Unconsolidated glacial and postglacial deposits, the largest share of which are fine sediments, consist of glacial outwash and meltwater deposits. These deposits are visible at the surface and are characterized by their textural distribution and the character of the ground-water table. Most of Connecticut's surficial material is glacially derived, and can be divided into two broad depositional categories: glacial outwash deposits and meltwater deposits, which are generally exposed at the surface, and are one of the most widespread surficial deposits in Connecticut. Glacial deposits are derived from glaciers, and the depositional environments near glacial margins (proximal) tend to favor deposition of coarse material but as time passes, and the glacial environment near the margin (distal) may lose its coarsest fraction and be dominated by finer grained distal meltwater deposits.

Glacial deposits are described using one basic texturally-based map unit (e.g. s - sand) is sufficient to describe the entire meltwater deposit. In contrast, the glacial deposits that they overlie, but they are locally important. Meltwater deposits are depicted using four basic texturally-based map units. Sand and gravel are predominantly sand and gravel, and are commonly better sorted, more permeable, and better aquifers than glacial deposits. They can be good sources of construction aggregate, and are relatively easy to excavate and build highways and buildings.

DATA SOURCES

SURFICIAL MATERIALS DATA - Surficial Materials shown on this map are from the Surficial Materials Natl. Atlas which contains data for all 50 states. The Surficial Materials data are derived from the United States Geological Survey (USGS) 1:24,000-scale line and 1:62,500-scale quadrangle maps published between 1977 and 2001. The maps were digitized by the Connecticut Department of Environmental Protection, in cooperation with the U.S. Geological Survey. These data were made digitized from 1:24,000-scale compilation sheets prepared by the USGS, and digitized from the 1:62,500-scale quadrangle sheets prepared by the USGS. These data were made digitized from 1:24,000-scale compilation sheets prepared by the USGS, and digitized from the 1:62,500-scale quadrangle sheets prepared by the USGS. The USGS's Surficial Materials data were used to generate the Surficial Geology and Surficial Materials Map of Connecticut. More detailed information is available from the USGS.

QUATERNARY GEOLOGY AND SURFICIAL MATERIALS DATA - 1:125,000-scale digital spatial data of Connecticut Quaternary Geology and Surficial Materials were obtained from the CT ECO website for the surficial materials map. The surficial materials map was generated using the Surficial Geology and Surficial Materials Map of Connecticut. Other materials, which are not available in the Surficial Materials Map of Connecticut, may also be available from the USGS.

OTHER GEOLOGIC MAPS - This map is also available for Connecticut. Connecticut Geologic and Natural History Survey, USGS, and others are also available from the CT ECO website.

MAPS AND DIGITAL DATA - Go to the CT ECO website for this map and a variety of others. Go to the CT DEP website for the digital spatial data on this map.

END MORAINES - End moraine deposits (primarily ablation till) occur principally in southeastern Connecticut. They are largely composed of sands, gravels, and silts that have been deposited by ice-laid deposits. They can be good sources of construction aggregate, and are relatively easy to excavate and build highways and buildings.

The map unit (e.g. s- sand) is sufficient to characterize the entire meltwater deposit.

The surficial deposits that are favorable for development. Because water is a better carrier agent than ice, glacial meltwater deposits are generally more permeable and better suited for disposal.

The surficial deposits that are favorable for development. Because water is a better carrier agent than ice, glacial meltwater deposits are generally more permeable and better suited for disposal.