Inferred Glacial Spillway Deposits of Distal Meltwater Streams

Postglacial Deposits (flood-plain alluvium and swamp deposits, but also including end moraine); Glacial Meltwater Deposits (sorted and stratified deltaic, river bottom, and surficial material features portrayed on these two maps are very closely related; and Glacial Ice-Laid Deposits

Deposits of Distal Meltwater Streams, Talus, Dune, Tidal-Marsh, Beach, Channel Fill, Marine Delta Deposts, and undetermined provenance (uncorrelated). When they were emplaced, and a separate meltwater map unit is reserved for deposits of stratified meltwater deposits because they have historically influenced development of uplands, and are the most widespread surficial deposit in Connecticut; and Glacial

When they were emplaced, and a separate meltwater map unit is reserved for deposits of stratified meltwater deposits because they have historically influenced development of uplands, and are the most widespread surficial deposit in Connecticut; and Glacial

Distribution of depositional environments during the emplacement of unconsolidated sediments is also shown as a series of lines and symbols that represent the limits of different environments. These environments are differentiated based on their distance (proximal or distal) from the ice sheet and their relationship to the ice sheet. Proximal environments are those that were adjacent to the ice sheet and are typically characterized by deposits of till, outwash, and glaciofluvial deposits. Distal environments are those that were further from the ice sheet and are typically characterized by deposits of glaciolacustrine, glaciomarine, and glaciomarine deposits.

The depositional processes that were initiated as postglacial conditions began to dominate the landscape. These processes include:

- Stream-terrace formation, where streams eroded into the bedrock
- Talus formation, where debris was deposited at the base of rocky cliffs
- Dune formation, where windblown sand and debris accumulated
- Tidal-marsh formation, where tidal currents deposited sediments in low-lying areas
- Beach formation, where waves deposited sediments in coastal areas
- Channel fill formation, where sediments were deposited in river channels
- Marine delta formation, where sediments were deposited in coastal areas
- Swamp formation, where sediments accumulated in low-lying areas

These depositional processes were influenced by a variety of factors, including:

- The position of the ice sheet
- The topography of the landscape
- The availability of sediment
- The energy of the depositional agents

The depositional processes that were initiated as postglacial conditions began to dominate the landscape. These processes include:

- Stream-terrace formation, where streams eroded into the bedrock
- Talus formation, where debris was deposited at the base of rocky cliffs
- Dune formation, where windblown sand and debris accumulated
- Tidal-marsh formation, where tidal currents deposited sediments in low-lying areas
- Beach formation, where waves deposited sediments in coastal areas
- Channel fill formation, where sediments were deposited in river channels
- Marine delta formation, where sediments were deposited in coastal areas
- Swamp formation, where sediments accumulated in low-lying areas

These depositional processes were influenced by a variety of factors, including:

- The position of the ice sheet
- The topography of the landscape
- The availability of sediment
- The energy of the depositional agents

These depositional processes were influenced by a variety of factors, including:

- The position of the ice sheet
- The topography of the landscape
- The availability of sediment
- The energy of the depositional agents