QUATERNARY GEOLOGY NORTH STONINGTON, CONNECTICUT

LIST OF MAP UNITS

POSTGLACIAL DEPOSITS - late Holocene, late Wisconsinan Artificial Fill Coastal Beach and Dune Deposits Tidal Marsh Deposits Floodplain Alluvium Swamp Deposits Talus EARLY POSTGLACIAL DEPOSITS - early Holocene, late Wisconsinan Stream Terrace Deposits Inland Dune Deposits Area of glaciofluvial deposits grading to glacial lake Area of lake-bottom sediments Area of lake-bottom sediments Drainage Divide Boundary between major geologic basins. Orainage Divide Boundary within major geologic basins	GLACIAL MELTY Undifferent Deposits of Deposits of Deposits of Deposits of Deposits of Deposits of GLACIAL ICE-LA Thin Till De Thick Till E End Morain Elevation Contour 100 Ft. Interva	WATER DEPOSITS - late Wisconsinan iated Meltwater Deposits Major Ice-Dammed Lakes Major Sediment-Dammed Lakes Related Series of Major Ice-Dammed Ponds Related Series of Major Sediment-Dammed Ponds Proximal Meltwater Streams Distal Meltwater Streams Distal Meltwater Streams Deposits Deposits e Deposits s al	Explanation of Map SymbolsIIIIce Margin PositionIIIInferred Ice Margin PositionSSSEskerGlacial Striation or GrooveDrumlin Axis and CenterMeltwater ChannelGlacial Lake SpillwayInferred Glacial SpillwayInferred Glacial SpillwayLocation of Lower TillTwo-Till OutcropDeltaic Bedding LocalityWeathered Bedrock OutcropRadiocarbon-Dated Locality
<text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text>	EXPLAN features formed ± 0.005 million and Holocene pment of many wice in the last he north. Their story and the unconsolidated on those events undred feet in soil layer of ganic soil layer led at 1:24,000 000-scale map, . A companion e surface and ternary geology closely related; be divided into d and generally exposed in the ut; and Glacial tom, and inland wlands. I characteristics ed development the meltwater conditions that ther previously r pond where eltwater stream on the ice sheet I for deposits of back of the last time and have resulting from ed together as	ACTION the bottom, and inland dune deposits); and Postglacial and swamp deposits, but also including stream-terrace, channel fill, marine delta deposits, and artificial fill) tha topographic and depositional settings, and therefore sh categorized and color coded in the Legend Description. eskers, drumlin axes, ice-margin positions, scarps, of spillways, meltwater channels, striations/grooves, dated and lake-bottom facies as overlays on glacial lake m exposures. Glacial Ice-Laid Deposits (nonsorted and generally non end moraine) were derived directly from the ice and of constratified mixtures of grain-sizes ranging from clay the most tills is predominantly sand and gravel and occasio grained sediment. The lack of sorting and stratification to groundwater and unsuide for septic systems. Till bly variable thicknesses and commonly underlies stratification to groundwater and unsuide for septic systems. The bly variable thicknesses and commonly underlies stratific throng the deposits (primarily ablation till) occur principal lec-laid deposits are inferred to be of Wisconsinan age of (probably Illinoian) till are shown. Drumlins are inferred than dinand dune deposits) were laid down in glacial stratified met and worable for development. Because water is a better meltwater deposits. They can be good sources of or relavate deposits. They can be good sources of or relavater deposits are commonly better sorted, more than ice-laid deposits. They can be good sources of or relavater deposits are commonly better sorted, more than ice-laid deposits. They can be good sources of or relavater for development. Because water is a better methwater flow. As a result, morphosequences are corase contact heads and become finer distally (Figure 1). Some source from the glacier (distally) and grain siz methwater flow. As a result, morphosequences are c	Deposits (flood-plain alluvium talus, dune, tidal-marsh, beach, twere emplaced in comparable are similar characteristics, are Related Map Elements include trainage divides, glacial lake sample locations, glaciofluvial ap units and various types of tratified thin till, thick till, and consist of nonsorted, generally o large boulders. The matrix of an be sparse to abundant. Some nally masses of laminated fine- ypical of ice-laid deposits often plow, mediocre sources of ankets the bedrock surface in fied meltwater deposits. End ly in southeastern Connecticut. Such where exposures of older till.
Figure 1: A morphosequence is a body of meltwater deposits composed of terrace, delta plains), that were deposited simultaneously at and beyond the through sand and gravel and sand beneath delta plains and foreset slopes to support the morphosequences that progressively filled bedrock lowlands as the last glacier melted northward required the presence of lakes and ponds. The nature of the impoundments and the resulting distribution deglaciated. Where a northward succession of ice positions was a south-draining basins, previously deposited sediment formed the dams, a morphosequences occupied the lowest, widest parts of the valley. De North	a continuum of land f margin of a glacier, gr silt and clay in lake-bot valleys and of impounded ibution of the y of the area established in and the oldest position then	forms, grading from ice-contact forms (eskers, kames) to naraded to a specific base level. Grain-size decreases from contom deposits (after Stone and others, 2005). progressed up valley, with the youngest depositional narrower portions of the valley (Figure 2). In north-oftrue. The ice itself was the impoundment, and the emplaced in the higher, narrower portions of the bas northward, a succession of lower bedrock spillways widened. In this case, the youngest depositional sequent portions of the valley (Figure 2). Narrow Basim	on-ice-contact forms (flat valley parse gravel at ice-contact heads, I sequences occupying higher, training systems the opposite is oldest morphosequences were asin. As the ice front retreated a were opened and the valleys aces occupied the lowest, widest
Narrow Basin Figure 2: Scenario for morphosequence development in ice-dammed (Top) positions of the deposits are related to the orientation of the basins relative Map Units (after Stone and others, 2005). Postglacial Deposits (flood-plain alluvium and swamp deposits, but and the store of the basin store).	North-Drain: South-Drain: and sediment-dammed to the direction of ice	ing Basin Wide Basin Wide Basin State of the second	e chronological and topographic and color coding of the List of
 sucam-terrace, tarus, dune, tudar-marsh, beach, channel fill, marine delta artificial fill) are less widely distributed and are typically thinner tha deposits that they overlie. The oldest postglacial deposits occur in Long and in southeastern Connecticut because these areas were deglaciated f the depositional processes that were initiated as postglacial condition prevail are still operative today. Postglacial deposits provide locally important ecological, agricultural, QUATERNARY GEOLOGY DATA – Quaternary Geology shown from the Quaternary Geology Poly, Point Feature, and Line Feature to be used at 1:24,000 scale. Based on Connecticut Quaternary Geology at 1:24,000 scale. Based on Connecticut Quaternary Geology Map of Connecticut, (Stone, J.R., Schafer, J.P., London, E. Cohen, M. L., Lewis R.S, and Thompson, W.B., 2005, U.S. Ge special map, 2 sheets, scale 1:125,000). BASE MAP DATA - Based on data originally from 1:24,000-scale U topographic quadrangle maps published between 1969 and 1992. It is boundaries, railroads, airports, hydrography, geographic names places. Streets and street names are from Tele Atlas[®] copyrighted information is neither current nor complete. CONTOUR DATA - Derived from Connecticut's 2000 statewide Detection And Ranging), dataset by the University of Connecti Agriculture and Natural Resources, Department of Natural Resources. NOTE: Contour line data is known to be incorrect in sc anomalies in the underlying elevation data used to generate those lines. Areas where contour lines are too straight or angular, do no where any elevation data used to generate those lines. Areas where contour lines are too straight or angular, do no where any elevation data used to generate those lines. Areas where contour lines are too straight or angular, do no where any elevation data used to generate those lines. Areas where contour lines are too straight or angular, do no where any elevation data used to generate those lines. Areas where contour lines ar	acposits, and in the glacial Island Sound first. Many of ons began to commercial, DATA S on this map are dataset intended gy digital spatial eration with the a were digitized wide Quaternary H., DiGiacomo- cological Survey USGS 7.5 minute ncludes political and geographic data. Base map LiDAR, (Light focut, College of cources and the ad demonstration ome areas due to specific contour t naturally curve	 (primarry uap rock) criffs, and inland dune deposits, across newly exposed glacial lake beds, provide ecolog Connecticut. Beach, dune, marsh and swamp deposits coastal and poorly drained inland settings. Deposits of composed of sands, gravels and silts that have been r and mixed with organic matter which increases their prone nature, low, flat, fertile floodplains have hi agricultural uses and development related to water-deposite of the same set of the same se	man developed as Winds swept pical niches that are atypical for are key ecological elements of floodplain alluvium are largely eworked from glacial deposits r fertility. Despite their flood- storically been attractive for endant commerce. MATERIALS DATA - 1:24,000- V Geology and Surficial Materials the Connecticut Department of e U.S. Geological Survey. These ation sheets prepared for both the , Schafer, J.P., London, E.H. and y Special Map, 2 sheets, scale e Quaternary Geologic Map of J.R., Schafer, J.P., London, E.H., son, W.B., 2005, U.S. Geological scale 1:125,000). available for individual USGS is intended to be used with other town maps and reports published Survey, USGS, and others. Those
where expected, of doint exist where they probably should are god erroneous data. 0 0.25 0.5 1 0 1.125 2.250 4.500 6.7 0 0.25 0.5 1 1.5 SCALE 1:24,000 (1 inch = 2,000 feet) when map is printe	1.5 50 9,000 Fe 2 Kilometers ed at original size (48 x	² Miles et 36 in)	ION

STATE OF CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION 79 Elm Street Hartford, CT 06106-5127

FCIICO

Map created by CT DEP December 2010 Map is not colorfast Protect from light and moisture

