SOIL FLOODING CLASS
FRANKLIN, CONNECTICUT

LEGEND

- Flooding is likely to occur often under normal rainfall conditions. The chance of flooding is more than 50 percent in any year.
- Flooding is likely to occur often under normal rainfall conditions. The chance of flooding is more than 50 percent in any year.
- Flooding occurs independently of normal rainfall conditions. The chance of flooding is 1 in 30 to 50 years in any year.

DATA SOURCES

- Open File Data
- Interagency Data
- Rock
- Floodplain DRG 500K topographic
- Watercourse
- Interagency Vicinities
- County Boundary
- US Boundary
- State Roads
- State Highways
- Town
- Push
- Other

EXPLANATION

Soil susceptibility to flooding is the percentage chance of soil flooding in an area based on soil type, land cover, and other factors. Flooding is likely to occur often under normal rainfall conditions. The chance of flooding is more than 50 percent in any year.

The data used in this map are from the Soil Survey Geographic (SSURGO) database produced by the Natural Resources Conservation Service (NRCS). The soil map units delineated are available for download at the NRCS online mapping tool at http://soils.usda.gov.

The Soil Survey Geographic (SSURGO) database is an inventory of soil properties and geographic location for all soils in the United States. The soil properties are determined from field observations, laboratory analyses, and ancillary data. The soil map units are determined by soil properties and topography. The soil map units are delineated on a map by soil surveyors.

The soil map units on this map are based on 1:24,000 scale soil maps and 7.5' quadrangle topographic maps. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.

The soil map units are based on the soil properties and topography. The soil map units are delineated on the soil map using a combination of field observations, laboratory analyses, and ancillary data. The soil map units are used to identify the potential for soil flooding in an area.