lowlands as the last glacier melted northward required the presence of impounded Map Units (after Stone and others, 2005).

Most of Connecticut’s surficial material is glacially derived, and can be divided into thickness, overlie the bedrock surface and underlie the organic soil layer of Connecticut. Beach, dune, marsh and swamp deposits are key ecological elements of

Inferred Glacial Spillway

River systems were formed at the end of the last ice age, when the meltwater streams streamed across the land. The delta plains and foreset slopes were covered with sand and gravel, while the lake-bottom deposits were composed of silt and clay. When the glaciers melted, they impounded the lakes or ponds where the floodwaters eventually took shape as the modern rivers.

The delta plains and foreset slopes were emplaced in high-energy settings at or near the ice front. Energy levels dropped off as the glaciers retreated. This can be observed in the assemblages of glacial sedimentary facies that can be identified as mappable units through sand and gravel and sand beneath delta plains and foreset slopes to silt and clay in lake-bottom deposits (after Stone and others, 2005).

A separate meltwater map unit is reserved for deposits of meltwater stream deposited sediment, or the glacier itself, impounded the lake or pond where they were emplaced, and a separate meltwater map unit is reserved for deposits of

EXPLANATION

DATA SOURCES

The floodplains of Connecticut were formed at the end of the last ice age, when the meltwater streams streamed across the land. The delta plains and foreset slopes were covered with sand and gravel, while the lake-bottom deposits were composed of silt and clay. When the glaciers melted, they impounded the lakes or ponds where the floodwaters eventually took shape as the modern rivers.

The delta plains and foreset slopes were emplaced in high-energy settings at or near the ice front. Energy levels dropped off as the glaciers retreated. This can be observed in the assemblages of glacial sedimentary facies that can be identified as mappable units through sand and gravel and sand beneath delta plains and foreset slopes to silt and clay in lake-bottom deposits (after Stone and others, 2005).

A separate meltwater map unit is reserved for deposits of meltwater stream deposited sediment, or the glacier itself, impounded the lake or pond where they were emplaced, and a separate meltwater map unit is reserved for deposits of