.5| | Brief | Occasional\| | --- | |
| 17: | | | | | | | | | |
| Timakwa----------- | D | | | | | | | | |
| | | January | 0.0-1.0 | >6.0 | \|0.0-1.0| | Long | Frequent | Very brief | |
| | | February | 0.0-1.0 | >6.0 | \|0.0-1.0| | Long | Frequent | Very brief | Rare |
| | | March | 0.0-1.0 | >6.0 | \|0.0-1.0| | Long | Frequent | Very brief | Rare |
| | | April | 0.0-1.0 | >6.0 | \|0.0-1.0| | Long | Frequent | Very brief | |
| | | May | 0.0-1.0 | >6.0 | \|0.0-1.0| | Long | Frequent | Very brief | Rare |
| | | June | 1.0-2.0 | >6.0 | -- | --- | None | | None |
| | | July | 1.0-2.0 | >6.0 | --- | --- | None | -- - | None |
| | | August | 1.0-2.0 | >6.0 | --- | --- | None | --- | None |
| | | September | 1.0-2.0 | >6.0 | - | - | None | --- | None |
| | | October | 1.0-2.0 | >6.0 | --- | --- | None | --- | None |
| | | November | 0.0-1.0 | >6.0 | 0.0-1.0\| | Long | Frequent | Very brief | Rare |
| | | December | 0.0-1.0 | >6.0 | \|0.0-1.0| | Long | Frequent | Very brief | Rare |
| Natchaug----------- | D | | | | | | | | |
| | | January | 0.0-1.0 | >6.0 | \|0.0-1.0| | Long | Frequent | Very brief | Rare |
| | | February | 0.0-1.0 | >6.0 | \|0.0-1.0| | Long | Frequent | Very brief | Rare |
| | | March | 0.0-1.0 | >6.0 | \|0.0-1.0| | Long | Frequent | Very brief | Rare |
| | | April | 0.0-1.0 | >6.0 | \|0.0-1.0| | Long | Frequent | Very brief | Rare |
| | | May | 0.0-1.0 | >6.0 | \|0.0-1.0| | Long | Frequent | Very brief | Rare |
| | | June | 0.0-1.0 | >6.0 | --- | --- | None | | None |
| | | July | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | August | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | September | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | October | 0.0-1.0 | >6.0 | --- | --- | None | --- | None |
| | | November | $0.0-1.0$ | >6.0 | \|0.0-1.0| | Long | Frequent | Very brief | Rare |
| | | December | 0.0-1.0 | >6.0 | \|0.0-1.0| | Long | Frequent | Very brief | Rare |
| | | | | | | | | | |

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Upper
 limit | Lower
 limit | Surface water depth | Duration | Frequency | Duration | Frequency |
| | | | Ft | Ft | Ft | | | | |
| 21A: | | | | | | | | | |
| Tisbury | B | | | | | | | | |
| | | \| January | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | February | 1.5-2.5 | >6.0 | -- | - | None | - | None |
| | | March | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | April | 1.5-2.5 | >6.0 | -- | --- | None | --- | None |
| | | May | 2.5-5.0 | >6.0 | --- | -- | None | -- | None |
| | | September | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | November | 1.5-2.5 | >6.0 | --- | --- | None | -- | None |
| | | December | 1.5-2.5 | >6.0 | --- | --- | None | --- | |
| 22A: | | | | | | | | | |
| Hero-------------- | B | | | | | | | | |
| | | \| January | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | February | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | March | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | April | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | November | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | December | 1.5-2.5 | >6.0 | - | --- | None | -- | None |
| 22B: | | | | | | | | | |
| Hero--------------- | B | | | | | | | | |
| | | January | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | February | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | March | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | April | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | November | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | December | 1.5-2.5 | >6.0 | - | - | None | -- | |
| 23A: | | | | | | | | | |
| Sudbury----------- | B | | | | | | | | |
| | | January | 1.5-3.0 | >6.0 | --- | - | None | --- | None |
| | | February | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| | | March | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| | | April | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| | | December | 1.5-3.0 | >6.0 | --- | --- | None | --- | |
| 24A: | | | | | | | | | |
| Deerfield---------- | A | | | | | | | | |
| | | January | 1.5-3.0 | >6.0 | --- | --- | | --- | |
| | | February | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| | | March | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| | | April | $1.5-3.0$ | >6.0 | --- | --- | None | --- | None |
| | | December | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$ | Lower
 limit | Surface water depth | Duration | \|Frequency | Duration | Frequency |
| | | | Ft | Ft | Ft | | | | |
| 25A: | | | | | | | | | |
| Brancroft--------- | C | | | | | | | | |
| | | January | 1.5-2.5 | >6.0 | - | -- | None | -- | None |
| | | February | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | March | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | April | 1.5-2.5 | >6.0 | --- | -- | None | --- | None |
| | | October | 1.5-2.5 | >6.0 | --- | - | None | --- | None |
| | | November | 1.5-2.5 | >6.0 | - - | -- | None | --- | None |
| | | December | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| 25B : | | | | | | | | | |
| Brancroft---------- | C | | | | | | | | |
| | | January | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | February | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | March | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | April | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | October | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | November | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | December | 1.5-2.5 | >6.0 | --- | --- | None | --- | |
| 25C: | | | | | | | | | |
| Brancroft---------- | C | | | | | | | | |
| | | January | 1.5-2.5 | >6.0 | --- | --- | None | --- | |
| | | February | 1.5-2.5 | >6.0 | -- | -- | None | -- | None |
| | | March | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | April | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | October | 1.5-2.5 | >6.0 | - - | --- | None | --- | None |
| | | November | 1.5-2.5 | >6.0 | --- | -- | None | -- | None |
| | | December | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| 26A: | | | | | | | | | |
| Berlin------------- | C | | | | | | | | |
| | | January | 1.0-2.5 | >6.0 | --- | --- | None | --- | None |
| | | February | 1.0-2.5 | >6.0 | --- | --- | None | --- | None |
| | | March | 1.0-2.5 | >6.0 | --- | --- | None | --- | None |
| | | April | 1.0-2.5 | >6.0 | --- | --- | None | --- | None |
| | | October | 1.0-2.5 | >6.0 | --- | --- | None | --- | None |
| | | November | 1.0-2.5 | >6.0 | --- | --- | None | --- | None |
| | | December | 1.0-2.5 | >6.0 | - | --- | None | - | None |
| 26B: | | | | | | | | | |
| Berlin------------- | C | | | | | | | | |
| | | January | 1.0-2.5 | >6.0 | - | --- | None | - | None |
| | | February | 1.0-2.5 | >6.0 | --- | --- | None | --- | None |
| | | March | 1.0-2.5 | >6.0 | --- | --- | None | --- | None |
| | | April | 1.0-2.5 | >6.0 | --- | --- | None | --- | None |
| | | October | 1.0-2.5 | >6.0 | --- | --- | None | --- | None |
| | | November | 1.0-2.5 | >6.0 | --- | --- | None | --- | None |
| | | December | 1.0-2.5 | >6.0 | --- | --- | None | --- | None |
| | | | | | | | | | |

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | | |
|---|---|---|---|---|---|---|---|---|---|---|
| | | | $\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$ | Lower
 limit | Surface water depth | Duration | \| Frequency | Duration | Frequency |
| | B | | Ft | Ft | Ft | | | | |
| 27A:
 Belgrade | | | | | | | | | |
| | | | | | | | | | |
| | | \| January | \|1.5-3.5| | >6.0 | --- | --- | None | --- | None |
| | | February | 1.5-3.5\| | >6.0 | --- | - | None | -- | None |
| | | March | 1.5-3.5\| | >6.0 | | --- | None | -- | None |
| | | April | 1.5-3.5\| | >6.0 | --- | --- | None | - | None |
| | | November | \|1.5-3.5| | >6.0 | --- | --- | None | --- | None |
| | | December | \|1.5-3.5| | >6.0 | --- | --- | None | --- | None |
| 28A: | C | | | | | | | | |
| Elmridge------------------ \| | | | | | | | | | |
| | | January | 1.5-2.5\| | 1.7-3.3\| | --- | --- | None | --- | |
| | | February | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | --- | None |
| | | March | 1.5-2.5\| | 1.7-3.3\| | --- | --- | None | --- | None |
| | | April | 1.5-2.5\| | 1.7-3.3\| | --- | --- | None | --- | None |
| | | May | 1.5-2.5\| | 1.7-3.3\| | --- | --- | None | --- | None |
| | | November | 1.5-2.5\| | 1.7-3.3\| | --- | --- | None | - | None |
| | | December | 1.5-2.5\| | 1.7-3.3\| | --- | --- | None | -- | None |
| 28B: | C | | | | | | | | |
| Elmridge---------------- | | | | | | | | | |
| | | January | 1.5-2.5\| | 1.7-3.3\| | --- | --- | None | --- | None |
| | | February | 1.5-2.5\| | 1.7-3.3\| | -- | --- | None | --- | None |
| | | March | 1.5-2.5\| | 1.7-3.3\| | --- | --- | None | --- | None |
| | | April | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | --- | |
| | | May | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | --- | None |
| | | November | $1.5-2.5$ | 1.7-3.3 | --- | --- | None | --- | None |
| | | December | 1.5-2.5\| | 1.7-3.3 | - - | -- | | -- | None |
| 29A: | B | | | | | | | | |
| Agawam------------------ | | Jan-Dec | > 6.0 | > 6.0 | --- | - | None | --- | None |
| 29B : | B | | | | | | | | |
| Agawam------------------ | | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 29C: | B | | | | | | | | |
| Agawam------------------ | | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 30A: | B | | | | | | | | |
| Branford | | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 30B: | B | | | | | | | | |
| | | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 30C: | B | | | | | | | | |
| Branford---------------- | | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$ | Lower
 limit | Surface water depth | Duration | Frequency | Duration | Frequency |
| | | | Ft | Ft | Ft | | | | |
| | | | | | | | | | |
| Copake-- | B | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 31B: | | | | | | | | | |
| Copake----------- | B | Jan-Dec | > 6.0 | > 6.0 | -- | --- | None | --- | None |
| 31C: | | | | | | | | | |
| Copake-- | B | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 32A: | | | | | | | | | |
| Haven------------ | B | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| Enfield----------- | B | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 32B: | | | | | | | | | |
| Haven------------ | B | | | | | | | | |
| | | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| Enfield----------- | B | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 32C: | | | | | | | | | |
| Haven------------- | B | Jan-Dec | > 6.0 | >6.0 | --- | --- | None | --- | None |
| Enfield----------- | B | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 33A: | | | | | | | | | |
| | B | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 33B : | | | | | | | | | |
| Hartford---- | B | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 34A: | | | | | | | | | |
| Merrimac--------- | B | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 34B: | | | | | | | | | |
| Merrimac---------- | B | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$ | Lower
 limit | Surface water depth | Duration | Frequency | Duration | Frequency |
| | | | Ft | Ft | Ft | | | | |
| 34C: | | | | | | | | | |
| Merrimac----------------- \| | B | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 35A: | | | | | | | | | |
| Penwood------------------ | A | Jan-Dec | > 6.0 | >6.0 | --- | --- | None | --- | None |
| 35B: | | | | | | | | | |
| Penwood------------------ \| | A | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 36A: | | | | | | | | | |
| Windsor------------------ \| | A | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 36B: | | | | | | | | | |
| Windsor------------------- | A | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 36C: | | | | | | | | | |
| Windsor------------------- | A | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 37A: | | | | | | | | | |
| Manchester--------------- \| | A | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 37C: | | | | | | | | | |
| Manchester--------------- \| | A | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 37E: | | | | | | | | | |
| Manchester--------------- | A | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 38A: | | | | | | | | | |
| Hinckley----------------\| | A | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 38C: | | | | | | | | | |
| Hinckley---------------- | A | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 38E: | | | | | | | | | |
| Hinckley--------------- | A | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | $\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$ | Lower
 limit | Surface water depth | Duration | Frequency | Duration | Frequency |
| | | | Ft | Ft | Ft | | | | |
| 43A: \| | | | | | | | | | | | | | | | |
| Rainbow------ | C | | | | | | | | |
| | | January | 1.5-2.5 | 1.7-3.3\| | --- | --- | None | -- | None |
| | | February | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | March | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | April | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | May | 1.5-2.5 | 1.7-3.3\| | --- | --- | None | --- | None |
| | | November | 1.5-2.5 | 1.7-3.3\| | --- | --- | None | -- | None |
| | | December | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| ```43B: Rainbow-``` | | | | | | | | | |
| | C | | | | | | | | |
| | | January | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | February | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | March | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | April | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | \| May | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | | 1.5-2.5 | \|1.7-3.3| | | --- | None | --- | None |
| | | December | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | |
| 44B : | | | | | | | | | |
| Rainbow----------- | C | | | | | | | | |
| | | January | 1.5-2.5 | 1.7-3.3\| | --- | --- | None | --- | |
| | | February | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | March | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | April | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | May | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | November | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | December | 1.5-2.5 | \|1.7-3.3| | - | --- | None | -- | |
| 45A : | | | | | | | | | |
| Woodbridge--------- | C | | | | | | | | |
| | | January | 1.5-2.5 | 1.7-3.3\| | --- | --- | None | --- | None |
| | | February | 1.5-2.5 | \|1.7-3.3| | - | --- | None | --- | None |
| | | March | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | April | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | May | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | November | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | December | 1.5-2.5 | 1.7-3.3\| | --- | --- | None | -- | None |
| 45B: | | | | | | | | | |
| Woodbridge--------- | C | | | | | | | | |
| | | January | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | None |
| | | February | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | March | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | -- - | None |
| | | April | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | May | 1.5-2.5 | \|1.7-3.3| | --- | - | None | --- | None |
| | | November | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | December | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | | | | | | | | |

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | $\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$ | Lower
 limit | Surface water depth | Duration | Frequency | Duration | Frequency |
| 49C: \| | | | | | | | | | | | | | | |
| | | | | | | | | | | | |
| Georgia----------- | B | | | | | | | | |
| | | January | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| | | February | 1.5-3.0 | >6.0 | - | --- | None | --- | None |
| | | March | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| | | April | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| | | May | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| | | November | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| | | December | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| 49C: | | | | | | | | | |
| Amenia-- | B | | | | | | | | |
| | | January | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| | | February | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| | | March | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| | | April | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| | | May | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| | | November | $1.5-3.0$ | >6.0 | --- | --- | None | - | None |
| | | December | 1.5-3.0 | >6.0 | --- | --- | None | --- | |
| 50A: | | | | | | | | | |
| Sutton------------- | B | | | | | | | | |
| | | January | 1.5-2.5 | >6.0 | --- | --- | | --- | |
| | | February | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | March | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | April | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | November | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | December | 1.5-2.5 | >6.0 | --- | --- | None | --- | |
| 50B: | | | | | | | | | |
| Sutton------------- | B | | | | | | | | |
| | | January | 1.5-2.5 | >6.0 | --- | --- | | --- | |
| | | February | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | March | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | April | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | November | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | December | 1.5-2.5 | >6.0 | --- | --- | None | --- | |
| | | | | | | | | | |
| Sutton------------- | B | | | | | | | | |
| | | J January | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | February | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | March | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | April | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | November | 1.5-2.5 | >6.0 | --- | --- | None | -- - | None |
| | | December | 1.5-2.5 | >6.0 | --- | --- | None | --- | None |
| | | | | | | | | | |

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | $\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$ | Lower
 limit | Surface water depth | Duration | Frequency | Duration | Frequency |
| | | | Ft | Ft | Ft | | | | |
| 84B : | | | | | | | | | |
| Paxton------------------- | C | | | | | | | | |
| | | \| January | 1.5-2.5\| | 1.7-3.3 | - | --- | None | -- | None |
| | | February | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | --- | None |
| | | March | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | --- | None |
| | | April | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | --- | None |
| | | November | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | --- | None |
| | | December | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | --- | None |
| Montauk----------------- | C | | | | | | | | |
| | | January | 2.0-2.5\| | 2.2-3.2 | --- | --- | None | --- | |
| | | February | 2.0-2.5\| | 2.2-3.2 | --- | - | None | --- | None |
| | | March | 2.0-2.5\| | 2.2-3.2 | --- | --- | None | --- | None |
| | | April | \|2.0-2.5| | 2.2-3.2 | --- | --- | None | --- | None |
| | | November | \|2.0-2.5| | 2.2-3.2\| | --- | --- | None | --- | None |
| | | December | 2.0-2.5\| | 2.2-3.2 | --- | --- | None | --- | |
| 84C: | | | | | | | | | |
| Paxton------------------ | C | | | | | | | | |
| | | January | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | --- | |
| | | February | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | --- | None |
| | | March | 1.5-2.5\| | 1.7-3.3 | - - | --- | None | --- | None |
| | | April | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | --- | None |
| | | November | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | --- | None |
| | | December | 1.5-2.5\| | 1.7-3.3 | --- | -- | None | --- | |
| Montauk------------------ | C | | | | | | | | |
| | | \| January | 2.0-2.5\| | 2.2-3.2 | --- | --- | None | --- | None |
| | | February | 2.0-2.5\| | 2.2-3.2 | --- | --- | None | --- | None |
| | | March | \|2.0-2.5| | 2.2-3.2\| | --- | --- | None | --- | None |
| | | April | \|2.0-2.5| | 2.2-3.2 | - | -- | None | --- | None |
| | | November | 2.0-2.5\| | 2.2-3.2 | --- | --- | None | --- | None |
| | | December | \|2.0-2.5| | 2.2-3.2 | --- | --- | None | --- | None |
| 84D: | | | | | | | | | |
| | | | | | | | | | | | |
| Paxton------------------ | | \| January | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | -- | None |
| | | February | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | --- | None |
| | | March | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | --- | None |
| | | April | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | --- | None |
| | | November | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | --- | None |
| | | December | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | --- | None |
| | | | | | | | | | |

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | | |
|---|---|---|---|---|---|---|---|---|---|---|
| | | | $\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$ | Lower
 limit | Surface water depth | Duration | Frequency | Duration | Frequency |
| | | | Ft | Ft | Ft | | | | |
| 84D: | | | | | | | | | |
| Montauk------------------ | C | | | | | | | | |
| | | January | 2.0-2.5 | 2.2-3.2 | --- | --- | None | --- | None |
| | | February | 2.0-2.5 | 2.2-3.2 | --- | --- | None | --- | None |
| | | March | 2.0-2.5 | 2.2-3.2 | --- | --- | None | --- | None |
| | | April | 2.0-2.5 | 2.2-3.2 | --- | --- | None | --- | None |
| | | November | 2.0-2.5 | 2.2-3.2 | --- | --- | None | --- | None |
| | | December | 2.0-2.5 | 2.2-3.2 | --- | --- | None | --- | |
| 85B : | | | | | | | | | |
| Paxton------------------ | C | | | | | | | | |
| | | January | 1.5-2.5 | 1.7-3.3\| | --- | - | None | --- | None |
| | | February | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | March | 1.5-2.5 | 1.7-3.3\| | --- | --- | None | --- | None |
| | | April | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | -- - | None |
| | | November | 1.5-2.5 | \|1.7-3.3| | -- | -- | None | --- | None |
| | | December | 1.5-2.5 | 1.7-3.3\| | --- | --- | None | -- | |
| 85B : | | | | | | | | | |
| Montauk------------------ \| | C | | | | | | | | |
| | | January | 2.0-2.5 | \|2.2-3.2| | --- | --- | None | --- | |
| | | February | 2.0-2.5 | \|2.2-3.2| | --- | -- | None | --- | None |
| | | March | 2.0-2.5 | \|2.2-3.2| | --- | --- | None | --- | None |
| | | April | 2.0-2.5 | \|2.2-3.2| | --- | --- | None | --- | None |
| | | November | 2.0-2.5 | \|2.2-3.2| | --- | --- | None | -- | None |
| | | December | 2.0-2.5 | \|2.2-3.2| | --- | --- | None | --- | |
| 85C: | | | | | | | | | |
| Paxton------------------\| | C | | | | | | | | |
| | | | 1.5-2.5 | 1.7-3.3\| | --- | --- | | --- | |
| | | February | 1.5-2.5 | \|1.7-3.3| | -- | -- | None | --- | None |
| | | March | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | April | 1.5-2.5 | \|1.7-3.3| | --- | --- | None | --- | None |
| | | November | 1.5-2.5 | 1.7-3.3\| | --- | --- | None | --- | None |
| | | December | 1.5-2.5 | 1.7-3.3\| | --- | --- | None | -- | |
| Montauk------------------ \| | C | | | | | | | | |
| | | January | 2.0-2.5 | 2.2-3.2 | --- | --- | None | --- | None |
| | | February | 2.0-2.5 | 2.2-3.2\| | --- | --- | None | --- | None |
| | | March | 2.0-2.5 | 2.2-3.2\| | -- | --- | None | --- | None |
| | | April | 2.0-2.5 | \|2.2-3.2| | --- | -- - | None | - | None |
| | | November | 2.0-2.5 | \|2.2-3.2| | --- | --- | None | --- | None |
| | | December | 2.0-2.5 | 2.2-3.2\| | --- | --- | None | --- | None |
| | | | | | | | | | |

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | $\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$ | Lower limit | Surface water depth | Duration | Frequency | Duration | Frequency |
| | | | Ft | Ft | Ft | | | | |
| 95E: | | | | | | | | | |
| Farmington--------------- | D | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| Rock Outcrop------------- | D | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | -- | None |
| 96 : | | | | | | | | | |
| Ipswich----------------- | D | Jan-Dec | 0.0-1.0 | >6.0 | 0.0-1.0\| | Long | Frequent | Very brief | Very frequent |
| | | | | | | | | | |
| Pawcatuck---------------- \| | D | Jan-Dec | 0.0-1.0 | >6.0 | 0.0-1.0\| | Long | Frequent | Very brief | Very |
| 98 : | | | | | | | | | |
| Westbrook---------------- \| | D | Jan-Dec | 0.0-1.0 | >6.0 | \|0.0-1.0| | Long | Frequent | Very brief | Very |
| 99 : | | | | | | | | | |
| Westbrook, low salt------- | D | Jan-Dec | 0.0-1.0 | >6.0 | 0.0-1.0\| | Long | Frequent | Very brief | Very |
| 100: | | | | | | | | | |
| Suncook------------------- \| | A | | | | | | | | |
| | | January | 5.0-6.0 | >6.0 | --- | --- | None | --- | |
| | | February | 5.0-6.0 | >6.0 | -- | --- | None | --- | None |
| | | March | 5.0-6.0 | >6.0 | --- | --- | None | Brief | Occasional |
| | | April | 5.0-6.0 | >6.0 | --- | --- | None | Brief | Occasional |
| | | | | | | | | | |
| | | | | | | | | | | | |
| | | January | 5.0-6.0 | >6.0 | --- | --- | None | --- | None |
| | | February | 5.0-6.0 | >6.0 | --- | --- | None | Brief | Occasional |
| | | March | 5.0-6.0 | >6.0 | --- | --- | None | Brief | Occasional |
| | | April | 5.0-6.0 | >6.0 | --- | --- | None | Brief | Occasional |
| | | November | 5.0-6.0 | >6.0 | --- | --- | None | -- | None |
| | | December | 5.0-6.0 | >6.0 | --- | --- | None | -- | None |
| 102: | | | | | | | | | |
| Pootatuck---------------\| | B | | | | | | | | |
| | | January | 1.5-2.5 | >6.0 | --- | --- | | | |
| | | February | 1.5-2.5 | >6.0 | --- | | None | Brief | Frequent |
| | | March | 1.5-2.5 | >6.0 | --- | --- | None | Brief | Frequent |
| | | April | 1.5-2.5 | >6.0 | --- | --- | None | Brief | Frequent |
| | | November | 1.5-2.5 | >6.0 | --- | -- | None | Brief | Frequent |
| | | December | 1.5-2.5 | >6.0 | --- | --- | None | Brief | Frequent |

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | $\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$ | Lower
 limit | Surface water depth | Duration | Frequency | Duration | Frequency |
| | | | Ft | Ft | Ft | | | | |
| 103: | | | | | | | | | |
| Rippowam-- | D | | | | | | | | |
| | | January | 0.0-1.5 | >6.0 | --- | --- | None | Brief | Frequent |
| | | February | 0.0-1.5 | >6.0 | --- | --- | None | Brief | Frequent |
| | | March | 0.0-1.5 | >6.0 | --- | --- | None | Brief | Frequent |
| | | April | 0.0-1.5 | >6.0 | --- | --- | None | Brief | Frequent |
| | | May | 0.0-1.5 | >6.0 | --- | --- | None | Brief | Frequent |
| | | June | 0.0-1.5 | >6.0 | --- | --- | None | -- | None |
| | | September | 0.0-1.5 | >6.0 | --- | --- | None | -- | None |
| | | October | 0.0-1.5 | >6.0 | --- | --- | None | Brief | |
| | | November | 0.0-1.5 | >6.0 | --- | --- | None | Brief | Frequent |
| | | December | 0.0-1.5 | >6.0 | --- | --- | None | Brief | Frequent |
| | | | | | | | | | |
| | | | | | | | | | | | |
| | | January | 0.5-1.5 | >6.0 | --- | --- | None | Brief | Frequent |
| | | February | 0.5-1.5 | >6.0 | - | --- | None | Long | Frequent |
| | | March | 0.5-1.5 | >6.0 | - | - | None | Long | Frequent |
| | | April | 0.5-1.5 | >6.0 | --- | --- | None | Long | Frequent |
| | | May | 0.5-1.5 | >6.0 | -- - | --- | None | Long | Frequent |
| | | June | 1.5-3.5 | >6.0 | --- | --- | None | - | None |
| | | July | 3.5-6.0 | >6.0 | --- | --- | None | --- | None |
| | | August | 3.5-6.0 | >6.0 | --- | --- | None | --- | None |
| | | September | 1.5-3.5 | >6.0 | --- | --- | None | --- | None |
| | | October | 1.5-3.5 | >6.0 | - - | - | None | --- | None |
| | | November | 1.5-3.5 | >6.0 | --- | --- | None | | None |
| | | December | 0.5-1.5 | >6.0 | --- | --- | None | Brief | Frequent |
| 105: | | | | | | | | | |
| Hadley------------ | B | | | | | | | | |
| | | January | 5.0-6.0 | >6.0 | --- | --- | None | - | None |
| | | February | 5.0-6.0\| | >6.0 | --- | --- | None | Brief | Occasional |
| | | March | 5.0-6.0\| | >6.0 | --- | --- | None | Brief | Occasional |
| | | April | 5.0-6.0\| | >6.0 | --- | --- | None | Brief | Occasional |
| | | November | $5.0-6.0$ | >6.0 | --- | --- | None | --- | None |
| | | December | 5.0-6.0 | >6.0 | | --- | None | --- | None |
| 106: | | | | | | | | | |
| Winooski----------- | B | | | | | | | | |
| | | | 1.5-3.0 | >6.0 | --- | --- | | | |
| | | February | 1.5-3.0 | >6.0 | --- | --- | None | Brief | Frequent |
| | | March | 1.5-3.0 | >6.0 | --- | --- | None | Brief | Frequent |
| | | April | 1.5-3.0 | >6.0 | --- | --- | None | Brief | Frequent |
| | | November | 1.5-3.0 | >6.0 | --- | - | None | --- | None |
| | | December | 1.5-3.0 | >6.0 | --- | --- | None | --- | None |
| | | | | | | | | | |

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | | |
|---|---|---|---|---|---|---|---|---|---|---|
| | | | $\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$ | Lower
 limit | Surface water depth | Duration | Frequency | Duration | Frequency |
| | | | Ft | Ft | Ft | | | | |
| | | | | | | | | | |
| Limerick- | D | | | | | | | | |
| | | \| January | 0.0-1.5 | >6.0 | --- | --- | None | Brief | Frequent |
| | | \| February | 0.0-1.5 | >6.0 | --- | --- | None | Brief | Frequent |
| | | March | 0.0-1.5 | >6.0 | --- | --- | None | Brief | Frequent |
| | | April | 0.0-1.5 | >6.0 | --- | -- | None | Brief | Frequent |
| | | May | 0.0-1.5 | >6.0 | --- | --- | None | Brief | Frequent |
| | | \| June | 0.0-1.5 | >6.0 | --- | --- | None | -- | None |
| | | \| September | 0.0-1.5 | >6.0 | --- | --- | None | --- | None |
| | | October | 0.0-1.5 | >6.0 | --- | --- | None | Brief | Frequent |
| | | November | 0.0-1.5 | >6.0 | --- | --- | None | Brief | Frequent |
| | | December | 0.0-1.5 | >6.0 | --- | --- | None | Brief | Frequent |
| Lim--------------- | D | | | | | | | | |
| | | January | 0.0-1.5 | >6.0 | --- | --- | None | Brief | |
| | | February | 0.0-1.5 | >6.0 | - | --- | None | Brief | Frequent |
| | | March | 0.0-1.5 | >6.0 | --- | --- | None | Brief | Frequent |
| | | April | 0.0-1.5 | >6.0 | -- | - | None | Brief | Frequent |
| | | May | 0.0-1.5 | >6.0 | - | --- | None | Brief | Frequent |
| | | June | 0.0-1.5 | >6.0 | --- | --- | None | --- | None |
| | | September | 0.0-1.5 | >6.0 | --- | -- | None | - | None |
| | | October | 0.0-1.5 | >6.0 | --- | --- | None | Brief | Frequent |
| | | November | 0.0-1.5 | >6.0 | -- | -- | None | Brief | Frequent |
| | | December | 0.0-1.5 | >6.0 | --- | --- | None | Brief | Frequent |
| 108 : | | | | | | | | | |
| Saco-------------- | D | | | | | | | | |
| | | January | 0.0-0.5 | >6.0 | \|0.0-1.5| | Long | Frequent | Brief | Frequent |
| | | February | 0.0-0.5 | >6.0 | \|0.0-1.5| | Long | Frequent | Brief | Frequent |
| | | March | 0.0-0.5 | >6.0 | \|0.0-1.5| | Long | Frequent | Brief | Frequent |
| | | April | 0.0-0.5 | >6.0 | \|0.0-1.5| | Long | Frequent | Brief | Frequent |
| | | May | 0.0-0.5 | >6.0 | --- | - | None | Brief | Frequent |
| | | June | 0.0-0.5 | >6.0 | - | --- | None | - | None |
| | | July | 0.0-0.5 | >6.0 | --- | --- | None | --- | None |
| | | August | 0.0-0.5 | >6.0 | --- | --- | None | --- | None |
| | | September | 0.0-0.5 | >6.0 | --- | --- | None | --- | None |
| | | October | 0.0-0.5 | >6.0 | | -- - | None | Brief | Frequent |
| | | November | 0.0-0.5 | >6.0 | $\left\lvert\, \begin{array}{ll}---1\end{array}\right.$ | | None | Brief | Frequent |
| | | December | 0.0-0.5 | >6.0 | \|0.0-1.5| | Long | Frequent | Brief | Frequent |
| | | | | | | | | | |

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | | |
|---|---|---|---|---|---|---|---|---|---|---|
| | | | Upper
 limit | Lower
 limit | $\begin{gathered} \hline \text { Surface } \\ \text { water } \\ \text { depth } \end{gathered}$ | Duration | Frequency | Duration | Frequency |
| | | | Ft | Ft | Ft | | | | |
| 237A: | | | | | | | | | |
| Manchester--------------- | A | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| Urban Land--------------- | --- | | | | | | | | |
| 237C: | | | | | | | | | |
| Manchester--------------- | A | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| Urban Land---------------- | --- | | | | | | | | |
| 238A: | | | | | | | | | |
| Hinckley---------------- | A | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| Urban Land--------------- | --- | | | | | | | | |
| 238C: | | | | | | | | | |
| Hinckley---------------- | A | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| Urban Land--------------- | --- | | | | | | | | |
| 240B: | | | | | | | | | |
| Ludlow------------------- | C | | | | | | | | |
| | | January | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | --- | None |
| | | February | 1.5-2.5\| | 1.7-3.3 | --- | --- | None | --- | None |
| | | March | 1.5-2.5\| | 1.7-3.3 | - | --- | None | --- | None |
| | | April | 1.5-2.5\| | \|1.7-3.3| | --- | --- | None | --- | None |
| | | November | 1.5-2.5\| | \|1.7-3.3| | --- | --- | None | | None |
| | | December | 1.5-2.5\| | 1.7-3.3\| | --- | --- | None | --- | None |
| Urban Land--------------- | --- | | | | | | | | |
| 243B: | | | | | | | | | |
| Rainbow------------------ | C | | | | | | | | |
| | | January | 1.5-2.5\| | \|1.7-3.3| | - | --- | None | -- | None |
| | | February | 1.5-2.5\| | \|1.7-3.3| | -- | -- | None | --- | None |
| | | March | 1.5-2.5\| | \|1.7-3.3| | --- | --- | None | --- | None |
| | | April | 1.5-2.5\| | \|1.7-3.3| | --- | - | None | - | None |
| | | May | 1.5-2.5\| | \|1.7-3.3| | --- | --- | None | --- | None |
| | | November | 1.5-2.5\| | \|1.7-3.3| | --- | --- | None | --- | None |
| | | December | 1.5-2.5\| | 1.7-3.3\| | --- | --- | None | --- | None |
| Urban Land--------------- | --- | | | | | | | | |

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | $\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$ | Lower limit | Surface water depth | Duration | Frequency | Duration | Frequency |
| 301: | | | Ft | Ft | Ft | | | | |
| Udipsamments------------- | A | Jan-Dec | 4.0-6.0 | >6.0 | --- | --- | None | Extremely brief | Occasional |
| 302 : | | | | | | | | | |
| Dumps-------------------- | - | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 303: | | | | | | | | | |
| Pits, Quarries----------- | D | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 304 : | | | | | | | | | |
| Udorthents--------------- | B | | | | | | | | |
| | | January | 4.5-6.0 | >6.0 | --- | --- | None | -- | None |
| | | February | 4.5-6.0 | >6.0 | --- | --- | None | --- | None |
| | | March | 4.5-6.0 | >6.0 | --- | - | None | --- | None |
| | | April | 4.5-6.0 | >6.0 | -- | --- | None | --- | None |
| | | November | 4.5-6.0 | >6.0 | --- | --- | None | | None |
| | | December | $4.5-6.0$ | | --- | --- | | --- | |
| $305 \text { : }$
 Udorthents | | | | | | | | | |
| | | | | | | | | | | | |
| | | January | 2.0-4.5 | >6.0 | --- | --- | None | --- | None |
| | | February | 2.0-4.5 | >6.0 | --- | --- | None | --- | None |
| | | March | 2.0-4.5 | >6.0 | --- | --- | None | --- | None |
| | | April | 2.0-4.5 | >6.0 | --- | --- | None | --- | None |
| | | November | 2.0-4.5 | >6.0 | --- | --- | None | --- | None |
| | | December | 2.0-4.5 | >6.0 | --- | --- | | --- | |
| Pits--------------------\| | D | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 306: | | | | | | | | | |
| Udorthents--------------- | B | | | | | | | | |
| | | January | 4.5-6.0 | >6.0 | --- | --- | None | --- | None |
| | | February | 4.5-6.0 | >6.0 | --- | --- | None | --- | None |
| | | March | 4.5-6.0 | >6.0 | --- | --- | None | --- | None |
| | | April | 4.5-6.0 | >6.0 | --- | --- | None | --- | None |
| | | November | $4.5-6.0$ | >6.0 | --- | --- | None | --- | None |
| | | December | 4.5-6.0 | >6.0 | --- | --- | None | --- | |
| Urban Land--------------- | --- | | | | | | | | |
| 307: | | | | | | | | | |
| Urban Land--------------- | --- | | | | | | | | |

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Upper limit | Lower
 limit | Surface water depth | Duration | Frequency | Duration | Frequency |
| | | | Ft | Ft | Ft | | | | |
| 424D:
 Shelburne | | | | | | | | | |
| | C | | | | | | | | |
| | | J January | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | None |
| | | \| February | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | None |
| | | March | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | None |
| | | April | 1.5-2.5 | 1.7-3.3 | --- | --- | None | -- - | None |
| | | November | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | None |
| | | December | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | |
| 425B: | | | | | | | | | |
| Shelburne---------- | C | | | | | | | | |
| | | January | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | None |
| | | February | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | None |
| | | March | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | None |
| | | April | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | None |
| | | November | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | None |
| | | December | 1.5-2.5 | 1.7-3.3 | --- | --- | None | -- | None |
| 425C: | | | | | | | | | |
| Shelburne--------- | C | | | | | | | | |
| | | January | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | None |
| | | February | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | None |
| | | March | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | None |
| | | April | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | None |
| | | November | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | None |
| | | December | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | None |
| 426 D : | | | | | | | | | |
| Shelburne---------- | C | | | | | | | | |
| | | January | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | None |
| | | February | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | None |
| | | March | 1.5-2.5 | 1.7-3.3\| | --- | --- | None | --- | None |
| | | April | 1.5-2.5 | 1.7-3.3\| | --- | --- | None | --- | None |
| | | November | 1.5-2.5 | 1.7-3.3 | --- | --- | None | -- - | None |
| | | December | 1.5-2.5 | 1.7-3.3 | --- | --- | None | --- | None |
| 427B: | | | | | | | | | |
| Ashfield---------- | C | | | | | | | | |
| | | January | 1.0-2.0 | 1.1-2.2 | --- | --- | None | --- | None |
| | | February | 1.0-2.0 | 1.1-2.2 | --- | --- | None | --- | None |
| | | March | 1.0-2.0 | 1.1-2.2 | -- | --- | None | --- | None |
| | | April | 1.0-2.0 | 1.1-2.2 | --- | --- | None | --- | None |
| | | May | 1.0-2.0 | 1.1-2.2 | --- | --- | None | --- | None |
| | | | | | | | | | |

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | | |
|---|---|---|---|---|---|---|---|---|---|---|
| | | | $\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$ | Lower
 limit | Surface water depth | Duration | Frequency | Duration | Frequency |
| | | | Ft | Ft | Ft | | | | |
| | | | | | | | | | |
| Boscawen--------- | A | | | | | | | | |
| | | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 440C: | | | | | | | | | |
| Boscawen--------- | A | | | | | | | | |
| | | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | - | None |
| 440E: | | | | | | | | | |
| Boscawen----------- | A | | | | | | | | |
| | | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |
| 442: | | | | | | | | | |
| Brayton----------- | D | | | | | | | | |
| | | January | \|0.0-1.0| | 0.8-2.2 | --- | --- | None | --- | None |
| | | February | \|0.0-1.0|0 | 0.8-2.2 | --- | --- | None | --- | None |
| | | March | \|0.0-1.0| | 0.8-2.2 | --- | --- | None | --- | None |
| | | April | \|0.0-1.0| | 0.8-2.2 | --- | --- | None | --- | None |
| | | May | \|0.0-1.0|0 | 0.8-2.2 | --- | --- | None | --- | None |
| | | June | \|0.0-1.0|0 | 0.8-2.2 | --- | --- | None | --- | None |
| | | October | \|0.0-1.0|0 | 0.8-2.2 | --- | --- | None | --- | None |
| | | November | \|0.0-1.0|0 | 0.8-2.2 | --- | --- | None | - | None |
| | | December | \|0.0-1.0| | 0.8-2.2 | --- | --- | None | --- | None |
| 443 : | | | | | | | | | |
| Brayton----------- | D | | | | | | | | |
| | | | | 0.8-2.2 | --- | --- | | --- | |
| | | February | \|0.0-1.0|0 | 0.8-2.2 | --- | --- | None | --- | None |
| | | March | \|0.0-1.0|0 | 0.8-2.2 | - | --- | None | --- | None |
| | | April | 0.0-1.0\|0 | 0.8-2.2 | --- | --- | None | -- | None |
| | | May | \|0.0-1.0| | 0.8-2.2 | -- - | --- | None | --- | None |
| | | June | 0.0-1.0\|0 | 0.8-2.2 | --- | --- | None | --- | None |
| | | October | \|0.0-1.0|0 | 0.8-2.2 | --- | --- | None | --- | None |
| | | November | \|0.0-1.0| | 0.8-2.2 | --- | --- | None | --- | None |
| | | December | \|0.0-1.0| | 0.8-2.2 | --- | --- | None | --- | None |
| | | | | | | | | | |

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | | |
|---|---|---|---|---|---|---|---|---|---|---|
| | | | $\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$ | Lower
 limit | $\begin{aligned} & \hline \text { Surface } \\ & \text { water } \\ & \text { depth } \end{aligned}$ | Duration | Frequency | Duration | Frequency |
| | | | Ft | Ft | Ft | | | | |
| 443 : | | | | | | | | | |
| Loonmeadow--------------- | D | | | | | | | | |
| | | \| January | 0.0-1.0\| | >6.0 | 0.0-1.0\| | Long | Frequent | --- | None |
| | | February | \|0.0-1.0| | >6.0 | 0.0-1.0\| | Long | Frequent | --- | None |
| | | March | \|0.0-1.0| | >6.0 | 0.0-1.0\| | Long | Frequent | --- | None |
| | | April | \|0.0-1.0| | >6.0 | 0.0-1.0\| | Long | Frequent | --- | None |
| | | May | 0.0-1.0\| | >6.0 | 0.0-1.0\| | Brief | Frequent | --- | None |
| | | June | \|0.0-1.0| | >6.0 | --- | --- | None | --- | None |
| | | \| July | \|0.0-1.0| | >6.0 | --- | --- | None | --- | None |
| | | August | 0.0-1.0\| | >6.0 | --- | --- | None | --- | None |
| | | \| September | 0.0-1.0\| | >6.0 | --- | --- | None | --- | None |
| | | October | \|0.0-1.0| | >6.0 | --- | --- | None | --- | None |
| | | November | \|0.0-1.0| | >6.0 | 0.0-1.0\| | Brief | Frequent | --- | None |
| | | December | \|0.0-1.0| | >6.0 | 0.0-1.0\| | Long | Frequent | --- | None |
| $448 \mathrm{~B}:$ | | | | | | | | | |
| Hogansburg-------------- | | January | \|1.5-3.0| | 3.0-3.5 | --- | --- | None | --- | None |
| | | February | \|1.5-3.0| | 3.0-3.5 | --- | --- | None | --- | None |
| | | March | 1.5-3.0\| | 3.0-3.5 | --- | --- | None | --- | None |
| | | April | 1.5-3.0\| | 3.0-3.5 | -- | --- | None | --- | None |
| | | May | \|1.5-3.0| | 3.0-3.5 | --- | -- | None | --- | None |
| | | November | 1.5-3.0\| | 3.0-3.5 | -- | --- | None | --- | None |
| | | December | 1.5-3.0\| | 3.0-3.5 | - | --- | | | |
| 449B: | | | | | | | | | |
| Hogansburg--------------- | B | | | | | | | | |
| | | \| January | \|1.5-3.0| | 3.0-3.5 | --- | --- | None | --- | |
| | | February | \|1.5-3.0| | 3.0-3.5 | --- | --- | None | --- | None |
| | | March | 1.5-3.0\| | 3.0-3.5 | --- | --- | None | --- | None |
| | | April | 1.5-3.0\| | 3.0-3.5 | --- | --- | None | --- | None |
| | | May | 1.5-3.0\| | 3.0-3.5 | --- | --- | None | --- | None |
| | | November | 1.5-3.0\| | 3.0-3.5 | --- | --- | None | --- | None |
| | | December | 1.5-3.0\| | 3.0-3.5 | --- | --- | None | --- | None |
| 449C: | | | | | | | | | |
| Hogansburg-------------- | B | | | | | | | | |
| | | \| January | \|1.5-3.0| | 3.0-3.5 | --- | --- | None | --- | None |
| | | February | 1.5-3.0\| | 3.0-3.5 | --- | --- | None | --- | None |
| | | March | 1.5-3.0\| | 3.0-3.5 | --- | --- | None | --- | None |
| | | April | 1.5-3.0\| | 3.0-3.5 | --- | --- | None | --- | None |
| | | May | 1.5-3.0\| | 3.0-3.5 | --- | --- | None | --- | None |
| | | November | 1.5-3.0\| | 3.0-3.5 | -- | --- | None | --- | None |
| | | December | 1.5-3.0\| | 3.0-3.5 | --- | --- | None | --- | None |
| 450B: | | | | | | | | | |
| Pyrities---------------- | B | Jan-Dec | > 6.0 | > 6.0 | --- | --- | None | --- | None |

Table 26.-Water Features-Continued

Table 26.-Water Features-Continued

| Map symbol and soil name | Hydrologic group | Month | Water table | | Ponding | | | Flooding | | |
|---|---|---|---|---|---|---|---|---|---|---|
| | | | $\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$ | Lower
 limit | Surface water depth | Duration | Frequency | Duration | Frequency |
| | | | Ft | Ft | Ft | | | | |
| $503:$ | | | | | | | | | |
| Rumney------------ | D | | | | | | | | |
| | | January | 0.0-1.5\| | >6.0 | --- | --- | None | Brief | Frequent |
| | | February | 0.0-1.5\| | >6.0 | --- | --- | None | Brief | Frequent |
| | | March | \|0.0-1.5| | >6.0 | --- | --- | None | Brief | Frequent |
| | | April | 0.0-1.5\| | >6.0 | --- | --- | None | Brief | Frequent |
| | | May | 0.0-1.5\| | >6.0 | --- | --- | None | Brief | Frequent |
| | | \| June | 0.0-1.5\| | >6.0 | --- | --- | None | -- | None |
| | | \| September | 0.0-1.5\| | >6.0 | --- | --- | None | -- | None |
| | | October | 0.0-1.5\| | >6.0 | --- | --- | None | Brief | Frequent |
| | | November | 0.0-1.5\| | >6.0 | --- | --- | None | Brief | Frequent |
| | | December | 0.0-1.5\| | >6.0 | --- | --- | None | Brief | Frequent |
| $508:$ | | | | | | | | | |
| Medomak- | D | | | | | | | | |
| | | January | 0.0-0.5\| | >6.0 | 0.0-1.5 | Long | Frequent | Brief | Frequent |
| | | February | 0.0-0.5\| | >6.0 | 0.0-1.5 | Long | Frequent | Brief | Frequent |
| | | March | 0.0-0.5\| | >6.0 | 0.0-1.5 | Long | Frequent | Brief | Frequent |
| | | April | 0.0-0.5 | >6.0 | 0.0-1.5 | Long | Frequent | Brief | Frequent |
| | | May | 0.0-0.5\| | >6.0 | , | --- | None | Brief | Frequent |
| | | \| June | 0.0-0.5\| | >6.0 | --- | --- | None | -- | None |
| | | July | 0.0-0.5 | >6.0 | --- | --- | None | --- | None |
| | | August | 0.0-0.5\| | >6.0 | -- | -- | None | -- | None |
| | | \| September | 0.0-0.5\| | >6.0 | --- | --- | None | --- | None |
| | | October | 0.0-0.5\| | >6.0 | --- | --- | None | Brief | Frequent |
| | | November | $\|0.0-0.5\|$ | >6.0 | | - - - | None | Brief | Frequent |
| | | December | 0.0-0.5\| | >6.0 | 0.0-1.5 | Long | Frequent | Brief | Frequent |

(See text for definitions of terms used in this table. Absence of an entry indicates that the feature is not a concern or that data were not estimated.)

Table 27.-Soil Features-Continued

Table 27.-Soil Features-Continued

Table 27.-Soil Features-Continued

| Map symbol and soil name | Restrictive layer | | | | Subsidence | | Potentialforfrost action | Risk of corrosion | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Kind | Depth to top | Thickness | Hardness | Initial | Total | | Uncoated steel | Concrete |
| | | In | In | | In | In | | | |
| 32B: | | | | | | | | | |
| Haven----------------- | --- | --- | --- | --- | 0 | 0 | Moderate | Low | Moderate |
| Enfield--------------- | --- | --- | --- | --- | 0 | 0 | High | Low | Moderate |
| 32C: | | | | | | | | | |
| Haven----------------- | --- | --- | --- | --- | 0 | 0 | Moderate | Low | Moderate |
| Enfield--------------- | --- | --- | --- | --- | 0 | 0 | High | Low | Moderate |
| 33A: | | | | | | | | | |
| Hartford-------------- | --- | -- | --- | --- | 0 | 0 | Low | Low | High |
| 33B: | | | | | | | | | |
| Hartford-------------- | --- | --- | --- | --- | 0 | 0 | Low | Low | High |
| 34A: | | | | | | | | | |
| Merrimac------------- | --- | - | --- | --- | 0 | 0 | Low | Low | Moderate |
| 34B: | | | | | | | | | |
| Merrimac------------- | --- | - | --- | --- | 0 | 0 | Low | Low | Moderate |
| 34C: | | | | | | | | | |
| Merrimac------------- | --- | --- | --- | --- | 0 | 0 | Low | Low | Moderate |
| 35A: | | | | | | | | | |
| Penwood--------------- | --- | --- | --- | --- | 0 | 0 | Low | Low | High |
| 35B: | | | | | | | | | |
| Penwood--------------- | --- | --- | --- | --- | 0 | 0 | Low | Low | High |
| 36A: | | | | | | | | | |
| Windsor-------------- | --- | --- | --- | - | 0 | 0 | Low | Low | High |
| 36B: | | | | | | | | | |
| Windsor--------------- | --- | - | --- | --- | 0 | 0 | Low | Low | \| High |
| 36C: | | | | | | | | | |
| Windsor--------------- | --- | --- | --- | --- | 0 | 0 | Low | Low | High |
| 37A: | | | | | | | | | |
| Manchester------------ | --- | --- | --- | --- | 0 | 0 | Low | Low | High |
| 37C: | | | | | | | | | |
| Manchester----------- | --- | --- | --- | - | 0 | 0 | Low | Low | High |
| 37E: | | | | | | | | | |
| Manchester------------ | --- | --- | - | --- | 0 | 0 | Low | Low | \| High |

Table 27.-Soil Features-Continued

| Map symbol and soil name | Restrictive layer | | | | Subsidence | | Potential
 for
 frost action | Risk of corrosion | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Kind | $\begin{array}{\|l} \text { Depth } \\ \text { to top } \end{array}$ | Thickness | Hardness | Initial | Total | | Uncoated steel | Concrete |
| | | In | In | | In | In | | | |
| 38A:
 Hinckley | --- | --- | | --- | 0 | 0 | Low | Low | High |
| 38C: Hinckley | --- | --- | --- | --- | 0 | 0 | Low | Low | High |
| 38E:
 Hinckley | --- | --- | - | - | 0 | 0 | Low | Low | High |
| $\begin{aligned} & \text { 39A: } \\ & \text { Groton. } \end{aligned}$ | --- | --- | --- | --- | 0 | 0 | Low | Low | Low |
| $\begin{aligned} & \text { 39C: } \\ & \text { Groton- } \end{aligned}$ | --- | --- | --- | -- | 0 | 0 | Low | Low | Low |
| $\begin{aligned} & 39 \mathrm{E}: \\ & \quad \text { Groton } \end{aligned}$ | - | --- | -- | --- | 0 | 0 | Low | Low | Low |
| 40A:
 Ludlow- | Dense material | 20-40 | --- | very firm | 0 | 0 | Moderate | Moderate | Moderate |
| 40B:
 Ludlow- | Dense material | 20-40 | --- | \|very firm | 0 | 0 | Moderate | Moderate | Moderate |
| 41B:
 Ludlow- | Dense material | 20-40 | --- | \|very firm | 0 | 0 | Moderate | Moderate | Moderate |
| 42C:
 Ludlow | Dense material | 20-40 | - | very firm | 0 | 0 | Moderate | Moderate | Moderate |
| 43A:
 Rainbow | Dense material | 20-40 | --- | \|very firm | 0 | 0 | Moderate | Moderate | Moderate |
| 43B :
 Rainbow | Dense material | 20-40 | --- | \|very firm | 0 | 0 | Moderate | Moderate | Moderate |
| 44B:
 Rainbow | Dense material | 20-40 | --- | very firm | 0 | 0 | Moderate | Moderate | Moderate |
| 45A:
 Woodbridge | Dense material | 20-40 | - | \|very firm | 0 | 0 | Moderate | Moderate | Moderate |
| 45B:
 Woodbridge- | Dense material | 20-40 | --- | \|very firm | 0 | 0 | Moderate | Moderate | Moderate |
| $45 \mathrm{C}:$
 Woodbridge- | Dense material | 20-40 | --- | \|very firm | 0 | 0 | Moderate | Moderate | Moderate |

Table 27.-Soil Features-Continued

Table 27.-Soil Features-Continued

Table 27.-Soil Features-Continued

Table 27.-Soil Features-Continued

Table 27.-Soil Features-Continued

| Map symbol and soil name | Restrictive layer | | | | Subsidence | | $\begin{array}{\|c\|} \hline \text { Potential } \\ \text { for } \\ \text { frost action } \end{array}$ | Risk of corrosion | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Kind | $\begin{array}{r} \text { Depth } \\ \text { to top } \\ \hline \end{array}$ | Thickness | Hardness | Initial | Total | | Uncoated steel | Concrete |
| | | In | In | | In | In | | | |
| 75C: | | | | | | | | | |
| Hollis | Bedrock (lithic) | 10-20 | -- | extremely firm | 0 | 0 | High | Low | Moderate |
| Chatfield- | Bedrock (lithic) | 20-40 | --- | extremely firm | 0 | 0 | Moderate | Moderate | Moderate |
| Rock Outcrop- | Bedrock (lithic) | 0-4 | --- | extremely firm | --- | --- | None | --- | -- |
| 75E: | | | | | | | | | |
| Hollis | Bedrock (lithic) | 10-20 | --- | extremely firm | 0 | 0 | High | Low | Moderate |
| Chatfield-- | Bedrock (lithic) | 20-40 | --- | extremely firm | 0 | 0 | Moderate | Moderate | Moderate |
| Rock Outcrop- | Bedrock (lithic) | 0-4 | - | extremely firm | --- | -- | None | --- | -- |
| 76E: | | | | | | | | | |
| Rock Outcrop- | Bedrock (lithic) | 0-4 | --- | extremely firm | --- | --- | None | --- | --- |
| Hollis- | Bedrock (lithic) | 10-20 | - | extremely firm | 0 | 0 | High | Low | Moderate |
| 76F: | | | | | | | | | |
| Rock Outcrop-- | Bedrock (lithic) | 0-4 | --- | extremely firm | --- | --- | None | --- | --- |
| Hollis- | Bedrock (lithic) | 10-20 | - | extremely firm | 0 | 0 | High | Low | Moderate |
| 77C: | | | | | | | | | |
| Cheshire------- | --- | --- | - | --- | 0 | 0 | Moderate | Moderate | Moderate |
| Holyoke--- | Bedrock (lithic) | 10-20 | --- | extremely firm | 0 | 0 | High | Low | Moderate |
| 77D: | | | | | | | | | |
| Cheshire- | --- | --- | - | --- | 0 | 0 | Moderate | Moderate | Moderate |
| Holyoke-- | Bedrock (lithic) | 10-20 | --- | extremely firm | 0 | 0 | High | Low | Moderate |
| 78C: | | | | | | | | | |
| Holyoke- | Bedrock (lithic) | 10-20 | - | extremely firm | 0 | 0 | High | Low | Moderate |
| Rock Outcrop- | Bedrock (lithic) | 0-4 | --- | extremely firm | --- | --- | None | --- | -- |
| 78E: | | | | | | | | | |
| Holyoke-- | Bedrock (lithic) | 10-20 | --- | extremely firm | 0 | 0 | High | Low | Moderate |
| Rock Outcrop- | Bedrock (lithic) | 0-4 | --- | extremely firm | - | --- | None | -- | --- |
| 79E: | | | | | | | | | |
| Rock Outcrop-- | Bedrock (lithic) | 0-4 | --- | extremely firm | --- | -- | None | --- | -- |
| Holyoke--------- | Bedrock (lithic) | 10-20 | - | extremely firm | 0 | 0 | High | Low | Moderate |

Table 27.-Soil Features-Continued

Table 27.-Soil Features-Continued

Table 27.-Soil Features-Continued

Table 27.-Soil Features-Continued

| Map symbol and soil name | Restrictive layer | | | | Subsidence | | Potentialforfrost action | Risk of corrosion | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Kind | Depth to top | Thickness | Hardness | Initial | Total | | Uncoated steel | Concrete |
| | | In | In | | In | In | | | |
| 98: | | | | | | | | | |
| Westbrook-------------- \| | Salic | 0-51 | --- | Noncemented | 12-24 | 12-36 | High | High | High |
| | Sulfuric | 0-51 | --- | \| Noncemented | | | | | |
| 99 : | | | | | | | | | |
| Westbrook, low salt----\| | Sulfuric | 0-51 | --- | Noncemented | 12-24 | 12-36 | High | High | High |
| 100: | | | | | | | | | |
| Suncook--------------- | --- | --- | --- | --- | 0 | 0 | Low | Low | High |
| 101: | | | | | | | | | |
| Occum----------------- \| | --- | --- | --- | - | 0 | 0 | Moderate | Low | Moderate |
| 102: | | | | | | | | | |
| Pootatuck------------- \| | --- | - | --- | --- | 0 | 0 | Moderate | Low | Moderate |
| 103: | | | | | | | | | |
| Rippowam-------------\| | --- | --- | - | --- | 0 | 0 | High | High | Moderate |
| 104: | | | | | | | | | |
| Bash----------------- | --- | --- | --- | - | 0 | 0 | Moderate | High | High |
| 105: | | | | | | | | | |
| Hadley--------------- | - | --- | --- | --- | 0 | 0 | High | Moderate | Moderate |
| 106: | | | | | | | | | |
| Winooski-------------- | --- | - | - | -- | 0 | 0 | High | Moderate | Low |
| 107: | | | | | | | | | |
| Limerick------------- | --- | --- | - | - | 0 | 0 | High | High | Low |
| Lim------------------ | --- | --- | - | --- | 0 | 0 | High | High | Low |
| 108: | | | | | | | | | |
| Saco----------------- | --- | --- | - | --- | 0 | 0 | High | Moderate | Low |
| 109: | | | | | | | | | |
| Fluvaquents, Frequently | --- | - | --- | --- | 0 | 0 | High | High | Low |
| Udifluvents, Frequently | --- | --- | --- | --- | 0 | 0 | Moderate | Moderate | Moderate |
| 221A: | | | | | | | | | |
| Ninigret-------------\| | --- | --- | - | --- | 0 | 0 | Moderate | Moderate | Moderate |
| Urban Land------------- | --- | --- | --- | --- | --- | --- | None | --- | --- |

Table 27.-Soil Features-Continued

| Map symbol and soil name | Restrictive layer | | | | Subsidence | | Potentialforfrost action | Risk of corrosion | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Kind | $\begin{array}{r} \text { Depth } \\ \text { to top } \end{array}$ | Thickness | Hardness | Initial | Total | | $\begin{aligned} & \text { Uncoated } \\ & \text { steel } \end{aligned}$ | Concrete |
| | | In | In | | In | In | | | |
| $\begin{aligned} & \text { 224A: } \\ & \text { Deerfield- } \end{aligned}$ | --- | --- | --- | --- | 0 | 0 | Low | Low | Moderate |
| Urban Land------- | - | --- | -- | --- | --- | --- | None | --- | --- |
| $\begin{aligned} & \text { 225B: } \\ & \text { Brancroft } \end{aligned}$ | -- | --- | --- | --- | 0 | 0 | High | High | Moderate |
| Urban Land------ | --- | --- | -- | --- | --- | --- | None | --- | --- |
| 226B: | | | | | | | | | |
| Berlin---------- | --- | --- | --- | - | 0 | 0 | \| High | High | Moderate |
| Urban Land------ | --- | --- | --- | --- | --- | --- | None | - | --- |
| $\begin{aligned} & \text { 228B: } \\ & \text { Elmridge } \end{aligned}$ | --- | --- | --- | --- | 0 | 0 | Moderate | High | Moderate |
| Urban Land------ | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| 229B: | | | | | | | | | |
| Agawam---------- | --- | --- | --- | - - | 0 | 0 | Moderate | Low | Moderate |
| Urban Land--- | --- | --- | --- | --- | --- | -- | None | - | --- |
| 229C: | | | | | | | | | |
| Agawam---------- | --- | --- | --- | --- | 0 | 0 | Moderate | Low | Moderate |
| Urban Land------ | -- | --- | --- | - | - | -- | None | --- | -- |
| 230B: | | | | | | | | | |
| Branford-------- | --- | -- | --- | - | 0 | 0 | Moderate | Low | Moderate |
| Urban Land----- | --- | --- | --- | - | --- | -- | None | -- | --- |
| 230C: | | | | | | | | | |
| Branford-------- | - | --- | - | --- | 0 | 0 | Moderate | Low | Moderate |
| Urban Land------- | --- | -- | --- | --- | - | --- | None | --- | --- |
| 232B: | | | | | | | | | |
| Haven------------ | --- | --- | --- | --- | 0 | 0 | Moderate | Low | Moderate |
| Urban Land------- | --- | --- | --- | --- | - | --- | --- | --- | --- |
| 234B: | | | | | | | | | |
| Merrimac-------- | --- | --- | --- | --- | 0 | 0 | Low | Low | Moderate |
| Urban Land------ | --- | --- | --- | --- | --- | --- | None | --- | --- |

Table 27.-Soil Features-Continued

| Map symbol and soil name | Restrictive layer | | | | Subsidence | | $\begin{aligned} & \text { Potential } \\ & \text { for } \\ & \text { frost action } \end{aligned}$ | Risk of corrosion | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Kind | $\begin{array}{r} \text { Depth } \\ \text { to top } \end{array}$ | Thickness | Hardness | Initial | Total | | Uncoated steel | Concrete |
| | | In | In | | In | In | | | |
| Penwood-------- | --- | --- | --- | --- | 0 | 0 | Low | \| Low | High |
| Urban Land------ | --- | --- | --- | --- | --- | - | None | --- | --- |
| 236B:
 Windsor | --- | --- | --- | --- | 0 | 0 | Low | Low | High |
| Urban Land------- | --- | --- | --- | --- | --- | --- | None | --- | --- |
| 237A:
 Manchester- | --- | --- | --- | --- | 0 | 0 | Low | \| Low | \| High |
| Urban Land---- | --- | --- | --- | --- | --- | --- | -- | --- | -- |
| 237C:
 Manchester | --- | --- | --- | -- | 0 | 0 | Low | \| Low | High |
| Urban Land----- | --- | --- | --- | --- | -- | --- | None | --- | - |
| 238A:
 Hinckley | --- | --- | --- | --- | 0 | 0 | Low | Low | High |
| Urban Land----- | --- | --- | --- | --- | --- | --- | None | --- | - |
| 238C: Hinckley- | --- | --- | --- | --- | 0 | 0 | Low | Low | High |
| Urban Land----- | --- | --- | --- | --- | --- | --- | None | --- | --- |
| 240B:
 Ludlow | Dense material | 20-40 | --- | \|very firm | 0 | 0 | Moderate | Moderate | Moderate |
| Urban Land--- | --- | --- | --- | - | - | -- | None | --- | --- |
| $\begin{aligned} & \text { 243B: } \\ & \text { Rainbow- } \end{aligned}$ | Dense material | 20-40 | --- | \|very firm | 0 | 0 | Moderate | Moderate | Moderate |
| Urban Land----- | --- | --- | --- | - | - | -- | None | --- | --- |
| 245B:
 Woodbridge | Dense material | 20-40 | --- | \|very firm | 0 | 0 | Moderate | Moderate | Moderate |
| Urban Land------- | --- | --- | --- | --- | -- | --- | None | --- | --- |
| 245C:
 Woodbridge | Dense material | 20-40 | - | \|very firm | 0 | 0 | Moderate | Moderate | Moderate |
| Urban Land------- | --- | --- | --- | --- | --- | --- | None | --- | --- |

Table 27.-Soil Features-Continued

Table 27.-Soil Features-Continued

| Map symbol and soil name | Restrictive layer | | | | Subsidence | | $\begin{array}{\|c\|} \hline \text { Potential } \\ \text { for } \\ \text { frost action } \end{array}$ | Risk of corrosion | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Kind | $\begin{array}{r} \text { Depth } \\ \text { to top } \end{array}$ | Thickness | Hardness | Initial | Total | | ```Uncoated steel``` | Concrete |
| | | In | In | | In | In | | | |
| $\begin{aligned} & \text { 269B: } \\ & \text { Yalesville----- } \end{aligned}$ | Bedrock (lithic) | 20-40 | --- | extremely firm | 0 | 0 | Moderate | Moderate | Moderate |
| Urban Land------- | --- | - | -- | --- | --- | --- | None | -- | --- |
| 269C: | | | | | | | | | |
| Yalesville-- | \|Bedrock (lithic) | 20-40 | --- | extremely firm | 0 | 0 | Moderate | Moderate | Moderate |
| Urban Land------ | --- | --- | --- | --- | - | --- | None | -- | --- |
| 273C: | | | | | | | | | |
| Urban Land------ | --- | --- | --- | --- | --- | - - | None | -- | --- |
| Charlton-------- | --- | --- | --- | --- | 0 | 0 | Moderate | Moderate | Moderate |
| Chatfield-- | Bedrock (lithic) | 20-40 | - | extremely firm | 0 | 0 | Moderate | Moderate | Moderate |
| 273E: | | | | | | | | | |
| Urban Land------ | --- | - | --- | --- | --- | --- | None | -- | --- |
| Charlton-------- | --- | - - | --- | --- | 0 | 0 | Moderate | Moderate | Moderate |
| Chatfield-- | Bedrock (lithic) | 20-40 | - | extremely firm | 0 | 0 | Moderate | Moderate | Moderate |
| 275C: | | | | | | | | | |
| Urban Land--- | --- | --- | --- | --- | --- | - | None | -- | -- |
| Chatfield---- | Bedrock (lithic) | 20-40 | - | extremely firm | 0 | 0 | Moderate | Moderate | Moderate |
| 275E: | | | | | | | | | |
| Urban Land--- | --- | --- | --- | --- | --- | -- | None | --- | --- |
| Chatfield--- | Bedrock (lithic) | 20-40 | --- | extremely firm | 0 | 0 | Moderate | Moderate | Moderate |
| Rock Outcrop-- | Bedrock (lithic) | 0-4 | - | extremely firm | --- | -- | None | -- | --- |
| 282B: | | | | | | | | | |
| Broadbrook--- | Dense material | 20-40 | --- | very firm | 0 | 0 | Moderate | Moderate | Moderate |
| Urban Land------ | --- | - | --- | -- | - | --- | None | --- | --- |
| 284B: | | | | | | | | | |
| Paxton---------- | Dense material | 20-40 | --- | very firm | 0 | 0 | Moderate | Moderate | Moderate |
| Urban Land------- | - | --- | --- | -- | --- | --- | None | -- | --- |

Table 27.-Soil Features-Continued

Table 27.-Soil Features-Continued

| Map symbol and soil name | Restrictive layer | | | | Subsidence | | $\begin{array}{\|c\|} \hline \text { Potential } \\ \text { for } \\ \text { frost action } \end{array}$ | Risk of corrosion | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Kind | $\begin{array}{r} \text { Depth } \\ \text { to top } \\ \hline \end{array}$ | Thickness | Hardness | Initial | Total | | Uncoated steel | Concrete |
| | | In | In | | In | In | | | |
| $\begin{aligned} & 304: \\ & \text { Udorthents. } \end{aligned}$ | --- | --- | --- | --- | 0 | 0 | Moderate | Moderate | Moderate |
| $\begin{aligned} & 305: \\ & \text { Udorthents. } \end{aligned}$ | --- | --- | --- | - | 0 | 0 | Moderate | Moderate | Moderate |
| Pits------------------ | --- | --- | --- | --- | 0 | 0 | Low | --- | --- |
| $\begin{aligned} & 306 \text { : } \\ & \text { Udorthents } \end{aligned}$ | --- | --- | --- | --- | 0 | 0 | Moderate | Moderate | Moderate |
| Urban Land------------- | -- | --- | --- | --- | --- | --- | None | - | --- |
| $\begin{aligned} & 307 \text { : } \\ & \text { Urban Land. } \end{aligned}$ | --- | --- | -- | --- | --- | --- | None | --- | --- |
| $\begin{aligned} & 308 \text { : } \\ & \text { Udorthents. } \end{aligned}$ | --- | --- | --- | --- | 0 | 0 | Moderate | Moderate | Moderate |
| $\begin{aligned} & 309: \\ & \text { Udorthents } \end{aligned}$ | --- | --- | --- | --- | 0 | 0 | Moderate | Moderate | Moderate |
| 310: | | | | | | | | | |
| Udorthents, Periodically Flooded-- | -- | --- | --- | - | 0 | 0 | Moderate | Moderate | Moderate |
| $\begin{aligned} & \text { 401C: } \\ & \text { Macomber } \end{aligned}$ | Bedrock (lithic) | 20-40 | --- | extremely firm | 0 | 0 | Moderate | Moderate | High |
| Taconic-------------- | Bedrock (lithic) | 10-20 | - | extremely firm | --- | 0 | Moderate | Low | \| High |
| ```402D: Macomber``` | Bedrock (lithic) | 20-40 | --- | extremely firm | 0 | 0 | Moderate | Moderate | High |
| Taconic-------------- | Bedrock (lithic) | 10-20 | --- | extremely firm | --- | 0 | Moderate | Low | High |
| Rock Outcrop---------- | Bedrock (lithic) | 0-4 | --- | extremely firm | --- | -- | None | -- | -- |
| 403C:
 Taconic | Bedrock (lithic) | 10-20 | --- | extremely firm | - | 0 | Moderate | Low | High |
| Rock Outcrop---------- | Bedrock (lithic) | 0-4 | --- | extremely firm | --- | - | None | --- | -- |
| ```403E: Taconic``` | Bedrock (lithic) | 10-20 | --- | extremely firm | -- | 0 | Moderate | Low | High |
| Rock Outcrop---------- | Bedrock (lithic) | 0-4 | --- | extremely firm | --- | --- | None | --- | -- |

Table 27.-Soil Features-Continued

Table 27.-Soil Features-Continued

Table 27.-Soil Features-Continued

| Map symbol and soil name | Restrictive layer | | | | Subsidence | | Potentialforfrost action | Risk of corrosion | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Kind | $\begin{array}{r} \text { Depth } \\ \text { to top } \\ \hline \end{array}$ | Thickness | Hardness | Initial | Total | | Uncoated steel | Concrete |
| 424B:
 Shelburne | Dense material | In $20-30$ | In | very firm | In | In 0 | Moderate | Moderate | Moderate |
| $424 \mathrm{C}:$
 Shelburne | Dense material | 20-30 | --- | very firm | --- | 0 | Moderate | Moderate | Moderate |
| 424D:
 Shelburne | Dense material | 20-30 | --- | very firm | - | 0 | Moderate | Moderate | Moderate |
| $42 \text { 5B : }$
 Shelburne | Dense material | 20-30 | --- | very firm | --- | 0 | Moderate | Moderate | Moderate |
| 425C:
 Shelburne | Dense material | 20-30 | --- | very firm | --- | 0 | Moderate | Moderate | Moderate |
| $426 \mathrm{D}:$
 Shelburne | Dense material | 20-30 | - | very firm | - | 0 | Moderate | Moderate | Moderate |
| $\begin{aligned} & \text { 427B: } \\ & \text { Ashfield- } \end{aligned}$ | Dense material | 20-33 | - | extremely firm | - | 0 | Moderate | Moderate | \| High |
| 427C:
 Ashfield | Dense material | 20-33 | --- | very firm | --- | 0 | Moderate | Moderate | \| High |
| ```428A: Ashfield``` | Dense material | 20-33 | -- | very firm | - | 0 | Moderate | Moderate | High |
| $\begin{aligned} & \text { 428B: } \\ & \text { Ashfield- } \end{aligned}$ | Dense material | 20-33 | - | very firm | --- | 0 | Moderate | Moderate | \| High |
| $428 \mathrm{C}:$
 Ashfield | Dense material | 20-33 | --- | very firm | -- | 0 | Moderate | Moderate | \| High |
| $\begin{aligned} & \text { 429A: } \\ & \text { Agawam, cold } \end{aligned}$ | --- | --- | --- | --- | 0 | 0 | Moderate | Low | Moderate |
| $\begin{aligned} & \text { 429B: } \\ & \text { Agawam, cold- } \end{aligned}$ | --- | --- | --- | --- | 0 | 0 | Moderate | Low | Moderate |
| 429C:
 Agawam, cold | --- | --- | - | --- | 0 | 0 | Moderate | Low | Moderate |
| $433:$
 Moosilauke | - | --- | --- | - | 0 | 0 | Moderate | High | Moderate |
| $\begin{aligned} & \text { 434A: } \\ & \text { Merrimac, cold } \end{aligned}$ | - | --- | - | - | 0 | 0 | Low | Low | Moderate |

Table 27.-Soil Features-Continued

| Map symbol and soil name | Restrictive layer | | | | Subsidence | | Potentialforfrost action | Risk of corrosion | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Kind | Depth to top | Thickness | Hardness | Initial | Total | | Uncoated steel | Concrete |
| | | In | In | | In | In | | | |
| $\begin{aligned} & \text { 434B: } \\ & \text { Merrimac, cold--- } \end{aligned}$ | --- | --- | --- | --- | 0 | 0 | Low | Low | Moderate |
| $\begin{aligned} & \text { 434C: } \\ & \text { Merrimac, cold--- } \end{aligned}$ | --- | --- | --- | --- | 0 | 0 | Low | Low | Moderate |
| $435 \text { : }$
 Scarboro | --- | --- | --- | --- | 0 | 0 | Moderate | \| High | Moderate |
| $436 \text { : }$
 Halsey | --- | --- | --- | - | 0 | 0 | High | High | Low |
| $437 \text { : }$
 Wonsqueak | --- | --- | --- | --- | 6-11 | 6-17 | High | High | \| High |
| $438 \text { : }$
 Bucksport | --- | --- | - | --- | 15-30 | 15-44 | High | \| High | \| High |
| 440A:
 Boscawen | --- | --- | --- | --- | 0 | 0 | Low | Low | \| High |
| $440 \mathrm{C}:$
 Boscawen | - | --- | - - | --- | 0 | 0 | Low | Low | \| High |
| $440 \mathrm{E}:$
 Boscawen | --- | --- | --- | --- | 0 | 0 | Low | Low | \| High |
| $\begin{aligned} & 442 \text { : } \\ & \text { Brayton } \end{aligned}$ | Dense material | 20-27 | --- | very firm | 0 | 0 | High | \| High | Moderate |
| $443 \text { : }$
 Brayton | Dense material | 20-27 | --- | very firm | 0 | 0 | High | High | Moderate |
| Loonmeadow------- | - | --- | -- | - | 0 | 0 | High | High | Low |
| 448B:
 Hogansburg- | Dense material | 20-43 | --- | very firm | 0 | 0 | Moderate | Moderate | Moderate |
| 449B:
 Hogansburg | Dense material | 20-43 | --- | very firm | 0 | 0 | Moderate | Moderate | Moderate |
| $449 \mathrm{C}:$
 Hogansburg- | Dense material | 20-43 | - | very firm | 0 | 0 | Moderate | Moderate | Moderate |
| ```450B: Pyrities``` | - | --- | --- | --- | 0 | 0 | Moderate | Moderate | Low |

Table 27.-Soil Features-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

| Map symbol
 and soil name | Pct. of map | Storm water basins | | Infiltration systems | | Perennial wetland systems | | Intermittent wetland systems | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and limiting features | Value | Rating class and limiting features | Value | Rating class and limiting features | Value |
| 13 :
 Walpole | 80 | Very limited Depth limited | 1.00 | Very limited Depth to saturated zone | 1.00 | Somewhat limited Ksat - Subject to seepage | 1.00 | Unlimited Subject To Seepage | 0.28 |
| 14: Fredon- | 85 | Very limited Depth limited | 1.00 | Very limited Depth to saturated zone | 1.00 | Somewhat limited Ksat - Subject to seepage | 1.00 | Unlimited Subject To Seepage | 0.07 |
| $15 \text { : }$
 Scarboro | 80 | Very limited Depth limited | 1.00 | Very limited Depth to saturated zone | 1.00 | Somewhat limited Ksat - Subject to seepage | 1.00 | Unlimited Subject To Seepage | 0.28 |
| 16:
 Halsey-- | 80 | Very limited Depth limited | 1.00 | Very limited Depth to saturated zone | 1.00 | Somewhat limited Ksat - Subject to seepage | 1.00 | Unlimited Subject To Seepage | 0.28 |
| $17 \text { : }$
 Timakwa | 45 | ```Very limited Flooding Depth limited``` | $\left\lvert\, \begin{aligned} & 1.00 \\ & 1.00 \end{aligned}\right.$ | ```Very limited Depth to saturated zone Flooding``` | $\left\lvert\, \begin{aligned} & 1.00 \\ & 0.40 \end{aligned}\right.$ | Somewhat limited Ksat - Subject to seepage | 1.00 | Unlimited Subject To Seepage | 0.28 |
| Natchaug- | 40 | ```Very limited Flooding Depth limited``` | $1 \begin{aligned} & 1.00 \\ & 1.00\end{aligned}$ | ```Very limited Depth to saturated zone Flooding``` | 1.00 0.40 | Unlimited | | Unlimited | |
| 18: Catden-- - | 40 | ```Very limited Flooding Depth limited``` | $\left\lvert\, \begin{aligned} & 1.00 \\ & 1.00\end{aligned}\right.$ | Very limited Depth to saturated zone Restricted permeability Flooding | $\left\lvert\, \begin{aligned} & 1.00 \\ & 0.50 \\ & 0.40 \end{aligned}\right.$ | Somewhat limited Ksat - Subject to seepage | 1.00 | Unlimited | |

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

| Map symbol and soil name | Pct. | Storm water basins | | Infiltration systems | | Perennial wetland systems | | Intermittent wetland | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and limiting features | Value | Rating class and limiting features | \|Value | Rating class and limiting features | Value |
| 62D: | | | | | | | | | |
| Charlton-------- | 35 | Somewhat limited Slope | 0.50 | Very limited slope | 1.00 | Very limited Ksat - Subject to seepage | 1.00 | Very limited Slope Slope | 1.00 |
| | | | | ```Restricted permeability``` | 0.50 | Slope | 11.00 | Limited Water Quantity | 0.99 |
| | | | | | | Limited Water Quantity Too droughty | $\left\lvert\, \begin{aligned} & 0.99 \\ & 0.75 \end{aligned}\right.$ | | |
| 63B: | | | | | | | | | |
| Cheshire-------- | 80 | Unlimited | | Somewhat limited Slope | | Very limited | | Very limited | 0.99 |
| | | | | | 0.74 | Ksat - Subject to\| seepage | 1.00 | Limited Water Quantity | |
| | | | | Restricted permeability | 0.50 | Limited Water Quantity | 0.99 | Slope | 0.74 |
| | | | | | | Too droughty | 0.75 | | |
| | | | | | | slope | 0.74 | | |
| 63C: | | | | | | | | | |
| Cheshire-------- | 80 | Unlimited | | Very limited | | Very limited | | Very limited | 1.00 |
| | | | | slope | 1.00 | Ksat - Subject to | 1.00 | slope | |
| | | | | ```Restricted permeability``` | 0.50 | slope | 1.00 | Limited Water Quantity | 0.99 |
| | | | | | | Limited Water Quantity Too droughty | 0.99 | | |
| | | | | | | | | | |
| 63D:Cheshire | 80 | Somewhat limited Slope | 0.12 | Very limited slope | 1.00 | Very limited Ksat - Subject to seepage | | $\begin{aligned} & \text { \|Very limited } \\ & \text { Slope } \end{aligned}$ | 1.00 |
| | | | | | | | 1.00 | | |
| | | | | ```Restricted permeability``` | 0.50 | slope
 Limited Water Quantity Too droughty | 11.00 | Limited Water Quantity | 0.99 |
| | | | | | | | 0.99 | | |
| | | | | | | | 0.75 | | |
| | | | | | | | | | |

Table 28.-Storm Water Runoff Systems-Continued

| Map symbol and soil name | Pct. of map unit | Storm water basins | | Infiltration systems | | Perennial wetland systems | | Intermittent wetland systems | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value |
| 64B: | | | | | | | | | |
| Cheshire | 80 | Unlimited | | Somewhat limited Slope | 0.74 | Ksat - Subject to seepage | 1.00 | Limited Water Quantity | 0.99 |
| | | | | ```Restricted permeability``` | 0.50 | Limited Water Quantity | 0.99 | slope | 0.74 |
| | | | | | | Too droughty | 0.75 | | |
| | | | | | | Slope | 0.74 | | |
| 64C: | | | | | | | | | |
| Cheshire------- | 80 | Unlimited | | Very limited Slope | 1.00 | Very limited | | Very limited | 1.00 |
| | | | | | | Ksat - Subject to seepage Slope | 1.00 | Slope | |
| | | | | Restricted permeability | 0.50 | | 1.00 | Limited Water Quantity | 0.99 |
| | | | | | | Limited Water Quantity Too droughty | 0.99 0.75 | | |
| 65C: | | | | | | | | | |
| Cheshire-------- | 80 | Unlimited | | Very limited Slope | | Very limited Ksat - Subject to | | Very limited slope | 1.00 |
| | | | | | 1.00 | Ksat - Subject to seepage | 1.00 | Slope | |
| | | | | ```Restricted permeability``` | 0.50 | Slope | 1.00 | Limited Water Quantity | 0.99 |
| | | | | | | Limited Water Quantity | 0.99 | | |
| | | | | | | Too droughty | 0.75 | | |
| 65D:
 Cheshire | | | | | | | | | |
| | 80 | Somewhat limited Slope | 0.50 | Very limited slope | 1.00 | Very limited
 Ksat - Subject to seepage
 slope | 1.00 | Very limited Slope | 1.00 |
| | | | | | | | | | |
| | | | | ```Restricted permeability``` | 0.50 | slope | 1.00 | Limited Water Quantity | 0.99 |
| | | | | | | Limited Water Quantity Too droughty | 0.99 0.75 | | |
| | | | | | | | | | |

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

| Map symbol and soil name | $\left\lvert\, \begin{gathered} \text { Pct. } \\ \text { of } \\ \text { of } \\ \text { unit } \end{gathered}\right.$ | Storm water basins | | Infiltration systems | | \| Perennial wetland systems | | Intermittent wetland systems | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value |
| 76E: | | | | | | | | | |
| Hollis--------- | 25 | Very limited | | Very limited | | Very limited | | Very limited | |
| | | | | Thin layer 1.00 | | Slope Limited Water | $\left\lvert\, \begin{aligned} & 1.00 \\ & 0.99 \end{aligned}\right.$ | Slope | 1.00 |
| | | Bedrock | 1.00 | slope | 1.00 | Limited Water Quantity | | Limited Water Quantity | 0.99 |
| | | Slope | 0.41 | Restricted permeability | 0.48 | | | | |
| 76F: | | | | | | | | | |
| Rock outcrop---- | 55 | Very limited
 slope | | Very limited | 1.00 | Very limited | 1.00 | Very limited | 1.00 |
| | | Depth limited | 1.00 | slope | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | Bedrock | 1.00 | | | | | | |
| Hollis--------- | 25 | $\|$Very limited
 Slope 1.00 | | Very limited | | Very limited | | Very limited | |
| | | | | Thin layer | 1.00 | slope | 1.00 | Slope | 1.00 |
| | | Depth limited | 1.00 | slope | \| 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | Bedrock | 1.00 | Restricted permeability | 0.48 | | | | |
| 77C:
 Cheshire | | | | | | | | | |
| | 45 | Unlimited | | Very limited Slope | | Very limited | | Very limited Slope | |
| | | | | | 1.00 | Ksat - Subject to seepage | 1.00 | | 1.00 |
| | | | | ```Restricted permeability``` | 0.50 | slope | 1.00 | Limited Water Quantity | 0.99 |
| | | | | | | Limited Water Quantity | 0.99 | | |
| | | | | | | Too droughty | 0.75 | | |
| Holyoke--------- | 35 | $\begin{array}{\|l} \mid \text { Very limited } \\ \text { Depth limited } \\ \text { Bedrock } \end{array}$ | $\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$ | Very limited Thin layer slope | 1.00 | ```Very limited``` | 1.00 | Very limited | |
| | | | | | | | | slope | 1.00 |
| | | | | | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Restricted permeability | 0.83 | | | | |
| | | | | | | | | | |

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

| Map symbol and soil name | Pct. | Storm water basins | | Infiltration systems | | Perennial wetland systems | | Intermittent wetland systems | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value |
| 84D: | | | | | | | | | |
| Montauk--------- | 30 | Somewhat limited Slope | 0.12 | Very limited | 1.00 | Very limited slope | 1.00 | Very limited Slope | 1.00 |
| | | | | Thin layer | 1.00 | Limited Water | 0.99 | Limited Water | 0.99 |
| | | | | | | Quantity | | Quantity | |
| | | | | Slope | 1.00 | Somewhat droughty | 0.25 | | |
| | | | | Dense layer | 1.00 | | | | |
| | | | | Restricted | 0.50 | | | | |
| | | | | permeability | | | | | |
| 85B : | | | | | | | | | |
| Paxton---------- | 55 | Unlimited | | Very limited | | Very limited | | Very limited | |
| | | | | Depth to saturated zone | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Thin layer | 1.00 | Slope | 0.74 | Slope | 0.74 |
| | | | | Restricted | 0.97 | Somewhat droughty | 0.25 | | |
| | | | | slope | 0.74 | | | | |
| Montauk--------- | 30 | Unlimited | | Very limited | | Very limited | | Very limited | |
| | | | | Depth to saturated zone | 1.00 | ```Limited Water Quantity Slope Somewhat droughty``` | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Thin layer | 1.00 | | 0.74 | Slope | 0.74 |
| | | | | Dense layer | 1.00 | | 0.25 | | |
| | | | | Slope | 0.74 | | | | |
| | | | | Restricted permeability | 0.50 | | | | |
| 85C: | | | | | | | | | |
| Paxton-- | 55 | Unlimited | | ```\| Very limited Depth to saturated zone slope``` | | Very limited Slope | 1.00 | Very limited Slope | 1.00 |
| | | | | | 1.00 | | | | |
| | | | | slope | 1.00 | Limited Water Quantity
 Somewhat droughty | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Thin layer | 1.00 | | 0.25 | | |
| | | | | Restricted permeability | 0.97 | | | | |
| | | | | | | | | | |

Table 28.-Storm Water Runoff Systems-Continued

| Map symbol and soil name | Pct. | Storm water basins | | Infiltration systems | | Perennial wetland systems | | Intermittent wetland | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value | Rating class and limiting features | \|Value | Rating class and limiting features | Value | Rating class and limiting features | Value |
| Wethersfield | 80 | Unlimited | | Very limited | | Very limited | | Very limited | |
| | | | | Depth to | \| 1.00 | Limited Water | 0.99 | Limited Water | 0.99 |
| | | | | Thin layer | 1.00 | slope | 0.74 | Slope | 0.74 |
| | | | | Restricted permeability Slope | 0.89 0.74 | Somewhat droughty | 0.25 | | |
| 88C: | | | | | | | | | |
| Wethersfield----- | 80 | Unlimited | | ```Very limited Depth to saturated zone Slope``` | | Very limited Slope | | Very limited | 1.00 |
| | | | | | 11.00 | | 1.00 | slope | |
| | | | | slope | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 10.99 |
| | | | | Thin layer | 1.00 | Somewhat droughty | 0.25 | | |
| | | | | Restricted permeability | 0.89 | | | | |
| 89C: | | | | | | | | | |
| Wethersfield---- | 80 | Unlimited | | ```Very limited Depth to saturated zone slope``` | | Very limited slope | | Very limited slope | 11.00 |
| | | | | | 11.00 | Slope | 1.00 | slope | |
| | | | | slope | 11.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Thin layer | 11.00 | Somewhat droughty | 0.25 | | |
| | | | | Restricted permeability | 0.89 | | | | |
| 89D: | | | | | | | | | |
| Wethersfield---- | 80 | Somewhat limited Slope | 0.50 | ```Very limited Depth to saturated zone slope``` | | Very limitedSlope | | Very limited slope | |
| | | | | | 1.00 | | 1.00 | | 1.00 |
| | | | | | 1.00 | Limited Water
 Quantity
 Somewhat droughty | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Thin layer | 1.00 | | 0.25 | | |
| | | | | Restricted permeability | \| 0.89 | | | | |
| | | | | | | | | | |

Table 28.-Storm Water Runoff Systems-Continued

| Map symbol
 and soil name | Pct. of map unit | Storm water basins | | Infiltration systems | | Perennial wetland systems | | Intermittent wetland systems | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value |
| Stockbridge----- | 80 | Unlimited | | Very limited | | Very limited | | Very limited | |
| | | | | Restricted permeability | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Dense layer | 0.83 | Too droughty | 0.75 | Slope | 0.74 |
| | | | | Slope | 0.74 | slope | 0.74 | | |
| 90C: | | | | | | | | | |
| Stockbridge----- | 80 | Unlimited | | Very limited | | Very limited | | Very limited | |
| | | | | Slope | 1.00 | Slope | 1.00 | Slope | 1.00 |
| | | | | Restricted permeability | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Dense layer | 0.83 | Too droughty | 0.75 | | |
| 90D: | | | | | | | | | |
| Stockbridge----- | 80 | Somewhat limited Slope | | Very limited | | Very limited | | Very limited | |
| | | | 0.12 | Slope | $\text { \| } 1.00$ | Slope | 1.00 | slope | |
| | | | | ```Restricted permeability``` | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Dense layer | 0.83 | Too droughty | 0.75 | | |
| 91B: | | | | | | | | | |
| Stockbridge----- | 80 | Unlimited | | Restricted permeability | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Dense layer | 0.83 | Too droughty | 0.75 | slope | 0.74 |
| | | | | slope | 0.74 | slope | 0.74 | | |
| 91C: | | | | | | | | | |
| Stockbridge----- | 80 | Unlimited | | Very limitedSlope | | Very limited | | Very limited | |
| | | | | | 1.00 | slope | 1.00 | Slope | 1.00 |
| | | | | Restricted permeability | \| 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Dense layer | 0.83 | Too droughty | 0.75 | | |
| 91D: | | | | | | | | | |
| Stockbridge----- | 80 | Somewhat limited slope | 0.50 | ```Very limited Slope Restricted permeability Dense layer``` | | ```Very limited Slope Limited Water Quantity Too droughty``` | | Very limited Slope Limited Water Quantity | |
| | | | | | 1.00 | | 1.00 | | $\left\lvert\, \begin{aligned} & 1.00 \\ & 0.99 \end{aligned}\right.$ |
| | | | | | 1.00 | | 0.99 | | |
| | | | | | 0.83 | | 0.75 | | |
| | | | | | | | | | |

Table 28.-Storm Water Runoff Systems-Continued

| Map symbol and soil name | Pct.
 of
 map
 unit | Storm water basins | | Infiltration systems | | Perennial wetland systems | | Intermittent wetland systems | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value |
| Nellis | 85 | Unlimited | | Very limited | | Very limited | | Very limited | |
| | | | | Dense layer | 0.97 | Ksat - Subject to seepage | 1.00 | Limited Water Quantity | 0.99 |
| | | | | ```Restricted permeability Slope``` | 0.86 | Limited Water Quantity | 0.99 | Slope | 0.74 |
| | | | | | 0.74 | Too droughty | 0.75 | | |
| | | | | | | slope | 0.74 | | |
| 92C: | | | | | | | | | |
| Nellis---------- | 85 | Unlimited | | Very limited Slope | 11.00 | Very limited | 1.00 | Very limited slope | 1.00 |
| | | | | | | Ksat - Subject to seepage slope | | | |
| | | | | Dense layer | 0.97 | slope | 1.00 | Limited Water Quantity | 0.99 |
| | | | | Restricted permeability | 0.86 | Limited Water Quantity Too droughty | 0.99 | | |
| | | | | | | | 0.75 | | |
| 92D: | | | | | | | | | |
| Nellis- | 85 | Somewhat limited slope | 0.12 | Very limited Slope | | Very limited
 Ksat - Subject to | | Very limited Slope | |
| | | | | slope | 1.00 | Ksat - Subject to seepage | 1.00 | | 1.00 |
| | | | | Dense layer | 0.97 | Slope | 1.00 | Limited Water Quantity | 0.99 |
| | | | | ```Restricted permeability``` | 0.86 | Limited Water Quantity Too droughty | 0.99 | | |
| | | | | | | | 0.75 | | |
| 93C: | | | | | | | | | |
| Nellis- | 85 | Unlimited | | Very limited Slope | | ```Very limited Ksat - Subject to seepage Slope``` | 1.00 | Very limited Slope | |
| | | | | | 1.00 | | | | 1.00 |
| | | | | Dense layer | 0.97 | | 1.00 | Limited Water Quantity | 0.99 |
| | | | | Restricted permeability | 0.86 | Limited Water Quantity Too droughty | $\left\lvert\, \begin{aligned} & 0.99 \\ & 0.75\end{aligned}\right.$ | | |
| | | | | | | | | | |

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

| Map symbol and soil name | | Storm water basins | | Infiltration systems | | Perennial wetland systems | | Intermittent wetland systems | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value | Rating class and limiting features | Value | Rating class and limiting features | Value |
| 99 : | | | | | | | | | |
| Westbrook, low salt- | 80 | ```\| Very limited ``` | $\left\lvert\, \begin{aligned} & 1.00 \\ & 1.00\end{aligned}\right.$ | ```Very limited Depth to saturated zone Flooding``` | $\left\lvert\, \begin{aligned} & 1.00 \\ & 1.00\end{aligned}\right.$ | Unlimited | | Unlimited | |
| Suncook------------- \| | 80 | Very limited | | Very limited | | \|Very limited | | Very limited | |
| | | Flooding | 1.00 | Flooding | 11.00 | Ksat - Subject to seepage | 1.00 | High infiltration | 1.00 |
| | | | | Depth to saturated zone | 0.14 | Too droughty | 1.00 | Limited Water Quantity | 0.99 |
| | | | | | | Limited Water Quantity | 0.99 | Subject To Seepage | 0.28 |
| 101: | | | | | | | | | |
| Occum-------------- | 80 | \|Very limited Flooding | 1.00 | Very limited Flooding | | Very limited | | Very limited | |
| | | | | | 1.00 | Ksat - Subject to seepage | 1.00 | Limited Water Quantity | 0.99 |
| | | | | Depth to saturated zone | 0.14 | Limited Water Quantity
 Too droughty | $\left\lvert\, \begin{aligned} & 0.99 \\ & 0.75\end{aligned}\right.$ | Subject To Seepage | 0.28 |
| 102: | | | | | | | | | |
| Pootatuck---------- | 80 | Very limited Flooding | 1.00 | ```Very limited Depth to saturated zone Flooding``` | | Very limited | | Very limited | |
| | | | | | 1.00 | Ksat - Subject to seepage | 1.00 | Limited Water Quantity | 0.99 |
| | | | | | 1.00 | Limited Water Quantity
 Too droughty | 0.99 | Subject To Seepage | 0.28 |
| 103: | | | | | | | | | |
| Rippowam----------- | 80 | Very limited Flooding | | | | | | Unlimited | 0.28 |
| | | | 1.00 | Depth to saturated zone Flooding | 1.00 | Ksat - Subject to seepage
 Somewhat Limited Water Quantity | 1.00 | Subject To
 Seepage
 Somewhat Limited
 Water Quantity | |
| | | Depth limited | 1.00 | | 1.00 | | 0.01 | | 0.01 |

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

| Map symbol
 and soil name | Pct. of | Storm water basins | | Infiltration systems | | Perennial wetland systems | | Intermittent wetland systems | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and limiting features | Value | Rating class and limiting features | Value | Rating class and limiting features | \|Value |
| 108: | | | | | | | | | |
| | | | | saturated zon | | | | pa | |
| | | Depth limited | 11.00 | Flooding | 1.00 | | | | |
| | | | | Restricted permeability | 0.07 | | | | |
| 109 : | | | | | | | | | |
| Frequently Flooded- | 50 | Very limited | | Very limited | | Somewhat limited | | Unlimited | |
| | | Flooding | \| 1.00 | Depth to saturated zone | 1.00 | Ksat - Subject to seepage | 1.00 | | |
| | | Depth limited | 11.00 | Flooding | 1.00 | | | | |
| Udifluvents, | | | | | | | | | |
| Frequently Flooded- | 35 | Very limited Flooding | 1.00 | Very limited Flooding | 1.00 | Very limited
 Ksat - Subject to | 1.00 | Very limited Limited Water | 0.98 |
| | | | 1.00 | | 1.00 | seepage | 1.00 | Quantity | 0.98 |
| | | | | | | Limited Water | 0.98 | | |
| | | | | | | Quantity | | | |
| | | | | | | Too droughty | 0.75 | | |
| 221A: | | | | | | | | | |
| Ninigret----------- | 40 | Unlimited | | ```Very limited Depth to saturated zone Slope``` | | ```Somewhat limited Ksat - Subject to seepage Too droughty``` | | Unlimited | |
| | | | | | 1.00 | | 1.00 | Subject To Seepage | 0.28 |
| | | | | | 0.02 | | 0.75 | Somewhat Limited | 0.12 |
| | | | | | | | | Water Quantity | |
| | | | | | | Somewhat Limited Water Quantity | 0.12 | Slope | 0.02 |
| | | | | | | slope | 0.02 | | |
| Urban land--------- | 35 | Very limited Depth limited | 1.00 | ```Very limited Restricted permeability Slope``` | 1.00 | Very limited Too droughty | | | 0.99 |
| | | | | | | | 1.00 | Limited Water Quantity | |
| | | | | | 0.02 | Limited Water Quantity slope | 0.99 0.02 | Slope | 0.02 |
| | | | | | | Slope | | | |

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

| Map symbol and soil name | $\begin{array}{\|} \text { Pct. } \\ \text { of } \\ \text { map } \\ \text { unit } \end{array}$ | Storm water basins | | Infiltration systems | | Perennial wetland systems | | Intermittent wetland | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value |
| Hinckley------- | 238C: | | | | | | | | |
| | 40 | Unlimited | | Very limited Slope | 11.00 | Very limited Ksat - Subject to | 1.00 | High infiltration | 1.00 |
| | | | | | | Too droughty | 1.00 | Subject To Seepage | 1.00 |
| | | | | | | Slope | 1.00 | slope | 1.00 |
| | | | | | | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| Urban land------ | 35 | Very limited Depth limited | 1.00 | Very limited | 1.00 | Very limited | | Very limited Slope | |
| | | | | | | slope | 1.00 | | 1.00 |
| | | | | Restricted permeability | 1.00 | Too droughty | 1.00 | Limited Water Quantity | 0.99 |
| | | | | | | Limited Water Quantity | 0.99 | | |
| 240B: | | | | | | | | | |
| Ludlow- | 40 | Unlimited | | Very limited | | Very limited Limited Water | 0.99 | Very limited | |
| | | | | Depth to saturated zone | 1.00 | Limited Water Quantity | | Limited Water Quantity slope | 0.99 |
| | | | | Thin layer | 1.00 | Somewhat droughty | 0.15 | | 0.15 |
| | | | | Restricted permeability Slope | 0.97 0.15 | slope | | | |
| Urban land------- | 35 | Very limited Depth limited | 1.00 | ```Very limited Restricted permeability Slope``` | $1 \begin{aligned} & 1.00 \\ & 0.15\end{aligned}$ | Very limited Too droughty | | | 0.99 |
| | | | | | | | 1.00 | Limited Water Quantity | |
| | | | | | 0.15 | Limited Water Quantity Slope | 0.99 0.15 | | 0.15 |
| 243B: | | | | | | | | | |
| Rainbow- | 40 | Unlimited | | ```Very limited Depth to saturated zone Thin layer``` | | Somewhat limited Somewhat droughty | 0.25 | Somewhat limited Slope | 0.15 |
| | | | | | 1.00 | | | | |
| | | | | | 1.00 | Slope | 0.15 | Somewhat Limited Water Quantity | 0.12 |
| | | | | Restricted permeability Slope | 0.97 0.15 | Somewhat Limited Water Quantity | 0.12 | | |
| | | | | | | | | | |

Table 28.-Storm Water Runoff Systems-Continued

| Map symbol and soil name | Pct. | Storm water basins | | Infiltration systems | | \| Perennial wetland systems | | Intermittent wetland systems | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value | Rating class and limiting features | Value | Rating class and limiting features | Value |
| 243B : | | | | | | | | | |
| Urban land------ | 35 | Very limited Depth limited | 1.00 | Very limited Restricted permeability | 1.00 | Very limited Too droughty | 1.00 | Very limited Limited Water Quantity | 0.99 |
| | | | | slope | 0.15 | Limited Water Quantity Slope | 0.99 | slope | 0.15 |
| 245B: | | | | | | | | | |
| Woodbridge------- | 40 | Unlimited | | ```Very limited Depth to saturated zone Thin layer``` | | Somewhat limited Somewhat droughty | 0.25 | Somewhat limited slope | 0.15 |
| | | | | | 1.00 | | | | |
| | | | | Thin layer | 1.00 | Slope | 0.15 | Somewhat Limited Water Quantity | 0.12 |
| | | | | Restricted permeability Slope | 0.97 | Somewhat Limited Water Quantity | 0.12 | | |
| Urban land------- | 35 | Very limited Depth limited | 1.00 | ```Very limited Restricted permeability slope``` | | | | Very limited | 0.99 |
| | | | | | 1.00 | Too droughty | 1.00 | Limited Water Quantity | |
| | | | | | 0.15 | Limited Water Quantity Slope | 0.99 | Slope | 0.15 |
| 245C: | 40 | Unlimited | | ```Very limited Depth to saturated zone slope``` | | Very limited slope | | | |
| | | | | | 1.00 | | 1.00 | Very limited slope | 1.00 |
| | | | | slope | 1.00 | Somewhat droughty | 0.25 | Somewhat Limited Water Quantity | 0.12 |
| | | | | Thin layer | 1.00 | Somewhat Limited Water Quantity | 0.12 | | |
| | | | | Restricted permeability | 0.97 | | | | |
| Urban land------ | 35 | Very limited Depth limited | 1.00 | ```Very limited Slope Restricted permeability``` | | Very limited | | Very limited | 1.00 |
| | | | | | 1.00 | Slope | 1.00 | slope | |
| | | | | | 1.00 | Too droughty | 1.00 | Limited Water Quantity | 0.99 |
| | | | | | | Limited Water Quantity | 0.99 | | |

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

| Map symbol
 and soil name | \| Pct. | Storm water basins | | Infiltration systems | | Perennial wetland systems | | Intermittent wetland | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value | Rating class and limiting features | \|Value | Rating class and limiting features | Value | Rating class and limiting features | \|Value |
| 253B: | | | | | | | | | |
| | | Depth limited | 1.00 | Restricted permeability | 11.00 | Too droughty | 1.00 | Limited Water Quantity | 0.99 |
| | | | | slope | 0.15 | Limited Water Quantity slope | 0.99 0.15 | slope | 0.15 |
| 255B: | | | | | | | | | |
| Watchaug-------- | 40 | Unlimited | | Depth to saturated zone | 1.00 | Ksat - Subject to seepage | 1.00 | Limited Water Quantity | 0.99 |
| | | | | Restricted permeability | 0.74 | Limited Water Quantity | 0.99 | slope | 0.15 |
| | | | | slope | 0.15 | Too droughty | 0.75 | | |
| | | | | | | slope | 0.15 | | |
| Urban land------- | 35 | Very limited Depth limited | 1.00 | ```Very limited Restricted permeability Slope``` | 11.00 | Very limited Too droughty | 1.00 | Very limited Limited Water Quantity | 0.99 |
| | | | | slope | 0.15 | Limited Water Quantity slope | 0.99 0.15 | Slope | 0.15 |
| $260 \mathrm{~B}:$ | | | | | | | | | |
| | 40 | Unlimited | | $\begin{aligned} & \text { Somewhat limited } \\ & \text { Slope } \end{aligned}$ | 0.74 | Ksat - Subject to seepage | 1.00 | Limited Water Quantity | 0.99 |
| | | | | Restricted permeability | 0.50 | Limited Water Quantity Too droughty Slope | $\left\lvert\, \begin{aligned} & 0.99 \\ & 0.75 \\ & 0.74 \end{aligned}\right.$ | Slope | 10.74 |
| Urban land------- | 35 | Very limited Depth limited | 1.00 | ```Very limited Restricted permeability Slope``` | 1.00 | Very limited Too droughty | 1.00 | Very limited Limited Water Quantity | 0.99 |
| | | | | | 0.74 | Limited Water Quantity Slope | 0.99 0.74 | Slope | 10.74 |

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

| Map symbol and soil name | Pct. of map unit | Storm water basins | | Infiltration systems | | \| Perennial wetland systems | | Intermittent wetland systems | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value | Rating class and limiting features | \|Value | Rating class and limiting features | Value | Rating class and limiting features | \|Value |
| 275C: | | | | | | | | | |
| Urban land------- | 45 | Very limited Depth limited | 1.00 | Very limited | | Very limited | | Very limited | |
| | | | | Slope | 1.00 | Slope | 1.00 | slope | 1.00 |
| | | | | Restricted permeability | 1.00 | Too droughty | 1.00 | Limited Water Quantity | 0.99 |
| | | | | | | Limited Water Quantity | 0.99 | | |
| Chatfield------- | 30 | Very limited | | Very limited | | Very limited | | Very limited | 11.00 |
| | | Bedrock | 0.89 | $\begin{aligned} & \text { Slope } \\ & \text { Thin layer } \end{aligned}$ | 1.00 | Slope | 1.00 | Slope | |
| | | | | | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Restricted permeability | 0.49 | Too droughty | 0.75 | | |
| 275E: | | | | | | | | | |
| Urban land- | 35 | Very limited | | Very limitedSlope | | Very limited | | Very limited | |
| | | Depth limited | 1.00 | | 1.00 | slope | 1.00 | slope | 11.00 |
| | | Slope | 0.88 | Restricted permeability | 1.00 | Too droughty | 1.00 | Limited Water Quantity | 0.99 |
| | | | | | | Limited Water Quantity | 0.99 | | |
| Chatfield-------- | 25 | Very limited Bedrock slope | 0.89 | Very limited slope | 1.00 | Very limited slope | | Very limited | 11.00 |
| | | | | | | | 1.00 | slope | |
| | | Slope | 0.88 | Thin layer | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | | | ```Restricted permeability``` | 0.49 | Too droughty | 0.75 | | |
| Rock outcrop---- | 15 | Very limited Depth limited Bedrock | | Very limited Thin layer slope | $\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$ | ```\|Very limited ``` | | ```Very limited Slope Limited Water Quantity``` | |
| | | | 1.00 | | | | 1.00 | | $\left\lvert\, \begin{aligned} & 1.00 \\ & 0.99 \end{aligned}\right.$ |
| | | | 1.00 | | | | 0.99 | | |
| | | Slope | 0.88 | | | | | | |
| | | | | | | | | | |

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

| Map symbol
 and soil name | Pct. | Storm water basins | | Infiltration systems | | Perennial wetland systems | | Intermittent wetland systems | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value |
| 287C: | | | | | | | | | |
| Wethersfield----- | 40 | Unlimited | | ```Very limited Depth to saturated zone Slope``` | 1.00 | ```Very limited Slope``` | 1.00 | $\begin{aligned} & \text { Very limited } \\ & \text { Slope } \end{aligned}$ | 1.00 |
| | | | | | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Thin layer | 1.00 | Somewhat droughty | 0.25 | | |
| | | | | Restricted permeability | 0.97 | | | | |
| Urban land------- | 35 | Very limited Depth limited | 1.00 | ```Very limited Slope Restricted permeability``` | $\left\lvert\, \begin{aligned} & 1.00 \\ & 1.00 \end{aligned}\right.$ | Very limited | 1.00 | ```Very limited Slope Limited Water Quantity``` | $\text { \| } 1.00$ |
| | | | | | | Too droughty | 1.00 | | |
| | | | | | | Limited Water Quantity | 0.99 | | |
| 287D:Wethersfield | | | | | | | | | |
| | 40 | Somewhat limited Slope | 0.12 | ```Very limited Depth to saturated zone slope``` | 1.00 | Very limited Slope | 1.00 | Very limited slope | 11.00 |
| | | | | | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Thin layer | 1.00 | Somewhat droughty | 0.25 | | |
| | | | | Restricted permeability | 0.97 | | | | |
| Urban land- | 35 | Very limited Depth limited Slope | $\left\lvert\, \begin{aligned} & 1.00 \\ & 0.12 \end{aligned}\right.$ | ```Very limited Slope Restricted permeability``` | 1.00 | Very limited Slope | 1.00 | Very limited Slope | 1.00 |
| | | | | | | | | | |
| | | slope | | | 1.00 | Too droughty | 1.00 | Limited Water Quantity | 0.99 |
| | | | | | | Limited Water Quantity | 0.99 | | |
| 290B:Stockbridg | 40 | | | | | | | | |
| | | Unlimited | | \|Very limited Restricted permeability Dense layer Slope | | Very limited Limited Water Quantity Too droughty Slope | | Very limited | |
| | | | | | 1.00 | | 0.99 | Limited Water Quantity | 0.99 |
| | | | | | 0.83 | | 0.75 | Slope | 0.74 |
| | | | | | 0.74 | | 0.74 | | |

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

| Map symbol
 and soil name | Pct
 of
 map
 unit | Storm water basins | | Infiltration systems | | Perennial wetland systems | | Intermittent wetland systems | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value | Rating class and limiting features | Value | Rating class and limiting features | \|Value | Rating class and limiting features | Value |
| 309: | | | | | | | | | |
| Udorthents------ | 80 | Very limited Flooding | 1.00 | Depth to saturated zone | 1.00 | Very limited Slope | 11.00 | Very limited Slope | 1.00 |
| | | Slope | 0.04 | slope | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | | | ```Restricted permeability Flooding``` | 0.53 0.40 | Too droughty | 0.75 | | |
| 310 : | | | | | | | | | |
| Udorthents, | | | | | | | | | |
| Flooded-------- | Periodically | | | | | | | | |
| | 85 | Very limited
 Flooding 1.00 | | Very limited
 Flooding 1.00 | | Slope | 1.00 | Slope | 1.00 |
| | | slope | 0.04 | Depth to saturated zone | 1.00 | Limited Water Quantity | \| 0.99 | Limited Water Quantity | 0.99 |
| | | | | Slope | 1.00 | Too droughty | | | |
| | | | | ```Restricted permeability``` | 0.53 | | 0.75 | | |
| 401C: | | | | | | | | | |
| Macomber-------- | 55 | Very limited Bedrock | 0.87 | Very limitedSlope | 1.00 | Very limited | 1.00 | Very limited | 1.00 |
| | | | | | | Slope | | Slope | |
| | | | | Thin layer | 11.00 | Limited Water Quantity Somewhat droughty | 10.99 | Limited Water Quantity | 0.99 |
| | | | | ```Restricted permeability``` | 0.95 | | 0.25 | | |
| Taconic--------- | 30 | Very limited Depth limited Bedrock | $\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$ | Very limited Thin layer Slope
 Restricted permeability | 1.00 | ```\|Very limited ``` | $\left\lvert\, \begin{aligned} & 1.00 \\ & 0.99 \end{aligned}\right.$ | ```Very limited Slope Limited Water Quantity``` | $\begin{aligned} & 1.00 \\ & 0.99 \end{aligned}$ |
| | | | | | | | | | |
| | | | | | $\left\lvert\, \begin{aligned} & 1.00 \\ & 0.16 \end{aligned}\right.$ | | | | |
| | | | | | | | | | |

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

| Map symbol and soil name | Pct.
 of
 map
 unit | Storm water basins | | Infiltration systems | | Perennial wetland systems | | Intermittent wetland systems | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value | Rating class and limiting features | \|Value | Rating class and limiting features | Value | Rating class and limiting features | Value |
| 413C: | | | | | | | | | |
| Millsite-------- | 40 | Very limited Bedrock | 0.84 | Very limited | | \|Very limited | | Very limited | |
| | | | | Slope \|1.00 | | Slope | 1.00 | Slope | 1.00 |
| | | | | Thin layer | \| 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Restricted permeability | 0.37 | Too droughty | 0.75 | | |
| 413E: | | | | | | | | | |
| Bice------------ | 45 | Somewhat limited Slope | 0.50 | Very limited Slope | 1.00 | Very limited | 1.00 | Very limited Slope | 1.00 |
| | | | | | | Ksat - Subject to seepage | | | |
| | | | | $\begin{aligned} & \text { Restricted } \\ & \text { permeability } \end{aligned}$ | 0.45 | Slope | 1.00 | Limited Water Quantity | 0.99 |
| | | | | | | Limited Water Quantity Too droughty | 0.99 0.75 | | |
| Millsite-------- | 40 | Very limited | | Very limited | | Very limitedSlope | 1.00 | Very limited | 1.00 |
| | | | | Thin layer | 1.00 1.00 | | | Slope | |
| | | Slope | $\left\lvert\, \begin{aligned} & 0.84 \\ & 0.50 \end{aligned}\right.$ | | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | | | ```Restricted permeability``` | 0.37 | Too droughty | 0.75 | | |
| 414 : | | | | | | | | | |
| Fredon, cold--- | 85 | Very limited Depth limited | 1.00 | Very limited Depth to saturated zone | 1.00 | Somewhat limited Ksat - Subject to seepage | 1.00 | Unlimited Subject To Seepage | 0.07 |
| 415C:Millsite | | | 0.84 | | | | | | |
| | 40 | Very limited Bedrock | | ```Very limited Slope Thin layer``` | | Very limitedSlope | 1.00 | Very limited | 1.00 |
| | | | | | 11.00 | | | slope | |
| | | | | | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Restricted permeability | 0.37 | Too droughty | 0.75 | | |
| | | | | | | | | | |

Table 28.-Storm Water Runoff Systems-Continued

| Map symbol and soil name | Pct. of map unit | Storm water basins | | Infiltration systems | | Perennial wetland systems | | Intermittent wetland systems | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and limiting features | Value | Rating class and limiting features | \|Value | Rating class and limiting features | Value |
| 415C: | | | | | | | | | |
| Westminster----- | 40 | Very limited | | Very limited | | Very limited | | Very limited | |
| | | Depth limited | 1.00 | Thin layer | 1.00 | slope | 1.00 | slope | 1.00 |
| | | Bedrock | 1.00 | Slope | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Restricted permeability | 0.01 | | | | |
| Rock outcrop----- | 15 | Very limited | | Very limited | | Very limited | | Very limited | |
| | | Depth limited | 1.00 | Thin layer | 1.00 | Slope Limited Water | 1.00 | slope | 1.00 |
| | | Bedrock | 1.00 | Slope | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| 415E: | | | | | | | | | |
| Millsite-------- | 40 | Very limited
 Slope 0.88 | | Very limited | | Very limited | | Very limited | |
| | | | | | 1.00 | slope | 1.00 | slope | 1.00 |
| | | Bedrock | 0.84 | Thin layer | 1.00 | Limited Water 0.99 | | Limited Water Quantity | 0.99 |
| | | | | Restricted permeability | 0.37 | Too droughty | 0.75 | | |
| Westminster------ | 40 | Very limited | | Very limited | | Very limited | | Very limited | |
| | | Depth limited
 Bedrock | 1.00 | Thin layer slope | 1.00 | slope
 Limited Water | 1.00 0.99 | Slope | 1.00 |
| | | | 1.00 | slope | 11.00 | Limited Water Quantity | | Limited Water Quantity | 0.99 |
| | | Slope | 0.88 | Restricted permeability | 0.01 | | | | |
| Rock outcrop----- | 15 | Very limited Depth limited Bedrock | | Very limited | | Very limitedSlope | | Very limited | |
| | | | 1.00 | Thin layer Slope | $\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$ | | 1.00 | | 1.00 |
| | | | 1.00 | | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | Slope | 0.88 | | | | | | |
| 416E:Rock outcrop- | | | | | | | | | |
| | 70 | Very limited Depth limited Bedrock | | Very limited Thin layer Slope | 1.00 | \|Very limited | 1.00 | Very limitedSlope | |
| | | | | | | | | | 1.00 |
| | | | 1.00 | | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | Slope | 0.50 | | | | | | |

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

Table 28.-Storm Water Runoff Systems-Continued

| Map symbol and soil name | $\begin{gathered} \text { Pct. } \\ \text { of } \end{gathered}$ | Storm water basins | | Infiltration systems | | Perennial wetland systems | | Intermittent wetland systems | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | \|Value | Rating class and limiting features | Value | Rating class and limiting features | Value | Rating class and limiting features | Value |
| 424D: | | | | | | | | | |
| Shelburne------- | 85 | Somewhat limited Slope | 0.12 | Very limited | | Very limited slope | | Very limited slope | 1.00 |
| | | | | Depth to saturated zone | 1.00 | slope | 1.00 | slope | |
| | | | | Thin layer | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Slope | 1.00 | Somewhat droughty | 0.25 | | |
| | | | | Restricted permeability | 0.39 | | | | |
| 425B: | | | | | | | | | |
| Shelburne------- | 85 | Unlimited | | Very limited | | Very limited | | Very limited | |
| | | | | Depth to | 1.00 | Limited Water | 0.99 | Limited Water | 0.99 |
| | | | | \| saturated zone | 1.00 | Quantity
 Slope | 0.74 | Quantity
 slope | 0.74 |
| | | | | Slope | 0.74 | Somewhat droughty | 0.25 | | |
| | | | | Restricted | 0.39 | | | | |
| | | | | permeability | | | | | |
| 425C: | | | | | | | | | |
| Shelburne------- | 85 | Unlimited | | Very limited | | Very limited | | Very limited | |
| | | | | Depth to saturated zone | 1.00 | slope | 1.00 | Slope | 1.00 |
| | | | | Thin layer | 1.00 | Limited Water Quantity | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Slope | 1.00 | Somewhat droughty | 0.25 | | |
| | | | | Restricted permeability | 0.39 | | | | |
| 426D: | | | | | | | | | |
| Shelburne------- | 85 | Somewhat limited Slope | 0.50 | ```Very limited Depth to saturated zone Thin layer``` | | Very limited Slope | 1.00 | Very limited Slope | 1.00 |
| | | | | | 1.00 | | | | |
| | | | | | 1.00 | Limited Water
 Quantity
 Somewhat droughty | 0.99 | Limited Water Quantity | 0.99 |
| | | | | Slope | 1.00 | | 0.25 | | |
| | | | | Restricted permeability | 0.39 | | | | |
| | | | | | | | | | |

| Map symbol and soil name | Pct. of map unit | Storm water basins | | Infiltration systems | | Perennial wetland systems | | Intermittent wetland systems | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Rating class and limiting features | Value |
| 427B: | 85 | Unlimited | | ```Very limited Depth to saturated zone Thin layer``` | 1.00 | Somewhat limited slope | 0.74 | Somewhat limited slope | 0.74 |
| | | | | | | | | | |
| | | | | | 1.00 | Somewhat droughty | 0.25 | Somewhat Limited Water Quantity | 0.06 |
| | | | | Dense layer | 1.00 | Somewhat Limited Water Quantity | 0.06 | | |
| | | | | Restricted permeability | 0.88 | | | | |
| | | | | Slope | 0.74 | | | | |
| $\begin{aligned} & \text { 427C: } \\ & \text { Ashfield. } \end{aligned}$ | 85 | Unlimited | | ```Very limited Depth to saturated zone Thin layer``` | | Very limited | | Very limited | |
| | | | | | 1.00 | Slope | 1.00 | Slope | 1.00 |
| | | | | Thin layer | 1.00 | Somewhat droughty | 0.25 | Somewhat Limited Water Quantity | 0.06 |
| | | | | Slope | 1.00 | Somewhat Limited Water Quantity | 0.06 | | |
| | | | | Restricted permeability | 0.14 | | | | |
| 428A: | | | | ```Very limited Depth to saturated zone Thin layer``` | | | | | |
| Ashfield-- | 85 | Unlimited | | | | Somewhat limited Somewhat droughty | | Unlimited
 Somewhat Limited Water Quantity | |
| | | | | | 1.00 | Somewhat droughty | 0.25 | | 0.06 |
| | | | | | 1.00 | Somewhat Limited Water Quantity | 0.06 | | |
| | | | | Restricted permeability | 0.14 | | | | |
| 428B: | | Unlimited | | ```Very limited Depth to saturated zone``` | | Somewhat limited | | Somewhat limited | 0.74 |
| Ashfield-------- | 85 | | | | | | | | |
| | | | | | 1.00 | slope | 0.74 | slope | |
| | | | | Thin layer | 1.00 | Somewhat droughty | 0.25 | Somewhat Limited Water Quantity | 0.06 |
| | | | | Slope | 0.74 | Somewhat Limited Water Quantity | 0.06 | | |
| | | | | Restricted permeability | 0.14 | | | | |
| | | | | | | | | | |

Table 28.-Storm Water Runoff Systems-Continued

Table 29.-Taxonomic Classification of the Soils
(An asterisk in the first column indicates a taxadjunct to the series. See text for a description of those characteristics that are outside the range of the series.)

| Soil name | Family or higher taxonomic class |
| :---: | :---: |
| Agawam | Coarse-loamy over sandy or sandy-skeletal, mixed, active, mesic Typic Dystrudepts |
| *Agawam | Coarse-loamy over sandy or sandy-skeletal, mixed, active, frigid Typic Dystrudepts |
| Alde | Fine-loamy, mixed, active, nonacid, mesic Mollic Endoaquepts |
| *Ald | Fine-loamy, mixed, active, nonacid, frigid Mollic Endoaquepts |
| Ame | Coarse-loamy, mixed, active, mesic Aquic Eutrudepts |
| Ashfie | Coarse-loamy, mixed, active, frigid Aquic Dystrudepts |
| Bash | Coarse-loamy, mixed, semiactive, mesic Fluvaquentic Dystrudepts |
| Belgra | Coarse-silty, mixed, active, mesic Aquic Dystric Eutrudepts |
| Berl | Fine-silty, mixed, semiactive, mesic Aquic Dystric Eutrudepts |
| Bernards | Coarse-loamy, mixed, active, mesic Oxyaquic Dystrudepts |
| Bi | Coarse-loamy, mixed, active, frigid Typic Dystrudepts |
| Bosca | Sandy-skeletal, mixed, frigid Typic Udorthents |
| Brancro | Fine-silty, mixed, active, mesic Aquic Dystric Eutrudepts |
| Branford | Coarse-loamy over sandy or sandy-skeletal, mixed, active, mesic Typic Dystrudepts |
| *Brayt | Coarse-loamy, mixed, active, nonacid, frigid Typic Humaquepts |
| *Brayt | Loamy, mixed, active, nonacid, frigid, shallow Typic Endoaquepts |
| Brimfiel | Loamy, mixed, active, mesic Lithic Dystrudepts |
| Broadb | Coarse-loamy, mixed, active, mesic Oxyaquic Dystrudepts |
| Brookfiel | Coarse-loamy, mixed, active, mesic Typic Dystrudepts |
| Buckspo | Euic, frigid Typic Haplosaprists |
| Canton | Coarse-loamy over sandy or sandy-skeletal, mixed, semiactive, mesic Typic Dystrudepts |
| Catd | Euic, mesic Typic Haplosaprists |
| Charl | Coarse-loamy, mixed, active, mesic Typic Dystrudepts |
| Chatfi | Coarse-loamy, mixed, superactive, mesic Typic Dystrudepts |
| Ches | Coarse-loamy, mixed, semiactive, mesic Typic Dystrudepts |
| Copak | Coarse-loamy over sandy or sandy-skeletal, mixed, semiactive, mesic Dystric Eutrudepts |
| Deerfiel | Mixed, mesic Aquic Udipsamments |
| Dummers | Coarse-loamy, mixed, active, frigid Typic Dystrudepts |
| Ellingto | Coarse-loamy over sandy or sandy-skeletal, mixed, subactive, mesic Aquic Dystrudepts |
| Elmridg | Coarse-loamy over clayey, mixed, semiactive, mesic Aquic Dystric Eutrudepts |
| Enfield | Coarse-silty over sandy or sandy-skeletal, mixed, active, mesic Typic Dystrudepts |
| Farming | Loamy, mixed, active, mesic Lithic Eutrudepts |
| Fluvaque | Fluvaquents |
| Fredon | Coarse-loamy over sandy or sandy-skeletal, mixed, active, nonacid, mesic Aeric Endoaquepts |
| *Fredo | Coarse-loamy over sandy or sandy-skeletal, mixed, active, nonacid, frigid Aeric Endoaquepts |
| Freeto | Dysic, mesic Typic Haplosaprists |
| Fu | Coarse-loamy, mixed, active, frigid Aquic Dystrudepts |
| Georg | Coarse-loamy, mixed, semiactive, mesic Aquic Dystric Eutrudepts |
| Glouce | Sandy-skeletal, mixed, mesic Typic Dystrudepts |
| Gro | Sandy-skeletal, mixed, mesic Typic Eutrudepts |
| Hadley | Coarse-silty, mixed, superactive, nonacid, mesic Typic Udifluvents |
| Halsey | Coarse-loamy over sandy or sandy-skeletal, mixed, active, nonacid, mesic Typic Humaquepts |
| *Halsey | Coarse-loamy over sandy or sandy-skeletal, mixed, active, nonacid, frigid Typic Humaquepts |
| Hartf | Sandy, mixed, mesic Typic Dystrudepts |
| Haven | Coarse-loamy over sandy or sandy-skeletal, mixed, active, mesic Typic Dystrudepts |
| Hero | Coarse-loamy over sandy or sandy-skeletal, mixed, semiactive, mesic Aquic Eutrudepts |
| Hinckley | Sandy-skeletal, mixed, mesic Typic Udorthents |
| Hogansburg | Coarse-loamy, mixed, semiactive, frigid Aquic Eutrudepts |
| Hollis | Loamy, mixed, active, mesic Lithic Dystrudepts |

Table 29.-Taxonomic Classification of the Soils-Continued

| Soil name | Family or higher taxonomic class |
| :---: | :---: |
| Holyok | Loamy, mixed, superactive, mesic Lithic Dystrudepts |
| Ipswi | Euic, mesic Typic Sulfihemists |
| Lanesb | Coarse-loamy, mixed, active, frigid Oxyaquic Dystrudepts |
| Leices | Coarse-loamy, mixed, active, acid, mesic Aeric Endoaquepts |
| Lim | Coarse-loamy, mixed, superactive, nonacid, mesic Fluvaquentic Endoaquepts |
| Limeric | Coarse-silty, mixed, active, nonacid, mesic Fluvaquentic Endoaquepts |
| Loonmea | Coarse-loamy, mixed, active, nonacid, frigid Mollic Endoaquepts |
| Ludlo | Coarse-loamy, mixed, semiactive, mesic Aquic Dystrudepts |
| Mac | Loamy-skeletal, mixed, active, frigid Typic Dystrudepts |
| Manch | Sandy-skeletal, mixed, mesic Typic Udorthents |
| Mayb | Fine, mixed, semiactive, nonacid, mesic Typic Humaquepts |
| *Medomak | Coarse-loamy over sandy or sandy-skeletal, mixed, superactive, nonacid, frigid Fluvaquentic Endoaquepts |
| Men | Coarse-loamy, mixed, active, mesic Typic Endoaquolls |
| Mer | Sandy, mixed, mesic Typic Dystrudepts |
| *Mer | Sandy, mixed, frigid Typic Dystrudepts |
| Mil | Coarse-loamy, mixed, active, frigid Typic Dystrudepts |
| Montau | Coarse-loamy, mixed, subactive, mesic Oxyaquic Dystrudepts |
| Moosilau | Sandy, mixed, frigid Aeric Endoaquepts |
| Mudgepo | Coarse-loamy, mixed, superactive, mesic Typic Endoaquolls |
| *Mudgepo | Coarse-loamy, mixed, superactive, frigid Typic Endoaquolls |
| Narragansett | Coarse-loamy over sandy or sandy-skeletal, mixed, active, mesic Typic Dystrudepts |
| Natchaug | Loamy, mixed, euic, mesic Terric Haplosaprists |
| Nell | Coarse-loamy, mixed, superactive, mesic Typic Eutrudepts |
| Ninigr | Coarse-loamy over sandy or sandy-skeletal, mixed, active, mesic Aquic Dystrudepts |
| *Ninigr | Coarse-loamy over sandy or sandy-skeletal, mixed, active, frigid Aquic Dystrudepts |
| Occu | Coarse-loamy, mixed, superactive, mesic Fluventic Dystrudepts |
| On | Coarse-loamy, mixed, active, frigid Fluventic Dystrudepts |
| Pa | Sandy or sandy-skeletal, mixed, euic, mesic Terric Sulfihemists |
| Pax | Coarse-loamy, mixed, active, mesic Oxyaquic Dystrudepts |
| Penwo | Mixed, mesic Typic Udipsamments |
| Pootatu | Coarse-loamy, mixed, active, mesic Fluvaquentic Dystrudepts |
| Pyritie | Coarse-loamy, mixed, active, frigid Dystric Eutrudepts |
| Rainb | Coarse-loamy, mixed, active, mesic Aquic Dystrudepts |
| Rayn | Coarse-silty, mixed, active, nonacid, mesic Aeric Epiaquepts |
| Rayp | Coarse-loamy over sandy or sandy-skeletal, mixed, active, acid, mesic Aeric Endoaquepts |
| *Ridgebury | Coarse-loamy, mixed, active, nonacid, mesic Aeric Endoaquepts |
| Rippowa | Coarse-loamy, mixed, superactive, nonacid, mesic Fluvaquentic Endoaquepts |
| Rumney | Coarse-loamy, mixed, active, nonacid, frigid Fluvaquentic Endoaquepts |
| Sa | Coarse-silty, mixed, active, nonacid, mesic Fluvaquentic Humaquepts |
| S | Sandy, mixed, mesic Histic Humaquepts |
| *Scar | Sandy, mixed, frigid Histic Humaquepts |
| S | Coarse-loamy, mixed, superactive, frigid Aquic Dystrudepts |
| Sci | Fine, mixed, semiactive, nonacid, mesic Typic Endoaquepts |
| Shak | Coarse-loamy over clayey, mixed, semiactive, nonacid, mesic Aeric Epiaquepts |
| Shelbur | Coarse-loamy, mixed, active, frigid Oxyaquic Dystrudepts |
| Stockbridge | Coarse-loamy, mixed, semiactive, mesic Dystric Eutrudepts |
| Sudbury | Sandy, mixed, mesic Aquic Dystrudepts |
| *Sudbury | Sandy, mixed, frigid Aquic Dystrudepts |
| Suncoo | Mixed, mesic Typic Udipsamments |
| Sut | Coarse-loamy, mixed, active, mesic Aquic Dystrudepts |
| Taco | Loamy-skeletal, mixed, active, frigid Lithic Dystrudepts |
| Timak | Sandy or sandy-skeletal, mixed, euic, mesic Terric Haplosaprists |
| Tisbur | Coarse-silty over sandy or sandy-skeletal, mixed, active, mesic Aquic Dystrudepts |
| Udifluven | Udifluvents |
| Udipsamments | Mesic Udipsamments |
| Udorthent | Udorthents |
| Walpol | Sandy, mixed, mesic Aeric Endoaquepts |
| Wapping | Coarse-loamy, mixed, active, mesic Aquic Dystrudepts |
| Watchaug- | Coarse-loamy, mixed, semiactive, mesic Aquic Dystrudepts |

Table 29.-Taxonomic Classification of the Soils-Continued

| Soil name | Family or higher taxonomic class |
| :---: | :---: |
| Westbrook | Loamy, mixed, euic, mesic Terric Sulfihemists |
| Westminste | Loamy, mixed, active, frigid Lithic Dystrudepts |
| Wethersfield | Coarse-loamy, mixed, active, mesic Oxyaquic Dystrudepts |
| Whitma | Loamy, mixed, active, nonacid, mesic, shallow Typic Humaquepts |
| Wilbraham | Coarse-loamy, mixed, active, mesic Aquic Dystrudepts |
| Windso | Mixed, mesic Typic Udipsamments |
| Winooski | Coarse-silty, mixed, active, mesic Fluvaquentic Dystrudepts |
| Wonsqueak | Loamy, mixed, euic, frigid Terric Haplosaprists |
| Woodbridge | Coarse-loamy, mixed, active, mesic Aquic Dystrudepts |
| Yalesville | Coarse-loamy, mixed, active, mesic Typic Dystrudepts |

Sandy

Soils Formed in Glacial Till with Limestone and Crystalline Rock Lithology

Table 30.-Relationships Among Parent Material, Dominant Texture, and Drainage of the Soils

| Parent material | \|Excessively
 drained | Somewhat excessively drained | Well drained | \| Moderately \mid well \mid drained | Somewhat poorly drained | Poorly drained | \|Very poorly drained |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Soils Formed in Glacial Till with Sandstone, Shale, and Basalt Rock Lithology | | | | | | | |
| Loamy | | | Cheshire | Ludlow | | | |
| Loamy, firm substratum | | | Wethersfield\| | Watchaug | | Wilbraham | Menlo |
| Loamy, 10 to 20 inches over bedrock | | | Holyoke | | | | |
| Loamy, 20 to 40 inches over bedrock | | | Yalesville | | | | |
| | | | | | | | |

Soils Formed in Glacial Till with Micaceous Schist Rock Lithology
Loamy

Soils Formed in Glacial Till with Phyllite Schist, and Slate Rock Lithology
Loamy

Soils Formed in Glacial Till with Sanstone, Shale, Basalt, and Crystalline Rock Lithology
Loamy Loamy, firm substratum

Table 30.-Relationships Among Parent Material, Dominant Texture, and Drainage of the Soils

| Parent material | Excessively
 drained | Somewhat excessively drained | Well drained | Moderately well
 drained | Somewhat poorly drained | Poorly
 drained | \| Very poorly drained |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Soils Formed in Glacial Outwash with Crystalline Rock Lithology

| Sandy and gravelly | Hinckley
 Boscawen* | Merrimac | | Sudbury | Walpole
 Moosilauke* | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sandy | Windsor | | | Deerfield | | Scarboro |
| Loamy over sand and gravel | | | Agawam | Ninigret | | |
| Silty over sand and gravel | | | Enfield
 Haven | Tisbury | Raypol | |

Soils Formed in Glacial Outwash with Red Sandstone, Shale and Conglomerate Rock Lithology
Sandy and gravelly

Soils Formed in Glacial Outwash with Limestone and Crystalline Rock Lithology

Sandy and gravelly

Loamy over sand and gravel

$|$| \mid Groton | \mid | \mid |
| :--- | :--- | :--- |
| \mid | \mid Copake | \mid Hero |

Table 30.-Relationships Among Parent Material, Dominant Texture, and Drainage of the Soils

| Parent material | Excessively
 drained | Somewhat excessively drained | Well drained | Moderately well
 drained | Somewhat poorly drained | Poorly
 drained | \| Very poorly drained |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Soils Formed in Glaciolacustrine Deposits
Silty

Soils Formed in Alluvium

| Sandy | Suncook | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Loamy | | Occum | Pootatuck | | Rippowam | |
| Silty | | Hadley
 Ondawa* | Winooski | Bash | Limerick
 Lim
 Rumney* | Saco
 Medomak* |
| Variable Texture | | Unifluvents | | | Fluvaquents | |

Soils Formed in Organic Material

Table 30.-Relationships Among Parent Material, Dominant Texture, and Drainage of the Soils

| Parent material | Excessively
 drained | Somewhat excessively drained | Well
 drained | Moderately well
 drained | $\begin{array}{\|l} \hline \text { Somewhat } \\ \text { poorly } \\ \text { prained } \\ \hline \end{array}$ | Poorly drained | Very poorly drained |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Soils Formed in Organic Material | | | | | | | |
| Organic deposits 16 to 51 inches deep over sandy mineral material | | | | | | | Timakwa |
| Organic deposits 16 to 51 inches deep over sandy mineral material, in tidal areas | | | | | | | Pawcatuck |
| Organic deposits 16 to 51 inches deep over mineral material, in tidal areas | | | | | | | Westbrook |
| Organic deposits more than 51 inches deep, in tidal areas | | | | | | | Ipswich |

[^0]: Depth to bedrock: very deep
 Drainage class: excessively drained
 Parent material: sandy glaciofluvial deposits derived from sandstone and shale
 Permeability: rapid or very rapid
 Available water capacity: low
 Reaction: very strongly acid to moderately acid
 Depth to restrictive feature: greater than 72 inches

[^1]: Slope: moderately steep to steep
 Landscape: till plains on uplands, hills on uplands
 Surface cover: 3 to 15 percent stones
 Size of map unit: Areas commonly range from 3 to 50 acres.

[^2]: Slope: moderately steep to steep
 Landscape: drumlins on uplands, hills on uplands
 Surface cover: 3 to 15 percent stones
 Size of map unit: Areas commonly range from 3 to 90 acres.

[^3]: Slope: moderately steep
 Landscape: hills on uplands
 Size of map unit: Areas commonly range from 3 to 50 acres.

[^4]: Slope: strongly sloping
 Landscape: hills, uplands
 Surface cover: 0 to 3 percent stones
 Size of map unit: Areas commonly range from 3 to 40 acres.

[^5]: * A growing degree day is a unit of heat available for plant growth. It can be calculated by adding the maximum and minumum daily temperatures, dividing the sum by 2 , and subtracting the temperature below which growth is minimal for the principal crops in the area (40 degrees F).

[^6]: * A growing degree day is a unit of heat available for plant growth. It can be calculated by adding the maximum and minumum daily temperatures, dividing the sum by 2 , and subtracting the temperature below which growth is minimal for the principal crops in the area (40 degrees F).

[^7]: * A growing degree day is a unit of heat available for plant growth. It can be calculated by adding the maximum and minumum daily temperatures, dividing the sum by 2 , and subtracting the temperature below which

[^8]: See footnote at end of table.

