Contour lines are used to denote elevation above sea level. This map displays 20 foot contour lines based on the Connecticut LiDAR data for the year 2000. This information is only suitable for general planning and informational purposes. It is not intended for exact determinations of elevation where accuracy is normally required, or for detailed engineering, building, or design purposes. The Connecticut LiDAR dataset for 2000 captured ground elevation every 24 hours with a vertical accuracy of approximately 3 feet on the ground.

DATA SOURCES:
- HHS MODEL 2005: All data is based on 1,291,209 points and depicts geographic names, places, and the locations of airports, and hydrography. Base map data is subject to errors and omissions.
- STREET DATA: Based on Teladate copyrighted data.
- CONTOUR DATA: Derived from a statewide 10-foot Digital Elevation Model (DEM) that is used to display the Connecticut 2000 LiDAR ground elevation data. The University of Connecticut Center for Land Use & Transportation Studies (CLUT) held the DEM and edited it to fit in 20 feet in data gaps within the surrounding terrain. Data was transformed to 10 feet to depict topographic maps.
- WSP and WSPX LiDAR - This is the CT LiDAR database for this map and a variety of other 2010 datasets. This is the LiDAR data collected in 2011.

EXPLANATION:
- For scientific reasons, data was collected anemically in some areas. This resulted in data gaps that affect the overall accuracy of the map. Therefore, the author may have opted to display these contour lines. With this information, a general sense of the land can be understood. Steep slopes are characterized by widely spaced contour lines, while shallow slopes are represented by closely spaced contour lines. Contour lines that cross streams flowing through ridges of noticeable relief will form a "V" shaped deflection in the line. With this information, a general sense of the land can be understood.