Explaination

Contour lines are used to denote elevation above sea level. This map displays 20 foot contour lines based on the Connecticut LiDAR data for the year 2000. This information is only suitable for general planning and information purposes and it is not intended for exact determination of elevation where a survey is normally required, or for detailed engineering, building, or design purposes. The Connecticut LiDAR dataset for 2000 captured ground elevation every 20 feet with an inherent accuracy of approximately 3 feet on the ground.

For unknown reason, data was collected anomalously in some areas. This resulted in data gaps that affect the overall coverage of the LiDAR data. These gaps are represented by missing contour lines in these contour lines. With this information, a general sense of the top of the land can be assessed. Slope shapes are characterized by widely spaced contour lines, while steep slopes are represented by closely spaced contour lines. Contour lines that cross streams flowing through valleys of noticeable relief will form a V-shaped deflection with the apex of the V pointing upstream.

Data Sources

USGS DEM 2000 - All data is based on 1/30,000 scale and digital geographic矢量, shown and colored data. The USGS DEM data is derived from LiDAR elevation data, which is available from the USGS and colored 1 to 100 in data gaps with information from contour lines in a DEM of 1/8,000 scale topographic maps.

Street Data - Based on TeleAtlas copyrighted data.

Contour Data - Derived from a statewide 10-foot Digital Elevation Model (DEM) surface based on the Connecticut LiDAR ground elevation data. The University of Connecticut Geospatial Data Center holds the LiDAR data and the University of Connecticut Center for the Environment edited it to fill in data gaps with information from contour lines in a DEM of 1/8,000 scale topographic maps.

Map prepared by CT DEP May 2012
This is an accurate map, and can be used for land evaluation, and engineering. The title indicates that this map is an accurate map. The scale is 1:6000, which is accurate for land evaluation and engineering.