Water is removed very rapidly. The occurrence of annual floodwater commonly to very near or very near the soil's surface may indicate slow or very slow percolation rates. These are generally associated with soils having a high saturated hydraulic conductivity or highly permeable textures. These soil features are associated with wetness. They result from periods under conditions similar to those under which the soil is transitory to permanent. Wetness markedly restricts the growth of mesophytic crops and may indicate that drainage is not adequate. Unless the soil is artificially drained, most soils will remain wet for long periods. The occurrence of wetness, which are factors in rating soils for various uses, are shown on this map.

Legend

- **Essentially drained**: Water is removed very rapidly. The occurrence of annual floodwater commonly to very near or very near the soil's surface may indicate slow or very slow percolation rates. These are generally associated with soils having a high saturated hydraulic conductivity or highly permeable textures. These soil features are associated with wetness. They result from periods under conditions similar to those under which the soil is transitory to permanent. Wetness markedly restricts the growth of mesophytic crops and may indicate that drainage is not adequate. Unless the soil is artificially drained, most soils will remain wet for long periods. The occurrence of wetness, which are factors in rating soils for various uses, are shown on this map.
- **Moderately well-drained**: Water is removed from the soil rapidly but not as rapidly as well-drained. The water table is not very deep or very deep but returns to the surface in a five year period, depending on the size of the area involved. These soil features are associated with wetness. They result from periods under conditions similar to those under which the soil is transitory to permanent. Wetness markedly restricts the growth of mesophytic crops and may indicate that drainage is not adequate. Unless the soil is artificially drained, most soils will remain wet for long periods. The occurrence of wetness, which are factors in rating soils for various uses, are shown on this map.
- **Well-drained**: Water is removed from the soil rapidly but not as rapidly as well-drained. The water table is not very deep or very deep but returns to the surface in a five year period, depending on the size of the area involved. These soil features are associated with wetness. They result from periods under conditions similar to those under which the soil is transitory to permanent. Wetness markedly restricts the growth of mesophytic crops and may indicate that drainage is not adequate. Unless the soil is artificially drained, most soils will remain wet for long periods. The occurrence of wetness, which are factors in rating soils for various uses, are shown on this map.

Explanation

Soil Drainage Class refers to the capacity of the soil to drain or hold water and is important for the growth of crops and other vegetation, as well as for the health and safety of the environment. It is determined by the soil's physical properties, such as texture, structure, and porosity.

Data Sources

- **CT DEP website**: Visit the Connecticut Department of Energy and Environmental Protection's website for more information on soil drainage classes and their implications.
- **USGS maps**: The USGS (United States Geological Survey) provides topographic maps that can be used to determine soil drainage classes. These maps are available online and can be used to identify areas with specific drainage characteristics.

This map does not represent current soil conditions, as soil conditions can change over time due to various factors such as land use, climate, and natural processes. Therefore, it should be used as a reference tool and not for direct application in agricultural or urban planning.