Unconsolidated, glacial and postglacial deposits, the term refers to fine to coarse material that overlies bedrock. The surficial deposits are divided into two broad categories: glacial and postglacial deposits. Glacial deposits are derived directly from glacial ice (the lahar from floods of glacial lakes) and are typically characterized by their compositional heterogeneity, grain size, and spatial variability. Postglacial deposits, on the other hand, are derived from the melting of glaciers and are typically characterized by their compositional homogeneity, grain size, and spatial uniformity.

Glacial deposits are further divided into two main subcategories: loess and tills. Loess deposits are fine-grained materials that were transported and deposited by glacial winds, while tills are coarse-grained materials that were transported and deposited by glacial ice. Tills are further divided into two subcategories: end moraine deposits and lateral moraine deposits. End moraine deposits are typically composed of a mixture of ice-derived and river-derived materials, while lateral moraine deposits are typically composed of ice-derived materials.

Postglacial deposits are further divided into two main subcategories: loess and tills. Loess deposits are fine-grained materials that were transported and deposited by wind, while tills are coarse-grained materials that were transported and deposited by ice. Tills are further divided into two subcategories: end moraine deposits and lateral moraine deposits. End moraine deposits are typically composed of a mixture of ice-derived and river-derived materials, while lateral moraine deposits are typically composed of ice-derived materials.

The surficial deposits are mapped using a color-coded system, with each color representing a different type of deposit. This system is used to provide a visual representation of the spatial distribution of the different types of deposits.

DATA SOURCES

-surficial materials data - Surficial Materials shown on this map are from the Surficial Materials Project, which is a joint effort of the Connecticut Department of Environmental Protection and the U.S. Geological Survey. This data was provided to the 1:125,000-scale compilation sheets prepared for the Connecticut Surficial Materials Map of Connecticut. The map was compiled from the Connecticut Department of Environmental Protection's 1:2,400-scale compilation sheets.

-geologic and surficial materials data - Surficial Materials shown on this map are from the Surficial Materials Project, which is a joint effort of the Connecticut Department of Environmental Protection and the U.S. Geological Survey. This data was provided to the 1:125,000-scale compilation sheets prepared for the Connecticut Surficial Materials Map of Connecticut. The map was compiled from the Connecticut Department of Environmental Protection's 1:2,400-scale compilation sheets.

-geologic and surficial materials data - Surficial Materials shown on this map are from the Surficial Materials Project, which is a joint effort of the Connecticut Department of Environmental Protection and the U.S. Geological Survey. This data was provided to the 1:125,000-scale compilation sheets prepared for the Connecticut Surficial Materials Map of Connecticut. The map was compiled from the Connecticut Department of Environmental Protection's 1:2,400-scale compilation sheets.

OTHER GEOLOGIC MAPS - This map is also available for download from the U.S. Geological Survey's National Map Dataset, which is a collection of geospatial data and maps that are available for download from the U.S. Geological Survey's National Map Dataset.

MAPS AND DIGITAL DATA - Go to the CT DEP website for this map and a variety of others. Go to the CT DEP website for the digital spatial data on this map.