EXPLANATION

Glaciofluvial Deposits (ground moraine and outwash deposits): These deposits are generally believed to be the result of the movement of glacial meltwater. They are typically composed of layers of well-to-poorly sorted sands, gravels, silts, and clays with few to no stratification. They are often composed of layers of well-to-poorly sorted sands, gravels, silts and clays with few to no stratification. They are often formed by the deposition of glacial meltwater in valleys and along the edges of the ice sheet. These deposits are generally found in the lowest, widest portions of the valley (Figure 2).

Ice Flow Direction: The direction that the ice flowed is indicated by the orientation of the depositional features. The deposits are typically oriented in the direction of ice movement, and the orientation of the deposits can be used to determine the direction of ice movement. The deposits are often found in the lowest, widest portions of the valley, which are generally the areas that were closest to the ice margin.

Glaciolacustrine Deposits: These deposits are typically composed of layers of water-laid sediments, such as mud, silt, and clay. They are often found in areas that were covered by lakes, such as in valleys and along the edges of the ice sheet. These deposits are often found in the lowest, widest portions of the valley, where the lakes were most likely to form.

Glacial Deposits: These deposits are typically composed of layers of glacial till, which is a mixture of rock fragments and clay. They are often found in areas that were covered by ice, such as in valleys and along the edges of the ice sheet. These deposits are often found in the lowest, widest portions of the valley, where the ice sheet was most likely to be thick.

Postglacial Deposits: These deposits are typically composed of layers of recent alluvial deposits, such as stream and floodplain deposits. They are often found in areas that were not covered by ice, such as in valleys and along the edges of the ice sheet. These deposits are often found in the lowest, widest portions of the valley, where the postglacial landscape was most likely to develop.

Deposition of the Glacial Retreat: The retreat of the ice sheet is indicated by the orientation of the depositional features. The deposits are typically oriented in the direction of ice movement, and the orientation of the deposits can be used to determine the direction of ice movement. The deposits are often found in the lowest, widest portions of the valley, which are generally the areas that were closest to the ice margin.

Drainage Divide: The boundary between major geologic basins. The drainage divide is defined by the point at which the water in a valley is divided between two different drainage basins. The drainage divide is typically formed by a mountain range or a ridge, and it is often marked by a steep change in elevation.

Swamp Deposits: These deposits are typically composed of layers of organic material, such as peat and muck. They are often found in areas that were covered by wetlands, such as in valleys and along the edges of the ice sheet. These deposits are often found in the lowest, widest portions of the valley, where the wetlands were most likely to form.

Floodplain Alluvium: These deposits are typically composed of layers of recent alluvial deposits, such as stream and floodplain deposits. They are often found in areas that were not covered by ice, such as in valleys and along the edges of the ice sheet. These deposits are often found in the lowest, widest portions of the valley, where the postglacial landscape was most likely to develop.

Tidal Marsh Deposits: These deposits are typically composed of layers of recent alluvial deposits, such as stream and floodplain deposits. They are often found in areas that were not covered by ice, such as in valleys and along the edges of the ice sheet. These deposits are often found in the lowest, widest portions of the valley, where the postglacial landscape was most likely to develop.

Data Sources: The data used in this report are from the Connecticut Geologic and Geohazard Mapping Project, which is a collaborative effort between the Connecticut Geological Survey and the Connecticut Geological Society. The data were collected using high-resolution aerial photography and geophysical surveys, including airborne and ground-based surveys. The data were then interpreted using digital mapping techniques, and the resulting maps were published as part of the Connecticut Geologic and Geohazard Mapping Project. The data are intended to be used as a resource for understanding the geology of the state of Connecticut, and they are freely available for use by the public.

State of Connecticut Geologic and Geohazard Mapping Project: This project is a collaborative effort between the Connecticut Geological Survey and the Connecticut Geological Society. The project is funded by the Connecticut Geological Society and the Connecticut Geological Survey, and it is managed by the Connecticut Geological Survey. The project is intended to provide high-resolution geologic and geohazard mapping for the state of Connecticut, and the resulting maps are intended to be used as a resource for understanding the geology of the state.

ACKNOWLEDGEMENTS: The authors would like to acknowledge the contributions of all those who have helped to make this report possible. This report is a product of the Connecticut Geological Survey and the Connecticut Geological Society, and it is intended to provide high-resolution geologic and geohazard mapping for the state of Connecticut. The authors would like to thank all those who have contributed to this project, and they are grateful for their support.

REFERENCES: The authors would like to acknowledge the contributions of all those who have helped to make this report possible. This report is a product of the Connecticut Geological Survey and the Connecticut Geological Society, and it is intended to provide high-resolution geologic and geohazard mapping for the state of Connecticut. The authors would like to thank all those who have contributed to this project, and they are grateful for their support.

MAP LOCATION: The map is intended to be used with other bedrock, surficial, and Quaternary (glacial) geology quadrangle maps and to provide a detailed view of the geology of the state of Connecticut. The map is intended to be used as a resource for understanding the geology of the state, and it is freely available for use by the public.

MAP DEP Quadrangle: This map is intended to be used with other bedrock, surficial, and Quaternary (glacial) geology quadrangle maps and to provide a detailed view of the geology of the state of Connecticut. The map is intended to be used as a resource for understanding the geology of the state, and it is freely available for use by the public.

MAP SCALE: The map scale is intended to be used as a resource for understanding the geology of the state, and it is freely available for use by the public.

MAP ORIENTATION: The map is intended to be used with other bedrock, surficial, and Quaternary (glacial) geology quadrangle maps and to provide a detailed view of the geology of the state of Connecticut. The map is intended to be used as a resource for understanding the geology of the state, and it is freely available for use by the public.

MAP DATA: The map data are intended to be used as a resource for understanding the geology of the state, and they are freely available for use by the public.

MAP LEGEND: The map legend is intended to be used as a resource for understanding the geology of the state, and it is freely available for use by the public.

MAP PROJECTION: The map projection is intended to be used as a resource for understanding the geology of the state, and it is freely available for use by the public.

MAP INFORMATION: The map information is intended to be used as a resource for understanding the geology of the state, and it is freely available for use by the public.

MAP KEY: The map key is intended to be used as a resource for understanding the geology of the state, and it is freely available for use by the public.

MAP SYMBOLS: The map symbols are intended to be used as a resource for understanding the geology of the state, and they are freely available for use by the public.

MAP COPYRIGHT: The map copyright is intended to be used as a resource for understanding the geology of the state, and it is freely available for use by the public.

MAP DISCLAIMER: The map disclaimer is intended to be used as a resource for understanding the geology of the state, and it is freely available for use by the public.

MAP CONTACT: The map contact information is intended to be used as a resource for understanding the geology of the state, and it is freely available for use by the public.

MAP LICENSING: The map licensing information is intended to be used as a resource for understanding the geology of the state, and it is freely available for use by the public.

MAP SOFTWARE: The map software is intended to be used as a resource for understanding the geology of the state, and it is freely available for use by the public.

MAP DISTRIBUTION: The map distribution information is intended to be used as a resource for understanding the geology of the state, and it is freely available for use by the public.

MAP DISTRIBUTOR: The map distributor information is intended to be used as a resource for understanding the geology of the state, and it is freely available for use by the public.

MAP SUPPORT: The map support information is intended to be used as a resource for understanding the geology of the state, and it is freely available for use by the public.

MAP SUPPORT CONTACT: The map support contact information is intended to be used as a resource for understanding the geology of the state, and it is freely available for use by the public.