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Quaternary Geology is 1:24,000-scale data that illustrates the geologic features formed in Connecticut Glacial Meltwater Deposits (sorted and stratified deltaic, river bottom, lake bottom, and inland dune Comstock z o "5h, &1 5
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includes the Pleistocene (glacial) and Holocene (postglacial) Epochs. The Quaternary Period has been a terrace, talus, dune, tidal-marsh, beach, channel fill, marine delta deposits, and artificial fill) that were Pond Popes Hill Pofid !
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hundred feet in thickness, overlie the bedrock surface and underlie the organic soil layer of Connecticut. were derived directly from the ice and consist of nonsorted, generally nonstratified mixtures of grain-sizes 2 R Poad o & Dy q
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Particular attention has been paid to understanding the distribution and characteristics of stratified favorable for development. Because water is a better sorting agent than ice, glacial meltwater deposits are B 1 3 g 8% N
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availability throughout the state. Within the meltwater category, six classes of deposits have been sources of construction aggregate, and are relatively easy to excavate and build highways and buildings on. \ C—fg o ‘/’g%o K She Y\gﬁg
recognized based on the conditions that prevailed during their emplacement. Four of the seven indicate Stratified meltwater deposits include both fine and coarse grained deposits such as silt, clay, sand, and 3 \ o OB /% A Urg )
. . . . . . o =z
whether previously deposited sediment, or the glacier itself, impounded the lake or pond where gravel. = \ Tree Pl < 2 B %
emplacement occurred (see the meltwater deposit discussion below). Meltwater stream deposits are Gripes\3 o © \ =z guan® Nz
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Figure 1: A morphosequence is a body of meltwater deposits composed of a continuum of land forms, grading from ice-contact forms (eskers, kames) to non-ice-contact forms ; Nz N 0@%, Old Far, A% : o o ‘ > %
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Deposition of the morphosequences that progressively filled bedrock valleys and lowlands as the last glacier sequences occupying higher, narrower portions of the valley (Figure 2). In north-draining systems the (23 < ( ‘ S \ pna E "2 \ N ke Qo 4
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Thompson, W.B., 2005, U.S. Geological Survey Scientific Investigation Map 2784, 2 sheets, scale data of Connecticut Quaternary Geology and Surficial Materials combined into one dataset, published by O\ A Shagbarkill %X 3¢ T z5lg Ne,wtglth’ond 5 e o, |se
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BASE MAP DATA - Based on data originally from 1:24,000-scale USGS 7.5 minute topographic Materials Map of Connecticut, (Stone, J.R., Schafer, J.P., London, E.H. and Thompson, W.B., 1992, U.S.
quadrangle maps published between 1969 and 1992. It includes political boundaries, railroads, airports,

Geological Survey Special Map, 2 sheets, scale 1:125,000, map and pamphlet, 71 p.) and the Quaternary Norwalk South
Geologic Map of Connecticut and Long Island Sound Basin, (Stone, J.R., Schafer, J.P., London, E.H.,

DiGiacomo-Cohen, M.L., Lewis, R.L., and Thompson, W.B., 2005, U.S. Geological Survey Scientific

Investigation Map 2784, 2 sheets, scale 1:125,000).

hydrography, geographic names and geographic places. Streets and street names are from Tele Atlas®
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CONTOUR DATA - Derived from Connecticut’s 2000 statewide LiDAR, (Light Detection And Ranging),
dataset by the University of Connecticut, College of Agriculture and Natural Resources, Department of

Natural Resources and the Environment. These data are a Beta product intended for research and intended to be used with other bedrock, surficial, and quaternary (glacial) geology quadrangle maps and 1 \
demonstration purposes. NOTE: Contour line data is known to be incorrect in some areas due to reports published by the Connecticut Geological and Natural History Survey, USGS, and others. Those | . ——— — ———— ——— ———
anomalies in the underlying elevation data used to generate those specific contour lines. Areas where maps are reports are also available from CT DEP. i

contour lines are too straight or angular, do not naturally curve where expected, or don't exist where they

probably should are good indications of erroneous data.
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