Unconsolidated, glacial and postglacial deposits, also known as drift, are a fine to coarse layered deposit that blankets the bedrock surface of Connecticut and Long Island Sound Basin. This deposit includes a variety of materials that were moved by glacial systems and are commonly exposed in valleys, lowlands, and uplands, and are the most widespread surficial deposit in Connecticut. The lack of sorting and stratification typical of ice-laid deposits is shown for their entire vertical composition of meltwater deposits is shown for their entire vertical section. Areal and vertical textural variability can occur within a map unit (e.g. s - sand) is sufficient to describe the entire meltwater deposits, but detailed information is required to describe the subsurface variations (e.g. sg/f - sand overlying sand overlying fines). Where postglacial deposits overlie glacial deposits, the surficial material is glacially derived, and can be divided into two broad depositional categories: Glacial Ice-Laid deposits (primarily floodplain alluvium and swamp deposits) which are typically thickest on the bedrock surface in variable thicknesses and are well sorted, and Glacial Meltwater deposits (tills and moraine) which are generally exposed in the Coastal plain and are commonly better sorted, more permeable, and better aquifers than meltwater deposits. Because water is a bettering agent than ice, glacial materials are exposed in the glacial environments near glacial margins (proximal) tend to favor coarse deposits, whereas environments far from glacial margins (distal) tend to favor finer deposits.

Talus is a result of rockfall at the base of steep bedrock (primarily granite, gneiss, and sandstone) slopes, particularly along steep cliffs and the glacial deposits that cover them. Fluvial deposits have been heavily influenced by the movement of rivers, which tend to carry sediments from one location to another. Deposits of fluvial origin are characterized by the presence of gravel, sand, and silt, which are transported by rivers and other bodies of water. Deposits of fluvial origin are often associated with streams, rivers, and lakes, and are typically found in areas with abundant water resources. karena distributions and character have historically increased their fertility. Despite their flood-prone nature, these deposits are valuable because they are able to store large amounts of water, which can be used for agriculture and development related to water-dependent ecosystems.