Soil Drainage Class refers to the frequency and duration of wet or flooded conditions experienced by the growing season. There are five classes, as follows:

- **Essentially drained**: Water is removed very rapidly. The occurrence of natural wetness commonly is very rare or very short. The soils are commonly considered to be well-drained and are not the subject of this map.

- **Slightly excessively drained**: Water is removed from the soil quickly but is temporarily retained by the soil structure, resulting in a deep or very deep water table but not to the surface. This class is not covered by this map.

- **Moderate to slightly excessively drained**: Water is removed from the soil slowly, but it is temporarily retained by the soil structure, resulting in wet conditions that may affect plant growth. These soils may require drainage assistance to improve crop productivity. This class is not covered by this map.

- **Somewhat excessively drained**: Water is removed from the soil very slowly, but it is temporarily retained by the soil structure, resulting in very wet conditions that may significantly affect plant growth. These soils may require significant drainage assistance to improve crop productivity. The soils in this class are not covered by this map.

- **Poorly drained**: Water is removed very slowly, and flooding occurs during the growing season. The occurrence of natural wetness is common, resulting in flooded conditions. These soils may require significant drainage assistance to improve crop productivity. The soils in this class are not covered by this map.

Data Sources

The soil-drainage map, like the hydrologic soil map, is the product of the NRCS Wetland Evaluation Program. Wetland mapping and evaluation is conducted by NRCS, county Soil Conservation Districts, and District Technical Service Centers. The soils in this map were identified using the NRCS soil survey database. The soils were mapped at a scale of 1:12,000 with a minimum size of 1.0 acres. Soil surveys were conducted by NRCS, county Soil Conservation Districts, and District Technical Service Centers. The soils were mapped using the Lambert Conformal Conic Projection.