This map displays 2010 National Agriculture Imagery Program (NAIP) infrared orthophotography for the State of Connecticut. It is a color infrared, leaf on, 3.39 foot (1 meter) aerial survey taken during the Spring of 2010. This infrared orthophotography provides many services, such as observing crop and vegetation conditions as well as supporting identification and mapping of habitat areas. The statewide color infrared, leaf on, 3.39 feet (1 meter) aerial survey taken during the Spring of 2010. This infrared orthophotography provides many services, such as observing crop and vegetation conditions as well as supporting identification and mapping of habitat areas. The statewide differences in spatial accuracy and data collection dates. This map displays 2010 National Agriculture Imagery Program (NAIP) infrared orthophotography for the State of Connecticut. It is a color infrared, leaf on, 3.39 foot (1 meter) aerial survey taken during the Spring of 2010. This infrared orthophotography provides many services, such as observing crop and vegetation conditions as well as supporting identification and mapping of habitat areas.

DATA SOURCES

ORTHOPHOTOGRAPHY - National Agriculture Imagery Program (NAIP) is provided by the USDA's Farm Service Agency through the National Agricultural Imagery Program (NAIP) for the State of Connecticut as part of the Farm Service Agency's National Agricultural Imagery Program (NAIP).

BASE MAP DATA - All data is based on 1:24,000 scale and displays geographic names, places and boundaries. Important geographic locations and waterbodies are input images is not corrected so differences are present in the range and intensity of colors depending on the area viewed. The location and shape of features in other GIS layers will not exactly match information shown in the aerial photography primarily due to differences in spatial accuracy and data collection dates. Smaller-scale data such as major universities, U.S. routes, state roads, parks, railroads, and ferry crossings are displayed but may not match the locations of such features on the orthophotography. Also shown are hospitals, educational facilities, rail stations, and town boundaries. Important geographic locations and waterbodies are labeled.

EXPLANATION

This map displays 2010 National Agriculture Imagery Program (NAIP) infrared orthophotography for the State of Connecticut. It is a color infrared, leaf on, 3.39 foot (1 meter) aerial survey taken during the Spring of 2010. This infrared orthophotography provides many services, such as observing crop and vegetation conditions as well as supporting identification and mapping of habitat areas. The statewide differences in spatial accuracy and data collection dates. This map displays 2010 National Agriculture Imagery Program (NAIP) infrared orthophotography for the State of Connecticut. It is a color infrared, leaf on, 3.39 foot (1 meter) aerial survey taken during the Spring of 2010. This infrared orthophotography provides many services, such as observing crop and vegetation conditions as well as supporting identification and mapping of habitat areas. The statewide differences in spatial accuracy and data collection dates. This map displays 2010 National Agriculture Imagery Program (NAIP) infrared orthophotography for the State of Connecticut. It is a color infrared, leaf on, 3.39 foot (1 meter) aerial survey taken during the Spring of 2010. This infrared orthophotography provides many services, such as observing crop and vegetation conditions as well as supporting identification and mapping of habitat areas. The statewide differences in spatial accuracy and data collection dates.

DATA SOURCES

ORTHOPHOTOGRAPHY - National Agriculture Imagery Program (NAIP) is provided by the USDA's Farm Service Agency through the National Agricultural Imagery Program (NAIP) for the State of Connecticut as part of the Farm Service Agency's National Agricultural Imagery Program (NAIP).

BASE MAP DATA - All data is based on 1:24,000 scale and displays geographic names, places and boundaries. Important geographic locations and waterbodies are input images is not corrected so differences are present in the range and intensity of colors depending on the area viewed. The location and shape of features in other GIS layers will not exactly match information shown in the aerial photography primarily due to differences in spatial accuracy and data collection dates. Smaller-scale data such as major universities, U.S. routes, state roads, parks, railroads, and ferry crossings are displayed but may not match the locations of such features on the orthophotography. Also shown are hospitals, educational facilities, rail stations, and town boundaries. Important geographic locations and waterbodies are labeled.